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Abstract: Location information is the primary feature of wireless sensor networks, and it is more
critical for Mobile Wireless Sensor Networks (MWSN) to monitor specific targets. How to improve the
localization accuracy is a challenging problem for researchers. In this paper, the Gaussian probability
distribution model is applied to randomize the individual during the migration of the Adaptive Fish
Migration Optimization (AFMO) algorithm. The performance of the novel algorithm is verified by
the CEC 2013 test suit, and the result is compared with other famous heuristic algorithms. Compared
to other well-known heuristics, the new algorithm achieves the best results in almost 21 of all 28 test
functions. In addition, the novel algorithm significantly reduces the localization error of MWSN, the
simulation results show that the accuracy of the new algorithm is more than 5% higher than that of
other heuristic algorithms in terms of mobile sensor node positioning, and more than 100% higher
than that without the heuristic algorithm.

Keywords: heuristic algorithms; fish migration optimization; localization; mobile sensor networks;
monte carlo localization

1. Introduction

With the efforts of more and more researchers, many technologies have become
mature and inexpensive, such as communication theory, micro electromagnetic systems,
and integrated circuits. Based on these technologies, wireless sensor networks (WSNs)
have been widely used, and their performance has been dramatically improved [1]. A
sensor node can collect valuable information, process it, and pass it to another sensor node,
and finally, this information reaches the sink node [2]. The location information of sensor
nodes is essential for WSNs to ensure that users match the collected data and monitoring
targets and make correct decisions [3]. Location information is usually provided by the
Global Positioning System (GPS), but only a few sensor nodes are equipped with GPS due
to cost and energy constraints. Sensor nodes with GPS are called anchor nodes, and other
nodes are called unknown nodes because their location is unknown [4].

In a static wireless sensor network, the sensor nodes are set in a certain position and
will not change, the position of the unknown node can be estimated by many algorithms
based on the information of the anchor node. These algorithms are divided into two cate-
gories according to whether they rely on the distance information between sensor nodes,
namely range-based localization algorithms and range-free localization algorithms [5,6].
Some range-based localization algorithms represented in this section. For an unknown
node, the time of arrival (TOA) from different stations can be used to estimate its loca-
tion [7]. In [8], for an unknown node, the time of arrival (TOA) from different stations can
be used to estimate its location. The authors exploit the time difference of arrival (TDOA)
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information to estimate the location of unknown nodes and employ continuous uncon-
strained minimization and a generalized trust-region subproblem to optimize the problem.
In the Received Signal Strength Indication (RSSI) algorithm, the distance between them
can be calculated based on the signal attenuation between sensor nodes [9]. In range-based
localization algorithms, linear distance or direction information between sensor nodes is
usually utilized. This class of algorithms can provide more accurate location information
but requires additional components to obtain distance or direction. Therefore, the economic
cost and energy cost are not ideal [10]. The range-free localization algorithm can solve the
wireless sensor network localization problem only with a more straightforward sensor node
than the range-based localization algorithm. The weighted centroid localization (WCL)
algorithm only utilizes the signal strength to estimate the location of the unknown node;
this machine ensures that WSNs can work in a complex deployment environment [11].
The DV-Hop localization algorithm calculates the distance from the anchor node to the
unknown node according to the distance of each hop of the anchor node [12]. Chen et
al. introduce the different calculations about the distance between anchor nodes and
unknown nodes. They utilize the average hop-size of all anchor nodes to estimate the
location of unknown nodes rather than each anchor node with its hop-size [13]. In [14], the
authors propose an Ad hoc Positioning System (APS) method to reduce positioning errors,
which combines propagation and GPS triangulation information to estimate the location of
unknown nodes.

There is a serious challenge in the positioning of mobile sensor nodes in MWSN;
that is, the positioning error is huge, and with the movement of mobile sensor nodes,
the positioning error will become larger and larger. To address this problems, this paper
introduces a novel heuristic algorithm. Heuristic algorithm is a powerful tool to solve
many engineering problems. Some scholars use the excellent performance of the heuristic
algorithm in optimization to reduce positioning error. The adaptive strategy is combined
with a compact Particle Swarm Optimization (PSO) algorithm, and this algorithm can
run on a memory limitation device. Simulation results indicate that localization error is
significantly reduced [15]. PSO algorithm is used to enhance the localization accuracy-
based distance between sensor nodes that RSSI obtained [16]. The performance of general
heuristics applied to WSN localization is compared in [17]. Some researchers work on
the localization of sink nodes. In [18], the authors proposed a method that utilizes the
Grey Wolf Optimization (GWO) algorithm to find the location of the sink node. In [19], a
Compact Black Hole (CBH) algorithm is introduced and applied to solve the localization of
mobile sensor node problem.

With the increasing attention of scholars, there are many excellent novel or improved
heuristic algorithms. In previous decades, only some basic and simple heuristic algorithms
were proposed and used, such as Genetic Algorithm (GA) [20], PSO algorithm [21], Ant
Colony Optimization (ACO) algorithm [22], Whale Optimization Algorithm (WOA) [23],
and Artificial Bee Colony (ABC) algorithm [24]. In recent years, scholars have proposed
various heuristic algorithms inspired by natural phenomena or swarm intelligence action.
The Black Hole (BH) algorithm mimics a black hole in nature, where the matter around
it is devoured [25]. If the individual is too close to the global best candidate solution in
the BH algorithm, it will be randomly initialized. Chu et al. proposed a PSO-based Cat
Swarm Optimization (CSO) algorithm, in which the authors introduced two models: a
finding model and a tracking model. According to the cooperation of these two models, the
algorithm performs well in complex optimization problems [26]. In [27], four novel trans-
formation functions are applied to the Binary Grey Wolf Optimization (BGWO) algorithm,
which outperforms traditional BGWO on feature selection problems. The multi-surrogate
strategy efficiently improves the convergence rate of binary PSO when facing complex
multi-dimensional problems [28]. Useful information from the optimization process can be
reused, which can further guide the movement of the population. In [29], six information
feedback models are introduced, and the experimental results show that this strategy can
improve the search performance of the heuristic algorithm. Gao et al. proposed a novel
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Difference Evolutionary (DE) algorithm to solve the job-shop scheduling problem [30],
which adopted a novel selection mechanism and significantly enhanced the global search
ability of DE. Adaptive parameters are used to limit the movement of the Substance Search
(SMS) algorithm, and the new algorithm is applied to hide watermarks into QR codes [31].

2. Related Work

In order to reduce the localization error of mobile sensor nodes, this paper combines
the Sequential Monte Carlo Localization (SMCL) method and heuristic algorithm. The
reason for using the heuristic algorithm is that the optimal value can be quickly calculated,
which can ensure the timely positioning of the position of the mobile sensor node. This
section briefly presents the mechanism of the SMCL method and AFMO algorithm.

2.1. Adaptive Fish Migration Opmtimization Algorithm

AFMO algorithm was proposed in 2020, and is a modified version of the Fish Migration
Optimization (FMO) algorithm. The FMO algorithm mimics the whole life course of fish
and divides the life of fish into five stages. There are many accidents during fish growth,
so many individuals cannot grow up safely. In addition, these fish would return to their
birthplace when adults, producing offspring. Therefore, the survival rate is introduced
by authors in FMO [32], and they are set at 5%, 10%, and 100% in stage 3, stage 4, and
stage 5, respectively. In the FMO algorithm, the energy of the individual increases with
the number of iterations, and when the individual’s energy exceeds a particular value,
the individual will enter the next stage. When individuals return to their birth positions
or die, new individuals are randomly generated to keep the population size unchanged.
This scheme ensures that the FMO algorithm performs strongly in avoiding local optima.
However, the algorithm has poor searchability in the single-modal test function because
the exploitation ability is weak.

In the AFMO algorithm, as Figure 1 shows, the life of fish consists of four stages, and
the survival rate is 15%, 35%, and 100% in stage 2, stage 3, and stage 4. Some studies
have shown that a suitable parameter adjustment strategy can balance exploration and
exploitation to enhance the optimization performance in the heuristic algorithms [33]. The
AFMO algorithm introduced a novel strategy to adjust the energy update of the FMO
algorithm, and the detail is presented in the following;:

fiti — fitbest
fitmax - fithest

1 t
Ene;™" = Ene; + re - Eneyqy -

M

where the Enef is the energy of the i-th individual at t iteration, Engy.y is a constant value
and set at 200 in [34]. To enhance the diversity of the population, a perturbation element r,
is added to Equation (1), which is a random value between 0.2 and 0.6. The fitness function
would evaluate the individual of AFMO, and the fitness value of the i-th individual is
represented by fit;. The fitness values of the best and worst individuals are represented by
fitpest and fityay. This mechanism promotes individuals with poor fitness values to the
next stage and makes it initialized with greater probability. The energy not only determines
if the individual grows up to the next stage but also influences the individual’s update at
one iteration. The detail of the update is shown in Equation (2).

Ene! fit; — fity
Enepmax  |fit; — fit]

Xf+1 = Xf Tw- (Xltaest - Xt)

: “RC- (X — X;) )
where X! is the position of the i-th individual at the t iteration, and w is a parameter that
controls the individual’s range of motion, which is a variable value that decreases from
2 to 0.4 during the operation of the AFMO algorithm. X}, is the position of the individual
with the best fitness value, X! and fit, are the position and fitness value of a randomly
selected individual from the population. The AFMO algorithm adds a learning strategy to
the FMO algorithm, randomly selects an individual as the learning object, and compares it
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with the i-th individual. If the i-th individual is worse than the learning object, it is close to
the learning object, and vice versa. The RC is a random number between 0 and 7/10, and
it can adjust the study strength of the algorithm.

Although the AFMO algorithm enhances the performance of the original FMO algo-
rithm and obtained better results than other famous heuristic algorithms in the CEC 2013
test suit, it has disadvantages in unimodal optimization problems. This paper introduces
the novel algorithm called the Gaussian-Based Adaptive Fish Migration Optimization
(GAFMO) algorithm, which applies the Gaussian distribution model to the migration
process of AFMO. This mechanism enhances the population diversity in the migration
process of fish and ensures the exploitation ability.

S io » >

Stage 1 Stage 2 Stage 3 Stage 4

Figure 1. The grow-up process of fish.

2.2. Sequential Monte Carlo Localization Method

The authors introduced the SMCL method to enhance the localization accuracy of
mobile sensor nodes of WSNss [35]. Twenty years ago, there was little research on the
localization of mobile sensor nodes, but similar problems were widely studied in robotics.
Researchers usually estimate the robot’s position in robot localization based on measure-
ment models and observational data. The measurement model is built from previously
collected data, and the model is continuously updated during robot operation. If the mea-
surement model and observational data obey a Gaussian distribution, robot localization
can be solved by using a Kalman filter [36]. In some cases, the Kalman filter can not be used
when the problem is non-Gaussian; the Markov localization method is introduced [37].

Sensor node localization has different challenges to solve than robot localization:
1. Sensor nodes are placed on an unknown map or terrain. 2. The speed or direction of the
mobile sensor node cannot be obtained. 3. Mobile sensor nodes do not have enough energy
and memory to estimate localization by integrating information collected by other sensor
nodes [38]. In [35], based on the current location information, the authors try to obtain
the probability distribution of the possible locations of the mobile sensor nodes at the next
time point. However, there are so many possible locations that it is difficult to estimate
the actual location, and existing location information becomes inaccurate over time. If the
speed is a random value between 0 and V4, and the direction of mobile sensor nodes is
unknown, the probability distribution can be presented in the following:

j bs(P! — Pty > v,
pr= ) v, BT 2 Ve 3

0 otherwise

The SMCL method introduces a filtering mechanism based on new observations from other
sensor nodes to exclude impossible locations. There are four situations for sensor node
localization in MWSN: outsiders, arrivals, leavers, and insiders. When a sensor node is not
heard at the current and previous time point, it belongs to outsiders; if a sensor node is
not heard at the previous time point but is heard at the current time, it is in arrivals; if the
sensor node is not heard at the current time point, is heard at the previous time point, it
belongs to the leavers; if the sensor node is heard at the previous time point and the current
time point, it is an insiders. These situations are presented in Figure 2, and A, B, C, and D
represent levers, insiders, arrivals, and outsiders, respectively. The circle filled with blue is
the sensor range of the node at the t — 1 time point, and the circle filled with yellow is the
sensor range of the node at the t time point.
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Figure 2. Sensor nodes movement.

Arrivals and leavers provide the most helpful information for the localization of a
mobile sensor node as it is located around the communication boundary of the arrivals
or leavers. For the cases of an outsider, the information of mobile sensor nodes can be
transmitted to the outsider node by the neighbor nodes. The detail of this process is shown
in Figure 3. Although the outsider can not hear the information of the mobile sensor node,
it can be regarded as leavers or arrivals of mobile sensor nodes within a 2R radius. Insiders
cannot locate outside the radius of the mobile sensor node.

R * The Mobile Sensor Node

Sensor Range with R Radius

Sensor Range with 2R Radius

Figure 3. Sensor nodes movement in case of outsider.

3. Gaussian-Based Adaptive Fish Migration Optimization

In nature, the growth of fish is accompanied by a variety of adverse factors such as
disease, food scarcity, and predators that prevent so many people from reaching adulthood.
To simulate this phenomenon, the authors introduced a survival rate mechanism that
maintains population size by randomly generating new individuals [32]. Although this
method ensures the diversity of the population and the ability to avoid falling into the local
optimum, it leads to the weak performance of the algorithm on the unimodal problem.
In this paper, the Gaussian probability distribution model is introduced to generate new
individual migration processes of AFMO and is presented in Figure 4.

Figure 4a shows the results of 3000 iterations of a Gaussian function with parameters
uof 0 and o of 16. Each point in the graph is generated by the Gaussian function in one
iteration and they are linked. We can see that the output of the Gaussian function is between
—20 and 20 in most cases, and the maximum absolute value is about 50. The distribution
of Gaussian function is shown in Figure 4b, the output is located in the range between
—16 and 16, with a 68.27% probability, and in the range between —32 and 32 with 95.45%
probability. In the heuristic algorithm, if a new individual is generated by this Gaussian
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probability distribution model, it will be within 32 units of u in most cases. This model is
applied to migration processes of AFMO to enhance the exploitation ability and the detail
is shown as the following;:

. . Fit; — fit
an*ig = Gaussian (X}, o) + m S(xE—xh) 4)

where the anf; represents the individual after migration at t + 1 iterations, X],, is the indi-
vidual with optimal fitness value at f iterations, and the ¢ is set at 16 in this article. The fit;,
fity, and fity,s; are the fitness values of the i-th individual, randomly selected individual,
and best individual. The positions of the i-th individual and randomly selected individual
at t iterations are represented by X! and X}. This equation ensures that new individuals are
generated in promising regions (near the best individuals), so it can find better candidate
solutions with greater probability. Furthermore, new individuals are attracted to another
randomly selected individual, and the better the randomly selected individual, the stronger

the attraction. The detail of the new algorithm is shown in Algorithm 1.

Algorithm 1: The Gaussian-Based Adaptive Fish Migration Algorithm.
Initialization: i=1,t=1, E;;4r = 200, ¢ = 7t/10, D =20, n = 30,
Xmax = 100, Xmin = —Xmax, Vmax = Xmax/10, Vmin = —Vmax, T = 1000;
whilei < n do

X; = Xmin + (Xmax — Xmin) x rand(1, D);

Calculated fit; (The fitness value of X;);

Ene; =0;

Stage; =1;

end

while t < T do

w=20-16-t/T;

Update the population according to Equation (2);

X; = max(Xmax,min(Xmin, X;));

Calculated fitness;;

if fit; > fitpes then

Update Ene; according to Equation (1);
if Ene; > 2+10 - vand - t/T then

| Stage; = Stage; +1;
end

end

According to Equation (3), individuals migrate;

t=t+1;

end

0025

Probability

0.005

0
0 500 1000 1500 2000 2500 3000 -0 80 60 40 20 0 20 40 60 80 100
Iterations Variable

(a) (b)

Figure 4. Results of running the Gaussian function (a) and the distribution of Gaussian function
(b) with y =0 and o = 16.
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4. Experimental Results and Discussion

In this section, a comparison of the new algorithm under the CEC 2013 test suite and
locating mobile sensor nodes with other well-known algorithms is presented. The results
provided by the CEC 2013 test suite illustrate the comprehensive performance of the new
algorithm, which shows that the new algorithm has excellent optimization capabilities over
other well-known heuristic algorithms. Localization simulation experiments of mobile
sensor nodes can demonstrate the performance of the new algorithm in solving specific
problems in the real world. The experiments were completed with Matlab 2020a on a
personal computer with Intel Core i7-10700k (5.1 GHz) and 48 G memory, and all experi-
ments were processed under the same parameters, such as population size, dimensions,
or iterations.

4.1. Experiments under CEC 2013 Test Suite

The CEC 2013 test suite is proposed to estimate the performance of heuristic algorithms
on single-objective optimization problems, which are the basis of niche, multi-objective,
and constrained optimization algorithms. This paper tests heuristic algorithms on 28 test
functions of the CEC 2013 test suite to fully and fairly verify the new algorithm’s perfor-
mance. The test functions were separated into three classes, which are Unimodal Functions
(f1 to fs), Basic Multimodal Functions (f4 to f9), and Composition Functions (f1 to frg); all
functions are minimization problems. The novel algorithm is compared with the classical
heuristic algorithm PSO, the original FMO, and the WOA and BH algorithms proposed
in recent years. The parameter setting is shown in [23,25,34,39]. The experimental results
are shown in the tables below, and the algorithms were used to find the optimal solution
for each test function in 20, 30, and 40 dimensions. All results are the mean and standard
deviation of 48 runs.

Various test functions can verify the different performances of heuristic algorithms.
In order to compare the exploitation ability of algorithms, uni-modal test functions are
introduced in CEC 2013. It has only one optimal solution in a limited area, so the heuristic
algorithms with strong exploitation ability can obtain great candidate solutions. The
experimental results under uni-modal test functions are presented in Table 1, and the novel
algorithm gets the best results in all uni-modal test functions for each dimension except
fa. In all uni-modal test functions, the novel algorithm performance was excellent in six
standard deviation results, which shows that the novel algorithm has excellent stability.

Table 1. The experimental results under uni-modal test functions.

Algorithm PSO AFMO WOA BH GAFMO
Dim Ave Ave Std Ave Std Ave Std Ave Std
20 —130x10° 3.61x102 —1.26x10° 201x10%2 —127x10° 9.84 x10' 562x10° 9.60x 102 —1.40x10° 2.49 x 10!
fi 30 —115x10° 424x10> —672x10> 722x10> —657x10%2 3.73x10%2 1.65x10* 1.39x10° —1.40x 10° 6.25 x 10*
40  —850x 102 8.01x10> 210x10° 321x10° 1.03x10® 9.40x 10> 256x10* 216x10° —1.40x 10® 1.70 x 10?
20 230x10° 1.94 x 10° 3.13x10° 3.01 x 10°  4.60 x 107 224 x 107 290 x 107 3.63x10° 1.93 x 105  3.11 x 10°
f» 30 1.03 x 107 6.62x10° 7.09 x 10° 276 x 10°  1.17 x 108 514 x 107 1.62 x 108 237 x 107  5.61 x 10°  6.51 x 10°
40 1.67 x107 5.53 x 10° 1.92x 107 8.82x10° 148x10% 3.95x107 929x107 858x10° 1.01x 107 1.09 x 107
20 3.02x10° 423x10° 1.05x10° 258x10° 1.01x10" 275x 10" 238 x 10 5.00x10° 1.00 x 10° 1.51 x 108
fs 30 116 x 101 131 x 1010 1.04 x 100  1.06 x 10 595 x 1010 431 x 1010 6.82 x 10'® 1.27 x 10'®  1.02 x 10°  2.45 x 10°
40 153 x 1010 131 x 1010 1.03x 100 552x10° 7.88x100 3.66x 100 424 x 10 1.11x10"° 1.53x10° 2.21 x 10°
20 739 x 108 527 X 103 442 x10* 124x10* 734x10* 267 x10* 459 x10* 936 x10° 329 x10* 121 x10*
fa 30 1.85 x 104  7.33 x 10>  7.05x10* 1.16 x10* 1.02x10° 357 x10* 693 x10* 9.76 x10° 589 x 10*  1.17 x 10*
40 2.54 X 10* 833 x10° 838 x10* 150x10* 1.09x10° 320x10* 8.61x10* 1.18x10* 698x10* 1.72 x 10*
20 —895x10% 3.60 x 102 —1.00 x 10° 1.43 x 1071 —6.54 x 102 1.76 x 10> 549 x 10> 3.12x 10> —1.00 x 10> 1.71 x 10!
fs 30 —820x10%> 3.86 x 10> —9.76 x 10> 342 x 10! —232x 10" 211x10> 248x10° 5.86x 102 —9.98 x 10> 2.75 x 10"
40  —596 x 102 6.68 x 102 —9.31x10%2 3.06 x 10" 451 x 102 251 x10%> 292x10° 4.90x 102 —9.75x 102 3.70 x 10’
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The combination function combines uni-modal and multi-modal test functions, which
can verify the comprehensive performance of the heuristic algorithm. The GAFMO algo-
rithm obtains the best results in almost all experiments, as shown in Table 2, instead of
121(40), f23(30), f26(20), and f»4(30). This phenomenon indicates that the novel algorithm
has a strong exploitation ability and an ability to avoid optimal local values. Like the other
experiments, the novel algorithm has excellent composition functions and stability.

Since the new algorithm introduces a Gaussian probability distribution model based
on AFMO, it has a stronger exploration performance than AFMO, which can be proved
by the experimental results presented in Table 3. In multi-modal test functions, the novel
algorithm obtains the greatest result at fs, f7, fo to f14, and fi9 for each dimension. As
the dimension increases, the new algorithm performs better and better on the fi5 and
f1g test functions and achieves the best score among the five algorithms in the case of
40 dimensions. The experimental data shows that the new algorithm has an excellent
performance in solving high-dimensional and high-complexity problems. The fg test
function is not discussed in this article because the algorithms under this function perform
similarly and provide no useful information. In addition, the new algorithm has the lowest
standard deviation of the 25 results (equivalent to 55% of all multi-modal experimental
results), which means that it can obtain a solution closer to the mean shown in Table 3 than

other algorithms in most cases.

Table 2. The experimental results under composition test functions.

Algorithm PSO AFMO WOA BH GAFMO
Dim Ave Std Ave Std Ave Std Ave Std Ave Std
20 1.04x10° 838x10" 1.08x10° 4.07x10' 141x10° 238x102 180x10° 3.63x10' 1.03x 10> 3.16 x 10!
fo1 30  1.06x10° 870x10' 1.07x10° 746x10' 174x10° 4.16x10> 274x10° 524 x10' 1.05x 10> 5.32 x 10!
40 141 x10° 626 x 100 139 x 10> 9.19 x 10! 218 x10° 3.71 x 102 3.66 x 10> 110 x 10> 1.41 x 10> 4.81 x 10!
20 392x10° 699 x102 593x10° 1.82x 10> 4.88x10° 564x102 565x10° 420x102 248 x10® 3.56 x 102
fo 30  590x10° 1.08x10° 9.00x10° 2.65x10%2 822x10° 7.99x 10> 861x10° 679x10> 3.71x10° 5.75x 10?
40 924x10° 9.69x102 1.31x10* 292x10* 117 x10* 9.10x102 127x10* 6.73x102 6.09 x 10> 6.62 x 102
20 428 x10° 647 x102 598x10° 247 x 10> 538x10° 548 x 102 574x10° 4.88x102 3.86 x 10° 3.63 x 102
fz 30 643 x10° 895x 102 953x10° 3.30x 102 833x10° 6.61x10> 872x10° 873x10> 6.45x10° 419 x 10?
40  931x10° 1.14x10° 1.32x10* 3.37x10%2 121 x10* 9.08x102 1.29x10* 6.63x10%2 7.86 x 10> 6.08 x 102
20 125 x10% 656 x 109 126 x10° 720x10° 1.28x10° 8.62x10° 129x10®° 1.31x10! 1.24x10® 5.73 x 10°
faa 30 129x10° 1.02x10' 1.30x10®° 898x10° 1.32x10° 1.14x10' 136x10° 2.09x10! 127 x10° 7.30 x 10°
40 133 x10° 148 x 10" 1.34x10° 134x10" 137x10° 145x10" 146x10° 239x10' 1.30x10° 8.88 x 10°
20 137 x10° 991 x10° 137 x10° 6.68x10° 1.38x10° 758x10° 141x10° 895x10° 1.36x10° 7.87 x 10°
fs 30  141x10° 116x10" 142x10° 686x10° 143x10° 121x10' 149x10° 1.27x10! 139 x10° 6.82 x 10°
40 149x10° 243 x10' 150x10° 154x10" 150x10° 1.35x10' 1.62x10° 190x10' 1.44x10® 1.17 X 10!
20 147 x10° 721x100 142x10° 5.06x 100 151x10° 757x100 141x10° 1.75x10° 150 x10° 4.69 x 10
fas 30 154 x10° 642 x 100 148 x10° 850x 10" 159 x10° 5.62x 10" 1.44 x 103> 626 x 100 153 x 10>  8.45 x 10!
40  158x10° 6.32x 10" 154 x10° 896x 100 1.60x10° 948 x 10" 159 x10° 926 x 10" 1.54 x 10°  8.74 x 10!
20 206x10° 637x100 213x10° 5.10x 100 227 x10° 691 x100 231x10° 7.61x10' 199 x 10® 6.66 x 10
foz 30 2.38x10° 1.04x102 250x10° 659x10' 270x10° 8.63x10' 274x10° 1.03x 10> 226 x 10> 4.78 x 101
40  275x10° 123 x 10> 289x10° 7.69x10" 3.16x10° 1.19x10> 345x10° 123x10> 248 x10® 6.32 X 10!
20 294x10° 824x102 362x10° 5.02x10%2 570x10° 7.39x102 517 x10° 443 x102 236 x 10®° 3.67 x 102
fis 30  252x10° 767 x102 259 x10° 1.04x10° 636x10° 6.83x102 6.08x10° 478 x 10> 2.04 x 10>  2.87 X 10?
40  359x10° 924 %102 3.19x10° 1.02x10° 7.80x10° 1.14x10° 841x10° 637x10%2 2.69 x10® 257 X 102
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Table 3. The experimental results under multi-modal test functions.
Algorithm PSO AFMO WOA BH GAFMO
Dim Ave Std Ave Std Ave Std Ave Std Ave Std
20 —835x10%2 333x100 —862x102 3.07x10' —750x102 653x10" 343 x102 228 x10®° —8.94 x 102 1.58 x 10!
fo 30 —796x10> 552x10' —843x10> 345x10' —5.67x102 133x10> 152x10° 337 x10> —8.52 x 10> 2.60 x 10!
40 748 x10%2 423 x10' —797x10%2 3.23x 10" —447x10%> 1.06x102 148x10® 2.25x10> —8.08 x 102 3.93 x 10!
20 —743x10%2 334x100 —6.65x10> 129x102 3.10x10° 846x10° 3.34x10* 266x10* —7.78 x 10>  6.67%°
fr 30 —6.83x10% 3.82x10' —6.35x10% 6.41x100 956 x 10> 498 x 10° 585x10* 155 x 10° —7.15 X 10> 2.02 x 10!
40 —670x 10> 517 x10' —622x10> 581 x10' —416x10> 259x10> 219x10>° 3.31x10° —7.22x 10> 1.92 x 10!
20 —6.79 X 10 7.18 x 1072 —6.79 X 102> 6.40 X 1072 —6.79 X 102> 7.44 x 1072 —6.79 X 10%> 7.36 x 1072 —6.79 x 10®> 8.27 x 102
fs 30 —6.79x10% 7.02x1072 —6.79 x 10> 5.15x 1072 —6.79 x 10?> 6.80 x 1072 —6.79 x 10®> 6.44 x 1072 —6.79 X 10®> 5.21 x 102
40 —6.79 X 10% 7.62x 1072 —6.79 X 102 3.68 X 1072 —6.79 X 102 8.00 x 1072 —6.79 X 10> 571 x 1072 —6.79 x 10® 4.11 x 102
20 —585x102 318x10° —579 x102 1.51x10° —577x102 209x10° —577x102 290 x 10° —5.89 x 102 1.52 x 10°
fo 30 —571x10> 333x10° —5.60x10> 159 x10° —5.62x10%2 290 x10° —561 x 10> 257 x10° —5.79 x 10> 1.93 x 10°
40 561 x10> 414 x10° —547x10> 2.02x10° —546x10> 359 x10° —546 x 10> 3.15x10° —5.71 x 10> 2.03 x 10°
20 —458x 102 395x 10" —4.67x10%> 3.10x10' —277x10> 1.08x 10> 1.76 x 10> 847 x 101 —4.98 x 10> 4.74 x 10°
fio 30 —371x10%> 134x102 —3.81x10> 933x101 123x102 220x10> 200x10° 218x10> —4.96 x 10> 1.42 X 10!
40  —393x102 128 x10® —124x10%2 3.03x10> 642x102 311x102 202x10° 195x10® —493x10%2 391 x 10
20 —326x102 243 x10' —255x102 1.30x10' —9.46x 10" 7.10x 10" —1.44x10® 414 x10' —3.63x10%2 1.30 x 10
fi1 30 —220x10%> 6.33x10' —143x102 285x10'  1.63x10> 1.07x102 123x10> 6.70x 10" —3.24 x 102 .25 x 10*
40  —691x 10" 7.61x10" —7.11x10° 447 x10' 3.82x102 1.07x10*> 335x102 1.02x10> —2.55x 102 2.94 x 10'
20 —210x10%2 323x100 —1.37x102 172x10" —994x10° 773 x10' —564x10° 532x10" —2.28 x 10> 1.50 X 10!
fiz 30 —125x10%® 574x10' 325x10' 313 x100 294 x102 1.15x10*> 217 x10> 6.76 x 10! —1.40 X 10> 1.86 x 10!
40 951 x10° 7.05x 10" 210x 10> 296 x10' 574 x 10> 1.07 x 10>  432x10>  7.85x10' —5.07 x 10! 2.81 x 10!
20 —7.14x10' 257x100 —3.15x10' 1.60 x 10 773 x 100 723 x10' 1.17x 10> 524 x 10! —9.70 x 10" 1.32 x 10!
fiz 30  418x10' 487 x10' 1.34x10> 2.69x10' 371x102 1.13x10> 3.46x10> 591 x10' 1.10x 10! 1.75 X 10!
40 1.76 x 102 7.05 x 10!  3.16 x 102 3.66 x 10! 658 x 102 1.05x 102 6.04x 10> 7.87x 10! 1.08 x 102  3.20 x 10!
20 2.00x10° 438 x10° 436x10° 260x102 327x10° 594x10%> 4.02x10° 535x10> 1.00 X 10° 3.56 x 102
fia 30  3.67x10° 630x 10> 749 x10° 274x10> 581 x10° 6.84x10> 695x10° 751 x10%> 240 x10° 559 x 102
40 562 x10° 7.67x102 1.07x10* 3.21x10> 830x10° 881x102 1.01x10* 851x10%2 3.92x10° 6.02 x 102
20 225x10° 508 x10° 439x10° 264x102 353x10° 567x10*> 381x10° 677 x10> 233x10° 3.13 x 10?
fis 30  428x10° 7.14x10> 7.80x10° 269 x 10> 657 x10° 839 x 10> 7.11x10° 837 x10> 4.82x10° 3.46 x 10?
40 643 x10° 870x10%2 1.13x10* 3.24x10> 927 x10° 9.20x10> 1.06x10* 727x10%> 597 x10® 4.32 x 102
20 201x10%2 478x10°! 202x10%2 340x10°! 202x10> 520x10°1 2.02x10® 4.66x10"1 202x10> 2.89x 101
fie 30  202x10%2 585x1071 2.03x10*> 323x107! 2.02x10> 665x1071 202x10%2 514x10"1 203x10> 3.75x 107!
40 203 x10%2 6.60 x 1071 2.04x 102 3.06 x10~1 203 x 10> 588x10"!1 203 x 10> 573 x 1071 2.03 x 10> 4.39 x 10~!
20 3.77 x 10> 133 x 10 518 x 10>  1.80 x 10! 658 x 102 7.42 x 10" 574 x 10> 423 x10' 434 x 10> 1.60 x 10!
fiz 30  471x10%2 247x10' 7.03x10> 279x101  995x10®> 1.09 x 10> 8.44 x 10> 8.01 x 10! 549 x 10> 2.74 x 10!
40 588 x 102 395x10' 9.15x102 328 x10' 129x10° 1.02x10%2 111x10° 1.23x10® 6.95x10% 3.21 x 10!
20 493 X 102 195x 10! 611 x10>  1.63 x 10! 754x 102  7.07x10' 672 x10> 648 x 10! 550 x 10> 1.40 x 10!
fis 30 593 x 102 3.04 x 100  8.05x 102  2.40 x 10! 110 x 10 1.12x 102 954 x 10> 799 x 10  6.83 x 10>  1.87 x 10!
40 7.00 X 102 4.02x 10" 1.03x10° 3.84x10' 143x10° 117x10%> 1.24x10° 1.06x10> 827 x10%2 2.72 x 10!
20 558 x 102 278 x 102 5.06x10%2 196x10° 550x 10> 259x10' 1.80x10° 4.13x102 5.05x 10> 1.38 x 10°
flo 30  515x10%2 116x10' 513x102 353x10° 759 x 102 2.00x 10> 154x10* 345x10° 511x10%2 247 x 10°
40 729 x 102 618 x 10> 523 x 10> 4.66x10° 157 x 10> 124x10° 438x10* 1.03x10* 519 x 10> 3.31 x 10°
20 6.09 X 102 654 x 1071 6.10x 102 577 x10~1® 610x 102 1.70x10"1 6.10x 10> 147 x 107! 6.10 x 102 9.66 x 10~!
fao 30  615%x10%2 875x10°! 615x10> 330%x 1077 6.15x 102 1.92x1071 6.15x 102 1.70 x 1071 6.15 x 10> 9.60 x 10!
40 618 x10%2 634x1071 619x102 148x10~1 619x102 407x10"! 618 x 102 4.08x 1071 6.18x 102 228x 107!

4.2. Experiments under CEC 2013 Test Suite

The CEC 2013 test suite is proposed to estimate the performance of heuristic algorithms
on single-objective optimization problems, which are the basis of niche, multi-objective, and
constrained optimization algorithms. This paper tests heuristic algorithms on 28 test func-
tions of the CEC 2013 test suite to fully and fairly verify the new algorithm’s performance.
The test functions are separated into three classes which are Unimodal Functions (f; to
f5), Basic Multimodal Functions (fs to f20), and Composition Functions (f>1 to fag), and
all of these functions are minimization problems. The novel algorithm is compared with
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the classical heuristic algorithm PSO, the original FMO, and the WOA and BH algorithms
proposed in recent years. The parameter setting is shown in [23,25,34,39]. The experimental
results are shown in the tables below, and the algorithms were used to find the optimal
solution for each test function in 20, 30, and 40 dimensions. All results are the mean and
standard deviation of 48 runs.

Various test functions can verify the different performances of heuristic algorithms.
In order to compare the exploitation ability of algorithms, uni-modal test functions are
introduced in CEC 2013. It has only one optimal solution in a limited area, so the heuristic
algorithms with strong exploitation ability can obtain great candidate solutions. The
experimental results under uni-modal test functions are presented in Table 1, and the novel
algorithm gets the best results in all uni-modal test functions for each dimension except
fa. In all uni-modal test functions, the novel algorithm performance was excellent in six
standard deviation results, which shows the novel algorithm has excellent stability.

The composition function consisted of uni-modal and multi-modal test functions,
which can verify the comprehensive performance of the heuristic algorithm. The GAFMO
algorithm obtains the best results of almost all experiments, as shown in Table 2, instead of
121(40), f23(30), f26(20), and f»4(30). This phenomenon indicates that the novel algorithm
has a strong exploitation ability and ability to avoid optimal local value. Like the other
experiments, the novel algorithm has excellent composition functions and stability.

Since the new algorithm introduces a Gaussian probability distribution model based
on AFMO, it has a stronger exploration performance than AFMO, which can be proved
by the experimental results presented in Table 3. In multi-modal test functions, the novel
algorithm obtains the greatest result at fs, f7, fo to f14, and fi9 for each dimension. As
the dimension increases, the new algorithm performs better and better on the fi5 and
f1s test functions and achieves the best score among the five algorithms in the case of
40 dimensions. The experimental data shows that the new algorithm has an excellent
performance in solving high-dimensional and high-complexity problems. The fg test
function is not discussed in this article because the algorithms under this function perform
similarly and provide no useful information. In addition, the new algorithm has the lowest
standard deviation of the 25 results (equivalent to 55% of all multi-modal experimental
results), which means that it can obtain a solution closer to the mean shown in Table 3 than
other algorithms in most cases.

4.3. Simulation Experiments of Localization of MWSN

In this section, heuristic algorithms are used to reduce the localization error of the
SMCL method. The individual of heuristic algorithms represent a candidate position of the
mobile sensor node. The optimal position is found by iteration of the algorithm; that is, the
most probable position in the promising area. Through these simulation experiments, the
performance of the heuristic algorithm to solve real problems can be verified. Experiments
are performed under different conditions, such as the number of anchor nodes, sensor
nodes, and the communication radius, but the deployment area is 200 m x 200 m for all
experiments. The maximum speed of a mobile sensor node is its communication radius.
The new algorithm is compared with the PSO, BH, and WOA algorithms, and the detailed
results of these experiments are shown in the table below, with the best results for each
experiment are marked in bold.

In Table 4, the experiment is performed with different anchor node number, the number
of sensor node is set at 200, and the communication radius is 30 m. The results revel that the
heuristic algorithm can significantly enhance the localization accuracy of SMCL; specifically,
the novel algorithm can obtain better results than other heuristic algorithms.
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Table 4. The simulation results under different anchor node number.
Anchor Node Number sMCL BH PSO WOA AFMO GAFMO
A=5 35.9050 25.1668 24.8511 24.9971 24.8520 20.0493
A=10 21.5088 11.5516 11.3086 11.4438 11.3504 9.0480
A=15 18.5468 9.5519 9.3780 9.4786 9.3793 7.6191
A=20 13.1348 5.1515 5.0186 5.1158 5.0014 3.8387
A =25 11.4025 3.8816 3.7762 3.8889 3.7793 3.0388
A =30 13.4114 5.8577 5.7544 5.8850 5.7661 45912

The number of sensor nodes is the variable in Table 5, and the constant elements are the
number of anchor nodes and the communication radius, which are 10 and 30 m, respectively.
The more sensor nodes, the more complex the sensor node topology, but the mobile sensor
node can receive more anchor node information because it is connected to more sensor
nodes. In this simulation experiment, the new algorithm reduces the positioning error by
more than 30% compared with the original SMCL method. Compared to other algorithms,
the new algorithm works best. The communication radius determines how many other
nodes a sensor node can communicate with. As the communication radius increases, the
messages broadcast by the mobile sensor nodes can be received by more anchor nodes, so
the localization is more accurate. The results shown in Table 6 are obtained with different
communication radii, 200 sensor nodes, and 15 anchor nodes.The results show that the
new algorithm has excellent optimization performance in the positioning of mobile sensor
nodes in MWSN, and the optimization ability is significantly improved compared with
other heuristic algorithms.

Table 5. The simulation results under different sensor node number.

Sensor Node Number sMCL BH PSO WOA AFMO GAMFO
N =50 36.1180 26.2782 25.8972 25.9487 25.8977  20.3007
N =100 232155 13.2985 13.0395 13.1358 13.0415  10.5978
N =150 23.2896 13.3750 13.1198 13.2913 13.1536  10.2857
N =200 21.5088 11.5516 11.3086 11.4438 11.3504 9.0480
N =250 25.4070 15.5492 154005 15.4271 15.3327  12.4996
N =300 28.1844 18.3840 18.0993 18.2259 18.0933  15.6258

Table 6. The simulation results under different communication radii.

Communication Radius sMCL BH PSO WOA AFMO GAMO
R=15 253064 149851 14.6533 14.7383 14.6083 12.2787
R=20 20.6724 10.6305 10.3826 10.5019 10.3850  8.5380
R=25 26.8183 17.0337 16.7616 16.8847 16.7640 13.8482
R=30 20.5605 11.0756 10.8769 10.9854 10.8813  9.0985
R=35 17.8197  8.9234 8.7262 8.8501 8.7289 7.0821
R=40 13.1540 5.0344  4.9078 5.0095 49114 4.1041

5. Conclusions

This paper analyzes the feature and performance of AFMO, which has an excellent
performance in multimodal problems, but the strong exploration ability limits the local
search ability. This means the AFMO can not obtain satisfactory results in unimodal
problems. In order to enhance the exploitation performance, we introduce the Gaussian
probability distribution to the migration process of AFMO. This mechanism ensures that
the novel algorithm obtains better results in unimodal problems and retains the original
exploration ability. The performance of the new algorithm is verified by the CEC 2013 test
suit, and the experimental results show that the novel algorithm has better exploitation
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performance and a solid ability to avoid the optimal local value. The new algorithm
achieves the 60 best results in all 84 experiments; that is, the new algorithm wins in 71.4%
of the experiments. In addition, this paper applies the heuristic algorithm to solve the
localization of mobile sensor nodes in MWSN. The simulation experiments reveal that the
heuristic algorithm can significantly enhance the localization accuracy of mobile sensor
nodes. Specifically, the new algorithm can improve the localization accuracy of mobile
sensor nodes by more than 5% compared to other heuristic algorithms. This technique can
also solve the localization of the robot in the room, the robot can provide more information
to the localization system but there is more problems to solve than MWSN. This paper
proves that the Gaussian probability distribution model can enhance the exploitation ability
and not reduce the exploration ability. This model can apply other algorithms to further
improve the ability of heuristic algorithms. In addition, other probability modes have their
own features, and they may be more suitable for enhancing the performance of heuristic
algorithms or solving localization problems. This is interesting work to do.
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MWSN Mobile Wireless Sensor Networks
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FMO Fish Migration Optimization

AFMO Adaptive Fish Migration Optimization

GAFMO  Gaussian-based Adaptive Fish Migration Optimization
GPS Global Positioning System
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