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Abstract: Autoregressive exogenous, hereafter ARX, models are widely adopted in time series-related
domains as they can be regarded as the combination of an autoregressive process and a predictive
regression. Within a more complex structure, extant diagnostic checking methods face difficulties in
remaining validity in many conditions existing in real applications, such as heteroscedasticity and
error correlations exhibited between the ARX model itself and its exogenous processes. For these
reasons, we propose a new serial correlation test method based on the profile empirical likelihood.
Simulation results, as well as two real data examples, show that our method has a good performance
in all mentioned conditions.
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1. Introduction

Time series data are frequently encountered in fields like weather forecasting, earth-
quake prediction, and electroencephalography. How to analyze time series data has been
of great interest in statistics for a long time. Many famous models have been developed
to study the relationships in time series data. Univariate time-series models include au-
toregressive models (AR), moving average models (MA), autoregressive moving average
(ARMA), predictive regression models (PRM), and so on. Extensions of these models to
handle vector-valued data contain, e.g., vector autoregression models; see, for example,
ref. [1] for detailed discussions of these models.

Among others, the AR model, firstly proposed by [2], takes the simplest form. It
specifies that the output variable only depends linearly on its own previous values and the
random error term. But in many situations, auxiliary information is available and can be
treated as covariates for modeling. Furthermore, the inclusion of auxiliary variables can
improve the estimation efficiency. Hence, the so-called autoregressive exogenous (ARX)
model was developed in previous literature to incorporate this benefit. The ARX model
takes the following form:

I(B)Yt = α + β>Xt−1 + Ut, (1)

where Yt denotes the response, I(B) = 1−∑
p
i=1 aiBi, and B denotes the backshift operator

with BlYt = Yt−l for l ≥ 1. Suppose Xt is the covariate that contains useful auxiliary
information. Uts are model errors with means of 0 and finite variances. Without confusion,
we assume that {Xt} follows the first-order vector autoregressive (VAR) model:

Xt = µ + AXt−1 + Vt, (2)

where Vt denotes the vector-valued random errors. α, β, µ and A are unknown parameters.
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Moreover, the ARX model (1) has been widely adopted to analyze time series data in
many fields. For example, in finance, as narrated in [3], an illustration of (1) can be that
Yt reflects a change in an asset’s price, and Xt ∈ Rd are lagged variables related to asset
prices. A more specific example is that [4] employed the VARX model to investigate the
relationship between the closing price of HRUM energy and PTBA (endogenous variable)
and the exchange rate (exogenous variable). Ref. [5] applied the ARX model in the
generalized space and used the international crude palm oil (CPO) prices as exogenous
variables to predict the export volume of CPO. Additionally, in the environmental area,
Ref. [6] analyzed hourly ozone data collected routinely at several monitoring sites in Austria
using different ARX models to complete a pollution assessment. Furthermore, Ref. [7] used
ARX-GARCH models to forecast air quality levels using daily data from the monitoring
stations of 16 cities/counties in southeast China.

Some pre-test procedures are needed when specifying time series like (1), such as
testing the existence of unit root in series Yt. To achieve this, there is a useful tech-
nique of replacing I(B) in (1) by a specific linear filter P(B) = 1− φB − ∑

p−1
i=1 ψi∆i, in

which ∆ denotes the difference operator. Note that φ = ∑
p
i=1 ai and ψi = −∑

p−1
j=i aj+1 for

i = 1, · · · , p− 1. Hence, we can rewrite (1) in the following form (3). This trick is similar to
the so-called Dickey–Fuller reparameterization [8,9], which is proposed for constructing a
Dickey–Fuller unit root test.

Yt = α + φYt−1 +
p−1

∑
i=1

ψi∆Yt−i + β>Xt−1 + Ut. (3)

The reparameterization trick given in (3) is most notable for its convenience of using φ
instead of ∑

p
i=1 ai to represent the stationarity property of the endogenous structure of Yt.

Hence, we choose (3) as the expression of our ARX model in the following discussions.
Owing to its wide applications, many researchers have focused on the theory of model

specification of ARX models, including both parametric and nonparametric methods. To
name but a few, ref. [10] proposed a least squares method to estimate the parameters in
linear and nonlinear ARMAX models and discussed the asymptotic properties of these
estimators. Ref. [11] employed a local polynomial fitting scheme incorporated with projec-
tions to obtain nonparametric estimation of additive nonlinear ARX time series. Ref. [12]
introduced a quasi-likelihood method in estimating a censored ARX model and proved the
quasi-likelihood estimation computationally efficient; see, e.g., [12] and references therein
for more details on this topic.

Despite the fact that numerous studies have investigated different methods to specify
and estimate the ARX model, little literature has discussed the issue of testing its serial
correlation. Most studies assume that errors are of no autocorrelations; however, this
assumption can be often violated, and it may negatively affect our further inference. For
instance, the endogeneity problem, as a common cause of serial correlation, may destroy
the consistency of the regression coefficients, leading to misspecification of the model, and
damage the explanatory properties in real applications. Therefore, it is of importance to
check for serial correlation of the random model errors.

There are many methods of testing serial correlations based on the least squares (LS)
residuals. Along this direction, Ref. [13] proposed the first corresponding test procedure,
the Durbin–Watson (DW) test. Unfortunately, it only works in testing the first-order
autocorrelation. To deal with this limitation, the portmanteau test constructed by Q statistics
gained great popularity; this test is also known as the Q test. The two most famous forms of
Q tests are the Box–Pierce (BP) and Ljung–Box (LB) tests, proposed in [14,15], respectively.
However, much evidence shows that Q tests suffer from the size distortion issue for models
with AR structures; see, e.g., [16], who argued against the validity of Q tests by showing
that the asymptotic chi-square distribution under the null hypothesis of no autocorrelations
relies on the strictly exogenous nature of all regressors to the error terms. Although some
further works like [17,18] expanded the adoption of portmanteau tests to ARMA models
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by developing the asymptotic results of Q statistics, their techniques cannot apply to the
ARX models since the combination of AR and exogenous structure leads to an increase
in complexity.

Another alternative is to use the plug-in (PI) empirical likelihood method, which
follows the approach in [19], or the Breusch—Godfrey (BG) test from [20,21]. However, it is
worth noting that in practice, such as the financial data discussed in [3], the Ut in (3) and
Vt in (2) might be correlated. This correlation could result in a biased LS estimator when
facing a finite sample size. This means that the plug-in empirical likelihood method fails
to work in such a situation. For the BG test, although it seems to perform stably against
the possible correlation existing between Ut and Vt (as will be reported in our simulations),
there are still some more scenarios for which the BG test cannot be applied. For instance, the
heteroscedasticity mentioned above can violate its disturbance assumptions. Consequently,
it not only leads to inefficient parameter estimations, but also breaks the conditions for the
application of the BG testing method that relies on LS residuals.

Note that the ARX models are often used in financial data analysis, in which volatility
clustering often occurs. Ref. [22] firstly noted this phenomenon. From his description,
volatility clustering is defined by the idea that large changes tend to be followed by large
changes of either sign, and small changes tend to be followed by small changes. A number
of following studies focused on the impacts of its existence in real applications; see, e.g.,
discussions in [23–25]. To address such a feature, a family of widely adopted models
named autoregressive conditional heteroscedasticity (ARCH) and generalized autoregres-
sive conditional heteroscedasticity (GARCH) have been proposed, respectively, by [26,27].
With the conditional serial dependence structures, known as conditional heteroscedasticity,
economists have found a more appropriate approach to modeling data than following the
obviously false assumption of homoscedasticity.

It is interesting to find that when dealing with GARCH errors, many existing serial
correlation tests, including the LB, BG, and plug-in empirical likelihood method, suffer
from size distortion; see our simulation in the sequel.

To deal with this problem, we construct a new test for the ARX model based on the
profile empirical likelihood method motivated by [28]. It turns out that the proposed test
for serial correlations performs robustly in the heteroscedastic as well as correlated Ut and
Vt situations.

The rest of this paper is organized as follows. In Section 2, we present the serial
correlation test and the main results. Section 3 reports the finite sample performance
of the proposed testing statistic. Section 4 further applies the test to financial data and
environmental data. Section 5 concludes the whole paper. Detailed proofs of the main
results can be found in Appendix A.

2. Methodologies and Main Results

Assume that {Yt, Xt−1}n
t=1 are generated from (2) and (3). Our aim is to construct a

test method to check whether serial correlations exist in {Ut}n
t=1. The hypothesis of interest

is as follows:
H0 : γ = 0 ↔ H1 : γ 6= 0,

i.e., to check whether there exist q-th serial correlations in the model errors, where
γk = E(UtUt−k) and γ = (γ1, · · · , γq)> for some positive integer q.

Since the definition of γ involves the expectation, a straightforward idea is to construct
some testing statistics forH0 by using the plug-in (PI) empirical likelihood method; that
is, plugging the LS residuals of Ut in the constraints of empirical likelihood ratio function.
The details are as follows: define θ = (α, φ, ψ>, β>)>, and denote the LS estimate of θ
as θ̂ := (α̂, φ̂, ψ̂>, β̂>)>; then, the residuals {Ût}n

t=p+q+1 can be easily obtained. Write
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t0 = p + q + 1 and N = n− p− q. Then, the PI method is obtained by calculating the
following EL ratio function as

L(γ) = sup

{
n

∏
t=t0

Npt : pt ≥ 0,
n

∑
t=t0

pt = 1,
n

∑
t=t0

ptZt(γ) = 0

}
, (4)

where Zt(γ) = (ÛtÛt−1−γ1, · · · , ÛtÛt−q−γq)> with Ût = Yt− α̂− φ̂Yt−1−∑
p−1
i=1 ψ̂i∆Yt−i

−β̂>Xt−1.
Following a similar proof to that of [19], it is possible to show that−2 log L(0) is asymp-

totically chi-square distributed once {Ut} is a sequence of independent and identically
distributed errors under some mild conditions. Hence, for given observations {Yt, Xt−1}n

t=1,
one may reject the null hypothesis once −2 log L(0) > χ2

q(1− τ) at the significance level
τ ∈ (0, 1), where χ2

q(1− τ) denotes the (1− τ)-th quantile of the chi-squared distributed
variable with q degree of freedoms.

However, although this method is computationally fast and can avoid the variance
estimation, it still suffers from a strong undersized distortion. As an improvement, we may
treat θ as redundant parameters, and, similar to [28], construct a series correlation test by
using the profile empirical likelihood (PEL) method.

In detail, first define {Ut(θ)}n
t=t0

where

Ut(θ) = Yt − α− φYt−1 −
p−1

∑
i=1

ψi∆Yt−i − β>Xt−1. (5)

Then, similar to [19], an empirical likelihood function for the unknown θ and γ can be
defined as follows:

L̃(θ, γ) = sup

{
n

∏
t=t0

Npt : pt ≥ 0,
n

∑
t=t0

pt = 1,
n

∑
t=t0

ptZ̃t(θ, γ) = 0

}
, (6)

where Z̃t(θ, γ) = (Z̃t,1(θ, γ), Z̃t,2(θ, γ), · · · , Z̃t,p+d+q+1(θ, γ))> with

Z̃t,1(θ, γ) = Ut(θ),
Z̃t,2(θ, γ) = Ut(θ)Yt−1,

Z̃t,j+2(θ, γ) = Ut(θ)∆Yt−j, j = 1, 2, · · · , p− 1,
Z̃t,p+l+1(θ, γ) = Ut(θ)Xt−1,l , l = 1, 2, · · · , d,

Z̃t,p+d+k+1(θ, γ) = Ut(θ)Ut−k(θ)− γk, k = 1, 2, · · · , q.

Here, Xt−1,l denotes the l-th component of Xt−1 for l = 1, 2, · · · , d.
Since we are interested in γ, we may eliminate the effect of θ by the profile method, as

did [28]. The resulting profile empirical likelihood function L(γ) for γ can be defined as
follows:

L(γ) = sup
θ

L̃(θ, γ). (7)

To facilitate studying the limiting distribution of L(γ), we need to first specify the
following assumptions:

• A1. {Xt} are a strictly stationary sequence with the initial value X0 being a constant
vector.

• A2. {Ut, Vt−1}n
t=1 are Martingale difference sequences to the sigma field

Ft = σ(Us, Vs : s ≤ t).
• A3. E(U2

t ) = σ2
U , E(V2

t,1) = σ2
V1

, · · · , E(V2
t,d) = σ2

Vd
almost surely.

• A4. supt≥1 E(|Ut|2+δ + |Vt,1|2+δ + · · ·+ |Vt,d|2+δ) < ∞ for some δ > 0 almost surely.

• A5. |φ| < 1 and all roots of 1−∑
p−1
i=1 ψixi = 0 are inside the unit circle.
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Hereafter, Ft denotes the information set available at time t ∈ {1, 2, · · · , n}. Based on these
assumptions, we can obtain our main result of Theorem 1.

Theorem 1. Suppose assumptions A1–A5 hold. Then, under the null hypothesisH0, we have

−2 logL(γ) d−→ χ2
q,

as n → ∞, where χ2
q denotes the chi-squared distributed variable with q degrees of freedom, and

d−→ denotes the convergence in distribution.

Theorem 1 is desirable because there is no need to estimate the asymptotic variance,
which is difficult especially when the model errors follow the GARCH process. In practice,
we may reject the null hypothesisH0 if

−2 logL(0) > χ2
q(1− τ)

at the significance level τ ∈ (0, 1), analyzing the random observations {Yt, Xt−1}n
t=1.

3. Simulation Studies

In this section, we conduct simulations to investigate the performance of our proposed
testing method, i.e., the PEL test for the ARX model. Meanwhile, we compare the testing
with the other two extant testings, including the PI and BG tests. Firstly, we set two pro-
cesses in generating Ut, and let {et}n

t=1 be an independent identically distributed standard
normal series with e0 = 0. The two forms of Ut are, respectively,

Ut = λUt−1 + et, (8)

Ut = ηtσt, σ2
t = 0.01 + 0.32U2

t−1 + 0.23σ2
t−1, ηt =

λet−1+et√
1+λ2 . (9)

The autocorrelation of Ut in (9) is from the simple AR(1) structure generated by
nonzero λ, and (9) as a GARCH(1,1) process depicts a relatively complex heteroscedastic
structure. When λ = 0, the results refer to the test sizes. To examine the local powers, we
then set λ = 1/

√
n, · · · , 4/

√
n.

The correlations between Ut and Vt are designed by ρ = (ρ1, · · · , ρd)
>. This vector

determines the variance matrix of the joint normal distribution of Ut and Vt in which
we assume

(
et
Vt

)
∼ N (0, Γ), Γ =



1 ρ1 ρ2 · · · ρd−1 ρd
ρ1 1 0 · · · 0 0
ρ2 0 1 · · · 0 0
...

...
...

. . .
...

...
ρd−1 0 0 · · · 1 0

ρd 0 0 · · · 0 1


,

Obviously, Cov(Ut, Vt,k) = ρk for 1 ≤ t ≤ n, 1 ≤ k ≤ d, and Cov(Vt,k, Vt,l) = 0 for
1 ≤ t ≤ n, 1 ≤ k 6= l ≤ d.

For convenience, we consider the ARX model in the following form:{
Yt = α + φYt−1 + ψ∆Yt−1 + βXt−1 + Ut,
Xt = µ + AXt−1 + Vt.

(10)

The intercept and slope coefficient of Xt were set as constants; that is, µ = 0.01 and
β = 2.14. The slope of difference term ∆Yt−1 is ψ = 0.13. There are two settings of α, 0 and
0.01, to imitate the presence or absence of an intercept. For both φ and A, we considered
two conditions, 0.6 and 1, in which 0.6 refers to the stationary condition, and 1 refers to the
unit root process. The covariance of Ut and Vt, i.e. ρ, was set to 0, 0.4, 0.8, representing no
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correlation, light correlation and heavy correlation, respectively. The sample size n was 200
and 800. For each case, we generated 10,000 random samples.

Within the programming of profile empirical likelihood function in the PEL and PI
tests, we used R functions “el.test” in the package “emplik”. Meanwhile, the R function
“nlm” was applied to complete the profile optimization in PEL. We used the R function
“bg.test” to obtain the results of the BG test. Then, we reported the comparisons of empirical
sizes and powers of PEL, PI and BG in Tables 1 and 2 and Figures 1–6.

The results of the empirical sizes and powers of the AR structural Ut are shown in
Table 1. As we expected, our proposed PEL test performs well in all assumed conditions.
While in some settings, the simulation with smaller sample size n = 200 shows a slight
oversized distortion, e.g., when both φ and A are 1 (nonstationary AR structures of Xt and
Yt), as the sample size increases to n = 800, the sizes all converge to the presumed τ. Note
that there are some methods in literature that can be used to adjust the size of the empirical
likelihood method when the sample size is relatively small. One may improve the size
performance by the Bartlett correction; see, e.g., [29] for details. Furthermore, from Table 1,
we can see that with the AR structural Ut, the BG test also works well, and it is efficient
regardless of the presence of a strong correlation between Ut and Vt. However, for the
PI tests, the results indicate that the corresponding sizes suffer from obvious undersized
distortions due to the autoregressive structure. Similar to portmanteau Q tests such as BP
and LB, the PI test has the constraint that the regressors should be exogenous to avoid
the disturbance from the plug-in estimators of the autoregressive coefficients, so PI is not
suitable for ARX models.

Results of empirical sizes and powers of the GARCH structural Ut are shown in Table 2.
Different from the cases with AR structural Ut, the sizes of the BG test are highly deviated
from the presumed τ, which means the heteroscedastic structure of random disturbances
completely destroys the validity of the BG test. However, the PI test works well in some
settings under GARCH-type errors. This is also shown in Figure 4. For instance, when
Ut is not or weakly correlated with Vt, such as ρ = 0 and 0.4, the results of the PI test are
similar to the size values τ given in advance. However, when the correlations increase
or even close to 1, which often occurs in practice, the PI test fails and shows a strong
undersized distortion. Compared to both the BG and PI tests, the PEL method shows its
robustness. Note that only with the smaller sample size n = 200, the sizes of PEL tests
show notable overrejections, but these distortions mostly disappear with the increase in
sample sizes; see the results of n = 800. Except in a special condition when Xt and Yt are
both nonstationary(φ = A = 1), and Ut is extremely strongly associated with Vt, we can
find a non-negligible overrejection by comparing the sizes of PEL with the predetermined
sizes τ, even at a sample size of 800.

Part of the simulation results are plotted in Figures 1–6. Comparing the first two
figures which show the results of the PEL test in AR and GARCH errors, the increasing
speeds of rejection rates of GARCH errors vary with λ and are slower than those of AR
errors. Nevertheless, the PEL test remains effective with GARCH errors. From the next two
figures, we can see a good performance of PI test in limited endogenous GARCH errors,
but it fails when the endogenous errors are too strong. The results of PI testing in AR-type
errors also indicate apparent distortions. Finally, in the last two figures, we can find that
the BG test performs well in AR errors but becomes invalid with respect to GARCH errors,
as discussed above.
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Table 1. Empirical sizes and powers of AR structural Ut.

(ρ, φ, A, λ)

α = 0 α = 0.01

n = 200 n = 800 n = 200 n = 800

PEL PI BG PEL PI BG PEL PI BG PEL PI BG

(0, 0.6, 0.6, 0) 0.0596 0.0348 0.0579 0.0480 0.0311 0.0508 0.0620 0.0371 0.0534 0.0513 0.0316 0.0507
(0, 0.6, 0.6, 2√

n ) 0.3657 0.2867 0.3600 0.4042 0.3191 0.4019 0.3617 0.2775 0.3597 0.4052 0.3137 0.3980

(0, 0.6, 0.6, 4√
n ) 0.9163 0.8760 0.9236 0.9423 0.9092 0.9389 0.9175 0.8782 0.9186 0.9387 0.9003 0.9332

(0, 1, 0.6, 0) 0.0583 0.0410 0.0538 0.0528 0.0359 0.0486 0.0593 0.0406 0.0545 0.0534 0.0323 0.0494
(0, 1, 0.6, 2√

n ) 0.3498 0.3056 0.3582 0.4075 0.3460 0.4131 0.3575 0.3045 0.3567 0.4177 0.3483 0.4115

(0, 1, 0.6, 4√
n ) 0.8400 0.8919 0.9132 0.8354 0.9195 0.9417 0.9214 0.8910 0.9151 0.9212 0.9261 0.9411

(0, 1, 1, 0) 0.0626 0.0391 0.0536 0.0497 0.0359 0.0505 0.0672 0.0421 0.0562 0.0529 0.0345 0.0560
(0, 1, 1, 2√

n ) 0.3741 0.3097 0.3521 0.4169 0.3601 0.4120 0.3815 0.3050 0.3450 0.4207 0.3619 0.4170

(0, 1, 1, 4√
n ) 0.8943 0.8928 0.9174 0.9267 0.9284 0.9476 0.8876 0.8964 0.9222 0.9238 0.9278 0.9436

(0.4, 0.6, 0.6, 0) 0.0571 0.0333 0.0577 0.0496 0.0304 0.0507 0.0573 0.0369 0.0545 0.0510 0.0330 0.0497
(0.4, 0.6, 0.6, 2√

n ) 0.3660 0.3002 0.3632 0.4081 0.3361 0.4062 0.3732 0.3052 0.3627 0.4041 0.3423 0.4011

(0.4, 0.6, 0.6, 4√
n ) 0.9112 0.8807 0.9155 0.9355 0.9082 0.9374 0.9070 0.8764 0.9141 0.9393 0.9086 0.9392

(0.4, 1, 0.6, 0) 0.0594 0.0421 0.0499 0.0511 0.0389 0.0531 0.0583 0.0437 0.0514 0.0513 0.0363 0.0496
(0.4, 1, 0.6, 2√

n ) 0.3661 0.3273 0.3715 0.4209 0.3747 0.4243 0.3580 0.3309 0.3735 0.4215 0.3734 0.4178

(0.4, 1, 0.6, 4√
n ) 0.8368 0.8986 0.9182 0.9233 0.9333 0.9485 0.8303 0.8974 0.9150 0.9250 0.9298 0.9443

(0.4, 1, 1, 0) 0.0678 0.0567 0.0520 0.0494 0.0535 0.0486 0.0657 0.0596 0.0513 0.0530 0.0511 0.0514
(0.4, 1, 1, 2√

n ) 0.4387 0.4227 0.4246 0.4790 0.4782 0.4682 0.4390 0.4275 0.4127 0.4753 0.4727 0.4665

(0.4, 1, 1, 4√
n ) 0.9156 0.9596 0.9607 0.9497 0.9720 0.9701 0.9181 0.9555 0.9574 0.9454 0.9738 0.9728

(0.8, 0.6, 0.6, 0) 0.0532 0.0089 0.0567 0.0538 0.0057 0.0495 0.0544 0.0074 0.0516 0.0502 0.0059 0.0531
(0.8, 0.6, 0.6, 2√

n ) 0.2378 0.0703 0.2359 0.2577 0.0787 0.2535 0.2376 0.0677 0.2253 0.2560 0.075 0.2717

(0.8, 0.6, 0.6, 4√
n ) 0.6951 0.4030 0.6907 0.7485 0.4426 0.7544 0.6938 0.3900 0.6909 0.7519 0.4463 0.7538

(0.8, 1, 0.6, 0) 0.0569 0.0088 0.0516 0.0525 0.0076 0.0487 0.0521 0.0102 0.0539 0.0498 0.0073 0.0512
(0.8, 1, 0.6, 2√

n ) 0.2359 0.0747 0.2316 0.2676 0.0880 0.2744 0.2422 0.0787 0.2436 0.2745 0.0839 0.2684

(0.8, 1, 0.6, 4√
n ) 0.6691 0.4528 0.7067 0.7700 0.4867 0.7752 0.6730 0.4425 0.7066 0.7623 0.4950 0.7653

(0.8, 1, 1, 0) 0.0616 0.0245 0.0550 0.0516 0.0201 0.0507 0.0604 0.0211 0.0587 0.0513 0.0193 0.0519
(0.8, 1, 1, 2√

n ) 0.3501 0.2263 0.3254 0.3708 0.2424 0.3566 0.3445 0.2251 0.3293 0.3688 0.2348 0.3648

(0.8, 1, 1, 4√
n ) 0.8719 0.8202 0.8896 0.8999 0.8254 0.9021 0.8679 0.8205 0.8917 0.8968 0.8266 0.9056

Table 2. Empirical sizes and powers of GARCH structural Ut.

(ρ, φ, A, λ)

α = 0 α = 0.01

n = 200 n = 800 n = 200 n = 800

PEL PI BG PEL PI BG PEL PI BG PEL PI BG

(0, 0.6, 0.6, 0) 0.0653 0.0647 0.1416 0.0560 0.0556 0.1632 0.0658 0.0622 0.1419 0.0542 0.0544 0.1622
(0, 0.6, 0.6, 2√

n ) 0.3660 0.3813 0.5544 0.3794 0.3929 0.6183 0.3707 0.3796 0.5599 0.3734 0.4039 0.6146

(0, 0.6, 0.6, 4√
n ) 0.7632 0.8689 0.9621 0.7591 0.8986 0.9759 0.7583 0.8702 0.9626 0.7594 0.9056 0.9754

(0, 1, 0.6, 0) 0.0658 0.0612 0.1508 0.0598 0.0526 0.1537 0.0656 0.0620 0.1386 0.0575 0.0520 0.1607
(0, 1, 0.6, 2√

n ) 0.3486 0.3651 0.5393 0.3756 0.3983 0.6106 0.3391 0.3622 0.5406 0.3785 0.3811 0.6046

(0, 1, 0.6, 4√
n ) 0.6795 0.8602 0.9516 0.7192 0.9018 0.9745 0.6867 0.8672 0.9595 0.7205 0.9079 0.9760

(0, 1, 1, 0) 0.0735 0.0625 0.1473 0.0593 0.0557 0.1631 0.074 0.0644 0.1462 0.0565 0.0547 0.1628
(0, 1, 1, 2√

n ) 0.3847 0.3627 0.5322 0.3795 0.3876 0.6067 0.3943 0.3628 0.5384 0.3931 0.3917 0.6019

(0, 1, 1, 4√
n ) 0.8440 0.8639 0.9536 0.7583 0.9049 0.9770 0.8441 0.8553 0.9570 0.7547 0.8957 0.9767
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Table 2. Cont.

(ρ, φ, A, λ)

α = 0 α = 0.01

n = 200 n = 800 n = 200 n = 800

PEL PI BG PEL PI BG PEL PI BG PEL PI BG

(0.4, 0.6, 0.6, 0) 0.0701 0.0436 0.1410 0.0531 0.0364 0.1524 0.0654 0.0428 0.1395 0.0525 0.038 0.1570
(0.4, 0.6, 0.6, 2√

n ) 0.3449 0.2963 0.5106 0.3707 0.3024 0.5733 0.3458 0.2924 0.5083 0.3626 0.3064 0.5684

(0.4, 0.6, 0.6, 4√
n ) 0.7459 0.7970 0.9408 0.7363 0.8424 0.9654 0.7414 0.8002 0.9412 0.7420 0.8442 0.9633

(0.4, 1, 0.6, 0) 0.0705 0.0437 0.1379 0.0629 0.0338 0.1526 0.0619 0.0456 0.1404 0.0634 0.0398 0.1631
(0.4, 1, 0.6, 2√

n ) 0.3239 0.2936 0.4983 0.3598 0.3038 0.5659 0.3175 0.2895 0.4991 0.3626 0.3042 0.5616

(0.4, 1, 0.6, 4√
n ) 0.6694 0.7881 0.9342 0.7100 0.8444 0.9620 0.6619 0.7910 0.9348 0.7104 0.8379 0.9608

(0.4, 1, 1, 0) 0.0792 0.0495 0.1408 0.0621 0.0426 0.1637 0.0769 0.0500 0.1389 0.0598 0.0401 0.1524
(0.4, 1, 1, 2√

n ) 0.3608 0.2868 0.4990 0.3765 0.3153 0.5691 0.3714 0.2909 0.4915 0.3715 0.3173 0.5611

(0.4, 1, 1, 4√
n ) 0.8265 0.7967 0.9373 0.7412 0.8532 0.9609 0.8196 0.7959 0.9344 0.7477 0.8532 0.9620

(0.8, 0.6, 0.6, 0) 0.0644 0.0028 0.1120 0.0513 0.0019 0.1370 0.0632 0.0020 0.1131 0.0584 0.0018 0.1364
(0.8, 0.6, 0.6, 2√

n ) 0.2097 0.0266 0.3061 0.2104 0.0226 0.3634 0.2217 0.0269 0.2982 0.2116 0.0251 0.3609

(0.8, 0.6, 0.6, 4√
n ) 0.5523 0.1972 0.6954 0.5658 0.1944 0.7821 0.5376 0.1961 0.6979 0.5608 0.1956 0.7789

(0.8, 1, 0.6, 0) 0.0654 0.0035 0.1147 0.0677 0.0029 0.1340 0.0670 0.0031 0.1174 0.0696 0.0021 0.1413
(0.8, 1, 0.6, 2√

n ) 0.2050 0.0285 0.2935 0.2282 0.0235 0.3548 0.2089 0.0311 0.2983 0.2281 0.0227 0.3572

(0.8, 1, 0.6, 4√
n ) 0.5008 0.1909 0.6842 0.5693 0.1922 0.7783 0.4951 0.1909 0.6875 0.5831 0.1941 0.7781

(0.8, 1, 1, 0) 0.0886 0.0030 0.1205 0.0701 0.0033 0.1344 0.0804 0.0034 0.1253 0.0717 0.0024 0.1379
(0.8, 1, 1, 2√

n ) 0.2579 0.0333 0.2998 0.2469 0.0311 0.3683 0.2527 0.0316 0.2950 0.2440 0.0281 0.3679

(0.8, 1, 1, 4√
n ) 0.6173 0.2238 0.7013 0.6097 0.2353 0.7940 0.6122 0.2156 0.7030 0.6139 0.2279 0.7993

Figure 1. Empirical rejection rates of PEL test in AR structural Ut with α = 0 and A = 0.6.
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Figure 2. Empirical rejection rates of PEL test in GARCH structural Ut with α = 0 and A = 0.6.

Figure 3. Empirical rejection rates of PI test in AR structural Ut with α = 0 and A = 0.6.

Figure 4. Empirical rejection rates of PI test in GARCH structural Ut with α = 0 and A = 0.6.
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Figure 5. Empirical rejection rates of BG test in AR structural Ut with α = 0 and A = 0.6.

Figure 6. Empirical rejection rates of BG test in GARCH structural Ut with α = 0 and A = 0.6.

4. Real Applications

This section is devoted to applying the proposed PEL test to examining the error
autocorrelations in two real applications from the financial and environmental fields. We
then compare the findings with the results from the other two testing methods, the PI and
BG methods.

4.1. A Financial Example

In last few decades, numerous studies have investigated whether stock returns can
be predicted by financial and economic variables, such as the dividend–price ratio, the
earnings–price and other measures of the interest rate. For instance, ref. [30] implemented
a test of predictability on U.S. equity data. They indeed found reliable evidence for
predictability with the earnings–price ratio, the T-bill rate, and the yield spread on stock
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returns, and weaker evidence for predictability with the dividend–price ratio. In addition,
ref. [17,18] concluded that an ARMA(1,1) model of the stock returns cannot be rejected.
Therefore, the stock returns at lag 1 might be a potential explanatory variable.

In this subsection, we apply the new proposed PEL method to revisit U.S. equity
data analyzed by [30]. More specifically, two series of stock returns are involved in the
empirical study, monthly S&P 500 index data from Global Financial Data and monthly
CRSP value-weighted index data from the Center for Research in Security Prices (CRSP).
See Figure 7.

Similar to [30], stock return indexes were regarded as the predicted variable, and
three different sample periods were considered: 1927–2002, 1927–1994 and 1952–2002. The
reasons for splitting the sample period are that around 1994, valuation ratios drifted to
historical lows, making the process more nonstationary, and the nature of U.S. interest
rates was changed by the Fed’s pegging rate policy after 1952. For the first two periods,
1927–2002 and 1927–1994, we only included two exogenous variables, log earnings–price
(lep) ratio and log dividend–price (ldp) ratio. The earnings–price ratio was computed as a
moving average of earnings over the past ten years divided by the current price, and the
dividend–price ratio is computed as dividends over the past year divided by the current
price. For the sample period 1952–2002, this allowed us to add two additional exogenous
variables, the treasury-bill (tbl) rates and the long yield (lty) spread. The short rate was
the one-month treasury-bill rate, and the long yield spread was Moody’s seasoned Aaa
corporate bond yield. Finally, the stock returns at lag 1 were treated as another predictor
among all sample periods.
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Figure 7. Tendencies of two stock return indexes.

Firstly, we fitted the same predictive regression models of the monthly data as [30] for
the three different sample periods and applied PEL testings to examine serial correlation.
The p-values are reported in Table 3. Even though [30] provided some evidence about
the predictability of log earnings-price ratio on stock returns for the subsample periods
1927–2002 and 1927–1994, our PEL testings indicate that we should reject the null hypothesis
of no higher-order serial correlations at the 10% level of significance. Therefore, it might be
necessary to add further model correction steps when forecasting the stock returns.
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Table 3. The results of PEL test in ARX fittings for stock returns.

Period Obs. Exo. Var.
Results for the Following Values of q

2 4 6 8 10 12 14 16

1927–2002 912 ldp 0.2727 0.1017 0.0552 ∗ 0.0447 ∗∗ 0.0721 ∗ 0.0981 ∗ 0.0411 ∗∗ 0.0733 ∗

lep 0.2692 0.0962 ∗ 0.0441 ∗∗ 0.0345 ∗∗ 0.0584 ∗ 0.0857 ∗ 0.0311 ∗∗ 0.0573 ∗

1927–1994 804 ldp 0.2145 0.0538 ∗ 0.0355 ∗∗ 0.0326 ∗∗ 0.0641 ∗ 0.0886 ∗ 0.0299 ∗∗ 0.0460 ∗

lep 0.2317 0.0528 ∗ 0.0270 ∗∗ 0.0248 ∗∗ 0.0523 ∗ 0.0823 ∗ 0.0221 ∗∗ 0.0335 ∗∗

1952–2002 612 ldp 0.7848 0.8508 0.1528 0.2762 0.4311 0.4346 0.3533 0.4101
lep 0.7850 0.8475 0.1466 0.2639 0.4222 0.4401 0.3397 0.3929
tbl 0.7518 0.8740 0.1786 0.2986 0.4620 0.4849 0.4171 0.4522
lty 0.7788 0.8742 0.1774 0.2948 0.4628 0.4989 0.4006 0.4401

Significance levels: * p < 0.1, ** p < 0.05.

Next, besides the multiple econometric variables mentioned above, we also considered
the stock returns at lag 1 as predicting variables in ARX models. Then, PEL and BG testings
were applied for diagnostic checking, respectively. All results are reported in Table 4. From
Table 4, we cannot reject the null hypothesis at the 5% significance level based on the results
from PEL testings for all sample periods. The PI testings indicate the same conclusions
as the PEL testings at the 5% level of significance. However, the corresponding p-values
seem to be extremely huge. This could be because the high correlations between Ut and Vt
make the PI testings invalid: the Pearson’s correlation coefficients from all three periods
are greater than 0.95. For the BG testings, the results provide the opposite conclusions
when looking at sample periods 1927–2002 and 1927–1994. The conclusions show that the
ARX models are not adequate. However, for the subsample period 1952–2002, BG testing
gives evidence that we should not reject the null hypothesis of no serial correlation at the
5% level of significance. The reason for the different evidence is that BG testing could be
invalid when the dataset suffers from heteroscedasticity problems, like the sample periods
1927–2002 and 1927–1994 (see Figure 8). This is consistent with our simulation studies.
Furthermore, compared to the PEL testing proposed in this paper, the BG testing might be
more vulnerable to over-fitting.

Table 4. The results of diagnostic checking in ARX fittings for stock returns.

Period Obs. Exo. Var. Test
Results for the Following Values of q

2 4 6 8 10 12 14 16

1927–2002 912 ldp, lep PEL 0.5270 0.2376 0.0976 ∗ 0.1018 0.1383 0.1858 0.0801 ∗ 0.0980 ∗

PI 0.9720 0.2891 0.1148 0.1034 0.1287 0.1722 0.0892 ∗ 0.1086
BG 0.0320 ∗∗ 0.0137 ∗∗ 0.0017 ∗∗∗ 0.0021 ∗∗∗ 0.0011 ∗∗∗ 0.0027 ∗∗∗ 0.0004 ∗∗∗ 0.0003 ∗∗∗

1927–1994 804 ldp, lep PEL 0.4398 0.1600 0.0720 ∗ 0.0805 ∗ 0.1359 0.1984 0.0716 ∗ 0.0755 ∗

PI 0.9958 0.2077 0.0884 ∗ 0.0848 ∗ 0.1310 0.1957 0.0872 ∗ 0.0885 ∗

BG 0.0063 ∗∗∗ 0.0054 ∗∗∗ 0.0006 ∗∗∗ 0.0008 ∗∗∗ 0.0006 ∗∗∗ 0.0016 ∗∗∗ 0.0002 ∗∗∗ 0.0001 ∗∗∗

1952–2002 612 ldp, lep,
tbl, lty

PEL 0.2836 0.4779 0.0838 ∗ 0.1453 0.2582 0.2342 0.2476 0.2862

PI 0.6568 0.8131 0.1910 0.3092 0.4592 0.4027 0.3940 0.4427
BG 0.2187 0.4371 0.1084 0.2206 0.3437 0.3155 0.2825 0.3883

Significance levels: * p < 0.1, ** p < 0.05, *** p < 0.01.
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Figure 8. Residuals of ARX models.

4.2. An Environmental Example

As mentioned before, ARX models are also popular in the area of environmetrics.
A typical usage is in pollution assessment. In this subsection, we use the ARX model to
analyze daily ozone data in 2016, which are collected by a monitoring station in Texas,
USA. See Figure 9. The ozone dataset can be downloaded from United States Environ-
mental Protection Agency (EPA). Meteorological conditions can strongly affect the rates
and completeness of the reactions producing ozone, as well as the subsequent transport
and depletion; see [31]. Therefore, in line with [6], the set of exogenous variables includes
air temperature, wind speed, extraterrestrial radiation and relative humidity. The mete-
orological data were collected by the USBA-ARS Conservation and Production Research
Laboratory located in Bushland, Texas.

The ozone dataset contains some missing values from 27 June 2016 to 10 July 2016.
Rather than deleting these dates or simply using means to impute, we split the dataset into
two series: 1 January 2016–26 June 2016 and 11 July 2016–31 December 2016. In [6], they
analyzed hourly data points and suggested lags greater than 48 for the autoregressive part.
In the current study, the dataset is in daily frequencies, and so we chose ozone at lag 1 and
lag 2 as predictors as well.
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Figure 9. Tendency of ozone concentration.

Then, we applied the three different testings, PEL, PI and BG testings, on the specified
ARX models separately. All results are reported in Table 5. From Table 5, at least for the
lower-order serial correlations, there is no reliable evidence for the presence of serial corre-
lation for the subsample period 1 January–26 June at the 5% significance level. This means
the ARX model is adequate. However, for the subsample period 11 July–31 December, the
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results of PEL testing indicate that we should reject the null hypothesis of no existence
of error autocorrelations at the 5% significance level. The findings from PEL testings are
consistent with the findings of [6] that global ARX models might be not adequate and it is
necessary to consider other advanced models, such as ARXd and ARXr models. However,
for the two subsample periods, all results of PI testings provide evidence that we should not
reject the null hypothesis at the 5% significance level. This indicates the global ARX models
are adequate, which contradicts the findings of previous studies. We then conducted the
Pearson’s correlation tests and found that we should reject the null hypothesis of the zero
correlations between Ut and Vt at the 5% significance level. Therefore, it is confirmed that
the PI method are prone to the underfitting problem when Ut and Vt are correlated. When
looking at the results from BG testings, we can see more sophisticated results. When q = 2,
it indicates we should reject the null hypothesis of no serial correlation at the 5% level
of significance. However, as q increases to greater than 4, the serial correlation seems to
disappear at the 5% level of significance.

Table 5. The results of diagnostic checking in ARX fittings for ozone concentration.

Period Obs. Test
Results for the Following Values of q

2 4 6 8 10 12 14 16

1 January–26 June 178 PEL 0.2817 0.0562 ∗ 0.0773 ∗ 0.0738 ∗ 0.0536 ∗ 0.0499 ∗∗ 0.0690 ∗ 0.0231 ∗∗

PI 0.6555 0.1883 0.2412 0.3223 0.4602 0.3379 0.2664 0.1787
BG 0.2939 0.1029 0.1773 0.2124 0.2545 0.3236 0.3637 0.3682

11 July–31 December 173 PEL 0.0038 ∗∗∗ 0.0021 ∗∗∗ 0.0033 ∗∗∗ 0.0074 ∗∗∗ 0.0085 ∗∗∗ 0.0075 ∗∗∗ 0.0052 ∗∗∗ 0.0011 ∗∗∗

PI 0.7063 0.9547 0.8998 0.8022 0.6021 0.5958 0.4126 0.2402
BG 0.0352 0.0686∗ 0.1856 0.2614 0.2499 0.3011 0.2450 0.2852

Significance levels: * p < 0.1, ** p < 0.05, *** p < 0.01.

5. Conclusions

In this paper, we develop a new test procedure for serial correlation in ARX models
based on the profile empirical likelihood method in [28] and propose that the testing
procedure holds even when the innovations of disturbances are heteroscedastic or the error
series of ARX models and the exogenous processes are correlated. In the simulation studies,
the PEL testing performs well in these conditions.

Furthermore, we analyze two real data in financial and environmental domains by
specifying ARX models and then use the PEL testing method for model diagnosis. The first
application shows that when using the PEL testing method, the first-order autoregressive
models with exogenous variables, such as log earning-price and log dividend-price, are
useful and appropriate in interpreting stock returns. In the second application, we exam-
ined whether the first-order or second-order autoregressive model with four exogenous
variables, including air temperature, wind speed, extraterrestrial radiation and relative
humidity, is appropriate for forecasting the ozone concentrations. The results indicate the
pollution assessment could more complex and we should consider more advanced models.

In addition, our simulations and real applications mentioned possible nonstationary
models, including unit root or nearly unit root processes. The discussions about the related
theory and real examples can be seen in [32–34], etc. However, since (A4) in Lemma A2
does not hold, as (A5) does not converge in probability when φ = 1, the rigorous proofs
of the chi-squared distribution of proposed EL statistic in nonstationary situations are not
given. We seek to address this issue in the future.
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Appendix A. Proofs of the Main Results

In this appendix, we provide detailed proofs for the main results given in Section 2.
Before proceeding further, we need to provide some necessary lemmas, which play key
roles in proving Theorem 1. We denote θ0 and γ0 as the true values of θ and γ, respectively.
Note that we have γ0 = 0 under the null hypothesis. With asymptotic equivalence, we do
not distinguish the use of n and N.

Lemma A1. Under the same conditions of Theorem 1, when n→ ∞, we have

max
t0≤t≤n

sup
B
‖Z̃t(θ, γ0)‖ = op(

√
n), (A1)

1√
n

n
∑

t=t0

Z̃t(θ, γ0) =
1√
n

n
∑

t=t0

Z̃t(θ0, γ0) + Op(1), (A2)

1
n

n
∑

t=t0

Z̃t(θ, γ0)Z̃>t (θ, γ0) =
1
n

n
∑

t=t0

Z̃t(θ0, γ0)Z̃>t (θ0, γ0) + op(1), (A3)

where B = {θ : ‖θ− θ0‖ < C√
n} for some constant C > 0.

Proof of Lemma A1. We define Ut = Ut(θ0) for short, where t = t0, · · · , n. To show
the asymptotic result of (A1), we firstly expand the first element of Z̃t(θ, γ0) as the
following form:

Z̃t,1(θ, γ0) = Ut − (α− α0)− (φ− φ0)Yt−1 −
p−1

∑
i=1

(ψi − ψi0)∆Yt−i − (β− β0)
>Xt−1,

so we can get that as n→ ∞,

max
t0≤t≤n

sup
B

∣∣∣Z̃t,1(θ, γ0)
∣∣∣ ≤ max

t0≤t≤n
|Ut|+ O

(
1√
n

)
×
(

max
t0≤t≤n

|Yt−1|

+ max
t0≤t≤n

p−1

∑
i=1
|∆Yt−i|+ max

t0≤t≤n
‖Xt−1‖

)
.

By assumption A4 and Markov inequality, maxt0≤t≤n |Ut| = op(
√

n) is obtained. As

for the items of maxt0≤t≤n |Yt−1|, maxt0≤t≤n ∑
p−1
i=1 |∆Yt−i| and maxt0≤t≤n ‖Xt−1‖, we can

https://www.crsp.org
https://www.epa.gov
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also prove that they are of op(
√

n). We take maxt0≤t≤n |Yt−1| as an example to display. For
arbitrary ε > 0 and some δ > 0, as n→ ∞,

P
(

max
t0≤t≤n

|Yt−1| ≥ ε
√

n
)
≤

n

∑
t=t0

P
(
|Yt−1| ≥ ε

√
n
)

≤ 1
ε2+δn1+δ/2 E

(
n

∑
t=t0

|Yt−1|2+δ

)
→ 0.

The results of two other items are obtained similarly. Thus, maxt0≤t≤n supB |Z̃t,1(θ, γ0)|
= op(

√
n). With this result, the further proofs of maxt0≤t≤n supB |Z̃t,j(θ, γ0)| = op(

√
n) for

j = 2, · · · , p + d + 1 are trivial and similar; we omitted them. Meanwhile, those of the last
q components are shown below. That is, when k = 1, · · · , q,

Z̃t,p+d+k+1(θ, γ0) = Ut(θ)Ut−k(θ)

= UtUt−k + Ut(Ut−k(θ)−Ut−k) + (Ut(θ)−Ut)Ut−k

+(Ut(θ)−Ut)(Ut−k(θ)−Ut−k)

:= B1 + B2 + B3 + B4,

where Ut(θ)−Ut = (α− α0) + (φ− φ0)Yt−1 + ∑
p−1
i=1 (ψi −ψi0)∆Yt−i + (β− β0)

>Xt−1. The
details of proving maxt0≤t≤n |Bi| = op(

√
n) for i = 1, 2, 3 are included in that for i = 4, so

we only expand B4; that is,

B4 = (α− α0)
2 + (α− α0)(φ− φ0)Yt−1 + (α− α0)

p−1

∑
i=1

(ψi − ψi0)∆Yt−i

+(α− α0)(β− β0)
>Xt−1 + (α− α0)(φ− φ0)Yt−1 + (φ− φ0)

2Y2
t−1

+(φ− φ0)Yt−1

p−1

∑
i=1

(ψi − ψi0)∆Yt−i + (φ− φ0)Yt−1(β− β0)
>Xt−1

+(α− α0)
p−1

∑
i=1

(ψi − ψi0)∆Yt−i + (φ− φ0)Yt−1

p−1

∑
i=1

(ψi − ψi0)∆Yt−i

+

(
p−1

∑
i=1

(ψi − ψi0)∆Yt−i

)2

+ (β− β0)
>Xt−1

p−1

∑
i=1

(ψi − ψi0)∆Yt−i

+(α− α0)(β− β0)
>Xt−1 + (φ− φ0)Yt−1(β− β0)

>Xt−1

+(β− β0)
>Xt−1

p−1

∑
i=1

(ψi − ψi0)∆Yt−i + (β− β0)
>Xt−1X>t−1(β− β0).

By the aforementioned techniques, we can find that the maximum of each term from t in t0
to n in the expansion of B4 is op(

√
n). This finishes the proof of (A1).

Next, for j = 1, 2, · · · , p + d + 1 as n→ ∞, the proofs of

1√
n

n

∑
t=t0

(
Z̃t,j(θ, γ0)− Z̃t,j(θ0, γ0)

)
= Op(1)
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are trivial. Thus, we only show the details of the last q components of (A2); that is, when
k = 1, · · · , q, we have

1√
n

n

∑
t=t0

(
Z̃t,k(θ, γ0)− Z̃t,k(θ0, γ0)

)
=

1√
n

n

∑
t=t0

(
Ut(θ)Ut−k(θ)−UtUt−k

)
=

1√
n

n

∑
t=t0

(
Ut(Ut−k(θ)−Ut−k) + (Ut(θ)−Ut)Ut−k + (Ut(θ)−Ut)(Ut−k(θ)−Ut−k)

)
=

1√
n

n

∑
t=t0

B2 +
1√
n

n

∑
t=t0

B3 +
1√
n

n

∑
t=t0

B4

:= C1 + C2 + C3.

Moreover, we expand C1 as

C1 =
1√
n
(α− α0)

n

∑
t=t0

Ut−k +
1√
n
(φ− φ0)

n

∑
t=t0

Yt−1Ut−k

+
1√
n

p−1

∑
i=1

(ψi − ψi0)
n

∑
t=t0

∆Yt−iUt−k +
1√
n
(β− β0)

n

∑
t=t0

Xt−1Ut−k

= Op(1).

Similarly, we can show that C2, C3 = Op(1) as n→ ∞. By then, we have finished the
proof of (A2).

The proof of (A3) contains no new questionable part that need to be discussed, so we
omit it as an analogue of (A2).

Lemma A2. Under the same conditions of Theorem 1 withH0 holding, when n→ ∞, we have

1√
n

n

∑
t=t0

Z̃t(θ0, 0) d−→ N (0, Σ), (A4)

1
n

n

∑
t=t0

Z̃t(θ0, 0)Z̃>t (θ0, 0)
p−→ Σ, (A5)

where d−→ denotes convergence in distribution, and
p−→ denotes convergence in probability. Matrix

Σ is defined as E
(

Z̃t(θ0, 0)Z̃>t (θ0, 0)
)

. Note that Σ is a positive definite matrix.

Proof of Lemma A2. According to assumption A2, it is easy to check that {Z̃t(θ, γ)}n
t=t0

is a Martingale difference series with respect to Ft−1. Hence, based on assumptions
A1–A5, we can further show (A4) by the Martingale central limit theorem in [35] and the
Cramér–Wold device.

The proof of (A5) is trivial based on (A4); we omit the details.

Proof of Theorem 1. Based on the results obtained in Lemma A1 and Lemma A2, we can
finally prove the asymptotic chi-squared distribution of our proposed test statistics. As
shown in [36], the solution of pt by Lagrange multipliers is

pt =
1
n

1
1 + λ>Z̃t(θ, γ0)

, t = t0, · · · , n.

Note that the estimating equations require that ∑n
t=t0

ptZ̃t(θ, γ0) = 0. Denote that

g(θ, γ, x) :=
1
n

n

∑
t=t0

Z̃t(θ, γ)

1 + x>Z̃t(θ, γ)
, and
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ξt(θ, γ0) := λ>Z̃t(θ, γ0),

where λ is the solution of g(θ, γ, x) = 0 with respect to x for fixed θ.
Firstly, we show that ||λ|| = Op

(
1√
n

)
as n → ∞. Define v from λ = ρv with

ρ = ||λ||. We obtain the following results from ‖g(θ, γ0, λ)‖ = 0. Assume θ ∈ B; we
then have

0 =
∣∣∣λ>g(θ, γ0, λ)

∣∣∣
=

∣∣∣∣∣ 1n n

∑
t=t0

ξt(θ, γ0)−
1
n

n

∑
t=t0

ξ2
t (θ, γ0)

1 + ξt(θ, γ0)

∣∣∣∣∣
≥

∣∣∣∣∣ 1n n

∑
t=t0

ξ2
t (θ, γ0)

1 + ξt(θ, γ0)

∣∣∣∣∣−
∣∣∣∣∣ 1n n

∑
t=t0

ξt(θ, γ0)

∣∣∣∣∣
≥ 1

n

n

∑
t=t0

ξ2
t (θ, γ0)

1 + max
t0≤t≤n

ξt(θ, γ0)
−
∣∣∣∣∣ 1n n

∑
t=t0

ξt(θ, γ0)

∣∣∣∣∣.
Denote that Dn(θ) =

1√
n ∑n

t=t0
Z̃t(θ, γ0), Fn(θ) =

1
n ∑n

t=t0
Z̃t(θ, γ0)Z̃>t (θ, γ0); then, the

above inequality could be written as

ρ2v>Fn(θ)v ≤
∣∣∣∣∣ 1n n

∑
t=t0

ξt(θ, γ0)

∣∣∣∣∣
(

1 + max
t0≤t≤n

ξt(θ, γ0)

)

≤
(∣∣∣∣∣ ρn n

∑
t=t0

v>Z̃t(θ0, γ0)

∣∣∣∣∣+
∣∣∣∣∣ ρn n

∑
t=t0

v>
(

Z̃t(θ, γ0)− Z̃t(θ0, γ0)
)∣∣∣∣∣
)

×
(

1 + |ρ| max
t0≤t≤n

∣∣∣v>Z̃t(θ, γ0)
∣∣∣)

= |ρ| ×Op

(
1√
n

)
+ ρ2 ×Op

(
1√
n

)
× op

(√
n
)
.

Note that Fn(θ)
p−→ Σ, and Σ is a positive definite matrix. Thus, v>Fn(θ)v is greater

than the minimum eigenvalue of Fn(θ) = Σ + op(1). This finishes ||λ|| = Op

(
1√
n

)
.

Next, we show that for θ ∈ B,

λ =
1√
n

(
Σ−1Dn(θ) + op(1)

)
. (A6)

According to ∑n
t=t0

ptZ̃t(θ, γ0) = 0, we have

0 = g(θ, γ0, λ)

=
1
n

n

∑
t=t0

(
Z̃t(θ, γ)

1− ξ2
t (θ, γ) + ξ2

t (θ, γ)

1 + ξt(θ, γ)

)

=
1
n

n

∑
t=t0

(
Z̃t(θ, γ)(1− ξt(θ, γ))

)
+

1
n

n

∑
t=t0

(
Z̃t(θ, γ)

ξ2
t (θ, γ)

1 + ξt(θ, γ)

)

=
1√
n

Dn(θ) + Σλ +
1
n

n

∑
t=t0

(
Z̃t(θ, γ)

ξ2
t (θ, γ)

1 + ξt(θ, γ)

)
.

As discussed above, we have

max
t0≤t≤n

ξt(θ, γ0) ≤ |ρ| max
t0≤t≤n

∣∣∣v>Z̃t(θ, γ0)
∣∣∣ = Op

(
1√
n

)
× op

(√
n
)
= op(1).
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Then we can further get that∥∥∥∥∥ 1
n

n

∑
t=t0

(
Z̃t(θ, γ0)

ξ2
t (θ, γ0)

1 + ξt(θ, γ0)

)∥∥∥∥∥
=

∥∥∥∥∥λ>
1
n

n

∑
t=t0

(
Z̃t(θ, γ0)Z̃>t (θ, γ0)

ξt(θ, γ0)

1 + ξt(θ, γ0)

)∥∥∥∥∥
= Op

(
1√
n

)
× op(1) = op

(
1√
n

)
This result uses the positive definiteness of Fn(θ) again. Here, we have proved (A6).
Finally, we prove the limiting distribution of our proposed statistics. We expand

−2 log L̃(θ, γ0) by Taylor expansion, where ζt denotes some point between 0 and ξt(θ, γ0).

−2 log L̃(θ, γ0)

= 2
n

∑
t=t0

ξt(θ, γ0)−
n

∑
t=t0

ξ2
t (θ, γ0) +

n

∑
t=t0

2
3(1 + ζt)3 ξ3

t (θ, γ0)

= 2
√

nλ>
(

1√
n

n

∑
t=t0

Z̃t(θ, γ0)

)
− nλ>

(
1
n

n

∑
t=t0

Z̃t(θ, γ0)Z̃>t (θ, γ0)

)
λ

+
n

∑
t=t0

2
3(1 + ζt)3 ξ3

t (θ, γ0)

= 2
(

D>n (θ)Σ−1 + op(1)
)

Dn(θ)−
(

D>n (θ)Σ−1 + op(1)
)

Fn(θ)
(

Dn(θ)Σ
−1 + op(1)

)
+

n

∑
t=t0

2
3(1 + ζt)3 ξ3

t (θ, γ0)

= D>n (θ)Σ−1Dn(θ) + op(1)

Notice that for some constant C > 0,∣∣∣∣∣ n

∑
t=t0

2
3(1 + ζt)3 ξ3

t (θ, γ0)

∣∣∣∣∣ ≤ C max
t0≤t≤n

ξt(θ, γ0)
n

∑
t=t0

ξ2
t (θ, γ0)

= C max
t0≤t≤n

ξt(θ, γ0)
n

∑
t=t0

λ>Fn(θ)λ

= op(1).

Assume θ ∈ B and define matrix Bn(θ) as the solution of

Dn(θ)− Dn(θ0) = Bn(θ)(θ− θ0).

Notice that Bn(θ) =

(
B?

n(θ)
0q×(p+d+q+1)

)
, 0x×y denotes a zero matrix of order x× y. Assume

that θ̃ is the solution of the following objective function; that is, θ̃ := arg minB G(θ) with

G(θ) = −2 log L̃(θ, γ0) + 2 log L̃(θ0, γ0)

= D>n (θ)Σ−1Dn(θ)− D>n (θ0)Σ
−1Dn(θ0) + op(1)

= (θ− θ0)
>B>n (θ)Σ−1Bn(θ)(θ− θ0) + 2(θ− θ0)

>B>n (θ)Σ−1Dn(θ0) + op(1).

From [36], we know that infB G(θ) = G(θ0) = 0. Solving G(θ) = 0, we can obtain

(θ̃− θ0) = −
(

B>n (θ̃)Σ−1Bn(θ̃)
)−1

Σ−1Dn(θ0) + op(1).
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Consequently, we can show the asymptotic result of the proposed log EL statistic.
Assuming n→ ∞, we have

−2 log L̃(θ̃, γ0)

= D>n (θ̃)Σ−1Dn(θ̃) + op(1)

=
(

Bn(θ̃)(θ̃− θ0) + Dn(θ0)
)>

Σ−1
(

Bn(θ̃)(θ̃− θ0) + Dn(θ0)
)
+ op(1)

=
(

Σ−
1
2 Dn(θ̃)

)>(
Ip+d+q+1 − Σ

1
2 Bn(θ̃)

(
B>n (θ̃)Σ−1Bn(θ̃)

)−1
B−1

n (θ̃)Σ
1
2

)
(

Σ−
1
2 Dn(θ̃)

)
+ op(1)

=
(

Σ−
1
2 Dn(θ̃)

)>(0(p+d+1)×(p+d+1) 0(p+d+1)×q
0(p+d+1)×q Iq

)(
Σ−

1
2 Dn(θ̃)

)
+ op(1)

d−→ χ2
q.
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