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Abstract: Location information is the primary feature of wireless sensor networks, and it is more
critical for Mobile Wireless Sensor Networks (MWSN) to monitor specific targets. How to improve the
localization accuracy is a challenging problem for researchers. In this paper, the Gaussian probability
distribution model is applied to randomize the individual during the migration of the Adaptive Fish
Migration Optimization (AFMO) algorithm. The performance of the novel algorithm is verified by
the CEC 2013 test suit, and the result is compared with other famous heuristic algorithms. Compared
to other well-known heuristics, the new algorithm achieves the best results in almost 21 of all 28 test
functions. In addition, the novel algorithm significantly reduces the localization error of MWSN, the
simulation results show that the accuracy of the new algorithm is more than 5% higher than that of
other heuristic algorithms in terms of mobile sensor node positioning, and more than 100% higher
than that without the heuristic algorithm.

Keywords: heuristic algorithms; fish migration optimization; localization; mobile sensor networks;
monte carlo localization

1. Introduction

With the efforts of more and more researchers, many technologies have become
mature and inexpensive, such as communication theory, micro electromagnetic systems,
and integrated circuits. Based on these technologies, wireless sensor networks (WSNs)
have been widely used, and their performance has been dramatically improved [1]. A
sensor node can collect valuable information, process it, and pass it to another sensor node,
and finally, this information reaches the sink node [2]. The location information of sensor
nodes is essential for WSNs to ensure that users match the collected data and monitoring
targets and make correct decisions [3]. Location information is usually provided by the
Global Positioning System (GPS), but only a few sensor nodes are equipped with GPS due
to cost and energy constraints. Sensor nodes with GPS are called anchor nodes, and other
nodes are called unknown nodes because their location is unknown [4].

In a static wireless sensor network, the sensor nodes are set in a certain position and
will not change, the position of the unknown node can be estimated by many algorithms
based on the information of the anchor node. These algorithms are divided into two cate-
gories according to whether they rely on the distance information between sensor nodes,
namely range-based localization algorithms and range-free localization algorithms [5,6].
Some range-based localization algorithms represented in this section. For an unknown
node, the time of arrival (TOA) from different stations can be used to estimate its loca-
tion [7]. In [8], for an unknown node, the time of arrival (TOA) from different stations can
be used to estimate its location. The authors exploit the time difference of arrival (TDOA)
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information to estimate the location of unknown nodes and employ continuous uncon-
strained minimization and a generalized trust-region subproblem to optimize the problem.
In the Received Signal Strength Indication (RSSI) algorithm, the distance between them
can be calculated based on the signal attenuation between sensor nodes [9]. In range-based
localization algorithms, linear distance or direction information between sensor nodes is
usually utilized. This class of algorithms can provide more accurate location information
but requires additional components to obtain distance or direction. Therefore, the economic
cost and energy cost are not ideal [10]. The range-free localization algorithm can solve the
wireless sensor network localization problem only with a more straightforward sensor node
than the range-based localization algorithm. The weighted centroid localization (WCL)
algorithm only utilizes the signal strength to estimate the location of the unknown node;
this machine ensures that WSNs can work in a complex deployment environment [11].
The DV-Hop localization algorithm calculates the distance from the anchor node to the
unknown node according to the distance of each hop of the anchor node [12]. Chen et
al. introduce the different calculations about the distance between anchor nodes and
unknown nodes. They utilize the average hop-size of all anchor nodes to estimate the
location of unknown nodes rather than each anchor node with its hop-size [13]. In [14], the
authors propose an Ad hoc Positioning System (APS) method to reduce positioning errors,
which combines propagation and GPS triangulation information to estimate the location of
unknown nodes.

There is a serious challenge in the positioning of mobile sensor nodes in MWSN;
that is, the positioning error is huge, and with the movement of mobile sensor nodes,
the positioning error will become larger and larger. To address this problems, this paper
introduces a novel heuristic algorithm. Heuristic algorithm is a powerful tool to solve
many engineering problems. Some scholars use the excellent performance of the heuristic
algorithm in optimization to reduce positioning error. The adaptive strategy is combined
with a compact Particle Swarm Optimization (PSO) algorithm, and this algorithm can
run on a memory limitation device. Simulation results indicate that localization error is
significantly reduced [15]. PSO algorithm is used to enhance the localization accuracy-
based distance between sensor nodes that RSSI obtained [16]. The performance of general
heuristics applied to WSN localization is compared in [17]. Some researchers work on
the localization of sink nodes. In [18], the authors proposed a method that utilizes the
Grey Wolf Optimization (GWO) algorithm to find the location of the sink node. In [19], a
Compact Black Hole (CBH) algorithm is introduced and applied to solve the localization of
mobile sensor node problem.

With the increasing attention of scholars, there are many excellent novel or improved
heuristic algorithms. In previous decades, only some basic and simple heuristic algorithms
were proposed and used, such as Genetic Algorithm (GA) [20], PSO algorithm [21], Ant
Colony Optimization (ACO) algorithm [22], Whale Optimization Algorithm (WOA) [23],
and Artificial Bee Colony (ABC) algorithm [24]. In recent years, scholars have proposed
various heuristic algorithms inspired by natural phenomena or swarm intelligence action.
The Black Hole (BH) algorithm mimics a black hole in nature, where the matter around
it is devoured [25]. If the individual is too close to the global best candidate solution in
the BH algorithm, it will be randomly initialized. Chu et al. proposed a PSO-based Cat
Swarm Optimization (CSO) algorithm, in which the authors introduced two models: a
finding model and a tracking model. According to the cooperation of these two models, the
algorithm performs well in complex optimization problems [26]. In [27], four novel trans-
formation functions are applied to the Binary Grey Wolf Optimization (BGWO) algorithm,
which outperforms traditional BGWO on feature selection problems. The multi-surrogate
strategy efficiently improves the convergence rate of binary PSO when facing complex
multi-dimensional problems [28]. Useful information from the optimization process can be
reused, which can further guide the movement of the population. In [29], six information
feedback models are introduced, and the experimental results show that this strategy can
improve the search performance of the heuristic algorithm. Gao et al. proposed a novel
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Difference Evolutionary (DE) algorithm to solve the job-shop scheduling problem [30],
which adopted a novel selection mechanism and significantly enhanced the global search
ability of DE. Adaptive parameters are used to limit the movement of the Substance Search
(SMS) algorithm, and the new algorithm is applied to hide watermarks into QR codes [31].

2. Related Work

In order to reduce the localization error of mobile sensor nodes, this paper combines
the Sequential Monte Carlo Localization (SMCL) method and heuristic algorithm. The
reason for using the heuristic algorithm is that the optimal value can be quickly calculated,
which can ensure the timely positioning of the position of the mobile sensor node. This
section briefly presents the mechanism of the SMCL method and AFMO algorithm.

2.1. Adaptive Fish Migration Opmtimization Algorithm

AFMO algorithm was proposed in 2020, and is a modified version of the Fish Migration
Optimization (FMO) algorithm. The FMO algorithm mimics the whole life course of fish
and divides the life of fish into five stages. There are many accidents during fish growth,
so many individuals cannot grow up safely. In addition, these fish would return to their
birthplace when adults, producing offspring. Therefore, the survival rate is introduced
by authors in FMO [32], and they are set at 5%, 10%, and 100% in stage 3, stage 4, and
stage 5, respectively. In the FMO algorithm, the energy of the individual increases with
the number of iterations, and when the individual’s energy exceeds a particular value,
the individual will enter the next stage. When individuals return to their birth positions
or die, new individuals are randomly generated to keep the population size unchanged.
This scheme ensures that the FMO algorithm performs strongly in avoiding local optima.
However, the algorithm has poor searchability in the single-modal test function because
the exploitation ability is weak.

In the AFMO algorithm, as Figure 1 shows, the life of fish consists of four stages, and
the survival rate is 15%, 35%, and 100% in stage 2, stage 3, and stage 4. Some studies
have shown that a suitable parameter adjustment strategy can balance exploration and
exploitation to enhance the optimization performance in the heuristic algorithms [33]. The
AFMO algorithm introduced a novel strategy to adjust the energy update of the FMO
algorithm, and the detail is presented in the following:

Enet+1
i = Enet

i + re · Enemax ·
f iti − f itbest

f itmax − f itbest
(1)

where the Enet
i is the energy of the i-th individual at t iteration, Engmax is a constant value

and set at 200 in [34]. To enhance the diversity of the population, a perturbation element re
is added to Equation (1), which is a random value between 0.2 and 0.6. The fitness function
would evaluate the individual of AFMO, and the fitness value of the i-th individual is
represented by f iti. The fitness values of the best and worst individuals are represented by
f itbest and f itmax. This mechanism promotes individuals with poor fitness values to the
next stage and makes it initialized with greater probability. The energy not only determines
if the individual grows up to the next stage but also influences the individual’s update at
one iteration. The detail of the update is shown in Equation (2).

Xt+1
i = Xt

i + w · (Xt
best − Xt

i ) ·
Enet

i
Enemax

+
f iti − f itr

| f iti − f itr|
· RC · (Xt

i − Xt
r) (2)

where Xt
i is the position of the i-th individual at the t iteration, and w is a parameter that

controls the individual’s range of motion, which is a variable value that decreases from
2 to 0.4 during the operation of the AFMO algorithm. Xt

best is the position of the individual
with the best fitness value, Xt

r and f itr are the position and fitness value of a randomly
selected individual from the population. The AFMO algorithm adds a learning strategy to
the FMO algorithm, randomly selects an individual as the learning object, and compares it
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with the i-th individual. If the i-th individual is worse than the learning object, it is close to
the learning object, and vice versa. The RC is a random number between 0 and π/10, and
it can adjust the study strength of the algorithm.

Although the AFMO algorithm enhances the performance of the original FMO algo-
rithm and obtained better results than other famous heuristic algorithms in the CEC 2013
test suit, it has disadvantages in unimodal optimization problems. This paper introduces
the novel algorithm called the Gaussian-Based Adaptive Fish Migration Optimization
(GAFMO) algorithm, which applies the Gaussian distribution model to the migration
process of AFMO. This mechanism enhances the population diversity in the migration
process of fish and ensures the exploitation ability.

Stage 1 Stage 2 Stage 3 Stage 4

Figure 1. The grow-up process of fish.

2.2. Sequential Monte Carlo Localization Method

The authors introduced the SMCL method to enhance the localization accuracy of
mobile sensor nodes of WSNs [35]. Twenty years ago, there was little research on the
localization of mobile sensor nodes, but similar problems were widely studied in robotics.
Researchers usually estimate the robot’s position in robot localization based on measure-
ment models and observational data. The measurement model is built from previously
collected data, and the model is continuously updated during robot operation. If the mea-
surement model and observational data obey a Gaussian distribution, robot localization
can be solved by using a Kalman filter [36]. In some cases, the Kalman filter can not be used
when the problem is non-Gaussian; the Markov localization method is introduced [37].

Sensor node localization has different challenges to solve than robot localization:
1. Sensor nodes are placed on an unknown map or terrain. 2. The speed or direction of the
mobile sensor node cannot be obtained. 3. Mobile sensor nodes do not have enough energy
and memory to estimate localization by integrating information collected by other sensor
nodes [38]. In [35], based on the current location information, the authors try to obtain
the probability distribution of the possible locations of the mobile sensor nodes at the next
time point. However, there are so many possible locations that it is difficult to estimate
the actual location, and existing location information becomes inaccurate over time. If the
speed is a random value between 0 and Vmax, and the direction of mobile sensor nodes is
unknown, the probability distribution can be presented in the following:

Pt
i =


1

πV2
max

i f abs(Pt
i − Pt−1

i ) ≥ Vmax

0 otherwise
(3)

The SMCL method introduces a filtering mechanism based on new observations from other
sensor nodes to exclude impossible locations. There are four situations for sensor node
localization in MWSN: outsiders, arrivals, leavers, and insiders. When a sensor node is not
heard at the current and previous time point, it belongs to outsiders; if a sensor node is
not heard at the previous time point but is heard at the current time, it is in arrivals; if the
sensor node is not heard at the current time point, is heard at the previous time point, it
belongs to the leavers; if the sensor node is heard at the previous time point and the current
time point, it is an insiders. These situations are presented in Figure 2, and A, B, C, and D
represent levers, insiders, arrivals, and outsiders, respectively. The circle filled with blue is
the sensor range of the node at the t − 1 time point, and the circle filled with yellow is the
sensor range of the node at the t time point.
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Figure 2. Sensor nodes movement.

Arrivals and leavers provide the most helpful information for the localization of a
mobile sensor node as it is located around the communication boundary of the arrivals
or leavers. For the cases of an outsider, the information of mobile sensor nodes can be
transmitted to the outsider node by the neighbor nodes. The detail of this process is shown
in Figure 3. Although the outsider can not hear the information of the mobile sensor node,
it can be regarded as leavers or arrivals of mobile sensor nodes within a 2R radius. Insiders
cannot locate outside the radius of the mobile sensor node.

R

2R The Mobile Sensor Node

Sensor Range with R Radius 

Sensor Range with 2R Radius 

Figure 3. Sensor nodes movement in case of outsider.

3. Gaussian-Based Adaptive Fish Migration Optimization

In nature, the growth of fish is accompanied by a variety of adverse factors such as
disease, food scarcity, and predators that prevent so many people from reaching adulthood.
To simulate this phenomenon, the authors introduced a survival rate mechanism that
maintains population size by randomly generating new individuals [32]. Although this
method ensures the diversity of the population and the ability to avoid falling into the local
optimum, it leads to the weak performance of the algorithm on the unimodal problem.
In this paper, the Gaussian probability distribution model is introduced to generate new
individual migration processes of AFMO and is presented in Figure 4.

Figure 4a shows the results of 3000 iterations of a Gaussian function with parameters
µ of 0 and σ of 16. Each point in the graph is generated by the Gaussian function in one
iteration and they are linked. We can see that the output of the Gaussian function is between
−20 and 20 in most cases, and the maximum absolute value is about 50. The distribution
of Gaussian function is shown in Figure 4b, the output is located in the range between
−16 and 16, with a 68.27% probability, and in the range between −32 and 32 with 95.45%
probability. In the heuristic algorithm, if a new individual is generated by this Gaussian
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probability distribution model, it will be within 32 units of u in most cases. This model is
applied to migration processes of AFMO to enhance the exploitation ability and the detail
is shown as the following:

Xt+1
mig = Gaussian(Xt

best, σ) +
f iti − f itr

f iti − f itbest
· (Xt

i − Xt
r) (4)

where the Xt+1
mig represents the individual after migration at t + 1 iterations, Xt

best is the indi-
vidual with optimal fitness value at t iterations, and the σ is set at 16 in this article. The f iti,
f itr, and f itbest are the fitness values of the i-th individual, randomly selected individual,
and best individual. The positions of the i-th individual and randomly selected individual
at t iterations are represented by Xt

i and Xt
r. This equation ensures that new individuals are

generated in promising regions (near the best individuals), so it can find better candidate
solutions with greater probability. Furthermore, new individuals are attracted to another
randomly selected individual, and the better the randomly selected individual, the stronger
the attraction. The detail of the new algorithm is shown in Algorithm 1.

Algorithm 1: The Gaussian-Based Adaptive Fish Migration Algorithm.
Initialization: i = 1, t = 1, Emax = 200, c = π/10, D = 20, n = 30,
Xmax = 100, Xmin = −Xmax, Vmax = Xmax/10, Vmin = −Vmax, T = 1000;
while i ≤ n do

Xi = Xmin + (Xmax − Xmin) × rand(1, D);
Calculated f iti (The fitness value of Xi);
Enei = 0;
Stagei = 1;

end
while t ≤ T do

w = 2.0 − 1.6· t/T;
Update the population according to Equation (2);
Xi = max(Xmax,min(Xmin, Xi));
Calculated f itnessi;
if f iti ≥ f itbest then

Update Enei according to Equation (1);
if Enei ≥ 2+10 · rand · t/T then

Stagei = Stagei + 1;
end

end
According to Equation (3), individuals migrate;
t = t + 1;

end
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Figure 4. Results of running the Gaussian function (a) and the distribution of Gaussian function
(b) with µ = 0 and σ = 16.
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4. Experimental Results and Discussion

In this section, a comparison of the new algorithm under the CEC 2013 test suite and
locating mobile sensor nodes with other well-known algorithms is presented. The results
provided by the CEC 2013 test suite illustrate the comprehensive performance of the new
algorithm, which shows that the new algorithm has excellent optimization capabilities over
other well-known heuristic algorithms. Localization simulation experiments of mobile
sensor nodes can demonstrate the performance of the new algorithm in solving specific
problems in the real world. The experiments were completed with Matlab 2020a on a
personal computer with Intel Core i7-10700k (5.1 GHz) and 48 G memory, and all experi-
ments were processed under the same parameters, such as population size, dimensions,
or iterations.

4.1. Experiments under CEC 2013 Test Suite

The CEC 2013 test suite is proposed to estimate the performance of heuristic algorithms
on single-objective optimization problems, which are the basis of niche, multi-objective,
and constrained optimization algorithms. This paper tests heuristic algorithms on 28 test
functions of the CEC 2013 test suite to fully and fairly verify the new algorithm’s perfor-
mance. The test functions were separated into three classes, which are Unimodal Functions
( f1 to f5), Basic Multimodal Functions ( f6 to f20), and Composition Functions ( f21 to f28); all
functions are minimization problems. The novel algorithm is compared with the classical
heuristic algorithm PSO, the original FMO, and the WOA and BH algorithms proposed
in recent years. The parameter setting is shown in [23,25,34,39]. The experimental results
are shown in the tables below, and the algorithms were used to find the optimal solution
for each test function in 20, 30, and 40 dimensions. All results are the mean and standard
deviation of 48 runs.

Various test functions can verify the different performances of heuristic algorithms.
In order to compare the exploitation ability of algorithms, uni-modal test functions are
introduced in CEC 2013. It has only one optimal solution in a limited area, so the heuristic
algorithms with strong exploitation ability can obtain great candidate solutions. The
experimental results under uni-modal test functions are presented in Table 1, and the novel
algorithm gets the best results in all uni-modal test functions for each dimension except
f4. In all uni-modal test functions, the novel algorithm performance was excellent in six
standard deviation results, which shows that the novel algorithm has excellent stability.

Table 1. The experimental results under uni-modal test functions.

Algorithm PSO AFMO WOA BH GAFMO

Dim Ave Std Ave Std Ave Std Ave Std Ave Std

f1

20 −1.30× 103 3.61× 102 −1.26× 103 2.01× 102 −1.27× 103 9.84× 101 5.62× 103 9.60× 102 −1.40× 103 2.49× 101

30 −1.15× 103 4.24× 102 −6.72× 102 7.22× 102 −6.57× 102 3.73× 102 1.65× 104 1.39× 103 −1.40 × 103 6.25 × 101

40 −8.50× 102 8.01× 102 2.10× 103 3.21× 103 1.03× 103 9.40× 102 2.56× 104 2.16× 103 −1.40 × 103 1.70× 102

f2

20 2.30× 106 1.94 × 106 3.13× 106 3.01× 106 4.60× 107 2.24× 107 2.90× 107 3.63× 106 1.93 × 106 3.11× 106

30 1.03× 107 6.62× 106 7.09× 106 2.76 × 106 1.17× 108 5.14× 107 1.62× 108 2.37× 107 5.61 × 106 6.51× 106

40 1.67× 107 5.53 × 106 1.92× 107 8.82× 106 1.48× 108 3.95× 107 9.29× 107 8.58× 106 1.01 × 107 1.09× 107

f3

20 3.02× 109 4.23× 109 1.05× 109 2.58× 109 1.01× 1011 2.75× 1011 2.38× 1015 5.00× 1015 1.00 × 108 1.51 × 108

30 1.16× 1010 1.31× 1010 1.04× 1010 1.06× 1010 5.95× 1010 4.31× 1010 6.82× 1015 1.27× 1016 1.02 × 109 2.45 × 109

40 1.53× 1010 1.31× 1010 1.03× 1010 5.52× 109 7.88× 1010 3.66× 1010 4.24× 1014 1.11× 1015 1.53 × 109 2.21 × 109

f4

20 7.39 × 103 5.27 × 103 4.42× 104 1.24× 104 7.34× 104 2.67× 104 4.59× 104 9.36× 103 3.29× 104 1.21× 104

30 1.85 × 104 7.33 × 103 7.05× 104 1.16× 104 1.02× 105 3.57× 104 6.93× 104 9.76× 103 5.89× 104 1.17× 104

40 2.54 × 104 8.33 × 103 8.38× 104 1.50× 104 1.09× 105 3.20× 104 8.61× 104 1.18× 104 6.98× 104 1.72× 104

f5

20 −8.95× 102 3.60× 102 −1.00× 103 1.43 × 10−1 −6.54× 102 1.76× 102 5.49× 102 3.12× 102 −1.00 × 103 1.71× 101

30 −8.20× 102 3.86× 102 −9.76× 102 3.42× 101 −2.32× 101 2.11× 102 2.48× 103 5.86× 102 −9.98 × 102 2.75 × 101

40 −5.96× 102 6.68× 102 −9.31× 102 3.06 × 101 4.51× 102 2.51× 102 2.92× 103 4.90× 102 −9.75 × 102 3.70× 101
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The combination function combines uni-modal and multi-modal test functions, which
can verify the comprehensive performance of the heuristic algorithm. The GAFMO algo-
rithm obtains the best results in almost all experiments, as shown in Table 2, instead of
f21(40), f23(30), f26(20), and f26(30). This phenomenon indicates that the novel algorithm
has a strong exploitation ability and an ability to avoid optimal local values. Like the other
experiments, the novel algorithm has excellent composition functions and stability.

Since the new algorithm introduces a Gaussian probability distribution model based
on AFMO, it has a stronger exploration performance than AFMO, which can be proved
by the experimental results presented in Table 3. In multi-modal test functions, the novel
algorithm obtains the greatest result at f6, f7, f9 to f14, and f19 for each dimension. As
the dimension increases, the new algorithm performs better and better on the f15 and
f18 test functions and achieves the best score among the five algorithms in the case of
40 dimensions. The experimental data shows that the new algorithm has an excellent
performance in solving high-dimensional and high-complexity problems. The f8 test
function is not discussed in this article because the algorithms under this function perform
similarly and provide no useful information. In addition, the new algorithm has the lowest
standard deviation of the 25 results (equivalent to 55% of all multi-modal experimental
results), which means that it can obtain a solution closer to the mean shown in Table 3 than
other algorithms in most cases.

Table 2. The experimental results under composition test functions.

Algorithm PSO AFMO WOA BH GAFMO

Dim Ave Std Ave Std Ave Std Ave Std Ave Std

f21

20 1.04× 103 8.38× 101 1.08× 103 4.07× 101 1.41× 103 2.38× 102 1.80× 103 3.63× 101 1.03 × 103 3.16 × 101

30 1.06× 103 8.70× 101 1.07× 103 7.46× 101 1.74× 103 4.16× 102 2.74× 103 5.24 × 101 1.05 × 103 5.32× 101

40 1.41× 103 6.26× 101 1.39 × 103 9.19× 101 2.18× 103 3.71× 102 3.66× 103 1.10× 102 1.41× 103 4.81 × 101

f22

20 3.92× 103 6.99× 102 5.93× 103 1.82 × 102 4.88× 103 5.64× 102 5.65× 103 4.20× 102 2.48 × 103 3.56× 102

30 5.90× 103 1.08× 103 9.00× 103 2.65 × 102 8.22× 103 7.99× 102 8.61× 103 6.79× 102 3.71 × 103 5.75× 102

40 9.24× 103 9.69× 102 1.31× 104 2.92 × 102 1.17× 104 9.10× 102 1.27× 104 6.73× 102 6.09 × 103 6.62× 102

f23

20 4.28× 103 6.47× 102 5.98× 103 2.47 × 102 5.38× 103 5.48× 102 5.74× 103 4.88× 102 3.86 × 103 3.63× 102

30 6.43 × 103 8.95× 102 9.53× 103 3.30 × 102 8.33× 103 6.61× 102 8.72× 103 8.73× 102 6.45× 103 4.19× 102

40 9.31× 103 1.14× 103 1.32× 104 3.37 × 102 1.21× 104 9.08× 102 1.29× 104 6.63× 102 7.86 × 103 6.08× 102

f24

20 1.25× 103 6.56× 100 1.26× 103 7.20× 100 1.28× 103 8.62× 100 1.29× 103 1.31× 101 1.24 × 103 5.73 × 100

30 1.29× 103 1.02× 101 1.30× 103 8.98× 100 1.32× 103 1.14× 101 1.36× 103 2.09× 101 1.27 × 103 7.30 × 100

40 1.33 × 103 1.48× 101 1.34× 103 1.34× 101 1.37× 103 1.45× 101 1.46× 103 2.39× 101 1.30× 103 8.88 × 100

f25

20 1.37× 103 9.91× 100 1.37× 103 6.68 × 100 1.38× 103 7.58× 100 1.41× 103 8.95× 100 1.36 × 103 7.87× 100

30 1.41× 103 1.16× 101 1.42× 103 6.86× 100 1.43× 103 1.21× 101 1.49× 103 1.27× 101 1.39 × 103 6.82 × 100

40 1.49× 103 2.43× 101 1.50× 103 1.54× 101 1.50× 103 1.35× 101 1.62× 103 1.90× 101 1.44 × 103 1.17 × 101

f26

20 1.47× 103 7.21× 101 1.42× 103 5.06× 101 1.51× 103 7.57× 101 1.41 × 103 1.75 × 100 1.50× 103 4.69× 101

30 1.54× 103 6.42× 101 1.48× 103 8.50× 101 1.59× 103 5.62 × 101 1.44 × 103 6.26× 101 1.53× 103 8.45× 101

40 1.58× 103 6.32 × 101 1.54× 103 8.96× 101 1.60× 103 9.48× 101 1.59× 103 9.26× 101 1.54 × 103 8.74× 101

f27

20 2.06× 103 6.37× 101 2.13× 103 5.10 × 101 2.27× 103 6.91× 101 2.31× 103 7.61× 101 1.99 × 103 6.66× 101

30 2.38× 103 1.04× 102 2.50× 103 6.59× 101 2.70× 103 8.63× 101 2.74× 103 1.03× 102 2.26 × 103 4.78 × 101

40 2.75× 103 1.23× 102 2.89× 103 7.69× 101 3.16× 103 1.19× 102 3.45× 103 1.23× 102 2.48 × 103 6.32 × 101

f28

20 2.94× 103 8.24× 102 3.62× 103 5.02× 102 5.70× 103 7.39× 102 5.17× 103 4.43× 102 2.36 × 103 3.67 × 102

30 2.52× 103 7.67× 102 2.59× 103 1.04× 103 6.36× 103 6.83× 102 6.08× 103 4.78× 102 2.04 × 103 2.87 × 102

40 3.59× 103 9.24× 102 3.19× 103 1.02× 103 7.80× 103 1.14× 103 8.41× 103 6.37× 102 2.69 × 103 2.57 × 102
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Table 3. The experimental results under multi-modal test functions.

Algorithm PSO AFMO WOA BH GAFMO

Dim Ave Std Ave Std Ave Std Ave Std Ave Std

f6

20 −8.35× 102 3.33× 101 −8.62× 102 3.07× 101 −7.50× 102 6.53× 101 3.43× 102 2.28× 102 −8.94 × 102 1.58 × 101

30 −7.96× 102 5.52× 101 −8.43× 102 3.45× 101 −5.67× 102 1.33× 102 1.52× 103 3.37× 102 −8.52 × 102 2.60 × 101

40 −7.48× 102 4.23× 101 −7.97× 102 3.23 × 101 −4.47× 102 1.06× 102 1.48× 103 2.25× 102 −8.08 × 102 3.93× 101

f7

20 −7.43× 102 3.34× 101 −6.65× 102 1.29× 102 3.10× 103 8.46× 103 3.34× 104 2.66× 104 −7.78 × 102 6.67×0

30 −6.83× 102 3.82× 101 −6.35× 102 6.41× 101 9.56× 102 4.98× 103 5.85× 104 1.55 × 105 −7.15 × 102 2.02 × 101

40 −6.70× 102 5.17× 101 −6.22× 102 5.81× 101 −4.16× 102 2.59× 102 2.19× 103 3.31× 103 −7.22 × 102 1.92 × 101

f8

20 −6.79 × 102 7.18× 10−2 −6.79 × 102 6.40 × 10−2 −6.79 × 102 7.44× 10−2 −6.79 × 102 7.36× 10−2 −6.79 × 102 8.27× 10−2

30 −6.79 × 102 7.02× 10−2 −6.79 × 102 5.15 × 10−2 −6.79 × 102 6.80× 10−2 −6.79 × 102 6.44× 10−2 −6.79 × 102 5.21× 10−2

40 −6.79 × 102 7.62× 10−2 −6.79 × 102 3.68 × 10−2 −6.79 × 102 8.00× 10−2 −6.79 × 102 5.71× 10−2 −6.79 × 102 4.11× 10−2

f9

20 −5.85× 102 3.18× 100 −5.79× 102 1.51 × 100 −5.77× 102 2.09× 100 −5.77× 102 2.90× 100 −5.89 × 102 1.52× 100

30 −5.71× 102 3.33× 100 −5.60× 102 1.59 × 100 −5.62× 102 2.90× 100 −5.61× 102 2.57× 100 −5.79 × 102 1.93× 100

40 −5.61× 102 4.14× 100 −5.47× 102 2.02 × 100 −5.46× 102 3.59× 100 −5.46× 102 3.15× 100 −5.71 × 102 2.03× 100

f10

20 −4.58× 102 3.95× 101 −4.67× 102 3.10× 101 −2.77× 102 1.08× 102 1.76× 102 8.47× 101 −4.98 × 102 4.74 × 100

30 −3.71× 102 1.34× 102 −3.81× 102 9.33× 101 1.23× 102 2.20× 102 2.00× 103 2.18× 102 −4.96 × 102 1.42 × 101

40 −3.93× 102 1.28× 102 −1.24× 102 3.03× 102 6.42× 102 3.11× 102 2.02× 103 1.95× 102 −4.93× 102 3.91× 101

f11

20 −3.26× 102 2.43× 101 −2.55× 102 1.30× 101 −9.46× 101 7.10× 101 −1.44× 102 4.14× 101 −3.63× 102 1.30× 101

30 −2.20× 102 6.33× 101 −1.43× 102 2.85× 101 1.63× 102 1.07× 102 1.23× 102 6.70× 101 −3.24 × 102 .25 × 101

40 −6.91× 101 7.61× 101 −7.11× 100 4.47× 101 3.82× 102 1.07× 102 3.35× 102 1.02× 102 −2.55 × 102 2.94 × 101

f12

20 −2.10× 102 3.23× 101 −1.37× 102 1.72× 101 −9.94× 100 7.73× 101 −5.64× 100 5.32× 101 −2.28 × 102 1.50 × 101

30 −1.25× 102 5.74× 101 3.25× 101 3.13× 101 2.94× 102 1.15× 102 2.17× 102 6.76× 101 −1.40 × 102 1.86 × 101

40 9.51× 100 7.05× 101 2.10× 102 2.96× 101 5.74× 102 1.07× 102 4.32×102 7.85×101 −5.07 × 101 2.81 × 101

f13

20 −7.14× 101 2.57× 101 −3.15× 101 1.60× 101 7.73× 101 7.23× 101 1.17× 102 5.24× 101 −9.70 × 101 1.32 × 101

30 4.18× 101 4.87× 101 1.34× 102 2.69× 101 3.71× 102 1.13× 102 3.46× 102 5.91× 101 1.10 × 101 1.75 × 101

40 1.76× 102 7.05× 101 3.16× 102 3.66× 101 6.58× 102 1.05× 102 6.04× 102 7.87× 101 1.08 × 102 3.20 × 101

f14

20 2.00× 103 4.38× 102 4.36× 103 2.60 × 102 3.27× 103 5.94× 102 4.02× 103 5.35× 102 1.00 × 103 3.56× 102

30 3.67× 103 6.30× 102 7.49× 103 2.74 × 102 5.81× 103 6.84× 102 6.95× 103 7.51× 102 2.40 × 103 5.59× 102

40 5.62× 103 7.67× 102 1.07× 104 3.21 × 102 8.30× 103 8.81× 102 1.01× 104 8.51× 102 3.92 × 103 6.02× 102

f15

20 2.25 × 103 5.08× 102 4.39× 103 2.64 × 102 3.53× 103 5.67× 102 3.81× 103 6.77× 102 2.33× 103 3.13× 102

30 4.28 × 103 7.14× 102 7.80× 103 2.69 × 102 6.57× 103 8.39× 102 7.11× 103 8.37× 102 4.82× 103 3.46× 102

40 6.43× 103 8.70× 102 1.13× 104 3.24 × 102 9.27× 103 9.20× 102 1.06× 104 7.27× 102 5.97 × 103 4.32× 102

f16

20 2.01 × 102 4.78× 10−1 2.02× 102 3.40× 10−1 2.02× 102 5.20× 10−1 2.02× 102 4.66× 10−1 2.02× 102 2.89 × 10−1

30 2.02 × 102 5.85× 10−1 2.03× 102 3.23 × 10−1 2.02 × 102 6.65× 10−1 2.02 × 102 5.14× 10−1 2.03× 102 3.75× 10−1

40 2.03 × 102 6.60× 10−1 2.04× 102 3.06 × 10−1 2.03 × 102 5.88× 10−1 2.03 × 102 5.73× 10−1 2.03 × 102 4.39× 10−1

f17

20 3.77 × 102 1.33 × 101 5.18× 102 1.80× 101 6.58× 102 7.42× 101 5.74× 102 4.23× 101 4.34× 102 1.60× 101

30 4.71 × 102 2.47 × 101 7.03× 102 2.79× 101 9.95× 102 1.09× 102 8.44× 102 8.01× 101 5.49× 102 2.74× 101

40 5.88 × 102 3.95× 101 9.15× 102 3.28× 101 1.29× 103 1.02× 102 1.11× 103 1.23× 102 6.95× 102 3.21 × 101

f18

20 4.93 × 102 1.95× 101 6.11× 102 1.63× 101 7.54× 102 7.07× 101 6.72× 102 6.48× 101 5.50× 102 1.40 × 101

30 5.93 × 102 3.04× 101 8.05× 102 2.40× 101 1.10× 103 1.12× 102 9.54× 102 7.99× 101 6.83× 102 1.87 × 101

40 7.00 × 102 4.02× 101 1.03× 103 3.84× 101 1.43× 103 1.17× 102 1.24× 103 1.06× 102 8.27× 102 2.72 × 101

f19

20 5.58× 102 2.78× 102 5.06× 102 1.96× 100 5.50× 102 2.59× 101 1.80× 103 4.13× 102 5.05 × 102 1.38 × 100

30 5.15× 102 1.16× 101 5.13× 102 3.53× 100 7.59× 102 2.00× 102 1.54× 104 3.45× 103 5.11 × 102 2.47 × 100

40 7.29× 102 6.18× 102 5.23× 102 4.66× 100 1.57× 103 1.24× 103 4.38× 104 1.03× 104 5.19 × 102 3.31 × 100

f20

20 6.09 × 102 6.54× 10−1 6.10× 102 5.77 × 10−10 6.10× 102 1.70× 10−1 6.10× 102 1.47× 10−1 6.10× 102 9.66× 10−1

30 6.15 × 102 8.75× 10−1 6.15× 102 3.30 × 10−7 6.15× 102 1.92× 10−1 6.15× 102 1.70× 10−1 6.15× 102 9.60× 10−1

40 6.18 × 102 6.34× 10−1 6.19× 102 1.48 × 10−1 6.19× 102 4.07× 10−1 6.18× 102 4.08× 10−1 6.18× 102 2.28× 10−1

4.2. Experiments under CEC 2013 Test Suite

The CEC 2013 test suite is proposed to estimate the performance of heuristic algorithms
on single-objective optimization problems, which are the basis of niche, multi-objective, and
constrained optimization algorithms. This paper tests heuristic algorithms on 28 test func-
tions of the CEC 2013 test suite to fully and fairly verify the new algorithm’s performance.
The test functions are separated into three classes which are Unimodal Functions ( f1 to
f5), Basic Multimodal Functions ( f6 to f20), and Composition Functions ( f21 to f28), and
all of these functions are minimization problems. The novel algorithm is compared with
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the classical heuristic algorithm PSO, the original FMO, and the WOA and BH algorithms
proposed in recent years. The parameter setting is shown in [23,25,34,39]. The experimental
results are shown in the tables below, and the algorithms were used to find the optimal
solution for each test function in 20, 30, and 40 dimensions. All results are the mean and
standard deviation of 48 runs.

Various test functions can verify the different performances of heuristic algorithms.
In order to compare the exploitation ability of algorithms, uni-modal test functions are
introduced in CEC 2013. It has only one optimal solution in a limited area, so the heuristic
algorithms with strong exploitation ability can obtain great candidate solutions. The
experimental results under uni-modal test functions are presented in Table 1, and the novel
algorithm gets the best results in all uni-modal test functions for each dimension except
f4. In all uni-modal test functions, the novel algorithm performance was excellent in six
standard deviation results, which shows the novel algorithm has excellent stability.

The composition function consisted of uni-modal and multi-modal test functions,
which can verify the comprehensive performance of the heuristic algorithm. The GAFMO
algorithm obtains the best results of almost all experiments, as shown in Table 2, instead of
f21(40), f23(30), f26(20), and f26(30). This phenomenon indicates that the novel algorithm
has a strong exploitation ability and ability to avoid optimal local value. Like the other
experiments, the novel algorithm has excellent composition functions and stability.

Since the new algorithm introduces a Gaussian probability distribution model based
on AFMO, it has a stronger exploration performance than AFMO, which can be proved
by the experimental results presented in Table 3. In multi-modal test functions, the novel
algorithm obtains the greatest result at f6, f7, f9 to f14, and f19 for each dimension. As
the dimension increases, the new algorithm performs better and better on the f15 and
f18 test functions and achieves the best score among the five algorithms in the case of
40 dimensions. The experimental data shows that the new algorithm has an excellent
performance in solving high-dimensional and high-complexity problems. The f8 test
function is not discussed in this article because the algorithms under this function perform
similarly and provide no useful information. In addition, the new algorithm has the lowest
standard deviation of the 25 results (equivalent to 55% of all multi-modal experimental
results), which means that it can obtain a solution closer to the mean shown in Table 3 than
other algorithms in most cases.

4.3. Simulation Experiments of Localization of MWSN

In this section, heuristic algorithms are used to reduce the localization error of the
SMCL method. The individual of heuristic algorithms represent a candidate position of the
mobile sensor node. The optimal position is found by iteration of the algorithm; that is, the
most probable position in the promising area. Through these simulation experiments, the
performance of the heuristic algorithm to solve real problems can be verified. Experiments
are performed under different conditions, such as the number of anchor nodes, sensor
nodes, and the communication radius, but the deployment area is 200 m × 200 m for all
experiments. The maximum speed of a mobile sensor node is its communication radius.
The new algorithm is compared with the PSO, BH, and WOA algorithms, and the detailed
results of these experiments are shown in the table below, with the best results for each
experiment are marked in bold.

In Table 4, the experiment is performed with different anchor node number, the number
of sensor node is set at 200, and the communication radius is 30 m. The results revel that the
heuristic algorithm can significantly enhance the localization accuracy of SMCL; specifically,
the novel algorithm can obtain better results than other heuristic algorithms.
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Table 4. The simulation results under different anchor node number.

Anchor Node Number sMCL BH PSO WOA AFMO GAFMO

A = 5 35.9050 25.1668 24.8511 24.9971 24.8520 20.0493
A = 10 21.5088 11.5516 11.3086 11.4438 11.3504 9.0480
A = 15 18.5468 9.5519 9.3780 9.4786 9.3793 7.6191
A = 20 13.1348 5.1515 5.0186 5.1158 5.0014 3.8387
A = 25 11.4025 3.8816 3.7762 3.8889 3.7793 3.0388
A = 30 13.4114 5.8577 5.7544 5.8850 5.7661 4.5912

The number of sensor nodes is the variable in Table 5, and the constant elements are the
number of anchor nodes and the communication radius, which are 10 and 30 m, respectively.
The more sensor nodes, the more complex the sensor node topology, but the mobile sensor
node can receive more anchor node information because it is connected to more sensor
nodes. In this simulation experiment, the new algorithm reduces the positioning error by
more than 30% compared with the original SMCL method. Compared to other algorithms,
the new algorithm works best. The communication radius determines how many other
nodes a sensor node can communicate with. As the communication radius increases, the
messages broadcast by the mobile sensor nodes can be received by more anchor nodes, so
the localization is more accurate. The results shown in Table 6 are obtained with different
communication radii, 200 sensor nodes, and 15 anchor nodes.The results show that the
new algorithm has excellent optimization performance in the positioning of mobile sensor
nodes in MWSN, and the optimization ability is significantly improved compared with
other heuristic algorithms.

Table 5. The simulation results under different sensor node number.

Sensor Node Number sMCL BH PSO WOA AFMO GAMFO

N = 50 36.1180 26.2782 25.8972 25.9487 25.8977 20.3007
N = 100 23.2155 13.2985 13.0395 13.1358 13.0415 10.5978
N = 150 23.2896 13.3750 13.1198 13.2913 13.1536 10.2857
N = 200 21.5088 11.5516 11.3086 11.4438 11.3504 9.0480
N = 250 25.4070 15.5492 15.4005 15.4271 15.3327 12.4996
N = 300 28.1844 18.3840 18.0993 18.2259 18.0933 15.6258

Table 6. The simulation results under different communication radii.

Communication Radius sMCL BH PSO WOA AFMO GAMO

R = 15 25.3064 14.9851 14.6533 14.7383 14.6083 12.2787
R = 20 20.6724 10.6305 10.3826 10.5019 10.3850 8.5380
R = 25 26.8183 17.0337 16.7616 16.8847 16.7640 13.8482
R = 30 20.5605 11.0756 10.8769 10.9854 10.8813 9.0985
R = 35 17.8197 8.9234 8.7262 8.8501 8.7289 7.0821
R = 40 13.1540 5.0344 4.9078 5.0095 4.9114 4.1041

5. Conclusions

This paper analyzes the feature and performance of AFMO, which has an excellent
performance in multimodal problems, but the strong exploration ability limits the local
search ability. This means the AFMO can not obtain satisfactory results in unimodal
problems. In order to enhance the exploitation performance, we introduce the Gaussian
probability distribution to the migration process of AFMO. This mechanism ensures that
the novel algorithm obtains better results in unimodal problems and retains the original
exploration ability. The performance of the new algorithm is verified by the CEC 2013 test
suit, and the experimental results show that the novel algorithm has better exploitation



Entropy 2022, 24, 1109 12 of 14

performance and a solid ability to avoid the optimal local value. The new algorithm
achieves the 60 best results in all 84 experiments; that is, the new algorithm wins in 71.4%
of the experiments. In addition, this paper applies the heuristic algorithm to solve the
localization of mobile sensor nodes in MWSN. The simulation experiments reveal that the
heuristic algorithm can significantly enhance the localization accuracy of mobile sensor
nodes. Specifically, the new algorithm can improve the localization accuracy of mobile
sensor nodes by more than 5% compared to other heuristic algorithms. This technique can
also solve the localization of the robot in the room, the robot can provide more information
to the localization system but there is more problems to solve than MWSN. This paper
proves that the Gaussian probability distribution model can enhance the exploitation ability
and not reduce the exploration ability. This model can apply other algorithms to further
improve the ability of heuristic algorithms. In addition, other probability modes have their
own features, and they may be more suitable for enhancing the performance of heuristic
algorithms or solving localization problems. This is interesting work to do.
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