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Abstract: Information security has become a focal topic in the information and digital age. How to re-
alize secure transmission and the secure storage of image data is a major research focus of information
security. Aiming at this hot topic, in order to improve the security of image data transmission, this
paper proposes an image encryption algorithm based on improved Arnold transform and a chaotic
pulse-coupled neural network. Firstly, the oscillatory reset voltage is introduced into the uncoupled
impulse neural network, which makes the uncoupled impulse neural network exhibit chaotic charac-
teristics. The chaotic sequence is generated by multiple iterations of the chaotic pulse-coupled neural
network, and then the image is pre-encrypted by XOR operation with the generated chaotic sequence.
Secondly, using the improved Arnold transform, the pre-encrypted image is scrambled to further
improve the scrambling degree and encryption effect of the pre-encrypted image so as to obtain the
final ciphertext image. Finally, the security analysis and experimental simulation of the encrypted
image are carried out. The results of quantitative evaluation show that the proposed algorithm has a
better encryption effect than the partial encryption algorithm. The algorithm is highly sensitive to
keys and plaintexts, has a large key space, and can effectively resist differential attacks and attacks
such as noise and clipping.

Keywords: chaotic pulse-coupled neural network; Arnold transform; chaotic sequence; image
scrambling; image encryption

1. Introduction

In the age of informatization and digitization, digital images, as the mainstream carrier
of information transmission, play an indispensable role in information transmission and
storage. In the era of rapid information flow, how to protect user privacy; ensure the safe
transmission and storage of image information; and avoid theft, tampering, and public
dissemination by illegal persons in the process of data transmission has become a hot issue
in information security research in recent years [1]. The image encryption technology has
become one of the effective technical means to solve this problem, which can well ensure
the security of the image information and data of the user in the military, aviation, and
other fields and will not easily lead to the leakage of information [2].

At present, there are two main technical methods for image encryption—the scram-
bling of image position and the replacement of image pixel value. Among them, the
image scrambling method mainly uses a certain transformation to scramble the posi-
tion of the image pixel points and then changes the positional relationship between the
original image pixel points. This method achieves the effect of image encryption by re-
ducing the correlation between adjacent pixels in the image. Commonly used image
position scrambling methods include Zigzag transformation, Arnold transformation (also
known as cat mapping), Standard mapping, magic square transformation, etc. For exam-
ple, Rui Liang et al. [3] proposed a double-scrambling encryption algorithm based on the
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two-dimensional Arnold transform. The algorithm not only changes the basic statistical
information of the image but also changes the texture feature information of the image.
Xingyuan Wang et al. [4] proposed an image encryption algorithm based on dynamic line
scrambling and Zigzag transform. This algorithm uses the method of different directions
of odd and even lines to traverse and scramble the image and proposes a new scrambling
method based on the idea of sawtooth scrambling to improve the encryption effect of the
image. ChunLai Li et al. [5] proposed a grayscale image encryption technology scheme
based on bit-level scrambling and multiplicative diffusion architecture. Firstly, binary tree
scrambling, flip scrambling, and improved circular index scrambling are used to achieve
scrambling, and then the improved GF (257) field multiplication is used to diffuse the
scrambled components to improve the security of image encryption. The advantage of the
image position scrambling encryption method is that the method is simple and easy to
implement, but this method has certain limitations, so the scrambling effect is not ideal.
Therefore, using this method alone for image encryption processing has low complexity
and low security.

The image pixel value substitution method mainly uses a chaotic system to generate
a chaotic sequence, then uses the generated chaotic sequence to perform XOR processing
with the original image to generate a new pixel value, and finally replaces the pixel value
of the original image with the new pixel value. This method mainly achieves the effect of
encryption by reducing the correlation between image pixels. The commonly used chaotic
systems include the logistic map chaotic system, Henon map chaotic system, cellular neural
network chaotic system, and Lorentz chaotic system. For example, Noura Khalil et al. [6]
proposed an image encryption algorithm based on a chaotic system. This method first uses
a chaotic map to scramble the image, then uses the logistic-tent chaotic map to generate
a chaotic sequence, and then performs a bitwise XOR operation on the generated chaotic
sequence and the scrambled image to obtain a ciphertext image. Xiaohong Gao et al. [7]
proposed an image encryption algorithm based on a two-dimensional hyperchaotic map.
The algorithm first scrambles the rows and columns of the image and then diffuses the
pixel values to obtain an encrypted image. Gopal Ghosh et al. [8,9] proposed a security
monitoring framework for IoT systems based on image encryption. The initial parameters
of the hyperchaotic map are obtained based on the partially regenerated non-dominated op-
timization algorithm (PRNDO). The framework then uses the hyperchaotic map to generate
pseudo-random sequences. The encrypted image is finally generated through the permuta-
tion and diffusion process. Christophe Magloire, Lessouga Etoundi et al. [10] proposed an
image encryption method combining the existing chaotic maps to construct a hyper-chaotic
map to obtain a composite coupled hyper-chaotic map. Anand B. Joshi et al. [11] proposed
an image encryption algorithm based on two-dimensional discrete wavelet transform and
three-dimensional logistic chaotic mapping. The algorithm transforms the image in fre-
quency domain and then uses the chaotic map to encrypt and decrypt the image in the
frequency domain. Although the encryption method based on a chaotic system has been
well improved in encryption security and complexity, most chaotic systems are sensitive to
salt and pepper noise, Gaussian noise, and shearing attacks and are prone to avalanche
effects. The anti-attack ability of the encrypted image is poor, and the encrypted image is
easily changed after a small change or an external attack, which can easily lead to a huge
change in the decrypted image, and it is difficult to retain the basic feature information of
the original image.

Therefore, this paper proposes a new image encryption algorithm based on improved
Arnold transform and chaotic pulse-coupled neural network (PCNN). The algorithm
improves the original Arnold transform and solves the limitation that the Arnold transform
is only suitable for square images. At the same time, the pixel position index is introduced
into the algorithm to solve the periodic problem of Arnold transform, which effectively
improves the security of image scrambling by Arnold transform, and it is not easy for illegal
persons to decipher by using the periodic characteristics of Arnold transform. In order to
further enhance the effect of image encryption and improve the security of the image, this
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paper also proposes a new encryption method based on a chaotic pulse-coupled neural
network. The chaotic pulse-coupled neural network system has many parameters, strong
sensitivity to the initial value and large key space, and good encryption performance.

The main contributions of this work include: (1) This paper proposes a new image
encryption algorithm based on improved Arnold transform and chaotic pulse-coupled
neural network, which has good encryption performance and is safe and reliable. (2) In
order to solve the limitation that the traditional Arnold transform can only scramble square
image, this paper proposes a variable sliding window Arnold transform method. (3) In
order to enhance the security of image encryption, we introduce the pixel position index
to increase the scrambling degree of the image and also solve the periodic problem of
Arnold transform.

The work arrangement of this paper is as follows. In Section 2, we propose the
chaotic PCNN model and image encryption algorithm and introduce its basic principles.
In Section 3, the specific scheme and process of image encryption and decryption are
introduced. In Section 4, we introduce the experimental environment, parameter settings,
and experimental results. In Section 5, the security of image encryption is analyzed, and
the performance of the proposed encryption algorithm is evaluated through experiments
in the chapter. Finally, the conclusion is given in Section 6.

2. Theoretical Analysis of Chaotic PCNN Model
2.1. Uncoupled Linking PCNN Model

A pulse-coupled neural network is a single-layer, third-generation artificial neural
network that does not require training [12]. In 1990, Eckhorn et al. proposed a neural
network model based on the signal transduction of cats’ visual cortices [13]. In 1999,
Johnson et al. improved it into a model suitable for image processing and named it
PCNN [14]. Up to now, the model has been widely used in various fields of digital image
processing and has achieved good results. PCNN is a mathematical model that simulates
the relationship between the structure of biological neurons and the interaction between
neurons [15], and its simplified model is shown in Figure 1.
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Figure 1. PCNN simplified model.

PCNN model can be divided into uncoupled link and coupled link. This paper is
mainly based on uncoupled linking PCNN. The model can be simplified, as shown in the
following Equations (1)–(3):

Uij(n) = Fij(n) = Sij + e−aF Fij(n− 1) (1)

Eij(n) = e−aE Eij(n− 1) + VEYij(n− 1) (2)

Yij(n) = ε[Uij(n)− Eij(n)] (3)
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According to Equations (1)–(3), the iterative equation of uncoupled linking PCNN can
be obtained, as shown in Equation (4).

Yij(n) = ε[Sij + e−aF Fij(n− 1)− e−aE Eij(n− 1)−VEYij(n− 1)] (4)

Equations (1)–(3) represent the feeding input subsystem, the firing subsystem, and the
dynamic threshold subsystem, respectively, where Sij represents the input of the PCNN
and is the normalized gray value of a pixel corresponding to a neuron. Subscripts i, j
represent the position of the center pixel of the PCNN. αE represents the time constant of
the iteration decay of the dynamic threshold subsystem. VE represents the linking weight
amplification coefficient between the dynamic threshold and the firing subsystem. Yij, the
output of the PCNN, represents the firing state of the neuron (0 or 1). The state of a neuron
(i.e., firing or fire extinguishing) depends upon the output of the firing subsystem.

2.1.1. Firing Period Analysis of Uncoupled Linking PCNN

Set the initial value of feedback input F, dynamic threshold E to 0, and ignition state Y
to 1; then the output neuron (pixel) firing state of each iteration is:

(1) When n = 0, which is the initial stage, Uij(0) = Fij(0) = Sij, Eij(0) = 0, Yij(0) = 1,
neurons fire for the first time;

(2) When n = 1, Uij(1) = Fij(1) = Sij + e−aF Sij, Eij(1) = VE, Yij(1) = 0, neurons extinguish;
(3) When n = 2, Uij(2) = Fij(2) = Sij + e−aF (Sij + e−aF Sij), Eij(2) = e−aE VE,

Yij(2) = ε[Sij + e−aF (Sij + e−aF Sij)− e−aE VE].

From the above, we can conclude that when n = 3 . . . , Uij(n) = Fij(n) = Sij(1+ e−aF +

· · ·+ e−naF ), Eij(n) = e−(n−1)aE VE, Yij(n) = ε[Sij(1 + e−aF + · · ·+ e−naF )− e−(n−1)aE VE].
Suppose neurons fire for the second time at n = n1, then:

Uij(n1) = Fij(n1) = Sij(1 + e−aF + · · ·+ e−n1aF ) =
Sij(1− e−(n1+1)aF )

1− e−aF
, Eij(n1) = e−(n1−1)aE VE, Yij(n1) = 1;

According to the condition for neuron fire Uij(n1) = Eij(n1), we have

Uij(n1) = Eij(n1)⇒ Uij(n1) =
Sij(1−e−(n1+1)aF )

1−e−aF
= e−(n1−1)aE VE ⇒ n1 = 1 + 1

aE
ln( VE

Uij(n1)
) .

Let k = 1−e−(n1+1)aF

1−e−aF
; therefore, n1 = 1 + 1

aE
ln( VE

kSij
).

In the n = (n1 + 1), (n1 + 2), (n1 + 3) . . . moment, the value of the dynamic threshold
Eij decays exponentially again, and the general formula becomes:

Yij(n) = 0, Uij(n) = Sij(1 + e−aF + · · ·+ e−naF ), Eij(n) = (e−aE kSij + VE)e−(n−n1−1)aE .

Suppose neurons fire for the third time at n = n2, then:

Uij(n2) = Fij(n2) = Sij(1 + e−aF + · · ·+ e−n2aF ) =
Sij(1− e−(n2+1)aF )

1− e−aF
, Eij(n2) = e−(n2−n1−1)aE (VE + e−aE kSij), Yij(n2) = 1;

From the conditions for neuron fire, we have:

Uij(n2) = Eij(n2)⇒ Uij(n2) =
Sij(1−e−(n2+1)aF )

1−e−aF
= e−(n2−n1−1)aE (VE + e−aE kSij)⇒ n2 = 1 + n1 +

1
aE

ln(
e−aE kSij+VE

Uij(n2)
) , let k′ = 1−e−(n2+1)aF

1−e−aF
; therefore,

n2 = 1 + n1 +
1

aE
ln(

e−aE kSij+VE
k′ Sij

)

Suppose neurons fire for the fourth time at n = n3, then:

Uij(n3) = Eij(n3)⇒ n3 = 1 + n2 +
1
aE

ln(
e−aE k′Sij + VE

Uij(n3)
) , let k′′ =

1− e−(n3+1)aF

1− e−aF
, therefore n3 = 1 + n2 +

1
aE

ln(
e−aE k′Sij + VE

k′′Sij
)
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From the above, we can conclude that when n4 . . . , nm = 1+ nm−1 +
1

aE
ln(

e−aE cSij+VE
c′Sij

),

m = 4, 5, . . . , N. where c = 1−e−(nm−1+1)aF

1−e−aF
, c′ = 1−e−(nm+1)aF

1−e−aF
.

From the above analysis, we can conclude that the firing period Tij for uncoupled
linking PCNN is:

Tij = nm − nm−1 = 1 +
1
aE

ln(
e−aE cSij + VE

c′Sij
) (5)

2.2. Uncoupled Linking Chaotic PCNN

It can be inferred from Section 2.1.1 that when the initial value of the dynamic threshold
of the uncoupled linking PCNN model is constant, the neuron’s pulse firing is periodic,
and its firing period is shown in Equation (5). In order to obtain the discrete chaotic PCNN
model, we changed the initial dynamic threshold value of the original PCNN model into
the oscillatory reset voltage, and its simplified model is shown in Figure 2.
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Substituting the oscillatory reset voltage VE(n) = VEm(1+ a0 sin(wn)) into Equation (5)
to obtain Equation (6) below [16]:

nm − nm−1 = 1 +
1
aE

ln(
e−aE cSij + VEm(1 + a0 sin(wn(m− 1)))

c′Sij
) (6)

where w is the angular frequency, and n is the neuron firing moment.
Multiply Equation (6) with w, and let x(m) = wn(m); then, we have:

xm = xm−1 + w +
w
aE

ln(
e−aE cSij + VEm(1 + a0 sin(xm−1))

c′Sij
) (mod2π) (7)

Equation (7) is the one-dimensional circular map of the uncoupled linking chaotic PCNN.

2.2.1. Basic Bifurcation Behavior Analysis of Chaotic PCNN

According to the above analysis, the discrete chaotic map mathematical model used
for image encryption in this paper is:

xn+1 = xn + w +
w
aE

ln(
e−aE cSij + VEm(1 + a sin(xn))

c′Sij
) (mod2π) (8)

where c = c′ = 1−e−(n+1)aF

1−e−aF
, aF, VEm, aE, and Sij are controlling parameters, with set fixed

parameters n = 500, a = 0.8, and w = 7.7.
When setting initial value x0 = 3, the controlling parameters are aF = 0.12, VEm = 17.2,

and Sij = 0.16. When parameter aE changes between [1.3, 1.5], the bifurcation diagram
and Lyapunov exponent spectrum with respect to x are shown in Figure 3a,b, respectively.
We know from Figure 3 that, as parameter aE changes, the system has different dynamic
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oscillation behaviors such as period, multiple periods, chaos, etc. When aE is within
[1.3, 1.368], the system has a periodic solution and is in a periodic motion state when the
maximum Lyapunov exponent is less than zero; when aE is within [1.369, 1.481], the system
has chaotic dynamic behavior, where the maximum Lyapunov exponent is greater than
zero; when fixing initial value x0 = 3, controlling parameters Sij = 0.16, VEm = 17.2, and
aE = 1.5, as in Figure 4, when aF is within [1.631, 1.674], the system has a periodic solution
and is in a periodic motion state; when aF is within [2.072, 2.5], the system has chaotic
dynamic behavior. Based on the same reasoning, the bifurcation diagram and Lyapunov
exponent spectrum of the system as a function of other parameters can also be obtained.
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From the definition of Lyapunov exponent, when the Lyapunov exponent is greater
than zero, the system is in a chaotic state. When fixing x0 = 3, with controlling parameters
aF = 0.12, VEm = 17.2, and Sij = 0.16, from Figure 3b, when aE = 1.5, the Lyapunov
exponent is greater than zero, and the system is in a chaotic state; its chaos diagram is
shown in Figure 5.
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2.2.2. Non-Periodicity Analysis of Sequence

In order to verify the non-periodicity of the sequence generated by the chaotic pulse-
coupled neural network proposed in this paper, we used the Fourier transform to conduct
a lot of experiments and analyses. The magnitude spectrum is shown in Figure 6, and the
mean variance diagram of the magnitude spectrum is shown in Figure 7. The analysis
results show that the spectrum has no peak in the frequency domain. Since the random
sequence generated by our algorithm have the same spectrum characteristics, the generated
sequence is a non-periodic sequence.
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2.3. Improved Arnold Transform Image Scrambling Method

The traditional Arnold transformation mainly uses Equation (9) to transform the pixels
in the image from position (x, y) to position (x1, y1) and traverses all the pixels of the image
through Arnold transformation so that the pixels of the entire image are scrambled to
achieve the effect of image encryption [17].(

x1
y1

)
=

(
a b
c d

)(
x
y

)
modN (9)

where a, b, c, and d are parameters that satisfy ad− bc = 1, and N is the order of the image matrix.
For the traditional Arnold transform, although it can scramble the position of image

pixels simply and efficiently, it has the following shortcomings: (1) only square images can
be scrambled, which reduces the scope of practical applications [18]; (2) it has periodicity,
is easy to be deciphered by illegal persons, and the security is poor; as shown in Table 1,
the period of Arnold transformation is related to the image size [19]. Illegal persons
can reconstruct the original image according to the periodicity of Arnold transformation,
which is not conducive to the security of image encryption; and (3) the key space is small,
and the anti-attack ability is poor. In order to solve the shortcomings of the traditional
Arnold transform and further improve the security of digital image encryption, this paper
improves the Arnold transform. First, in order to solve the problem that the traditional
Arnold transform can only scramble the square image, this paper uses a square sliding
window (M × M) of variable size to traverse the image from left to right and from top
to bottom. During the sliding process of the window, the pixels in the window undergo
Arnold transformation, and the step size of the sliding window can be set according to
actual needs. Secondly, due to the periodicity of the Arnold transform, for cryptography,
the periodic encryption method is easy to be illegally cracked, and the security is not
high. Therefore, this paper uses the proposed CPCNN chaos system to generate the chaos
sequence and sort the chaotic sequence to obtain the image position index value. According
to the position index value, the image after Arnold transformation is scrambled with a
special level to make it lose the original periodicity of the Arnold transformation. At the
same time, the method has a large key space, which can solve the problems of small key
space and poor security of Arnold transform. The structure diagram and flow chart of this
method are shown in Figure 8.
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Table 1. The period of the standard Arnold transform.

Image Size N Scrambling Period T Image Size N Scrambling Period T

10 30 32 24
14 24 64 48
16 12 128 96
18 12 256 192
25 50 512 384

3. Scheme and Process of Image Encryption and Decryption

The image encryption algorithm proposed in this paper is mainly divided into two
parts: (1) pixel replacement, using the chaotic pulse-coupling neural network to generate
a chaotic sequence, taking the modulo of the chaotic sequence, and performing XOR
operation with the original image to obtain a pre-encrypted image and (2) pixel scrambling,
using the improved Arnold transform in this paper to scramble the pixel position of the
pre-encrypted image to obtain the final encrypted image.

The flow chart of encryption in this paper is shown in Figure 9. Algorithm 1 gives the
steps involved in the encryption process. The specific encryption steps are as follows:
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Step 1: Image input, parameter initialization. Input the grayscale image of size W × H,
and convert it into a one-dimensional matrix I1; set the initial parameter value of the chaotic
system. See Section 4.2 for the initial parameter value;

Step 2: Generate chaotic sequence L1. Use discrete CPCNN to iterate M × N times to
generate a chaotic sequence of length M × N;
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Step 3: Normalize the sequence L1. The sequence generated by the chaotic system
is normalized by Equation (10), and the sequence is converted into the range of [0, 1] to
obtain the sequence L3;

L3(i) =
L1(i)−max(L1)

max(L1)−min(L1)
(10)

where max/min refers to the maximum/minimum value of the sequence obtained.
Step 4: Generate an encrypted key sequence. The key sequence I2 is obtained by

converting the sequence L3 into an integer in the range of [0, 255] using the modulo
operation of Equation (11), where “sum” in Equation (11) refers to the sum of all pixel
values of the input grayscale image;

I2 = f loor(mod((L3 · sum) · 108, 256))
I2 = f loor(mod((L3) · 108, 256))

}
sum 6= 0
sum = 0

(11)

where mod in Equation (11) is the modulo function, and floor is the rounding function.
Step 5: Preliminary encryption operation. XOR the one-dimensional matrix I1 with

the key sequence I2 to generate a new random sequence, as shown in Equation (12), and
then convert the new random sequence into a pre-encrypted image Q1 of size W × H;

Q1 = bitxor(I1, I2) (12)

where bitxor in Equation (12) refers to the bitwise exclusive OR operation.
Step 6: Arnold transform on the pre-encrypted image. Using a 100 × 100 square

sliding window and setting the step size to 30, the pre-encrypted image is traversed, and
the entire pre-encrypted image is Arnold transformed to obtain a new scrambled image Q2;

Step 7: Repeat the process of steps 2–4 to generate a new key sequence I3, and convert
the key sequence I3 into an image matrix M2 with a size of W × H;

Step 8: Row the image matrix M2 in ascending order and obtain its position index
value at the same time. If the pixel value of the first row of image matrix M2 is assumed to
be [0,5,3,9], the position index value obtained in ascending row order is [1,3,2,4];

Step 9: Use the image position index value generated in step 8 to reverse the index the
scrambled image Q2 generated in step 6 to obtain the final encrypted image Q3. If the pixel
value of the first row of the image Q2 is [1,6,3,7], use the position index value [1,3,2,4] of
step 8 to perform reverse indexing to obtain the pixel of the first row of the final encrypted
image Q3; the value is [1,3,6,7]. The flowchart of steps 7–9 is shown in Figure 10.
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The decryption process of the encryption algorithm proposed in this paper is the
inverse process of the encryption process. As long as the encryption process is reversed,
the original plaintext image can be restored without distortion. This paper will not describe
it in detail.
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Algorithm 1: Proposed decryption algorithm.

Input: Image M1 of size W × H.
Output: Encryption result Q3.
1: Set the initial parameter value of the chaotic system, set fixed parameters n = 500, a = 0.8,

w = 7.7; controlling parameters aF = 0.12, VEm = 17.2, Sij = 0.16, aE = 1.5; initial value x0 = 3;
2: Generate chaotic sequence L1 and L2 using proposed CPCNN map;
3: sum = sum(M1);
4: I1 = reshape (M1, 1, W × H);
5: for i = 1 to L1 do
6: L3(i) = (L1(i)−max(L1))/(max(L1)−min(L1));
7: if sum 6= 0 then
8: I2 = f loor((L3 · sum · 108)mod256);
9: else
10: I2 = f loor((L3 · 108)mod256);
11: end if
12: end for
13: Q2 = reshape (I1 ⊕ I2, W, H);
14: Using a 100 × 100 square sliding window and setting the step size to 30, the pre-encrypted

image is traversed, and the entire pre-encrypted image is Arnold transformed to obtain a new
scrambled image Q2;

15: M2 = reshape (L2, W, H);
16: index = zeros (W, H);
17: for i = 1 to W do
18: [~, index (i, :)] =sort (M2 (i, :));
19: end for
20: count = W;
21: for i = 1 to W do
22: for j = 1 to H do
23: Q3 (i, j) = Q2 (index (i, j), count);
24: end for
25: count = count − 1;
26: end for

4. Experiment Environment and Results
4.1. Experiment Environment

The equipment environment used in this experiment was Windows 10 (64-bit) op-
erating system with 16 G memory; the processor of the running platform was Intel (R)
Core (TM) i7-10510U CPU @ 1.80 GHz 2.30 GHz; GPU is NVIDIA GeForce MX250; Devel-
opment and testing software environment was MATLAB R2019a.

4.2. Experiment Parameter Setting and Result

Parameter setting: for the experiment in this paper, set fixed parameters for CPCNN
mapping n = 500, a = 0.8, w = 7.7; controlling parameters aF = 0.12, VEm = 17.2,
Sij = 0.16, aE = 1.5; and initial value x0 = 3. Set the Arnold transform parameters as a = 1,
b = 1, c = 2, and d = 3.

Sliding window parameter setting: The choice of the window size will affect the speed
of encryption and the effect of encryption. Therefore, in order to weigh the efficiency
of encryption and the effect of encryption, Formulas (13) and (14) are recommended to
determine the window size (N × N) and step size (S), respectively.

W
3
≤ N ≤ 2×W

12
(W ≤ L) (13)

N
4
≤ S ≤ N

3
(14)
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In the above formula, L and W are the length and width of the input image, N is the
size of the sliding window, and S is the sliding step. N and S must be integers.

Result: The algorithm proposed in this paper can implement encryption processing
for images of any size. In the experimental simulation, this paper uses standard Lena,
Cameraman, White and Black grayscale images as encrypted images, and the image sizes
are 256 × 256 and 300 × 400. As shown in Figure 11, Figure 11a,d,g,j are the encrypted
images of Figure 11b,e,h,k obtained after the original images are encrypted by the algorithm
in this paper. Comparing the images before and after encryption, it can be seen that, after the
original images are encrypted, the original feature information of the images is completely
lost, and the algorithm in this paper has a good encryption effect. At the same time, after
the encrypted image is decrypted, the information characteristics of the original images
can be restored accurately and losslessly, as shown in Figure 11c,f,i,l.
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5. Security Analysis
5.1. Statistical Characteristic Analysis of Ciphertext
5.1.1. Histogram Statistical Analysis

The grayscale histogram of the image can intuitively reflect the distribution and
distribution rules of each grayscale value. Statistical analysis attack means that the illegal
persons can crack the encrypted image by comparing and analyzing the image statistical
law and image gray value distribution information of the plaintext and ciphertext of the
image [20]. Therefore, the grayscale histogram of the image can reflect the ability of the
algorithm in this paper to resist statistical analysis attacks to a certain extent. The more
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uniform the distribution of the gray histogram of the image, the smaller the corresponding
variance. The smaller the variance, the less statistical information contained in the image,
the stronger the ability to resist statistical analysis attacks and the higher the security.
According to the histogram of pixel distribution before and after encryption in Figure 12, it
can be seen that the histogram of the plaintext image is unevenly distributed and has rich
image statistical information. After image encryption processing, the histogram distribution
of the image is relatively uniform, indicating that the encryption algorithm in this paper
breaks the statistical feature information of the original image and can effectively resist the
statistical analysis attack of illegal persons.
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In order to quantitatively analyze the uniformity of the histogram distribution, this
paper uses the histogram χ2 distribution to verify. Equation (15) is the equation to calculate
histogram distribution, where Hi is the number of image pixel values i, and the value range
i is [0, 255].

χ2 =
1

256

255

∑
i=0

(
Hi −

1
256

255

∑
i=0

Hi

)2

(15)

In this paper, the significance level a = 0.05 is used for verification, and Equation (15)
is used to calculate the original and encrypted images of Lena, Cameraman, White, and
Black, and the obtained values are shown in Table 2. The values of the ciphertext images
are 237.8047, 257.2188, 263.6016, and 260.2813 and are less than χ2

0.05(255)= 293.24783.
Therefore, the histogram of the ciphertext image can be considered to meet the uniform
distribution at the significance level a = 0.05, and it also shows that the algorithm in this
paper can change the histogram distribution of the original image well and has a good
ability to resist statistical analysis attacks.

Table 2. Histogram χ2 distribution statistic.

Image (256 × 256) Original Original χ2 Encrypted Image χ2 Result

Lena 4.2981 × 105 232.6328 pass
Cameraman 1.5196 × 106 211.2109 pass

White 1.6712 × 107 209.8203 pass
Black 1.6711 × 107 259.1016 pass

Peppers 3.1639 × 104 246.3125 pass
Plane 1.7322 × 105 219.4922 pass

5.1.2. Correlation Analysis of Adjacent Pixels

The correlation of correlation between adjacent pixels in an image reflects the degree
of correlation and similarity between adjacent pixels. The closer the pixel values between
adjacent pixels are, the stronger the correlation between adjacent pixels of the image, and
the easier it is for illegal attackers to use the feature of strong correlation between adjacent
pixels to infer the pixel value of surrounding pixels through a single pixel point [21]. The
meaning of encryption is to break the original strong correlation between image pixels
and reduce the correlation between adjacent pixels of the image. Therefore, the encryption
effect of the algorithm in this paper can be judged by the correlation between the adjacent
pixels of the image before and after encryption. As can be seen from Figures 13–16, the
adjacent pixel scatter plots of the plaintext image show a linear relationship, while the
ciphertext image shows a uniform distribution.

In order to quantitatively analyze the correlation of adjacent pixels, this paper in-
troduces the correlation coefficient to calculate the correlation strength in the horizontal,
vertical, and diagonal directions of the image. The calculation formula of the correla-
tion coefficient of adjacent pixels in the image is shown in Equation (16). In this paper,
10,000 adjacent pixels are randomly selected from the plaintext and ciphertext of the image
for calculation. The calculation results are shown in Table 3.

Rxy = cov(x,y)√
D(x)
√

D(y)

E(x) = 1
n

n
∑

i=1
xi

D(x) = 1
n

n
∑

i=1
(xi − E(x))2

cov(x, y) = 1
n

N
∑

i=1
(xi − E(x))(yi − E(y))



(16)
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Table 3. Image adjacent pixel correlation coefficient.

Image
(256 × 256)

Correlation Coefficient

Unencrypted Encrypted

Horizontal Vertical Diagonal Horizontal Vertical Diagonal

Lena 0.9204 0.9546 0.8944 0.0035 5.3876 × 10−4 3.2753 × 10−4

Cameraman 0.9756 0.9851 0.9601 −0.0020 0.0016 0.0013
White – – – 0.0037 −7.5285 × 10−4 −7.6476 × 10−4

Black – – – −1.4710 × 10−5 0.0065 −0.0042
Peppers 0.9648 0.9697 0.9388 0.0015 0.0029 0.0019

Plane 0.9387 0.9320 0.8832 0.0018 −0.0057 −1.1486 × 10−4

Among them, in Equation (16), y is the adjacent pixel of x, and n is the total number of
image pixels; E(x) and D(x) are the mean and variance of the image pixel value; cov(x, y)
is the covariance of two adjacent pixels x and y; and Rxy is the correlation coefficient of
adjacent pixels. When the correlation coefficient is closer to 1, it indicates that the correlation
of adjacent pixels is higher, and the closer it is to 0, the lower the correlation. It can be
seen from Table 3 that the correlation coefficient of the plaintext image is close to 1, while
the correlation coefficient of the ciphertext image is close to 0. Therefore, the encryption
algorithm in this paper can well break the correlation between adjacent pixels of the original
image to achieve a good encryption effect.

5.2. Information Entropy Analysis

Information entropy is an important indicator used to measure the randomness of the
signal source, and its calculation formula is as Equation (17). This paper uses information
entropy to quantitatively compare the randomness of images before and after encryption.
The larger the information entropy value, the stronger the randomness of the information
distribution of the image and the better the encryption effect [22]. The ideal information
entropy of the ciphertext image is eight, indicating that the information distribution of the
image is completely random. It can be easily obtained from Table 4 that the information
entropy of the encrypted images is greater than 7.997. Therefore, it can be shown that the
encryption effect of this paper is better, and the security of the encrypted image is higher.

H(x) = −
M−1

∑
i=0

P(xi) log2 P(xi) (17)
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where M = 256 in Equation (17) represents all states of image pixel values (0–255), xi
represents the pixel value of the image, and P(xi) refers to the probability that the number of
pixels with corresponding pixel value xi accounts for the total number of the entire image.

Table 4. Image information entropy.

Image
(256 × 256)

Information Entropy

Original Encrypted

Lena 7.7758 7.9974
Cameraman 6.9749 7.9977

White 0 7.9977
Black 0 7.9972

Peppers 7.5798 7.9973
Plane 6.7334 7.9976

5.3. Tests for Randomness

In order to test the randomness of the generated sequences, TestU01 test was used to
verify the statistical characteristics of the proposed system. For each test, a p-value was
calculated. If the p-value was in the range [10−4, 1−10−4], the test was successful [23]. Any
p-value outside this range is considered a failed test. Table 5 shows the final test results
of TestU01; it can be seen that the sequences produced by the chaotic system proposed
in this paper can pass the TestU01 test. The experimental results show that the chaotic
sequence generated by chaotic pulse-coupled neural network has good randomness and is
safe and reliable.

Table 5. Test results of TestU01.

Battery Parameters Number of Statistics Result

SmallCrush Standard 15 Pass
Alphabit Standard 17 Pass

Rabbit Standard 40 Pass
FIPS_140_2 Standard 16 Pass

BlockAlphabit Standard 17 Pass

At the same time, in order to further verify the randomness, we also introduced the
performance index of the average neighborhood gray difference for quantitative analysis
and comparison. The degree of gray difference is another statistical measure to compare
the randomness between the original image and the encrypted image [24]. The final result
of the Equations (18)–(20) is called the GVD score. The GVD score is closer to 0 if the two
images are closer, and closer to 1 otherwise. The GVD results of our algorithm are shown
in Table 6. Since the GVD score for encrypted images obtained by our algorithm is closer to
one, the randomness is quite good.

GVD =
AN′ [GN(x, y)]− AN[GN(x, y)]
AN′ [GN(x, y)] + AN[GN(x, y)]

(18)

AN[GN(x, y)] =
∑M−1

x=2 ∑N−1
y=2 GN(x, y)

(M− 2)(N − 2)
(19)

GN(x, y) = ∑ [G(x, y)− G(x′ , y′ )]2

4
here(x′ , y′ ) =


(x− 1, y)
(x + 1, y)
(x, y + 1)
(x, y− 1)

(20)
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Table 6. Result of GVD score.

Image GVD Score Image GVD Score

Lena 0.9415 Peppers 0.9674
Cameraman 0.9700 Plane 0.9512

White 1.000 Black 1.000

G (x, y) represents the gray value at position (x, y). AN and AN′ represent the average
neighboring gray value before and after encryption, respectively.

5.4. Key Space Analysis

The key space refers to the set of all keys, that is, the value range of the keys. Illegal
attackers usually use brute force attacks to decipher encrypted images by traversing all
possible keys, so a large enough key space can effectively resist brute force attacks by illegal
attackers [25]. The encryption algorithm in this paper uses parameters such as aF, VEm, Sij,
aE, and x0 as encryption keys; if the value step size of each key is taken as 10−16, then aF,
VEm, Sij, aE, and x0 have available key spaces of 1012, 1012, 1013, 1014, and 1014, respectively.
From cryptographic theories, only a key space larger than 2128 can resist illegal brute force
attacks. The key space of the encryption algorithm in this paper can reach above 10130,
which is larger than 2430. Therefore, the encryption algorithm in this paper has a large
enough key space and can effectively resist brute force attacks. The key space comparison
results are shown in Table 7.

Table 7. Comparison results of key space.

Method Year Key Space

C.H. et al. [26] 2018 2106

G.D. et al. [27] 2018 2186

R.Z. et al. [28] 2019 2199

Xiaohong et al. [7] 2021 2212

Xw et al. [29] 2021 2100

Xiang H et al. [30] 2021 2128

Khalil Noura et al. [6] 2021 2262

Wang X et al. [4] 2021 2420

Our algorithm 2022 2430

5.5. Key Sensitivity Analysis

An ideal encryption algorithm should have good key sensitivity; that is, making a
small change to the key produces a completely different encryption result [31]. The stronger
the key sensitivity of the encryption algorithm, the higher the security of encryption. In
order to verify the key sensitivity of the algorithm in this paper, through qualitative analysis,
only a small change is made to a single key value each time, and the difference between
the two values before and after the change is only 10−10. It can be seen from Figure 17 that
the correct plaintext image cannot be restored as long as the key is slightly changed in the
decryption process, and the image obtained by making a slight change to a single key value
is very different from the plaintext image. Therefore, it can be shown that the algorithm in
this paper has a very good key sensitivity in the decryption process.

In order to further analyze the key sensitivity of the algorithm in the encryption
process, this paper introduces two indicators, the Number of Pixel Change Rate (NPCR)
and the Unified Average Change Intensity (UACI), to quantitatively evaluate the key
sensitivity of the encryption process in this paper. NPCR and UACI, respectively, represent
the proportion and average change intensity of the number of pixel changes between the
two encrypted images, and the calculation formula is as Equation (21). The ideal NPCR and
UACI values are 99.609375% and 33.463542%, respectively. The closer the NPCR and UACI
values are to the ideal values, the higher the key sensitivity of the encryption algorithm and
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the higher the security. When the value of a single key increases by 10−10, the NPCR and
UACI values are between the corresponding encrypted image and the original encrypted
image, and the proportions of different pixels of the two encrypted images are shown in
Table 8.

NPCR =
∑i,j D(i,j)

M×N × 100%

D(i, j) =
{

1, P1(i, j) = P2(i, j)
0, P(i, j)1 6= P2(i, j)

UACI = 1
M×N

∑ (P1(i,j)−P2(i,j))
255 × 100%


(21)

where P(i, j) is the pixel at corresponding location (i, j) of the encrypted image, and M and
N are the height and width of the image, respectively.
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Figure 17. Decryption result after changing key. (a,e) Decryption image with correct key; (b,f) decrypted
image with VEm + 10−10; (c,g) decrypted image with aE + 10−10; (d,h) decrypted image with
aF + 10−10.

Table 8. Key sensitivity analysis (%).

Image
(256 × 256) Initial Value NPCR UACI Different Pixel Proportions

Lena

aF + 10−10 99.6368 33.3494 99.64
VEm + 10−10 99.6170 33.4318 99.62
Sij + 10−10 99.6002 33.3646 99.60
aE + 10−10 99.6063 33.5540 99.61
x0 + 10−10 99.6231 33.3861 99.62

Cameraman

aF + 10−10 99.6445 33.3839 99.64
VEm + 10−10 99.5956 33.5159 99.60
Sij + 10−10 99.6078 33.4547 99.61
aE + 10−10 99.6109 33.4457 99.61
x0 + 10−10 99.6445 33.4119 99.64

White

aF + 10−10 99.6429 33.6027 99.64
VEm + 10−10 99.6689 33.5871 99.67
Sij + 10−10 99.5865 33.5613 99.59
aE + 10−10 99.6262 33.5986 99.63
x0 + 10−10 99.5895 33.2934 99.62

Black

aF + 10−10 99.6078 33.6249 99.61
VEm + 10−10 99.6063 33.5503 99.61
Sij + 10−10 99.5712 33.4333 99.57
aE + 10−10 99.6048 33.4588 99.60
x0 + 10−10 99.5895 33.4558 99.59

Average – 99.614015 33.4841 99.6145
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5.6. Anti-Attack Ability Analysis
5.6.1. Anti-Differential Attack Analysis

A differential attack means that an illegal attacker obtains a new encrypted image
after making slight changes to the plaintext image, then compares it with the original
encrypted image to find the data relationship and law between the two encrypted images,
and then realizes the cracking of the ciphertext image [32]. As shown in Figure 18, this
paper only changes the pixel value of one pixel of the original plaintext image (at the arrow
in Figure 11c). By comparing the original ciphertext image and the encrypted image after
changing a single pixel value, it is found that in the obtained two images, more than 99% of
the pixels in the encrypted image are not identical, as shown in Table 9. At the same time,
this paper also uses the NPCR and UACI values to make a quantitative comparison. As
shown in Table 10, the calculation results of NPCR and UACI are closer to the ideal values.
Therefore, it can be proved that the algorithm in this paper has a strong ability to resist
differential attacks.
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Figure 18. Comparison diagram before and after differential processing. (a,e) Plain-text image,
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Table 9. Comparison of different pixels of encrypted images before and after differential processing (%).

Image Different Pixel Proportions Image Different Pixel Proportions

Lena 99.65 Cameraman 99.59
White 99.62 Black 99.58

Peppers 99.65 Plane 99.61

Table 10. Slight changes in the original image NPCR, UACI value (%).

Original Image (256 × 256) NPCR UACI

Lena 99.6460 33.4397
Cameraman 99.5880 33.5050

White 99.6170 33.4276
Black 99.5758 33.5291

Peppers 99.6506 33.4559
Plane 99.6063 33.4554

Average 99.61395 33.468783
Ideal value 99.609375 33.463542
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5.6.2. Anti-Salt and Pepper, Gaussian Noise Attack Analysis

In the process of information transmission, the image will inevitably encounter the
influence of various communication noises. When the encrypted image is attacked by noise,
it will have a certain impact on the decryption of the image so that the ciphertext image is
difficult to restore the clear original image [33]. Therefore, a good encryption algorithm
should have the ability to resist noise attacks, and when the encrypted image is attacked by
noise, it can restore the original image clearly. In order to verify the anti-noise ability of the
encryption algorithm in this paper, this paper randomly adds 10% salt and pepper noise
and Gaussian noise with a mean of 0 and a variance of 0.001 to the encrypted image, as
shown in Figures 19 and 20. It can be easily seen from Figures 19 and 20 that after the noise
processing of the encrypted image, we can still see the decrypted image information clearly.
Therefore, the encryption algorithm in this paper has a good ability to resist noise attacks,
and it also shows that the algorithm in this paper has strong robustness.
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5.6.3. Analysis of Anti-Shearing Attack Ability

Due to the fact that some data are easy to be lost or cropped during the image trans-
mission process, a good decryption algorithm should have a good ability to resist cropping
and data loss, even if some data are lost in the decryption process, basically restoring
the original image [34]. In this paper, in order to verify the ability of the algorithm to
resist cropping and data loss, the encrypted image is cropped by 1/16, 1/8, 1/4, and 1/2,
and then the decrypted images obtained by decrypting there are shown in Figure 21. It
can be seen from Figure 21 that even if the encrypted image loses some information, the
characteristic information of the original image can be basically recovered after decryption,
and the content in the image can be easily distinguished by the naked eye. Therefore, the
algorithm in this paper has better ability to resist cropping and data loss.
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Figure 21. The cropped ciphertext image and its decryption renderings. Encrypted image with
(a,i) 1/16 data loss, (b,j) 1/8 data loss, (c,k) 1/4 data loss, and (d,l) 1/2 data loss; decrypted image
with (e,m) 1/16 data loss, (f,n) 1/8 data loss, (g,o) 1/4 data loss, and (h,p) 1/2 data loss.

5.6.4. Noise Processing of Decrypted Images

Images are easily affected by various external factors during network transmission,
resulting in decrypted images mixed with various noises. In order to filter out the noise in
the image and restore the detailed information of the original image more clearly, this paper
adopts the noise filtering method based on the multi-layer PCNN proposed by the author
earlier. For the specific method, please refer to the literature [35]. This method mainly
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utilizes the pulse ignition feature of PCNN to locate the pepper noise and salt noise in the
decrypted image. Then, without changing the size of the filter window, multi-layer PCNN
is used to process the image to reduce the salt and pepper noise in the decrypted image
and better restore the details of the original image. The experiments show that this method
can filter out most of the salt and pepper noise in the decrypted image. The experimental
results are shown in Figure 22. It can be seen from the figure that the image obtained after
decryption has some salt and pepper noise, as shown in Figure 22c,g. After the decrypted
image is processed by the noise filtering method of the multi-layer PCNN proposed by the
author, the salt and pepper noise in the image can be effectively reduced, and the feature
information of the original image can be better preserved.
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Figure 22. De-noising result. (a) Original image; (b) encrypted image with 0.7 salt and pepper noise;
(c) decrypted image of (b); (d) denoising for decrypted image (c). (e) Original image; (f) encrypted
image with 0.8 salt and pepper noise; (g) decrypted image of (f); (h) denoising for decrypted image (g).

5.7. Analysis of Speed

In addition to the evaluation of the security performance of the encryption algorithm
in this paper, the encryption efficiency is also an important index in practice. Table 11
lists the time required to encrypt the two images “Lena” and “Cameraman” using the
encryption algorithm proposed in this paper and the time required to encrypt images of
the same size by other literature algorithms. We can see from the table that, compared to
other encryption algorithms, our algorithm can better meet the needs of fast encryption.

Table 11. Encryption time comparison.

Image Year Image Size Time (s)

Lena (Our method) 2022 256 × 256 0.1690
Cameraman (Our method) 2022 256 × 256 0.1740

JinLong et al. [36] 2021 256 × 256 0.6563
Wang et al. [37] 2021 256 × 256 0.2523

Wenying Wen et al. [38] 2020 256 × 256 2.1328
Farah M et al. [39] 2020 256 × 256 1.1202
Lena (Our method) 2022 512 × 512 0.7080

Cameraman (Our method) 2022 512 × 512 0.6640
Wenying Wen et al. [38] 2020 512 × 512 18.1354

José, A. et al. [40] 2019 512 × 512 10.4200
Lena (Our method) 2022 1024 × 1024 2.2990

Cameraman (Our method) 2022 1024 × 1024 2.1700

5.8. Algorithm Comparative Analysis

In order to prove that the encryption algorithm in this paper has certain advantages,
this paper compares and analyzes the security performance indicators of related literatures,
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and the comparison results are shown in Tables 9 and 10. It is not difficult to see from
Tables 12 and 13 that the encryption algorithm in this paper has a good encryption effect and
has certain advantages compared with the algorithms in the current advanced literature.

Table 12. Performance comparison of different encryption algorithms.

Image (256 × 256) Method Year Info Entropy
Correlation Coefficient

Horizontal Vertical Diagonal

Lena

Li et al. [41] 2020 7.9894 0.0044 0.0015 0.0019
Wang et al. [42] 2020 7.9969 0.0006 0.0082 0.0032

Kamrani et al. [43] 2020 7.9945 – – –
Hosny et al. [22] 2021 7.9972 0.0069 0.0479 0.0075

Xw et al. [29] 2021 7.9971 −0.0017 −0.0132 0.0084
Zhang et al. [44] 2021 7.9969 0.0040 −0.0012 −0.0021
Farhan et al. [45] 2021 7.9971 −0.0004 −0.0028 0.0040
Wang et al. [37] 2021 7.9960 0.0023 0.0020 0.0073
Xiang et al. [30] 2021 7.9972 0.0013 -0.0041 −0.0044

JinLong et al. [36] 2021 7.9858 0.0031 0.0076 −0.0026
Proposed 2022 7.9974 −0.0035 5.3876 × 10−4 3.2753 × 10−4

Cameraman

Niu et al. [46] 2020 7.9971 −0.0070 0.0083 0.0013
Kamrani et al. [43] 2020 7.9947 – – –

Wu et al. [47] 2021 7.9935 −0.0036 0.0048 0.0073
JinLong et al. [36] 2021 7.9868 −0.0252 −0.0060 −0.0078

Proposed 2022 7.9977 0.0020 0.0016 0.0013

Peppers

Hua, Z. et al. [48] 2019 7.9971 0.0196 0.0165 0.0210
Minjun et al. [49] 2020 7.9970 0.00476 −0.009531 0.007338
Wang et al. [37] 2021 7.9964 −0.0037 0.0035 −0.0057

Xw et al. [29] 2021 7.9971 −0.0062 −0.0236 −0.0047
Wu et al. [47] 2021 7.9941 −0.0170 −0.0334 −0.0073

Hosny et al. [22] 2021 7.9970 0.0211 0.0129 0.0013
Proposed 2022 7.9973 0.0015 0.0029 −0.0019

Plane

Wu et al. [50] 2018 7.9970 0.0028 0.0041 0.0010
Hua, Z. et al. [48] 2019 7.9971 0.0055 0.0014 0.0083

Xw et al. [29] 2021 7.9972 −0.0043 −0.0236 −0.0047
Hosny et al. [22] 2021 7.9972 0.0229 0.0103 0.0100
Wang et al. [37] 2021 7.9959 0.0054 0.0027 0.0028

Proposed 2022 7.9976 −0.0018 −0.0057 −1.1486 × 10−4

Table 13. Performance comparison of different encryption algorithms.

Image
(256 × 256) Method Year NPCR (%) UACI (%) χ2

Ideal value 99.609375 33.463542 Minimum

Lena

Kamrani et al. [43] 2020 99.7864 30.3256 –
Li et al. [41] 2020 99.66 33.42 –

Minjun et al. [49] 2020 99.6114 33.4523 –
Hosny et al. [22] 2021 99.6246 33.4226 264.8750
Zhang et al. [44] 2021 99.62 33.50 –
Wang et al. [37] 2021 99.5894 33.4629 –

Xw et al. [29] 2021 – – 266.6797
Proposed 2022 99.6460 33.4397 232.6328

Cameraman

Kamrani et al. [43] 2020 99.791 27.6376 –
Zhang et al. [44] 2021 99.63 33.56 –
Wang et al. [37] 2021 99.5879 33.4553 –

Proposed 2022 99.5880 33.5050 211.2109

Peppers

Minjun et al. [49] 2020 99.6115 33.4245 –
Hosny et al. [22] 2021 99.6033 33.4274 268.4766

Xw et al. [29] 2021 – – 260.3906
Proposed 2022 99.6506 33.4559 246.3125

Plane
Minjun et al. [49] 2020 99.6043 33.2875 –

Xw et al. [29] 2021 – – 252.1172
Proposed 2022 99.6063 33.4554 219.4922
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6. Conclusions

This paper proposes a new image encryption algorithm based on improved Arnold
transform and a chaotic pulse-coupled neural network. First, the chaotic sequence is
generated by the chaotic pulse-coupling neural network proposed in this paper, then the
chaotic sequence is XORed with the pre-encrypted image to achieve the effect of pre-
encryption, and then the image is scrambled by the improved Arnold transform to obtain
the final encrypted image. Among them, the original Arnold transform is improved to
better solve the limitation that the Arnold transform is only suitable for square images. At
the same time, the pixel position index is introduced to eliminate the periodicity of Arnold
transform, which improves the security of the Arnold transform for image scrambling,
and it is not easy for illegal persons to use the periodic characteristics of Arnold transform
to decipher.

Finally, experiments show that the pixel histogram of the encrypted image obtained
by the algorithm in this paper is relatively uniform, which can break the statistical feature
information of the original image and has the ability to resist statistical analysis attacks; the
correlation coefficient of the encrypted image is close to 0, which can break the correlation
between pixels in the original image; the information entropy is close to 8, which can
resist statistical attacks. It has a large enough key space and can effectively resist brute
force attacks; at the same time, the algorithm in this paper also has good resistance to
differential attacks, anti-noise attack and anti-shearing attack ability, good robustness, and
high security. Therefore, the algorithm in this paper has a good encryption effect.
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