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Abstract: In this paper, we propose a compression-based anomaly detection method for time series
and sequence data using a pattern dictionary. The proposed method is capable of learning complex
patterns in a training data sequence, using these learned patterns to detect potentially anomalous pat-
terns in a test data sequence. The proposed pattern dictionary method uses a measure of complexity
of the test sequence as an anomaly score that can be used to perform stand-alone anomaly detection.
We also show that when combined with a universal source coder, the proposed pattern dictionary
yields a powerful atypicality detector that is equally applicable to anomaly detection. The pattern
dictionary-based atypicality detector uses an anomaly score defined as the difference between the
complexity of the test sequence data encoded by the trained pattern dictionary (typical) encoder and
the universal (atypical) encoder, respectively. We consider two complexity measures: the number of
parsed phrases in the sequence, and the length of the encoded sequence (codelength). Specializing
to a particular type of universal encoder, the Tree-Structured Lempel–Ziv (LZ78), we obtain a novel
non-asymptotic upper bound, in terms of the Lambert W function, on the number of distinct phrases
resulting from the LZ78 parser. This non-asymptotic bound determines the range of anomaly score.
As a concrete application, we illustrate the pattern dictionary framework for constructing a baseline
of health against which anomalous deviations can be detected.

Keywords: pattern dictionary; atypicality; Lempel–Ziv algorithm; lossless compression; anomaly
detection

1. Introduction

Anomaly detection and outlier detection are used for detecting data samples that
are inconsistent with normal data samples. Early methods did not take the sequential
structure of the data into consideration [1]. However, many real world applications involve
data collected as a sequence or time series. In such data, anomalous samples are better
characterized as subsequences of time series. Anomaly detection is a challenging task due
to the uncertain nature of anomalies. Anomaly detection in time series and sequence data is
particularly difficult since both length and occurrence frequency of potentially anomalous
subsequences are unknown. Additionally, algorithmic computational complexity can be a
challenge, especially for streaming data with large alphabet sizes.

In this paper, we propose a universal nonparametric model-free anomaly detection
method for time series and sequence data based on a pattern dictionary (PD). Given training
and test data sequences, a pattern dictionary is created from the sets of all the patterns in
the training data. This dictionary is then used to sequentially parse and compress (in a
lossless manner) the test data sequence. Subsequently, we interpret the number of parsed
phrases or the codelength of the test data as anomaly scores. The smaller the number
of parsed phrases or the shorter the compressed codelength of the test data, the more
similarity between training and test data patterns. This sequential parsing and lossless

Entropy 2022, 24, 1095. https://doi.org/10.3390/e24081095 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e24081095
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0003-2706-1594
https://orcid.org/0000-0003-2935-6580
https://orcid.org/0000-0001-7881-7182
https://orcid.org/0000-0002-2531-9670
https://doi.org/10.3390/e24081095
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e24081095?type=check_update&version=2


Entropy 2022, 24, 1095 2 of 26

compression procedure leads to detection of anomalous test sequences and their potential
anomalous patterns (subsequences).

The proposed pattern dictionary method has the following properties: (i) it is nonpara-
metric since it does not rely on a family of parametric distributions; (ii) it is universal in
the sense that the detection criterion does not require any prior modeling of the anomalies
or nominal data; (iii) it is non-Bayesian as the detection criterion is model-free; and (iv)
as it depends on data compression, data discretization is required prior to building the
dictionary. While the proposed pattern dictionary can be used as a stand-alone anomaly
detection method (Pattern Dictionary for Detection (PDD)), we show how it can be utilized
in the atypicality framework [2,3] for more general data discovery problems. This results in
a method we call PDA (Pattern Dictionary based Atypicality), in which the proposed pat-
tern dictionary is contrasted against a universal source coder which is the Tree-Structured
Lempel–Ziv (LZ78) [4,5]. We use the LZ78 as the universal encoder since its compres-
sion procedure is similar to our proposed pattern dictionary, and it is (asymptotically)
optimal [4,5].

The main contributions of this paper are as follows. First, we propose the pattern
dictionary method for anomaly detection and characterize its properties. We show in
Theorem 1 that using a multi-level dictionary that separates the patterns by their depth
results in a shorter average indexing codelength in comparison to a uni-level dictionary
that uses a uniform indexing approach. Second, we develop novel non-asymptotic lower
and upper bounds of the LZ78 parser in Theorem 2 and further analyze its non-asymptotic
properties. We demonstrate that the non-asymptotic upper bound on the number of
distinct phrases resulting from the LZ78 parsing of an |X |-ary sequence of length l can be
explicitly expressed by the Lambert W function [6]. To the best of our knowledge, such
characterization has not previously appeared in the literature. Then, we show in Lemma 1
that the achieved non-asymptotic upper bound on the number of distinct phrases resulting
from the LZ78 parsing converges to the optimal upper bound l

log l of the LZ78 parser as
l → ∞. Third, we show how the pattern dictionary and LZ78 can be used together in
an atypicality detection framework. We demonstrate that the achieved non-asymptotic
lower and upper bounds on both LZ78 and pattern dictionary determine the range of the
anomaly score. Consequently, we show how these bounds can be used to analyze the
effect of dictionary depth on the anomaly score. Furthermore, the bounds are used to set
the anomaly detection threshold. Finally, we compare our proposed methods with the
competing methods, including nearest neighbors-based similarity [7], threshold sequence
time-delay embedding [8–11], and compression-based dissimilarity measure [12–15,15,16],
that are designed for anomaly detection in sequence data and time series. We conclude
our paper with an experiment that details how the proposed framework can be used to
construct a baseline of health against which anomalous deviations are detected.

The paper is organized as follows. In Section 2, we briefly review the relevant literature
in anomaly detection (readers who are familiar with anomaly detection can skip this section).
Section 3 introduces the detection framework and the notation used in this paper. Section 4
presents our proposed pattern dictionary method and its properties. In Section 5, we show
how the proposed pattern dictionary can be used in an atypicality framework alongside
LZ78, and we analyze the non-asymptotic properties of the LZ78 parser. Section 6 presents
experiments that illustrate the proposed pattern dictionary anomaly detection procedure.
Finally, Section 7 concludes our paper.

2. Related Works

Anomaly detection has a vast literature. Anomaly detection procedures can be cat-
egorized into parametric and nonparametric methods. Parametric methods rely on a
family of parametric distributions to model the normal data. The slippage problem [17],
change detection [18–21], concept drift detection [19–22], minimax quickest change detec-
tion (MQCD) [23–25], and transient detection [26–29] are examples of parametric anomaly
detection problems. The main difference between our proposed pattern dictionary method
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and the aforementioned techniques is that our method is a model-free nonparametric
method. The main drawback of the parametric anomaly detection procedure is that it is
difficult to accurately specify the parametric distribution for the data under investigation.

Nonparametric anomaly detection approaches do not assume any explicit parameter-
ized model for the data distributions. An example is an adaptive nonparametric anomaly
detection approach called geometric entropy minimization (GEM) [30,31] that is based
on the minimal covering properties of K-point entropic graphs constructed on N training
samples from a nominal probability distribution. The main difference between GEM-based
methods and our proposed pattern dictionary is that former techniques are designed to de-
tect outliers and cannot easily incorporate the temporal information regarding anomaly in a
data stream. Another nonparametric detection method is sequential nonparametric testing
that considers data as online stream and addresses the growing data storage problem by
sequentially testing every new data samples [32,33]. A key difference between sequential
nonparametric testing and our proposed pattern dictionary method is that our method is
based on coding theory instead of statistical decision theory.

Information theory and universal source coding have been used previously in anomaly
detection [34–45]. The detection criteria in these approaches are based on comparing metrics
such as complexity or similarity distances that depend on entropy rate. An issue with these
approaches is that there are many completely dissimilar sources with the same entropy rate,
reducing outlier sensitivity. Another related problem is universal outlier detection [46,47].
In these works, different levels of knowledge about nominal and outlier distributions
and number of outliers are incorporated. Unlike these methods, our proposed pattern
dictionary approach does not require any prior knowledge about outliers and anomalies.
In [48], a measure of empirical informational divergence between two individual sequences
generated from two finite-order, finite-alphabet, stationary Markov processes is introduced
and used for a simple universal classification. While the parsing procedure used in [48] is
similar to the pattern dictionary used in this paper, there are important differences. The
empirical measure proposed in [48] is a stand alone score function that is designed for
two-class classification, while our measure is a direct byproduct of the LZ78 encoding
algorithm designed for single-class classification, i.e., anomaly detection. In addition, the
theoretical convergence of the empirical measure to the relative entropy between the class
conditioned distributions, shown in [48], is only guaranteed when the sequences satisfy the
finite-order Markov property, a condition that may be difficult to satisfy in practice. In [2,3],
an information theoretic data discovery framework called atypicality has been introduced
in which the detection criterion is based on a descriptive codelength comparison of an
optimum encoder or a training-based fixed source coder, namely a data-dependent source
coder introduced in [2]) with a universal source coder. In this paper, we show how our
proposed pattern dictionary method can be used as a training-based fixed source coder in
an atypicality framework.

Anomaly and outlier detection for time series has also been extensively studied [49].
Various time series modeling techniques such as regression [50], auto regression [51],
auto regression moving average [52], auto regressive integrated moving average [53],
support vector regression [54], and Kalman filters [55] have been used to detect anomalous
observations by comparing the estimated residuals to a threshold. Many of these methods
depend on a statistical assumption on the residuals, e.g., an assumption of Gaussian
distribution, while the pattern dictionary method is model-free.

The proposed pattern dictionary method is closely related to the anomaly detection
methods that are designed for sequence data. Many of these methods are focused on spe-
cific applications. For instance, detection of mutations in DNA sequences [7,56], detection
of cyberattacks in computer network [57], and detection of irregular behaviors in online
banking [58] are all application-specific examples of anomaly detection for discrete se-
quences. In the recent years, multiple sequence data anomaly detection methods have been
developed specifically for graphs [59], dynamic networks [60], and social networks [61].
Chandola et al. [34] summarized many anomaly detection methods for discrete sequences
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and identified three general approaches to this problem. These anomaly detection for-
mulations are unique in the way that anomalies are defined, but similar in their reliance
on comparison between a test (sub)sequence and normal sequences in the training data.
For example, kernel-based techniques such as nearest neighbor-based similarity (NNS) [7]
are designed to detect anomalous sequences that are dissimilar to the training data. As
another example, threshold sequence time-delay embedding (t-STIDE) [8–11] is established
to detect anomalous sequences that contain subsequences with anomalous occurrence
frequencies. The compression-based dissimilarity measure (CDM) is proposed for discord
detection [12–15,15,16] to detect anomalous subsequences within a long sequence. Chan-
dola et al. [34] also showed how various techniques developed for one problem formulation
can be changed and applied to other problem formulations. While our pattern dictionary
method shares similarity with NNS, CDM, and t-STIDE, our proposed method is generally
applicable to any of the categories of anomaly detection identified in [34]. Furthermore, our
detection criterion does not depend on the specific type of anomaly. Note that while CDM
is also a compression-based method, its anomaly score is based on a dissimilarity measure
that might fail to detect atypical subsequences [2]. For instance, using CDM method, a
binary i.i.d. uniform training sequence is equally dissimilar to another binary i.i.d. uniform
test sequence or to a test sequence drawn from some other distribution. In Section 6, the
detection performance of our proposed pattern dictionary method is compared with NNS,
CDM, t-STIDE, and the Ziv–Merhav method of [48].

It is worth mentioning that since the proposed pattern dictionary method is based
on lossless source coding, it requires discretization of time series prior to deployment. In
fact, many anomaly detection approaches require discretization of continuous data prior
to applying inference techniques [62–65]. Note that discretization is also a requirement
in other problem settings such as continuous optimization in genetic algorithms [66],
image pattern recognition [67], and nonparametric histogram matching over codebooks in
computer vision [68].

3. Framework and Notation

In the anomaly detection literature for sequence data and time series, the following
three general formulations are considered [34]: (i) an entire test sequence is anomalous
if it is notably different from normal training sequences; (ii) a subsequence within a long
test sequence is anomalous if it is notably different from other subsequences in the same
test sequence or the subsequences in a given training sequence; and (iii) a given test
subsequence or pattern is anomalous if its occurrence frequency in a test sequence is
notably different from its occurrence frequency in a normal training sequence. In this
paper, we consider a unified formulation in which we determine if a (sub)sequence is
anomalous with respect to a training sequence (or training sequence database) if any of
the aforementioned three conditions are met. In other words, given a training sequence
or a training sequence database, a test sequence is anomalous if it is significantly different
from training sequences, or it contains a subsequence that is significantly different from
subsequences in the training sequence, or it contains a subsequence whose occurrence
frequency is significantly different from its occurrence frequency in the training data.

Notation

We use x to denote a sequence and xm
n to denote a subsequence of

x: xm
n = {xi, i = n, n + 1, . . . , m}, and xl represents a sequence of length l, i.e.,

{xn, n = 1, . . . , l}. X denotes a finite set, and D represents a dictionary of subsequences.
Throughout this paper:

• All logarithms are base 2 unless otherwise is indicated.
• In the encoding process, we always adhere to lossless compression and strict decod-

ability at the decoder.
• While adhering to strict decodability, we only care about the codelength, not the codes

themselves.
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4. Pattern Dictionary: Design and Properties

Consider a long sequence, called the training data, {xn, n = 1, . . . , L} of length L
drawn from a finite alphabet X . The goal is to learn the patterns (subsequences) of this
sequence by creating a dictionary that contains all distinct patterns of maximum length
(depth) Dmax � L that are embedded in the sequence. We call this dictionary a pattern
dictionary D with the maximum depth Dmax and the set of observed patterns SD

(
xL

1
)
.

Example 1. Suppose Dmax = 2, the alphabet is X = {A, B, C, D} and the training sequence is
x = ABACADABBACCADDABABACADAB. The set of patterns with depth d ≤ Dmax in
this sequence is SD(x) = {A, B, C, D, AB, BA, AC, CA, AD, DA, BB, CC, DD}.

Since the pattern dictionary is going to be used as a training-based fixed source coder
(a data-dependent source coder as defined in [2]), an efficient structure for the pattern
representation that minimizes the indexing codelength is of interest. The simplest approach
is to consider all the patterns of length 1 ≤ d ≤ Dmax in one set SD and use a uniform
indexing approach. This approach is called a uni-level dictionary. Another approach is to
separate all the patterns by their depth (pattern length) and arrange them in Dmax sets
S (1)D ,S (2)D , . . . ,S (Dmax)

D , and define SD =
⋃Dmax

d=1 S
(d)
D , which we call a multi-level dictionary.

In the following sections, we show that the latter results in a shorter average indexing
codelength. It is worth mentioning that since a multi-level dictionary results in a depth-
dependent indexing codelength, the average over the depth is considered. A relevant
question is if the average of indexing codelength over all the patterns independent of depth
should be used as an alternative. Since such pattern dictionaries are used to sequentially
parse test data, patterns at smaller depth are more likely to be matched, even if they are
anomalous. Thus, the average of indexing codelength over depth can better differentiate
depth-dependent anomalies.

4.1. A Special Case

Suppose all the possible patterns of depth d ≤ Dmax exist in the training sequence

{xn, n = 1, . . . , L}. That is, the cardinality of S (d)D is
∣∣∣S (d)D ∣∣∣ = |X |d for 1 ≤ d ≤ Dmax. Then,

the total number of patterns is

∣∣∣SD(xL
1

)∣∣∣ = Dmax

∑
d=1

∣∣∣S (d)D (
xL

1

)∣∣∣
=

Dmax

∑
d=1
|X |d

=
|X |
(
|X |Dmax − 1

)
|X | − 1

.

Hence, a uni-level dictionary results in a uniform indexing codelength of

Luni = log

 |X |
(
|X |Dmax − 1

)
|X | − 1


≈ Dmax log(|X |).

On the other hand, a multi-level dictionary requires a two-stage description of index. The
first stage is the index of the depth d (using log Dmax bits), and the second stage is the
index of the pattern among all the patterns with the same depth (using d log(|X |) bits).
This two-stage description of the index leads to a non-uniform indexing of codelength:
the minimum indexing codelength occurring for the patterns of depth d = 1 equals to
Lmulti

min =log Dmax + log(|X |) bits, while the maximum indexing codelength occurring for
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the patterns of depth d = Dmax equals to Lmulti
max =log Dmax + Dmax log(|X |) bits. Thus, the

average indexing codelength of a multi-level dictionary is given by

Lmulti =
1

Dmax

Dmax

∑
d=1

(log Dmax + d log(|X |))

= log Dmax +
log(|X |)

Dmax

Dmax

∑
d=1

d

≈ log Dmax +
1
2

Dmax log(|X |).

Figures 1 and 2 graphically compare the indexing codelength between a uni-level dictionary
and a multi-level dictionary for a fixed alphabet size and a fixed Dmax, respectively. As seen,
the average indexing codelength of a multi-level dictionary results in a shorter indexing
codelength.

0 20 40 60 80 100
Maximum depth of dictionary (D

max
)

0

100

200

300

400

500

600

700

C
od

el
en

gt
h 

(b
its

)

Alphabet size = 100

Uni-level
Multi-level: average
Multi-level: min
Multi-level: max

Figure 1. Comparison of indexing codelength between a uni-level dictionary and a multi-level
dictionary (fixed alphabet size |X | = 100).
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Figure 2. Comparison of indexing codelength between a uni-level dictionary and a multi-level
dictionary (fixed Dmax = 20).
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4.2. The General Case

Given the training sequence {xn, n = 1, . . . , L}, suppose there are ad =
∣∣∣S (d)D ∣∣∣ ≤ |X |d

patterns of depth d ≤ Dmax (a1 patterns of depth one, a2 patterns of depth two, etc.).
The following Theorem 1 shows that the average indexing codelength using a multi-level
dictionary is always less than the indexing codelength of a uni-level dictionary.

Theorem 1. Assume there are embedded ad =
∣∣∣S (d)D ∣∣∣ ≤ |X |d patterns of depth 1 ≤ d ≤ Dmax

in a training sequence of length L � Dmax. Let Luni and Lmulti be the indexing codelength of a
uni-level dictionary and the average indexing codelength of a multi-level dictionary, respectively.
Then,

(1) Lmulti ≤Luni; and

(2) log
(

1 + (
√

aDmax−
√

a1)
2

Dmax aDmax

)
≤ Luni − Lmulti ≤ log

(
1 + w + (1− w)

aDmax
a1
− aw−1

1 a1−w
Dmax

)
,

where

w =
ln
[(

aDmax
aDmax−a1

)
ln aDmax

a1

]
ln aDmax

a1

.

Proof. Since L � Dmax, clearly 0 < a1 ≤ a2 ≤ · · · ≤ aDmax . Using a uni-level dictionary,
the indexing codelength is

Luni = log

(
Dmax

∑
d=1

ad

)
= log Dmax + log ADmax ,

where ADmax , (a1 + a2 + · · ·+ aDmax )/Dmax is the arithmetic mean of a1, a2, . . . , aDmax .
Using a multi-level dictionary the average indexing codelength is

Lmulti =
1

Dmax

Dmax

∑
d=1

(log Dmax + log ad)

= log Dmax + log GDmax ,

where GDmax ,
(

∏Dmax
d=1 ad

)1/Dmax
is the geometric mean of a1, a2, . . . , aDmax . Hence, the

comparison between Luni and Lmulti comes down to comparing the arithmetic mean and
the geometric mean of a1, a2, . . . , aDmax . Thus, ADmax ≥ GDmax , which established the first
part of the theorem. For the second part of the theorem, we use lower and upper bounds
on ADmax − GDmax derived in [69](√aDmax −

√
a1
)2

Dmax
≤ ADmax − GDmax ≤[
wa1 + (1− w)aDmax − aw

1 a1−w
Dmax

]
,

where w =
ln[(aDmax /(aDmax−a1)) ln(aDmax /a1)]

ln(aDmax /a1)
. Since a1 ≤ GDmax ≤ aDmax and Luni − Lmulti =

log ADmax
GDmax

, the proof is complete.

Theorem 1 shows that a multi-level dictionary gives shorter average indexing code-
length than a uni-level dictionary. log Dmax + log ad is the indexing codelength for patterns
of depth d, where ad is the total number of observed patterns of the depth d. In order to
reduce the indexing codelength even further, the patterns of the same length in each set
S (d)D can be ordered according to their relative frequency (empirical probability) in the
training sequence. This allows Huffman or Shannon–Fano–Elias source coding [4] to be
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used to assign prefix codes to patterns in each set S (d)D separately. In this case, for any

pattern xd
1 ∈ S

(d)
D , the indexing codelength becomes

Lmulti
(

xd
1

)
= log Dmax + L(d)

D

(
xd

1

)
, (1)

where L(d)
D

(
xd

1

)
is the codelength assigned to the pattern xd

1 based on its empirical prob-
ability using a Huffman or Shannon–Fano–Elias encoder. If such encoders are used, the
codelength (1) is optimal ([4] Theorem 5.8.1). Since the whole purpose of creating a pattern
dictionary is to learn the patterns in the training data, assigning the shorter codelength to
the more frequent patterns and assigning longer codelength to the less frequent patterns in
any pattern set S (d)D will improve the efficiency of the coded representation.

Example 2. Suppose the alphabet is X = {A, B, C, D} and the training sequence is x =
ABACADABBACCADDABABACADAB. Table 1 shows the dictionary with Dmax = 3 cre-
ated by the patterns inside the training sequence, and the codelength assigned for each pattern using
Huffman coding.

Table 1. Filling (training) the dictionary (of maximum depth Dmax = 3) with the patterns in the
training sequence ABACADABBACCADDABABACADAB.

Depth 1 Depth 2 Depth 3

xd
1 Pr(xd

1) L(1)
D (xd

1) xd
1 Pr(xd

1) L(2)
D (xd

1) xd
1 Pr(xd

1) L(3)
D (xd

1)

A 0.44 1 AB 0.2083 2 ABA 0.1304 3
B 0.24 2 BA 0.1667 3 BAC 0.1304 3
C 0.16 3 AC 0.1250 3 CAD 0.1304 3
D 0.16 3 CA 0.1250 3 DAB 0.1304 3

AD 0.1250 3 ACA 0.0870 4
DA 0.1250 3 ADA 0.0870 4
BB 0.0417 4 ABB 0.0435 4
CC 0.0417 5 BBA 0.0435 4
DD 0.0417 5 ACC 0.0435 4

CCA 0.0435 4
ADD 0.0435 4
DDA 0.0435 5
BAB 0.0435 5

4.3. Pattern Dictionary for Detection (PDD)

Suppose we want to sequentially compress a test sequence xl
1 = {xn, n = 1, . . . , l}

using a trained pattern dictionary D with maximum depth Dmax < l. The encoder parses
the test sequence xl

1 into c phrases, xv2−1
v1 , xv3−1

v2 , . . . , xl
vc where vi is the index of the start

of the ith phrase, and each phrase xvi+1−1
vi is a pattern in the pattern dictionary D. Let

SD
(

xl
1

)
=
{

xv2−1
v1 , xv3−1

v2 , . . . , xl
vc

}
denote the set of the parsed phrases using pattern

dictionary D. The parsing process begins with setting v1 = 1 and finding the largest
v2 ≤ Dmax and v2 ≤ l such that xv2−1

v1 ∈ D but xv2
v1 /∈ D. This results in the first phrase

xv2−1
1 . Similarly, the same procedure is performed in order to find the largest v3 ≤ Dmax

and v3 ≤ l such that xv3−1
v2 ∈ D but xv3

v2 /∈ D. This type of cross-parsing was first introduced
in [48] in order to estimate an empirical relative entropy between two individual sequences
that are independent realizations of two finite-order, finite-alphabet and stationary Markov
processes. Here, we do not impose such an assumption on the sources generating the
sequences. Algorithm 1 summarizes the procedure of the proposed pattern dictionary (PD)
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parser. After parsing the whole test sequence xl
1 into c phrases, xv2−1

v1 , xv3−1
v2 , . . . , xl

vc , the
codelength will be

L
(

xl
1

)
=

c

∑
i=1

LD
(

xvi+1−1
vi

)
+ c log Dmax. (2)

Algorithm 1 Pattern Dictionary (PD) Parser

Require: Pattern Dictionary D, Test Sequence xl
1

1: Set c = 1, vc = 1, d = 1
2: while vc + d− 1 < l do
3: if xvc+d−1

vc ∈ S (d)D then
4: if d + 1 ≤ Dmax then
5: d = d + 1
6: else
7: vc+1 = vc + d
8: c = c + 1
9: d = 1

10: else
11: vc+1 = vc + d− 1
12: c = c + 1
13: d = 1

return xv2−1
v1 , xv3−1

v2 , . . . , xl
vc

For detection purposes, on a test sequence xl
1, either the number of parsed phrases or

the codelength can be used as anomaly scores with respect to the trained pattern dictionary
D. In other words, for any test sequence xl

1 and given a pattern dictionary, if the number of

parsed phrases
∣∣∣SD(xl

1

)∣∣∣ or the codelength L
(

xl
1

)
in Equation (2) are greater than a certain

threshold, then xl
1 is declared to be anomalous. While the proposed pattern dictionary

technique can be used as a stand-alone anomaly detection technique, below we show
how it can be used for atypicality detection [2,3] as a training-based fixed source coder
(data-dependent encoder).

5. Pattern Dictionary-Based Atypicality (PDA)

In [2,3], an atypicality framework was introduced as a data discovery and anomaly
detection framework that is based on a central definition: “a sequence (or subsequence)
is atypical if it can be described (coded) with fewer bits in itself rather than using the
(optimum) code for typical sequences”. In this framework, detection is based on the
comparison of a lossless descriptive codelength between an optimum encoder (if the typical
model is known) or a training-based fixed source coder (if the typical model is unknown,
but training data are available) and a universal source coder in order to detect atypical
subsequences in the data [2,3]. In this section, we apply our proposed pattern dictionary as
a training-based fixed source coder (typical encoder) in an atypicality framework. We call
it pattern dictionary-based atypicality (PDA) method.

The pattern dictionary-based source coder can be considered as a generalization of
the Context Tree [70–72] based fixed source coder that was used in [2] for discrete data.
The universal source coder (atypical encoder) used here is the Tree-Structured Lempel–
Ziv (LZ78) [4,5]. The primary reason for choosing LZ78 as the universal encoder is that
its sequential parsing procedure is similar to the proposed pattern dictionary described
in Section 4, and it is (asymptotically) optimal [4,5]. One might ask why do we even
need to compare descriptive codelengths of a training-based (or optimum) encoder with a
universal encoder for data discovery purposes when, as alluded to in the end of last section,
a training-based fixed source coder can be a stand-alone anomaly detector. The necessity
of such concurrent comparison is articulated in [2]. In fact, such a codelength comparison
enables the atypicality framework to go beyond the detection of anomalies and outliers,
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extending to the detection of rare parts of data that might have a data structure of interest
to the practitioner.

We give an example to provide further intuition for why anomaly detection can
benefit from our framework that compares the outputs of a typical encoder and an atypical
encoder. Consider an i.i.d. binary sequence of length L with P(X = 1) = p in which there
is embedded an anomalous subsequence of length l � L with P(X = 1) = p̂ 6= p that we
would like to detect. If p = 1

2 and p̂ = 1, the typical encoder cannot catch the anomaly
while the atypical encoder can. On the other hand, if p = 1

3 and p̂ = 2
3 , the typical encoder

identifies the anomaly while an atypical encoder fails to do so (since the entropy for p = 1
3

and p̂ = 2
3 is the same). Note that in both cases, our framework would catch the anomaly

since it uses the difference between the descriptive codelengths of these two encoders.
Recall that in Section 4, we supposed that a test sequence xl

1 has been parsed using
a trained pattern dictionary D with maximum depth Dmax < l. This parsing results in∣∣∣SD(xl

1

)∣∣∣ parsed phrases. Using Equation (2), the typical codelength of the sequence xl
1 is

given by

LT

(
xl

1

)
= ∑

y∈SD(xl
1)

LD(y) +
∣∣∣SD(xl

1

)∣∣∣ log Dmax.

For the atypical encoder, the LZ78 algorithm results in a distinct parsing of the test sequence
xl

1. Let SLZ

(
xl

1

)
denote the set of parsed phrases in the LZ78 parsing of xl

1. As such, the
resulting atypical codelength is [4,5]

LA

(
xl

1

)
=
∣∣∣SLZ

(
xl

1

)∣∣∣[log
∣∣∣SLZ

(
xl

1

)∣∣∣+ 1
]
.

Since L
(

xl
1

)
using both LZ78 and the pattern dictionary depends on the number of

parsed phrases, we investigate the possible range and properties of
∣∣∣SD(xl

1

)∣∣∣− ∣∣∣SLZ

(
xl

1

)∣∣∣.
While the LZ78 encoder is a well-known compression method which is asymptotically
optimal [4,5], its non-asymptotic behavior is not well understood. In the next section, we
establish a novel non-asymptotic property of an LZ78 parser, and then compare it with the
pattern dictionary parser.

5.1. Lempel–Ziv Parser

We start this section with a theorem that establishes the non-asymptotic lower and
upper bounds on the number of distinct phrases in a sequence parsed by LZ78.

Theorem 2. The number of distinct phrases c(l) resulting from LZ78 parsing of an |X |-ary
sequence xl

1 = {xn, n = 1, . . . , l} satisfies

1
2

(√
8l + 1− 1

)
≤ c(l) ≤ l ln|X |

W
(

β
α |X |

α+1
−α ln|X |

) ,

where α = |X | − 1, β = (|X | − 1)2l − |X |, and W(.) is the Lambert W function [6].

Proof. First, we establish the upper bound. Note that the number of parsed distinct phrases
c(l) is maximized when all the phrases are as short as possible. Define M , |X | and let lk
be the sum of the lengths of all distinct strings of length less than or equal to k. Then,

lk =
k

∑
j=1

jMj =
1

(M− 1)2

[
{(M− 1)k− 1}Mk+1 + M

]
.
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Since l = lk occurs when all the phrases are of length ≤ k,

c(lk) ≤
k

∑
j=1

Mj =
M
(

Mk − 1
)

M− 1
<

Mk+1

M− 1
≤ lk

k− 1
M−1

.

If lk ≤ l < lk+1, we write l = lk +4 where

4 < lk+1 − lk = (Mk + M− 1− k)
Mk+1

M− 1

= (k + 1)
Mk+1

M− 1
.

We conclude that the parsing ends up with c(lk) phrases of length ≤ k and l−lk
k+1 phrases of

length k + 1. Therefore,

c(l) ≤ c(lk) +
l − lk
k + 1

≤ lk
k− 1

M−1
+
4

k + 1

≤ lk +4
k− 1

M−1
=

l
k− 1

M−1
. (3)

We now bound the size of k for a given sequence of length l by setting l = lk. Define
α , M− 1 and β , (M− 1)2l −M. Then,

1

(M− 1)2

[
((M− 1)k− 1)Mk+1 + M

]
= l

⇐⇒((M− 1)k− 1)Mk+1 = (M− 1)2l −M

⇐⇒(αk− 1)Mk+1 = β

⇐⇒ k̂M(k̂+1)/α+1 = β

⇐⇒ k̂
ln M

α
exp

(
k̂

ln M
α

)
=

β

α
M−1−1/α ln M.

where k̂ = αk− 1. The last equation can be solved using the Lambert W function [6]. Since
all the involved numbers are real and for M > 1 and l ≥ 2, we have β

α M−1−1/α ln M ≥ 0 >

− 1
e , it follows that

k̂
ln M

α
= W

(
β

α
M−1−1/α ln M

)

⇐⇒k =
αW
(

β
α M−1−1/α ln M

)
+ ln M

α ln M
,

where W(.) is the Lambert W function. Using equation (3), we write

c(l) ≤ l
k− 1

α

=
l ln M

W
(

β
α M−1−1/α ln M

) .

To prove the lower bound, note that the number of parsed distinct phrases c(l) is
minimized when the sequence of length l consists of only one symbol that repeats. Let l̃k
be the sum of the lengths of all such distinct strings of length less than or equal to k. Then,

l̃k =
k

∑
j=1

j =
k(k + 1)

2
.
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Thus, given a sequence of length l by enforcing l = k(k+1)
2 , we obtain the lower bound.

Figure 3 illustrates the lower and upper bounds established in Theorem 2 against the
sequence length for various alphabet sizes. Note that the lower bound on the number of
distinct phrases is independent of the alphabet size.

While numerical experiments are not a substitute for the mathematical proof of Theorem 2
provided above, the reader may find it useful to understand the theorem in terms of a simple
example. In Figures 4–6, we compare the theoretical bound with numerical results of
simulation for binary i.i.d. sequences. In these experiments, for each value of P(X = 1), a
thousand binary sequences are generated; then, the number of distinct phrases resulting
from LZ78 parsing of each sequence is calculated, and hence, the average, minimum, and
maximum of these counts are found and represented by error bars.
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Figure 3. Plot of the lower and upper bounds of Theorem 2 on the number of distinct phrases
resulting from LZ78-parsing of an |X |-ary sequence of length l.
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Figure 4. Simulation results compared to the lower and upper bounds of Theorem 2 on the number of
distinct phrases resulting from LZ78-parsing of binary sequences of length l generated by sources with
three different source probabilities P(X = 1). For every P(X = 1), one thousand binary sequences
of length l are generated. Error bars represent the maximum, minimum, and average number of
distinct phrases.
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Next, we verify the convergence of the non-asymptotic upper bound achieved in
Theorem 2 to the asymptotic upper bound of the LZ78 parser. Using a lower bound on
Lambert W function ln x− ln(ln x) ≤W(x) [73], we write

W
(

β

α

ln M
M1+1/α

)
= W

((
(M− 1)l − M

M− 1

)
ln M

M
M

M−1

)
≈W(cMl ln M)

≥ ln
cMl ln M

ln(cMl ln M)

= ln
cMl

log(cMl ln M)
,

where the logarithm is base M = |X | and cM = M−1
MM/(M−1) . Hence, we can further simplify

the asymptotic upper bound of c(l) as follows

c(l) ≤ l ln M

W
(

β
α M−1−1/α ln M

)
≤ l ln M

ln cM l
log(cM l ln M)

=
l

log cM l
log(cM l ln M)

=
l

log l + log cM − log log(cMl ln M)

=
l(

1− log log l+ĉM
log l

)
log l

,

where ĉM = log cM − log log(cM ln M). Therefore, as l → ∞, we have c(l) ≤ l
log l . This is

consistent with the binary case M = 2 proved in ([4] Lemma 13.5.3) or [5]. The following
Lemma extends the result of ([4] Lemma 13.5.3) to |X |-ary case.

Lemma 1. The number of distinct phrases c(l) resulting from LZ78-parsing of an |X |-ary sequence
xl

1 = {xn, n = 1, . . . , l} satisfies

c(l) ≤ l
(1− εl) log l

,

where the logarithm is base |X | and εl = min

{
1,

log log l−log(|X |−1)+ 3|X |−2
|X |−1

log l

}
→ 0 as l → ∞.

Proof. The proof is similar to the proof in ([4] Lemma 13.5.3) or ([74] Theorem 2). Let
M , |X |. In Theorem 2, we defined lk as the sum of the lengths of all distinct strings of
length less than or equal to k, and we showed that for any given l such that lk ≤ l < lk+1,
we have c(l) ≤ c(lk) +

l−lk
k+1 ≤

l
k− 1

M−1
. Next, we bound the size of k. As such, we have

l ≥ lk ≥ Mk or, equivalently, k ≤ log l where the logarithm is base M. Additionally,
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l ≤ lk+1 =

(
k + 1− 1

M− 1

)
Mk+2

M− 1
+

M

(M− 1)2

=

(
k

M− 1
+

M− 2

(M− 1)2

)
Mk+2 +

M

(M− 1)2

≤ k + 2
M− 1

Mk+2 ≤ log l + 2
M− 1

Mk+2,

therefore, k + 2 ≥ log (M−1)l
log l+2 . Equivalently, for l ≥ M2,

k− 1
M− 1

≥ log l − log(log l + 2) + log(M− 1)− 2− 1
M− 1

=

(
1−

log(log l + 2)− log(M− 1) + 2M−1
M−1

log l

)
log l

≥
(

1−
log(2 log l)− log(M− 1) + 2M−1

M−1
log l

)
log l

=

(
1−

log log l − log(M− 1) + 3M−2
M−1

log l

)
log l

= (1− εl) log l,

where εl = min
{

1,
log log l−log(M−1)+ 3M−2

M−1
log l

}
.

Next, we analyze the properties of the number of distinct phrases c(l) resulting from
LZ78-parsing of an |X |-ary sequence xl

1 = {xn, n = 1, . . . , l} when l is fixed. The error bar
representation in Figure 4 shows the variation of c(l) when l is fixed. A possible explanation
for such variations is that the statistical distribution of the pseudorandomly generated
data are different from the theoretical distribution of the generating source. To elucidate
this possibility, we enforce the exact matching of the source probability mass function and
the empirical probability mass function of the generated data. Figure 5 represents the
number of distinct phrases c(l) resulting from LZ78-parsing of a binary sequence of fixed
length where the characteristic of the generating source and the generated data matches.
As seen, there is still some variation around the average value of c(l). We can specify
a distribution-dependent bound on c(l) when both l and the distribution of the source
are fixed.

In ([75] Theorem 1), for sequences generated from a memoryless source, c(l) is as-
sumed to be a random variable with the following mean and variance:

E(c(l)) ∼ hl
log l

,

Var(c(l)) ∼
(
h2 − h2)l

log2 l
, (4)

where h = −∑a∈X pa log pa is the entropy rate, and h2 = ∑a∈X pa log2 pa with pa being the
probability of symbol a ∈ X . Note that the approximations (4) are asymptotic as l → ∞.
Below, we obtain a finite sample characterization of c(l).
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Figure 5. Similar to Figure 4, the number of distinct phrases resulting from LZ78-parsing of binary
sequences of fixed length l = 1000 varies over the source probability parameter P(X = 1). For
every P(X = 1), one thousand binary sequences of length l are generated. Error bars represent the
maximum, minimum, and average number of distinct phrases.

Consider an |X |-ary sequence xl
1 = {xn, n = 1, . . . , l} with fixed length l generated

from a source with the probability mass function p(x). Here, the notations xl
1 and xl are

used interchangeably. Let c(l, p) denote the number of distinct phrases resulting from
LZ78-parsing of the sequence xl

1 of length l and the generating probability mass function
is defined by p(x). In order to find a distribution-dependent bound on the number of
distinct phrases in LZ78-based parsing of xl

1, we note that since the generating distribution
is not necessarily uniform, all the strings xn for n < l � ∞ do not necessarily appear as
parsed phrases. For instance, consider the binary case with P(X = 1) = 0.9. Then, it is very
unlikely to have a string with multiple consecutive zeros in any parsing of a realization of
the finite sequence xl . As such, using the Asymptotic Equipartition Properties (AEP) ([4]
Chapter 3) or Non-asymptotic Equipartition Properties (NEP) [76], we define the typical set
A(n)

ε with respect to p(x) as the set of subsequences xn ∈ X n of xl
1 with the property

2−n(h+ε) ≤p(xn) ≤ 2−n(h−ε),

where h is the entropy. Then, we have

1 = ∑
xn∈X n

p(xn) ≥ ∑
xn∈A(n)

ε

p(xn) ≥
∣∣∣A(n)

ε

∣∣∣2−n(h+ε),

therefore,
∣∣∣A(n)

ε

∣∣∣ ≤ 2n(h+ε). Let lk be the sum of the lengths of all the distinct strings xn in

the set
∣∣∣A(n)

ε

∣∣∣ of length less than or equal to k. We write,

lk =
k

∑
n=1

n
∣∣∣A(n)

ε

∣∣∣
≤

k

∑
n=1

n2n(h+ε)

=
1

(m− 1)2

[
((m− 1)k− 1)mk+1 + m

]
,
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where m , 2h+ε. Therefore, l = 1
(m−1)2

[
((m− 1)k− 1)mk+1 + m

]
can be solved for k which

leads into an upper bound for c(l, p) as follows

k =
αW
(

β
α m−1−1/α ln m

)
+ ln m

α ln m

c(l, p) ≤
k

∑
n=1

∣∣∣A(n)
ε

∣∣∣ = m
(

mk − 1
)

m− 1

=
2k(h+ε) − 1
1− 2−h−ε

,

where α = m− 1 and β = (m− 1)2l −m. Therefore, the dependency of the c(l, p) upper
bound on the distribution is only through the entropy. Figure 6 depicts the upper bound
on c(l, p) for ε = 0.1.
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Figure 6. Simulation of the probability-dependent upper bound c(l, p) for binary sequences of fixed
length l = 100 with various probability parameters P(X = 1). For every P(X = 1), one thousand
binary sequences of length l are generated. Error bars represent the maximum, minimum, and
average number of distinct phrases.

5.2. Pattern Dictionary Parser versus LZ78 Parser

Given an |X |-ary sequence xl
1 = {xn, n = 1, . . . , l}, let cT(l) be the number of parsed

phrases of xl
1 when the typical encoder (pattern dictionary with Dmax) is used, and cA(l)

be the number of parsed phrases of xl
1 when the atypical encoder (LZ78) is used. Clearly,

l
Dmax

≤ cT(l) ≤ l where the lower bound is achieved whenSD
(

xl
1

)
=
{

xv2−1
v1 , xv3−1

v2 , . . . , xl
vc

}
,

and each xvi−1
vi ∈ S (Dmax)

D , namely xvi−1
vi is of length Dmax and exists in the dictionary. The

upper bound is achieved when SD
(

xl
1

)
= {x1, x2, . . . , xl} where each xn ∈ S (1)D . Using

the result of Theorem 2 and a lower bound on the Lambert W function, ln x− ln(ln x) ≤
W(x) [73], we have

l
Dmax

1− Dmax

log l
log(l ln|X |)

 ≤ cT(l)− cA(l)

≤ l

(
1−
√

8l + 1− 1
2l

)
. (5)
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The above bounds have asymptotic and non-asymptotic implications. The asymptotic
analysis of the bounds in (5) suggests that as l → ∞, for a dictionary with fixed Dmax, we
have l

Dmax
≤ cT(l)− cA(l) ≤ l. This inequality implies the asymptotic dominance of the

parser using a typical encoder. This is to be expected due to the asymptotic optimality
of LZ78. However, the above inequality also implies a more interesting result: if Dmax >
log l

log(l ln|X |) as l → ∞, then cT(l) can be smaller than cA(l). The non-asymptotic behavior
of the bounds in (5) is more relevant to the anomaly detection problem. These bounds
suggest that for a fixed l and |X |, increasing Dmax has a vanishing effect on the possible
range of the anomaly score. Additionally, the achieved bounds on cT(l)− cA(l) provide
the range of values of the anomaly score. This facilitates the search for a data-dependent
threshold for anomaly detection, as the search can be restricted to this range.

5.3. Atypicality Criterion for Detection of Anomalous Subsequences

Consider the problem of finding the atypical (anomalous) subsequences of a long
sequence with respect to a trained pattern dictionary D. Suppose we are looking for an
infrequent anomalous subsequence xn+l−1

n = {xn, n = n, . . . , n + l − 1} embedded in a test
sequence {xn, n = 1, . . . , L} from the finite alphabet X . Using Equation (2), the typical
codelength of the subsequence xn+l−1

n is

LT

(
xn+l−1

n

)
= ∑

y∈SD(xn+l−1
n )

LD(y) +
∣∣∣SD(xn+l−1

n

)∣∣∣ log Dmax,

while using LZ78, the atypical codelength of the subsequence xn+l−1
n is

LA

(
xn+l−1

n

)
=
∣∣∣SLZ

(
xn+l−1

n

)∣∣∣[log
∣∣∣SLZ

(
xn+l−1

n

)∣∣∣+ 1
]

+ log∗(l) + τ,

where log∗(l) + τ is an additive penalty for not knowing in advance the start and end
points of the anomalous sequence [2,3], and log∗(l) = log l + log log l + . . . where the sum
continues as long as the argument to the outer log is positive. Let L

′
A = LA− τ. We propose

the following atypicality criterion for detection of an anomalous subsequence:

4L(n) = max
l

{
LT

(
xn+l−1

n

)
− L

′
A

(
xn+l−1

n

)}
> τ, (6)

where τ can be treated as an anomaly detection threshold. In practice, τ can be set to ensure
a false positive constraint, e.g., using bootstrap estimation of the quantiles in the training
data.

6. Experiment

In this section, we illustrate the proposed pattern dictionary anomaly detection on a
synthetic time series, known as Mackey–Glass [77], as well as on a real-world time series of
physiological signals. In both experiments, first, the real-valued samples are discretized
using a uniform quantizer [78], and then, anomaly detection methods are applied.

6.1. Anomaly Detection in Mackey–Glass Time Series

In this section, we illustrate the proposed anomaly detection method for the case of
a chaotic Mackey–Glass (MG) time series that has an anomalous segment grafted into
the middle of the sequence. MG time series are generated from a nonlinear time delay
differential equation. The MG model was originally introduced to represent the appearance
of complex dynamic in physiological control systems [77]. The nonlinear differential
equation is of the form dx(t)

dt = −ax(t) + bx(t−δ)
1+x10(t−δ)

, t ≥ 0, where a, b and δ are constants.
For the training data, we generated 3000 samples of the MG time series with a = 0.2,
b = 0.1, and δ = 17. For the test data, we normalized and embedded 500 samples of the
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MG time series with a = 0.4, b = 0.2, and δ = 17 inside 1000 samples of a MG time series
generated from the same source as the training data, resulting in a test sequence of length
1500. Figure 7 shows a realization of the training data and the test data.

0 500 1000 1500 2000 2500 3000

0.5

1

1.5

Train Data

0 500 1000 1500

0.5

1

1.5

An Example of Test Data

Normal
Anomalous

Figure 7. Mackey–Glass time series: the training data (top) and an example of the test data (bottom)
in which samples in [501, 1000] are anomalous (shown in red).

The anomaly detection performance of our proposed pattern dictionary is evaluated.
To illustrate the effect of the model parameter, i.e., the maximum depth Dmax, on the
detection and compression performance of the pattern dictionary, we run two experiments.
First, we use a 30-fold cross-validation on the training data (resulting in 30 sequences of
length 100) and calculate the number of distinct parsed phrases against Dmax. Second, we
train a pattern dictionary with various Dmax using the training data and then evaluate the
sensitivity of detector of the anomalous subsequences in the test data using Equation (6)
with τ = 0. In this experiment, the detection sensitivity (true positive rate) is defined as
the ratio of number of samples correctly identified as anomalous over the total number of
anomalous samples. Figure 8 illustrates the result of both experiments. As seen, after some
point, increasing Dmax has diminishing effect on both detection sensitivity and the number
of distinct parsed phrases. Note that this behavior is to be expected as it was suggested by
the bounds in (5).

Next, we compare anomaly detection performance of our proposed pattern dictionary
methods, PDD and PDA, with the nearest neighbors-based similarity (NNS) technique [7],
the compression-based dissimilarity measure (CDM) method [12–14], Ziv–Merhav method
(ZM) [48], and the threshold Sequence Time-Delay Embedding (t-STIDE) technique [8–11].
In this experiment, a window of length 100 is slid over the test data and each method
measures the anomaly score (as described below) of the current subsequence with respect to
the training data. The anomaly is detected when the score exceeds a threshold, determined
to ensure a specified false positive rate. In the following, we compute AUC (area under
the curve) of the ROC (receiver operating characteristic) and Precision-Recall curves as
performance measures. In the following, we provide details of the implementation.
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Figure 8. The effect of maximum dictionary depth Dmax on parsing and detection sensitivity (true
positive rate) of the Mackey–Glass time series presented in Figure 7.

Pattern Dictionary for Detection (PDD)

First, the training data are used to create a pattern dictionary with Dmax = 40, as
described in Section 4. Then, for each subsequence x100 (the sliding window of length 100)
of the test data, the anomaly score is computed as the codelength L

(
x100) of Equation (2)

described in Section 4.3.

Pattern Dictionary Based Atypicality (PDA)

Similar to PDD, first the training data are used to create a pattern dictionary with
Dmax = 40, as described in Section 4. Then, for each subsequence x100 of the test data, the
anomaly score is the atypicality measure described in Section 5, i.e., LT

(
x100)− LA

(
x100),

the difference between the compression codelength of the test subsequence using typical
encoder (pattern dictionary) and atypical encoder (LZ78).

Ziv–Merhav Method (ZM) [48]

In this method, a cross-parsing procedure is used in which for each subsequence x100

of the test data, the anomaly score is computed as the number of the distinct phrases of
x100 with respect to the training data.

Nearest Neighbors-Based Similarity (NNS) [7]

In this method, a list S of all the subsequence of length 100 (the length of the sliding
window) of the training data is created. Then, for each subsequence x100 of the test data,
the distance between x100 and all the subsequences in the list S is calculated. Finally, the
anomaly score of x100 is its distance to the nearest neighbor in the list S .

Compression-Based Dissimilarity Measure (CDM) [12–14]

In this method, given the training data xtrain, for each subsequence x100 of the test data
the anomaly score is

CDM(xtrain, x100) =
L
(
C
(
xtrain, x100))

L(xtrain) + L(x100)
,

where C(y, x) represents concatenation of sequences y and z, and L(x) is the size of the
compressed version of the sequence x using any standard compression algorithm. The
CDM anomaly score is close to 1 if the two sequence are not related, and smaller than one
if the sequences are related.
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Threshold Sequence Time-Delay Embedding (t-STIDE) [8–11]

In this method, given l < 100, for each sub-subsequence xl of the subsequence x100 of
the test data, the likelihood score of xl is the normalized frequency of its occurrence in the
training data, and the anomaly score of x100 is one minus the average likelihood score of all
its sub-subsequences of length l. In this experiment, various values of l are tested and the
best performance is reported.

We compare the detection performance of the aforementioned methods by generating
200 test data sequences with different anomaly segments (the anomalous MG segments
have different initializations in each test dataset). The detection results of comparisons are
reported in Table 2. As seen, our proposed PDD and PDA methods outperform the rest,
with ZM and CDM coming in third place. The effect of alphabet size of the quantized data
(the resolution parameter of the uniform quantizer [78]) on anomaly detection performance
is summarized in Table 3. Table 3 shows that our proposed PDD and PDA methods
outperform in all three cases of data resolution.

Table 2. Comparison of anomaly detection methods (µ± σ representation is used where µ is the
mean and σ is the standard deviation). The proposed PDA method attains overall best performance
(bold entries of table).

ROC AUC PR AUC

PDA 0.963 ± 0.009 0.909 ± 0.044

PDD 0.959± 0.009 0.907± 0.044

ZM 0.959± 0.009 0.895± 0.049

CDM 0.957± 0.012 0.907± 0.057

NNS 0.920± 0.021 0.777± 0.091

t-STIDE 0.897± 0.013 0.857± 0.044

Since the parsing procedure of our proposed PD-based methods and the ZM method [48]
are similar, it is of interest to compare the running time of these two methods. While the
cross-parsing procedure of the ZM method was introduced as an on the fly process [48],
we can also consider another implementation similar to our proposed PD by creating a
codebook of all the subsequences of the training data prior to the parsing procedure. As
such, in order to compare the running time of the dictionary/codebook creation and parsing
procedure of our PD-based methods with the aforementioned two implementations of the
ZM method, we use the same MG training data of length 3000, one test dataset of length
1500 while a sliding window of length 100 is slid over it for anomaly score calculation, and
the PD-based method with Dmax = 40. Note that since a sliding window of length 100
over the test data is considered, for the codebook-based implementation of ZM, all the
subsequences of the training data up to length 100 are extracted which make its codebook
creation process significantly faster. Table 4 summarizes the running time comparison. As
it can be seen, our PD-based method is faster in both dictionary/codebook creation and
parsing process.
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Table 3. Comparison of anomaly detection methods for different cases of data resolutions: high
resolution corresponds to an alphabet size of 90, medium resolution corresponds to an alphabet size
of 45, and low resolution corresponds to an alphabet size of 10. In this table, µ± σ representation
is used where µ is the mean and σ is the standard deviation. The proposed PDA method achieves
overall best performance (bold entries of table).

Resolution PDA PDD ZM CDM NNS t-STIDE

ROC AUC

Low 0.948
±0.011

0.930
±0.013

0.943
±0.014

0.787
±0.017

0.901
±0.027

0.725
±0.025

Medium 0.955
±0.010

0.943
±0.011

0.954
±0.011

0.940
±0.014

0.918
±0.022

0.881
±0.017

High 0.963
±0.009

0.959
±0.009

0.959
±0.009

0.957
±0.012

0.920
±0.021

0.897
±0.013

PR AUC

Low 0.876
±0.050

0.871
±0.052

0.826
±0.071

0.669
±0.067

0.719
±0.098

0.678
±0.067

Medium 0.885
±0.046

0.882
±0.047

0.881
±0.053

0.880
±0.060

0.777
±0.093

0.828
±0.050

High 0.909
±0.044

0.907
±0.044

0.895
± 0.044

0.907
±0.057

0.777
±0.091

0.857
±0.044

Table 4. Comparison of running time (in second) of PD-based method and two implementations of
the ZM method for different cases of data resolutions: high resolution corresponds to an alphabet
size of 90, medium resolution corresponds to an alphabet size of 45, and low resolution corresponds
to an alphabet size of 10. This experiment is performed on a Hansung laptop with 2.60 GHz CPU, 500
GB of SSD, and 16 GB of RAM using MATLAB R2021a. The proposed PD-based method has fastest
run time overall (bold entries in table).

Resolution PD-Based ZM-Codebook ZM

dictionary generation
Low 6.80 29.98 N/A

Medium 13.12 39.01 N/A
High 15.46 40.80 N/A

parsing procedure
Low 6.07 9.23 142.77

Medium 10.81 11.10 433.55
High 14.83 16.70 670.18

6.2. Infection Detection Using Physiological Signals

Finally, we apply the proposed pattern dictionary method to detect unusual patterns
in physiological signals of two human subjects after exposure to a pathogen while only
one of these subjects became symptomatically ill. The time series data were collected in
a human viral challenge study that was performed in 2018 at the University of Virginia
under a DARPA grant. Consented volunteers were recruited into this study following an
IRB-approved protocol and the data was processed and analyzed at Duke University and
the University of Michigan. The challenge study design and data collection protocols are
described in [79]. Volunteers’ skin temperature and heart rate were recorded by a wearable
device (Empatica E4) over three consecutive days before and five consecutive days after
exposure to a strain of human Rhinovirus (RV) pathogen. During this period, the wearable
time series were continuously recorded while biospecimens (viral load) were collected daily.
The infection status can be clinically detected by biospecimen samples, but in practice, the
collection process of these types of biosamples can be invasive and costly. As such, here, we
apply the proposed anomaly detection framework to the measured two-dimensional heart
rate and temperature time series to detect unusual patterns after exposure with respect to
the normal (healthy) baseline patterns.

In the preprocessing phase, we followed the wearable data preprocessing procedure
described in [80]. Specifically, we first downsample the time series to one sample per minute
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by averaging. Then, we apply an outlier detection procedure to remove technical noise,
e.g., sensor contact loss. After preprocessing, the two-dimensional space of temperature
and heart rate time series is discretized using a two-dimensional uniform quantizer [78]
with step size of 5 for heart rate and 0.5 for temperature, resulting in one-dimensional
discrete sequence data. The first three days of data are used as the training data, and
the PDA methods with maximum depth Dmax = 30 are used to learn the patterns in the
training data. In order to detect anomalous patterns of the test data (the last five days), we
used the result of Section 5.3 and the atypicality criterion of Equation (6), which requires
choosing the threshold τ. While this threshold can be chosen freely, we selected it using
cross-validation on the training data. Leave-one-out cross-validation over the training data
generates an empirical null distribution of the PDA anomaly score function LT − LA. The
threshold τ was chosen as the upper 99% quantile of this distribution. Figure 9 illustrates
the result of anomaly detection on one subject who became infected as measured by viral
shedding as shown in Figure 9C. All the anomalous patterns occur when the subject was
shedding the virus. Figure 10 also depicts the result of anomaly detection on one subject
who had a mild infection with a low level of viral shedding, as shown in Figure 10C. Note
that in this case, no anomalous patterns were detected.
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Train Data Test Data Anomalies Inoculation Time Day Change

36

38

40
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Temperature (°C)

Shedding Level
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Figure 9. Anomaly detection using the proposed PDA method for a subject based on heart rate and
temperature data collected from a wearable wrist sensor. Anomalies are shown in red in (a,b). (c)
shows the subject’s infection level.
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Figure 10. Anomaly detection using the proposed PDA method for a subject who had a mild infection
with low level of viral shedding based on heart rate and temperature data collected from a wearable
wrist sensor. Note that no anomaly has been detected: (a) heart rate, (b) temperature, and (c)
infection level.
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7. Conclusions

In this paper, we have developed a universal nonparametric model-free anomaly
detection method for time series and sequence data using a pattern dictionary. We proved
that using a multi-level dictionary that separates the patterns by their depth results in a
shorter average indexing codelength in comparison to a uni-level dictionary that uses a
uniform indexing approach. We illustrated that the proposed pattern dictionary method
can be used as a stand-alone anomaly detector, or integrated with Tree-Structured Lempel–
Ziv (LZ78) and incorporated into an atypicality framework. We developed novel non-
asymptotic lower and upper bounds of the LZ78 parser and demonstrated that the non-
asymptotic upper bound on the number of distinct phrases resulting from LZ78-parsing
of an |X |-ary sequence can be explicitly derived in terms of the Lambert W function, an
important theoretical result that is not trivial. We showed that the achieved non-asymptotic
bounds on LZ78 and pattern dictionary determine the range of the anomaly score and the
anomaly detection threshold. We also presented an empirical study in which the pattern
dictionary approach is used to detect anomalies in physiological time series. In the future
work, we will investigate the generalization of the context tree weighting methods to the
general discrete case, using the pattern dictionary since the pattern dictionary handles
sparsity well and is computationally less expensive when the alphabet size is large.
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