
����������
�������

Citation: Pu, R.; Feng, X.

Physics-Informed Neural Networks

for Solving Coupled Stokes–Darcy

Equation. Entropy 2022, 24, 1106.

https://doi.org/10.3390/e24081106

Academic Editor: António Lopes

Received: 8 July 2022

Accepted: 4 August 2022

Published: 11 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Physics-Informed Neural Networks for Solving Coupled
Stokes–Darcy Equation

Ruilong Pu and Xinlong Feng *

College of Mathematics and System Sciences, Xinjiang University, Urumqi 830017, China
* Correspondence: fxlmath@xju.edu.cn; Tel.: +86-991-858-5505

Abstract: In this paper, a grid-free deep learning method based on a physics-informed neural net-
work is proposed for solving coupled Stokes–Darcy equations with Bever–Joseph–Saffman interface
conditions. This method has the advantage of avoiding grid generation and can greatly reduce the
amount of computation when solving complex problems. Although original physical neural network
algorithms have been used to solve many differential equations, we find that the direct use of physical
neural networks to solve coupled Stokes–Darcy equations does not provide accurate solutions in
some cases, such as rigid terms due to small parameters and interface discontinuity problems. In
order to improve the approximation ability of a physics-informed neural network, we propose a
loss-function-weighted function strategy, a parallel network structure strategy, and a local adaptive
activation function strategy. In addition, the physical information neural network with an added
strategy provides inspiration for solving other more complicated problems of multi-physical field
coupling. Finally, the effectiveness of the proposed strategy is verified by numerical experiments.

Keywords: Stokes–Darcy equation; interface conditions; deep learning method; deep neural network;
physics-informed neural network

1. Introduction

The coupled Stokes–Darcy equation studied in this paper has many applications
in the physical and engineering sciences. For example, in reservoir modeling, to model
heterogeneous porous media, the permeability field is often assumed to be a multiscale
function with high contrast and discontinuous features. There are also model studies of
the evolution of fibroblast shape and position under stress [1]. The model is based on
the idea of continuum mechanics to describe the stress-induced phase transition, the cell
body is modeled as a linear elastic matrix, and the cell body surface evolves according
to a specific dynamic relationship. In this model, the stress tensor has discontinuities at
the cell surface due to changes in the strain tensor due to cell contraction. The stiffness
term in the Stokes–Darcy system due to small parameters and the discontinuity in the
normal velocity due to the imbalance of the normal stress at the interface make our problem
difficult to solve. Moreover, for complex area problems, curved interface problems, and
high-dimensional problems, it will be difficult to mesh generation. Therefore, knowing how
to design an accurate, efficient, and stable meshless numerical approximation algorithm
has become the focus of literature research. Studies [2–7] are relevant here, and interested
readers can read the research.

In recent years, deep learning methods have achieved unprecedented success in
various application fields such as computer vision, speech recognition, natural language
processing, audio recognition, social network filtering, and bioinformatics. In some cases,
they are better than human experts [8,9]. Driven by these exciting developments, people
began to make an in-depth study on how to use deep neural networks to solve partial
differential equations [10–13]. In particular, Raissi et al. proposed physics-informed neural
networks(PINNs) to help solve partial differential equations and data-driven discovery [14].
The results show that given certain initial conditions and boundary conditions, PINNs

Entropy 2022, 24, 1106. https://doi.org/10.3390/e24081106 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e24081106
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://doi.org/10.3390/e24081106
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e24081106?type=check_update&version=2

Entropy 2022, 24, 1106 2 of 16

can solve some partial differential equations very well. Since then, the door to solve
partial differential equations using deep neural networks has been opened, and some
works [15–24] based on PINNs have been published one after another. For example, Even
Lu Lu et al. expounded the difference between the traditional finite element method and
the deep neural network in solving partial differential equations from the selection of
basis functions, the solution process, the error source, and the error order in [25]. Even
the famous Mishra [26] et al. and Jagtap [27,28] et al. made a theoretical analysis on the
errors generated in the training process of PINNs, in their respective works. Mishra et al.
conducted a generalization error analysis to solve a class of inverse problems of PINNs, and
Jagtap et al. carried out an error analysis on PINNs approaching the Navier–Stokes equation
and generalized an error of extended physics-informed neural networks (XPINNs).

This paper mainly wants to study a new method for the numerical approximation of a
meshless deep neural network [29] to solve the problems we care about. Our main goal is
to study strategies to improve the ability of deep neural network to solve the Stokes–Darcy
model, and to improve the approximation ability of PINNs to solve the Stokes–Darcy model.
We propose strategies to improve the accuracy and efficiency of deep neural networks in
this paper and provide several numerical examples to demonstrate our approach. It should
be noted that due to the randomness of the initial parameters when training the network,
our numerical results will fluctuate within a certain range.

The structure of this paper is as follows: an introduction to the Stokes–Darcy fluid
coupling problem and its mathematical model is given in Section 2. In Section 3, the related
knowledge of the neural network and strategies to improve the approximation properties of
PINNs are introduced. The accuracy and reliability of the proposed strategy are verified by
numerical examples in Section 4. Concluding remarks and outlook are given in Section 5.

2. Problem Setup

In this part, we specifically introduce the mathematical model of the problem and the
corresponding interface conditions. The Stokes–Darcy fluid coupling system is discussed
in a given region Ω; Γ divides region Ω into Ωs and Ωd, representing the region of Stokes
flow and Darcy flow, respectively. For simplicity, Γs and Γd represent the boundaries of Ωs
and Ωd, except the interface. n and τ are used to represent the external normal vector and
tangent vector respectively. On interface Γ, ns is used to represent the normal vector from
region Stokes to region Darcy, nd is used to represent the normal vector from region Darcy
to region Stokes, and τ is the tangent vector.

In order to better describe the Stokes–Darcy fluid-coupling system mathematically,
first of all, the motion of fluids in Ωs and Ωd is described by the Stokes equation and Darcy
law, respectively. We often need to distinguish between physical quantities in Ωs and Ωd,
especially when they are at the interface Γ. Therefore, the relevant physical quantities in the
Ωs region are represented by the symbols with the subscript s, and the relevant physical
quantities in the Ωd region are represented by the symbols with the subscript d, as follows:

us = u|Ωs , ud = u|Ωd , ps = p|Ωs , pd = p|Ωd .

So we can get the governing system [7,30,31] as follows:
Fluid region (Stokes equations)

−∇ ·T(us, ps) =fs, in Ωs,

∇ · us =0, in Ωs.
(1)

where us is the fluid velocity, ps is the kinematic pressure, fs is the external force, ν > 0
is the kinematic viscosity of the fluid, T(us, ps) = 2νD(us)− psI is the stress tensor, and
D(us) =

1
2 (∇us +∇uT

s) is the deformation tensor, and I is the unit vector.

Entropy 2022, 24, 1106 3 of 16

Rock matrix (Darcy equations)

νK−1ud +∇pd =fd, in Ωd,

∇ · ud =0, in Ωd.
(2)

The above equation is the Darcy equation describing fluid flow in the porous media
region, see [2,30–32], ud is the fluid velocity in the porous medium, pd is the dynamic
pressure, and fd is the external force source term. The permeability K is a positive definite
symmetric tensor allowed to vary in space.
Outer boundary

us =0, on Γs,

ud · ns =0, on Γd.
(3)

Here, for simplicity, we consider the Dirichlet boundary conditions on the Stokes side
and the Neumann boundary conditions on the Darcy side.

Obviously, the pressure is unique under an additional constant, so we can assume that∫
Ω

p dxdy = 0.

Interface conditions

us · ns + ud · nd =0, on Γ, (4a)

2νns · D(us) · ns =ps − pd, on Γ, (4b)

2ns · D(us) · τ =− αK−1/2us · τ, on Γ. (4c)

Here, the (4a) is a continuity condition of normal velocity at an interface obtained by
conservation of mass, (4b) is a continuity condition of normal stress of fluid at an interface
obtained through normal force balance, and (4c) is a famous Beaver–Joseph–Saffman (BJS)
interface condition [30,33–35], where parameter α is a constant associated with friction.

3. Numerical Method

In this part, we will adopt the fully connected deep neural network (DNN) as our
basic network to solve the problem. At the same time, the PINNs algorithm framework
and some extensions of the algorithm are introduced.

3.1. Network Formation

DNN is a widely parallel connected network composed of multiple simple units.
Its organizational structure can simulate the interactive response of a biological nervous
system to real-world objects. From the perspective of computer science, the neural network
can be regarded as a mathematical model with multiple parameters. This is the result of
nested functions, such as yi = fact(∑i Wixi + bi). We connect each neuron of each layer
together. Taking the neural network of the L-layer as an example, the output of the neural
network is as follows:

U (x, θ) = WNL−1 fact(· · ·W2 fact(W1(x) + b1) + b2 · · ·) + bNL−1, (5)

where Wi is the weighting coefficient matrix and bi is the bias vector. All the undetermined
parameters θ = {Wi, bi}i=1,2,··· ,NL−1 ∈ Θ in (5), and Θ is the parameter space. The (5) can
also be written as

Uθ(z) = (ND ◦ σ ◦ ND−1 ◦ σ ◦ ND−2 ◦ · · · ◦ σ ◦ N1)(z). (6)

Here,N1 = W1z+b1, z is the input variable of neural network, σ stands the activation
function, and D represents the number of layers of the neural network.

Entropy 2022, 24, 1106 4 of 16

3.2. Physics-Informed Neural Networks

In [14], the authors propose to use deep neural networks to approximate the solution
of partial differential equations, which can be called u-networks, and then use automatic
differential techniques to obtain the differential operators of the equation. They then obtain
the f-network satisfying the physical information of the equation. Then, the boundary
function and internal loss function are established by using the principle of least squares.
The working process of the PINNs is better explained below by taking the model we are
asking for as an example.

When solving the Stokes–Darcy equation, we use the random Latin hypercube ran-
dom point method to extract the data points and divide the data points into five parts
according to the problem. After the input of the neural network is determined, we
need to use the given boundary conditions and equation information to establish the
loss function. Generally, the least square method is used, and the automatic differentiation
technology [36] is also used in this process. Here, we divide the loss function into five
parts: L(x f s, θ) represents the internal loss of the Stokes region; L(x f d, θ) represents the
internal loss of the Darcy region; L(xuΓ, θ) represents the loss on the interface; and L(xus, θ)
and L(xud, θ) represent the loss on the boundary of the Stokes region and the Darcy re-
gion,respectively. Additionally, the specific expressions are as follows:

L(x, θ) = L(x f s, θ) + L(xus, θ) + L(x f d, θ) + L(xud, θ) + L(xuΓ, θ), (7)

where,

L(x f s, θ) =
1

N f s

i=N f s

∑
i=1

[| − 2ν∇ · D(us(xi
fs

, yi
fs
)) +∇ps(xi

fs
, yi

fs
)− fs(xi

fs
, yi

fs
)|2 + |∇ · us(xi

fs
, yi

fs
)|2],

L(x f d, θ) =
1

N f d

i=N f d

∑
i=1

[|νK−1ud(xi
fd

, yi
fd
) +∇pd(xi

fd
, yi

fd
)− fd(xi, yi)|2 + |∇ · ud(xi

fd
, yi

fd
))|2],

L(xuΓ, θ) =
1

NuΓ

i=NuΓ

∑
i=1

[|us(xi
uΓ

, yi
uΓ
) · ns + ud(xi

uΓ
, yi

uΓ
) · nd|2 + |2νns · D(us(xi

uΓ
, yi

uΓ
)) · ns

− ps(xi
uΓ

, yi
uΓ
) + pd(xi

uΓ
, yi

uΓ
)|2 + |2ns · D(us(xi

uΓ
, yi

uΓ
)) · τ + αK−1/2us(xi

uΓ
, yi

uΓ
) · τ|2],

L(xus, θ) =
1

Nus

i=Nus

∑
i=1
|us(xi

us , yi
us)|

2,

L(xud, θ) =
1

Nud

i=Nud

∑
i=1
|ud(xi

ud
, yi

ud
) · ns|2.

Here, {xi
fs

, yi
fs
}N fs

i=1 represents the configuration points inside the Stokes region;

{xi
fd

, yi
fd
}

N fd
i=1 represents the configuration points inside the Darcy region; {xi

uΓ
, yi

uΓ
}NuΓ

i=1

represents the training data on the interface; and {xi
us , yi

us}
Nus
i=1 and {xi

ud
, yi

ud
}Nud

i=1 represent
the training data on the Ωs and Ωd boundaries, respectively. N f s, N f d, NuΓ , Nus, and Nud
represent the number of points in the Stokes region, the number of points in the Darcy
region, the number of points in the interface, the number of points in the border of the
Stokes region, and the number of points in the Darcy region. After establishing the loss
function, we need to select the appropriate optimization algorithm to train the loss function
and update the parameters in the neural network through training and back propagation.
This process is repeated until the number of training sessions we set is reached or the loss
function values converge. Then, we find an approximate solution of the partial differen-
tial equation. Common optimization algorithms include the stochastic gradient descent
method, Newton method, and quasi-Newton method. This paper adopts the gradient
based Adam algorithm [37], which has the advantages of adaptive learning rate and batch

Entropy 2022, 24, 1106 5 of 16

computing. In some calculation examples, the Adam algorithm is combined with the
L-BFGS algorithm [38]. The working process of PINNs is given by Figure 1.

Figure 1. Physical-informed neural network structure diagram.

In Figure 1, x and y represent the input of the neural network; fact in (5) and σ in
the figure both represent the activation function in the neural network; and u, v, and p
represent the output of the neural network.

3.3. Improving Strategy of Physical-Informed Neural Network

The PINNs has a strong approximation ability, can solve many physical problems,
and can describe many physical phenomena, but it has certain limitations in solving small
parameter problems, such as the fluid viscosity coefficient and permeability in the Stokes–
Darcy system. If the viscosity coefficient of the problem to be solved is very small, it will
increase the difficulty of solving. At the same time, there are some limitations in solving
the interface discontinuity problem. In the Stokes–Darcy equation, if the analytical solution
is discontinuous on the interface, the general PINNs cannot be well solved. Therefore, in
order to solve the above limitations, we propose the following strategies.

3.3.1. Add a Weight Function to the Loss Function

One way to improve the accuracy of PINNs is to add a weight function before various
losses of the loss function. For small-parameter problems, the weight function can be
increased to balance all kinds of losses, so that the network will not focus on training one
item and ignore other items. For the problem we are trying to solve, according to the
specificity of our loss function, we only add the weight function to L(x f s, θ) and L(x f d, θ),
that is, we replace (7) with the following

L(x, θ) = ϕ(ν)L(x f s, θ) + L(xus, θ) + ψ(ν, K)L(x f d, θ) + L(xud, θ) + L(xuΓ, θ), (8)

where ϕ(ν) and ψ(ν, K) take the reciprocal of the corresponding parameters in the equa-
tion, that is, ϕ(ν) = 1

ν , ψ(ν, K) = K
ν . Here, we do not use some adaptive weighting

strategies [39,40] because the purpose of adaptive weighting strategies is to accelerate the
convergence of the loss function. By adjusting the weights of various losses in the loss
function, the value of the loss function decreases rapidly, but this has little effect on the
small parameter problem we want to study.

3.3.2. Parallel Network Architecture

Another way to improve the approximation ability of PINNs is to decompose the
solution region, that is, to divide the solution region into several sub-regions and use
independent networks within each sub-region, which is the parallel network structure
strategy. Common parallel network algorithms are conservative PINNs (cPINNs) [41] and
XPINNs [16], both of which have been given parallel implementations in [42].
cPINNs are required to satisfy nonlinear conservation laws, and the interface condition part
of the loss function is relatively complex, but XPINNs are suitable for solving all differential
equations, and the interface condition part is also relatively simple. In the model to be
solved, we use the idea of XPINNs to divide the solution region into two regions and train

Entropy 2022, 24, 1106 6 of 16

the neural network in the two sub-regions respectively. The specific training process is
shown in Figure 2. The parallel network architecture has a very good effect on the solution
of discontinuous problems on the interface, which will be shown in the numerical examples
that follow.

Figure 2. Parallel network architecture.

3.3.3. Local Adaptive Activation Function Strategy

The selection of activation function is very important for the training of neural net-
works. The use of a single activation function can no longer meet the needs of solving
complex problems. Therefore, Jagtap et al. proposed Rowdy activation function [43] with
good properties for solving partial differential equations with high-frequency composite
components and proposed adaptive activation function. In [44], an additional scalable
parameter na is introduced to the activation function, where n ≥ 1 is a predefined scaling
factor and parameter a ∈ R is the slope of the activation function. Since parameter a is
defined for the whole network, we call this the global adaptive activation function (GAAF).
The neural network expression of GAAF is shown by

Uθ̂(z) = (ND ◦ σ ◦ naND−1 ◦ σ ◦ naND−2 ◦ · · · ◦ σ ◦ naN1)(z). (9)

The optimization of these parameters will dynamically change the value of the loss
function so as to accelerate the convergence of the loss function. But GAAF may fail
on some complex issues. Therefore, a layer-wise locally defined activation function is
proposed to extend this strategy, that is, add different slope a to the activation function of
each hidden layer of the neural network. The neural network expression of the hierarchical
local adaptive activation function is shown as follows:

Uθ̂(z) = (ND ◦ σ ◦ naD−1ND−1 ◦ σ ◦ naD−2ND−2 ◦ · · · ◦ σ ◦ na1N1)(z). (10)

This provides additional D−1 parameters and optimizes the weight and bias, i.e.,
θ̂ = {Wi, bi, ai}i=1,2,··· ,D−1 ∈ Θ̂. Here, unlike the global adaptive activation function, each
hidden layer has its own activation function slope.

4. Numerical Experiments

This section introduces several numerical experiments to solve the two-dimensional
coupled Stokes–Darcy equation. Firstly, the accuracy and validity of the numerical method
are verified by constructing numerical examples with analytical solutions, and the influence
of weighted loss function on solving small parameter physical problems is demonstrated.
Then, the analytical solution of interface discontinuity is constructed, and the numerical
results of two different network structures are compared. Then, the more complicated
interface curve problem is solved. Finally, a numerical example without analytical solution
is designed to simulate the fluid movement under different permeabilities and viscosities,
and the velocity flow diagram, in accordance with the physical law, is obtained.

Entropy 2022, 24, 1106 7 of 16

In the following examples, we use the relative L2 norm to estimate our error by

E =

√
i=N
∑

i=1
|Ui

exact −Ui
pred|2√

i=N
∑

i=1
|Ui

exact|2
. (11)

Here, N represents the number of all points in the neural network training process,
Upred represents the predicted value at the corresponding coordinate point, and Uexact
represents the analytical value at the corresponding coordinate point.

4.1. Interface Continuous Solution Problem

It is difficult to find a solution that meets the interface conditions (4b) and (4c). In this
case, we simply extend the interface conditions to include an inhomogeneous term based
on benchmark problem in [30,31]. In other words, we replace (4b) and (4c) with

2νns · D(us) · ns =ps − pd + g1, on Γ, (12a)

2ns · D(us) · τ =− αK−1/2us · τ + g2, on Γ. (12b)

Then, we consider the coupled Stokes–Darcy equation in the region Ω = [0, 1]× [−1, 1].
The interface is Γ = [0, 1]× {0}, and set α = 1; then, the analytical solution is given by

us =[− sin(πx)2 sin(πy) cos(πy), sin(πx) cos(πx) sin(πy)2],

ps = sin(πx) cos(πy),

ud =[− sin(πx)2 sin(πy) cos(πy), sin(πx) cos(πx) sin(πy)2],

pd = sin(πx) cos(πy).

(13)

Figure 3 shows the comparison between the analytical solution and the neural net-
work prediction solution. Through (11), the relative L2 error of each physical quantity
can be calculated as E(us) = 4.04× 10−4, E(ud) = 1.46× 10−3, E(ps) = 3.48× 10−3 and
E(pd) = 4.22× 10−5, respectively. In the Table 1, we give the hyper-parameters in the neural
network training process, where Nus and Nud represent the number of points taken on
the border of the Stokes region and Darcy region; N f s = N f d and N f s = N f d represent
the number of internal points; NuΓ represents the number of interface points; LN and
NN represent the number of neural network layers and the number of neurons in each
hidden layer; and NP represents the number of parameters of the neural network. The
optimization algorithm, learning rate η, and activation function will continue to be used in
the following examples unless otherwise specified. Next, in Tables 2 and 3, when we set
the permeability as K = 10−2I and 10−4I, respectively, and the fluid viscosity as ν = 10−1,
10−2, 10−3 and 10−4 respectively, calculating the relative error of each physical quantity.
The results show that the weighting of loss function is more helpful to calculate small
parameter problems. At the same time, when permeability K = 10−2I and fluid viscosity
ν = 10−3, the change of loss value and the change of relative L2 error of each physical
quantity in the training process are shown in Figure 4. In the figure, each physical quantity
with W in front represents the weighted result of the loss function, and the one without W
in front represents the unweighted result of the loss function, which further shows that our
measures are effective.

Table 1. Some hyper-parameters in the neural network training process.

Nus = Nud NuΓ N f s = N f d LN NN Opt Algorithm η Act Function NP

500 125 15,000 5 100 Adam&L-
BFGS 10−3 y =

tanh(x) 30,903

Entropy 2022, 24, 1106 8 of 16

Figure 3. Top: Analytical solution of each solution variable. Bottom: The learning solution of each
solution variable.

Table 2. When K = 10−2I, the relative L2 error of velocity and pressure under different fluid viscosities.

ϕ(ν) = 1, ψ(ν, K) = 1 ϕ(ν) = 1
ν , ψ(ν, K) = K

ν

ν E(us) E(ud) E(ps) E(pd) E(us) E(ud) E(ps) E(pd)

10−1 7.31× 10−4 8.91× 10−4 1.12× 10−3 5.34× 10−4 3.60× 10−4 4.58× 10−4 7.32× 10−4 2.57× 10−4

10−2 9.19× 10−4 2.99× 10−3 1.61× 10−4 9.07× 10−5 6.37× 10−4 1.98× 10−3 9.71× 10−5 8.43× 10−5

10−3 6.35× 10−2 1.78× 10−2 2.37× 10−4 6.85× 10−5 2.39× 10−3 8.64× 10−3 3.26× 10−5 3.31× 10−5

10−4 9.13× 10−1 2.62× 10−1 9.73× 10−5 3.32× 10−5 2.54× 10−2 5.52× 10−2 1.51× 10−5 1.68× 10−5

Table 3. When K = 10−4I, the relative L2 error of velocity and pressure under different fluid viscosities.

ϕ(ν) = 1, ψ(ν, K) = 1 ϕ(ν) = 1
ν , ψ(ν, K) = K

ν

ν E(us) E(ud) E(ps) E(pd) E(us) E(ud) E(ps) E(pd)

10−1 9.48× 10−2 3.07× 10−3 6.32× 10−2 6.86× 10−1 1.05× 10−2 2.51× 10−3 1.35× 10−2 5.13× 10−1

10−2 1.62× 10−2 5.41× 10−3 1.95× 10−3 6.97× 10−2 4.81× 10−3 2.90× 10−3 7.65× 10−2 3.81× 10−2

10−3 8.15× 10−1 7.53× 10−3 1.54× 10−3 8.25× 10−3 5.31× 10−3 5.62× 10−3 6.53× 10−5 5.59× 10−3

10−4 8.06× 10−1 5.24× 10−2 2.17× 10−3 2.23× 10−3 2.25× 10−2 1.89× 10−2 1.92× 10−5 1.00× 10−3

Entropy 2022, 24, 1106 9 of 16

Figure 4. When permeability K = 10−2I and viscosity ν = 10−3, the change trend of weighted and
unweighted loss function value (left) and the change trend of relative L2 error of velocity (right).

Next, we study the influence of the depth and width of the neural network on the
prediction accuracy. In this study, we control other hyperparametric variables to remain
unchanged. For different network depths and widths, the training times of Adam and L-BFGS
algorithms are 10,000. As shown in Tables 4 and 5, we observe that the prediction accuracy of
the model will increase with the increase of the width and depth of the neural network.

Table 4. The influence of neural network width on the prediction accuracy of each physical variable.

E(us) E(ud) E(ps) E(pd)
[2] + 4 × [10] + [3] 2.71× 10−2 9.35× 10−2 2.52× 10−1 3.73× 10−3

[2] + 4 × [20] + [3] 6.88× 10−3 1.09× 10−2 3.58× 10−2 7.96× 10−4

[2] + 4 × [40] + [3] 3.23× 10−3 4.87× 10−3 2.01× 10−2 2.36× 10−4

[2] + 4 × [60] + [3] 1.21× 10−3 4.16× 10−3 1.58× 10−2 1.91× 10−4

[2] + 4 × [80] + [3] 1.00× 10−3 3.53× 10−3 1.03× 10−2 1.64× 10−4

Table 5. The influence of neural network depth on the prediction accuracy of each physical variable.

E(us) E(ud) E(ps) E(pd)
[2] + 2 × [60] + [3] 3.50× 10−3 8.69× 10−3 1.23× 10−2 4.86× 10−4

[2] + 4 × [60] + [3] 1.45× 10−3 4.27× 10−3 2.19× 10−2 1.82× 10−4

[2] + 6 × [60] + [3] 1.46× 10−3 3.94× 10−3 2.16× 10−2 1.39× 10−4

[2] + 8 × [60] + [3] 1.09× 10−3 3.21× 10−3 1.06× 10−2 1.04× 10−4

4.2. Interface Discontinuity Solution Problem

In this example, we solve the Stokes–Darcy equation for discontinuous interfaces.
Since the fluid is not continuous when passing through the interface, the solutions of the
two regions will be very different, and it will be difficult to optimize, so it is difficult to
simulate the fluid in the entire region with only one network. Therefore, we propose the
parallel network architecture; one network is in the Stokes region, and the other network
is in the Darcy region, and both networks play a role in the simulation at the interface.
The solution region and parameter α are the same as in the previous example. The terms on

Entropy 2022, 24, 1106 10 of 16

the right-hand side of the equation and the inhomogeneous terms in the interface conditions
are given by

us =[− sin(πx)2 sin(πy) cos(πy), sin(πx) cos(πx) sin(πy)2],

ps =
1
2

sin(πx) cos(πy),

ud =[
1
2

sin(2πx) cos(2πy), − 1
2

cos(2πx) sin(2πy)],

pd =
1
2

sin(πx) cos(πy).

(14)

Table 6 shows the comparison of the CPU-time used by the three algorithms to solve the
model under the control of relevant variables, as well as the comparison of the relative L2 error
of each physical variable. It can be observed that the parallel network architecture takes less
time and has less error. Figure 5 shows the prediction results of velocity variables in the model
by three algorithms, i.e., the single network structure, parallel network structure, and parallel
network structure, with a local adaptive activation function strategy, as well as the absolute
error comparison of the three algorithms. It can be observed from the absolute error diagram
that the single network structure has a significant impact on the vicinity of the interface when
solving the model. The simulation is not very good, but the parallel network architecture can be
well simulated at the interface. It should be noted that the comparisons in Figure 5 and Table 6
are based on the same premise of controlling other training parameters.

Figure 5. Cont.

Entropy 2022, 24, 1106 11 of 16

Figure 5. When the solution at the interface is discontinuous, the absolute errors of single network
structure, parallel network structure, and local adaptive activation function parallel network structure
are compared.

Table 6. The parameters of single network structure, parallel network structure, and parallel network
structure using local adaptive activation function are compared.

Single Network Parallel Network, a = 1 Variable a, (n = 20)

network architecture [2] + 4 × [100] + [3] [2] + 4 × [70] + [3] (double) [2] + 4 × [70] + [3] (double)
NP 30,903 30,666 30,666

Training times 50,000 50,000 50,000
N 31,000 31,000 31,000

CPU-time(s) 11,482.7207 8482.6347 10,607.3143
E(us) 2.25× 10−1 4.28× 10−2 1.48× 10−2

E(ud) 3.41× 10−1 1.05× 10−2 3.66× 10−3

E(ps) 9.41× 10−1 1.75× 10−1 1.51× 10−1

E(pd) 1.51× 10−2 2.37× 10−3 1.17× 10−3

4.3. Curved Interface Problem

In this example, we solve the curve interface problem, solve the region Ω = [0, 1]×
[−1, 1], interface Γ : y = 0.0625 sin(4πx), and make the parameter α = 1. Since the interface
is a curve, the outer normal vector n and tangent vector τ at each point on the interface are
changed, so we make ϕ(x, y) = 0.0625 sin(4πx)− y; therefore, the outer normal vector at
the interface is

n =
∇ϕ

|∇ϕ| ,

here, we get ns =
1
|∇ϕ| (

dϕ
dx , dϕ

dy), nd = 1
|∇ϕ| (−

dϕ
dx ,− dϕ

dy).

Entropy 2022, 24, 1106 12 of 16

The right end term of the equation and the non-homogeneous term in the interface
condition are given by

us =[
2
π

sin πy cos πy cos(x), (−2 +
1

π2 sin(πy)2) sin(x)],

ps =(ey − e−y) sin(x),

ud =[
2
π

sin πy cos πy cos(x), (−2 +
1

π2 sin(πy)2) sin(x)],

pd =(ey − e−y) sin(x).

(15)

Table 7 shows the hyper-parameters in the neural network training process. Figure 6
shows the comparison between the simulated fluid velocity and the fluid velocity given
by the analytical solution and shows our calculation effect through the absolute error
diagram. It can be seen that the error is relatively large only near the curve interface, and
the simulation in other places is very good. Figure 7 represents the distribution of data
points in each region used in the training process and the change of relative error of each
physical quantity. Through (11), the relative L2 error of each physical quantity can be
calculated as E(us)=3.81× 10−3 and E(ud)=3.74× 10−3, respectively.

Figure 6. Top: Prediction solution, analytical solution, and absolute error of fluid velocity in x
direction. Bottom: prediction solution, analytical solution, and absolute error of fluid velocity in y
direction.

Table 7. Some hyper-parameters in the neural network training process.

Nus = Nud NuΓ N f s = N f d LN NN NP

500 200 15,000 5 100 30,903

Entropy 2022, 24, 1106 13 of 16

Figure 7. Left: the data points of each region are represented by different colors and symbols; right:
the change of relative L2 error of each physical quantity during the solution process.

4.4. No-True Solution Problem

In this example, the physical phenomenon described by the Stokes–Darcy system is
examined. Let fs = 0 and fd = 0 in (1) and (2), the fluid viscosity ν = 1, and the solution
region Ω = [0, 1] × [−1, 1]. The boundary conditions of the two regions are shown in
Figure 8.

Figure 8. Computational domain and boundary conditions of Stokes–Darcy coupling model.

Table 8 shows the hyper-parameters we used during training. We simulated different
physical phenomena exhibited when a fixed permeability changes the viscosity of the fluid,
as shown in Figure 9. From the simulation results, it can be seen that as the viscosity of
the fluid decreases, the motion of the fluid becomes more intense, and the amount of fluid
flowing through the interface and the speed will increase. At the same time, the physical
phenomenon exhibited when the viscosity of the fixed fluid changes the permeability is
simulated, as shown in Figure 10. From the simulation results, it can be observed that as
the permeability decreases, the amount of fluid passing through the interface will decrease,
and the velocity of the fluid that has passed through the interface will also decrease. The
simulation effects shown in Figures 9 and 10 conform to certain physical laws.

Table 8. Hyper-parameters in neural network training.

Nus = Nud NuΓ N f s = N f d LN NN NP

375 125 15,000 5 100 30,903

Entropy 2022, 24, 1106 14 of 16

Figure 9. The figure shows that when the permeability of porous media is K = I, the change of fluid
velocity is observed by changing fluid viscosity. Left: diagram of fluid velocity change when ν = 1.
Middle: diagram of flow velocity change when ν = 10−1. Right: diagram of flow velocity change
when ν = 10−2.

Figure 10. The figure shows that when the fluid viscosity is fixed at 10−4, the permeability of the
porous medium is changed to observe the change of fluid velocity. Left: Graph of fluid velocity
change when porous media permeability K = I. Middle: the change of fluid velocity when the
permeability of porous medium K = 10−2I. Right: Variation diagram of fluid flow rate when porous
media permeability K = 10−4I.

5. Conclusions

In this paper, based on the PINN algorithm, we propose several strategies to improve
the accuracy to solve the more complex Stokes–Darcy model, and the effectiveness of our
proposed strategy is well verified in the example of small parameters and discontinuous
interface. These strategies are not only applicable to the Stokes–Darcy system but also have
a certain reference for the solution of other more complex multiphysics coupled models.
However, in the process of solving the training network, we did not obtain the convergence
speed of the algorithm, and the research on the minimum and saddle point problems in the
optimization problem is also very meaningful.

Author Contributions: Conceptualization, X.F.; methodology, R.P.; software, R.P.; validation, X.F.;
formal analysis, R.P.; investigation, R.P.; resources, X.F.; data curation, R.P.; writing—original draft
preparation, R.P.; writing—review and editing, X.F. and R.P.; visualization, R.P.; supervision, X.F.;
project administration, X.F.; and funding acquisition, X.F. All authors have read and agreed to the
published version of the manuscript.

Funding: This work received support by the Research Fund from Key Laboratory of Xinjiang Province
(No. 2020D04002).

Entropy 2022, 24, 1106 15 of 16

Acknowledgments: The authors would like to extend special thanks to Hui Xu for his guidance
and assistance.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Yarotsky, D. Error bounds for approximations with deep ReLU networks. Neural Netw. 2017, 94, 103–114. [CrossRef] [PubMed]
2. Chen, W.B.; Wang, F.; Wang, Y.Q. Weak Galerkin method for the coupled Darcy-Stokes flow. IMA J. Numer. Anal. 2016, 36, 897–921.

[CrossRef]
3. Chen, W.B.; Gunzburger, M.; Hua, F.; Wang, X. A parallel robin-robin domain decomposition method for the Stokes–Darcy

system. IMA J. Numer. Anal. 2011, 49, 1064–1084. [CrossRef]
4. Discacciati, M.; Quarteroni, A. Convergence analysis of a subdomain iterative method for the finite element approximation of the

coupling of Stokes and Darcy equations. Comput. Vis. Sci. 2004, 6, 93–103. [CrossRef]
5. Discacciati, M.; Miglio, E.; Quarteroni, A. Mathematical and numerical models for coupling surface and groundwater flows. Appl.

Numer. Math. 2002, 43, 57–74. [CrossRef]
6. Jiang, B. A parallel domain decomposition method for coupling of surface and groundwater flows. Comput. Method Appl. Mech.

Eng. 2009, 198, 947–957. [CrossRef]
7. Kanschat, G.; Rivière, B. A strongly conservative finite element method for the coupling of Stokes and Darcy flow. J. Comput.

Phys. 2010, 229, 5933–5943. [CrossRef]
8. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambrigde, MA, USA, 2016.
9. Lecun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef]
10. Dockhorn, T. A discussion on solving partial differential equations using neural networks. arXiv 2022, arXiv:1904.07200.
11. Berg, J.; Nyström, K. Data-driven discovery of PDEs in complex datasets. J. Comput. Phys. 2019, 384, 239–252. [CrossRef]
12. Sirignano, J.; Spiliopoulos, K. A deep learning algorithm for solving partial differential equations. J. Comput. Phys. 2018, 375,

1339–1364. [CrossRef]
13. Yu, B. The deep Ritz method: A deep learning-based numerical algorithm for solving variational problems. Commun. Math. Stat.

2018, 6, 1–12.
14. Raissi, M.; Perdikaris, P.; Karniadakis, G.E. Physics-informed neural networks: A deep learning framework for solving forward

and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 2019, 378, 686–707. [CrossRef]
15. Dwivedi, V.; Parashar, N.; Srinivasan, B. Distributed physics informed neural network for data-efficient solution to partial

differential equations. arXiv 2019, arXiv:1907.08967.
16. Jagtap, A.D.; Karniadakis, G.E. Extended physics-informed neural networks (XPINNs): A generalized space-time domain

decomposition based deep learning framework for nonlinear partial differential equations. Commun. Comput. Phys. 2020, 28,
2002–2041.

17. Jin, X.; Cai, S.; Li, H.; Karniadakis, G.E. NSFnets (Navier–Stokes Flow nets): Physics-informed neural networks for the incom-
pressible Navier–Stokes equations. J. Comput. Phys. 2021, 426, 109951. [CrossRef]

18. Kharazmi, E.; Zhang, Z.; Karniadakis, G.E. Variational physics-informed neural networks for solving partial differential equations.
arXiv 2019, arXiv:1912.00873.

19. Meng, X.; Li, Z.; Zhang, D.; Karniadakis, G.E. PPINN: Parareal physics-informed neural network for time-dependent PDEs.
Comput. Method Appl. Mech. Eng. 2020, 370, 113250. [CrossRef]

20. Shukla, K.; Jagtap, A.D.; Blackshire, J.L.; Sparkman, D.; Karniadakis, G.E. A Physics-Informed Neural Network for Quantifying
the Microstructural Properties of Polycrystalline Nickel Using Ultrasound Data: A promising approach for solving inverse
problems. IEEE. Signal. Proc. Mag. 2021, 39, 68–77. [CrossRef]

21. Jagtap, A.D.; Mitsotakis, D.; Karniadakis, G.E. Deep learning of inverse water waves problems using multi-fidelity data:
Application to Serre–Green–Naghdi equations. Ocean. Eng. 2022, 248, 110775. [CrossRef]

22. Jagtap, A.D.; Mao, Z.; Adams, N.; Karniadakis, G.E. Physics-informed neural networks for inverse problems in supersonic flows.
J. Comput. Phys. 2022, 466, 111402. [CrossRef]

23. Wang, S.; Yu, X.; Perdikaris, P. When and why pinns fail to train: A neural tangent kernel perspective. J. Comput. Phys. 2022,
499, 110768. [CrossRef]

24. Mao, Z.; Jagtap, A.D.; Karniadakis, G.E. Physics-informed neural networks for high-speed flows. Comput. Method Appl. Mech.
Eng. 2020, 360, 112789. [CrossRef]

25. Lu, L.; Meng, X.; Mao, Z.; Karniadakis, G.E. DeepXDE: A deep learning library for solving differential equations. SIAM Rev. 2021,
63, 208–228. [CrossRef]

26. Mishra, S.; Molinaro, R. Estimates on the generalization error of physics-informed neural networks for approximating a class of
inverse problems for PDEs. IMA J. Numer. Anal. 2022, 42, 981–1022. [CrossRef]

27. De Ryck, T.; Jagtap, A.D.; Mishra, S. Error estimates for physics informed neural networks approximating the Navier–Stokes
equations. arXiv 2022, arXiv:2203.09346.

28. Hu, Z.; Jagtap, A.D.; Karniadakis, G.E.; Kawaguchi, K. When do extended physics-informed neural networks (XPINNs) improve
generalization? arXiv 2021, arXiv:2109.09444.

http://doi.org/10.1016/j.neunet.2017.07.002
http://www.ncbi.nlm.nih.gov/pubmed/28756334
http://dx.doi.org/10.1093/imanum/drv012
http://dx.doi.org/10.1137/080740556
http://dx.doi.org/10.1007/s00791-003-0113-0
http://dx.doi.org/10.1016/S0168-9274(02)00125-3
http://dx.doi.org/10.1016/j.cma.2008.11.001
http://dx.doi.org/10.1016/j.jcp.2010.04.021
http://dx.doi.org/10.1038/nature14539
http://dx.doi.org/10.1016/j.jcp.2019.01.036
http://dx.doi.org/10.1016/j.jcp.2018.08.029
http://dx.doi.org/10.1016/j.jcp.2018.10.045
http://dx.doi.org/10.1016/j.jcp.2020.109951
http://dx.doi.org/10.1016/j.cma.2020.113250
http://dx.doi.org/10.1109/MSP.2021.3118904
http://dx.doi.org/10.1016/j.oceaneng.2022.110775
http://dx.doi.org/10.1016/j.jcp.2022.111402
http://dx.doi.org/10.1016/j.jcp.2021.110768
http://dx.doi.org/10.1016/j.cma.2019.112789
http://dx.doi.org/10.1137/19M1274067
http://dx.doi.org/10.1093/imanum/drab032

Entropy 2022, 24, 1106 16 of 16

29. Wang, Z.; Zhang, Z. A mesh-free method for interface problems using the deep learning approach. J. Comput. Phys. 2020,
400, 108963. [CrossRef]

30. Rui, H.; Zhang, R. A unified stabilized mixed finite element method for coupling Stokes and Darcy flows. Comput. Method Appl.
Mech. Eng. 2009, 198, 2692–2699. [CrossRef]

31. Arbogast, T.; Brunson, D.S. A computational method for approximating a Darcy-Stokes system governing a vuggy porous
medium. Computat. Geosci. 2007, 11, 207–218. [CrossRef]

32. Vassilev, D.; Yotov, I. Coupling Stokes–Darcy flow with transport. SIAM J. Sci. Comput. 2009, 31, 3661–3684. [CrossRef]
33. Jäger, W.; Mikelic, A. On the interface boundary condition of Beavers, Joseph, and Saffman. SIAM J. Appl. Math. 2000, 60,

1111–1127.
34. Beavers, G.S.; Joseph, D.D. Boundary conditions at a naturally permeable wall. J. Fluid Mech. 1967, 30, 197–207. [CrossRef]
35. Saffman, P.G. On the boundary condition at the surface of a porous medium. Stud. Appl. Math. 1971, 50, 93–101. [CrossRef]
36. Baydin, A.G.; Pearlmutter, B.A.; Radul, A.A.; Siskind, J.M. Automatic differentiation in machine learning: A survey. J. Mach.

Learn. Res. 2017, 18, 5595–5637.
37. Kingma, D.P.; Ba, J.L. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
38. Zhu, C.; Byrd, R.H.; Lu, P.; Nocedal, J. Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained

optimization. ACM. Trans. Math. Softw. 1997, 23, 550–560. [CrossRef]
39. Wang, S.; Teng, Y.; Perdikaris, P. Understanding and mitigating gradient flow pathologies in physics-informed neural networks.

SIAM J. Sci. Comput. 2021, 43, A3055–A3081. [CrossRef]
40. McClenny, L.; Braga-Neto, U. Self-Adaptive Physics-Informed Neural Networks using a Soft Attention Mechanism. arXiv 2020,

arXiv:2009.04544.
41. Jagtap, A.D.; Kharazmi, E.; Karniadakis, G.E. Conservative physics-informed neural networks on discrete domains for conserva-

tion laws: Applications to forward and inverse problems. Comput. Method Appl. Mech. Eng. 2020, 365, 113028. [CrossRef]
42. Shukla, K.; Jagtap, A.D.; Karniadakis, G.E. Parallel physics-informed neural networks via domain decomposition. J. Comput.

Phys. 2021, 447, 110683. [CrossRef]
43. Jagtap, A.D.; Shin, Y.; Kawaguchi, K. Deep Kronecker neural networks: A general framework for neural networks with adaptive

activation functions. Neurocomputing 2022, 468, 165–180. [CrossRef]
44. Jagtap, A.D.; Kawaguchi, K.; Karniadakis, G.E. Adaptive activation functions accelerate convergence in deep and physics-

informed neural networks. J. Sci. Comput. 2020, 404, 109136. [CrossRef]

http://dx.doi.org/10.1016/j.jcp.2019.108963
http://dx.doi.org/10.1016/j.cma.2009.03.011
http://dx.doi.org/10.1007/s10596-007-9043-0
http://dx.doi.org/10.1137/080732146
http://dx.doi.org/10.1017/S0022112067001375
http://dx.doi.org/10.1002/sapm197150293
http://dx.doi.org/10.1145/279232.279236
http://dx.doi.org/10.1137/20M1318043
http://dx.doi.org/10.1016/j.cma.2020.113028
http://dx.doi.org/10.1016/j.jcp.2021.110683
http://dx.doi.org/10.1016/j.neucom.2021.10.036
http://dx.doi.org/10.1016/j.jcp.2019.109136

	Introduction
	Problem Setup
	Numerical Method
	Network Formation
	Physics-Informed Neural Networks
	Improving Strategy of Physical-Informed Neural Network
	Add a Weight Function to the Loss Function
	Parallel Network Architecture
	Local Adaptive Activation Function Strategy

	Numerical Experiments
	Interface Continuous Solution Problem
	Interface Discontinuity Solution Problem
	Curved Interface Problem
	No-True Solution Problem

	Conclusions
	References

