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Abstract: The notion of statistical order derives from the disequilibrium concept introduced by
López-Ruiz, Mancini, and Calbet thirty years ago. In this effort, it is shown that the disequilibrium is
intimately linked to the celebrated Rényi entropy. One also explores this link in connection with the
van der Waals gas description.
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1. Introduction

In this work, one wishes to link the notion of Rényi’s entropy to that of statistical order.
We start then by recalling some essential features of this kind of order.

1.1. Statistical Disorder

Statistically, maximum or total disorder is associated with a uniform probability distribu-
tion (UPD). Thus, the more dissimilar a given probability distribution (PD) is to the UPD,
the more statistical order this given PD represents. Recall at this point that the ordinary
entropy S adequately grasps disorder as well and is maximized by the UPD. Furthermore,
recall first of all that the Shannon entropy S is a measure of disorder, as extensively dis-
cussed in Refs. [1,2]. López-Ruiz, Mancini and Calbet (LMC) [1,2] defined an appropriate
tool called disequilibrium D to measure statistical order. It is the distance in probability
space between an extant PD and the UPD. Furthermore, they baptized the product SD as
the statistical complexity C

C = SD. (1)

Since one is interested here in the notion of statistical order represented by D, from
here on, we call this quantity the statistical order index (SOI).

For an N -microstates system, each element of the UPD is equal to 1/N . Thus, if the
elements of the extant PD are called pi, then D is given by [1]

D =
N
∑
i=1

(
pi −

1
N

)2
, (2)

and the Shannon entropy is

S =
N
∑
i=1

pi ln pi, (3)

where p1, p2, . . . , pN are de corresponding probabilities, with the condition ∑Ni=1 pi = 1 [1].
In this effort, one will focus attention, within a classical canonical-ensemble environ-

ment, on the LMC statistical order index concept and show that it is intimately linked to
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Rényi’s entropy. One focuses attention upon classical integrable systems and will associate
them with an SOI. As a matter of fact, it will be seen that the SOI (given by D) can entirely
replace the partition functions in thermal relationships.

1.2. Rényi’s Entropy

Rényi’s entropy plays a significant role in Information Theory [3]. For example, it
generalizes Hartley’s and Shannon–Boltzmann’s entropies and the concept of dimension.
It is relevant in ecology and statistics as a diversity index [4,5], as well as a measure of
quantum entanglement and much more. It is thus an entropic functional of immense
relevance (for more details, see the other articles of this Special Issue).

The Rényi’s entropy of order q, with 0 ≤ q < ∞ and q 6= 1, is defined as

Rq =
1

1− q
ln

(
N

∑
i=1

pq
i

)
, (4)

where p1, p2, . . . , pN are the corresponding set of probabilities [6]. Appealing to the
L’Hôpital’s rule, it is possible to demonstrate that, when the limit q tends to unity, Rényi’s
entropy approaches to Shannon’s entropy S (given by Equation (3)), i.e.,

S ≡ S1 = lim
q→1

Rq. (5)

Moreover, the max-entropy or Hartley entropy is the special case of Rényi’s entropy
for q = 0, i.e.,

R0 = lim
q→0

Rq = ln

(
N

∑
i=1

p0
i

)
= ln N. (6)

1.3. Review on Properties of the Statistical Order Index

Consider a classical ideal system of identical particles contained in a volume V and
HamiltonianH0(r, p), where (r, p) are the concomitant phase space variables. Furthermore,
the system is in equilibrium at temperature T. The ensuing distribution becomes [7]

ρ0(r, p) =
e−βH0(r,p)

Q(0)
N (V, T)

, (7)

with β = 1/kBT, and kB the Boltzmann constant.
The canonical partition function is

Q(0)
N (V, T) =

∫
dΩ e−βH0(r,p), (8)

with dΩ = d3Nr d3N p/N!h3N , while Helmholtz’ free energy A0 reads [7]

A0(N, V, T) = −kBT ln Q(0)
N (V, T). (9)

López-Ruiz showed in Ref. [8] that the statistical order index D0(N, V, T) can be cast as

D0(N, V, T) = e2β [A0(N,V,T)−A0(N,V,T/2)], (10)

a form valid only for continuous PDs. Now, change T to T/2 in Equation (9) and replace
the ensuing expression into Equation (10). Thus,

D0(N, V, T) =
Q(0)

N (V, T/2)[
Q(0)

N (V, T)
]2 . (11)
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An alternative D—expression is obtained via definitions (7) and (29), as was shown in
Ref. [9], since

Q(0)
N (V, T/2) =

∫
dΩ e−2βH0(r,p). (12)

Therefore, replacing the above expression with Equation (11), one has

D0(N, V, T) =
∫

dΩ

(
e−βH0(r,p)

Q(0)
N (V, T)

)2

= (13)

=
∫

dΩ (ρ0(r, p))2,

an often used expression (see Ref. [10]). Note that one adds the subscript 0 (or super-
script (0)) to indicate that the system under consideration is a classical ideal gas. This
notation is important to avoid confusion in future sections.

2. Statistical Order and Thermodynamic Relations

A reminder that D is an expression of statistical order and constitutes an essential
concept. In Ref. [9], it has been shown for the classical ideal gas in a canonical ensemble
that the basic classical thermodynamic relations (TR) are expressed in statistical order terms
via the statistical order index, which we now call D0(N, V, T). The relevant TR, in addition
to Helmholtz’ free energy A0, read [7]

U0 = −
(

∂ ln Q(0)
N (V, T)
∂β

)
N,V

, (14)

µ0 = −kBT

(
∂ ln Q(0)

N (V, T)
∂N

)
V,T

, (15)

P0 = kBT

(
∂ ln Q(0)

N (V, T)
∂V

)
N,T

, (16)

S0 = kB

(
∂(T ln Q(0)

N (V, T))
∂T

)
N,V

. (17)

One refers above, respectively, to the mean energy U0, the chemical potential µ0,
pressure P0, and entropy S0 that in turn depend on the number of particles, volume V and
temperature T. As it was stated in Ref [9], it is possible to recast these TR in terms of the
statistical order index represented by D0.

Deriving Equation (11) with respect to β, it is possible to find(
∂ ln D0(N, V, T)

∂β

)
N,V

=

=

(
∂ ln Q(0)

N (V, T/2)
∂β

)
N,V

− 2

(
∂ ln Q(0)

N (V, T)
∂β

)
N,V

. (18)

Furthermore, using Equation (14) and placing it into Equation (18), one finds(
∂ ln D0(N, V, T)

∂β

)
N,V

= 2(U0(T)−U0(T/2)). (19)

The equipartition theorem for the energy states that

U0 =
f
2

kBT, (20)
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with f the number of degrees of freedom [11,12]. Thus, from (20), one has U0(T/2) =
U0(T)/2. Inserting Equation (20) into Equation (19), one finds(

∂ ln D0(N, V, T)
∂β

)
N,V

= U0. (21)

One emphasizes that (19) is of a more general character than (21) because the latter
holds only for systems that satisfy the equipartition of energy. Now, differentiating (11)
with respect to U0, one sees that (

∂ ln D0(N, V, T)
∂U0

)
N,V

=

=

(
∂ ln Q(0)

N (V, T/2)
∂U0

)
N,V

− 2

(
∂ ln Q(0)

N (V, T)
∂U0

)
N,V

. (22)

Given that U is linked to β via Equation (20), one also has β = (∂ ln Q(0)
N /∂U0)N,V .

Then, assuming once more equipartition, one finds(
∂ ln D0(N, V, T)

∂U0

)
N,V

= −β. (23)

The pair of relations (21) and (23) constitutes a basic theoretical set and are called
reciprocity relations. According to Jaynes, they yield a complete description of the thermo-
dynamic properties, here, in statistical order language, for a system described via Gibb’s
canonical ensemble [13]. One sees then that Gibb’s canonical ensemble theory can be totally
recast in terms of temperature and statistical order—a significant result indeed.

In addition, one comments that Baez pointed out that, while Shannon’s entropy has a
strong thermodynamic’ flavor, Rq has not quite been completely integrated into the thermal
discourse [3]. Here, one wishes to find a natural role for Rényi’s entropy in physics via the
notion of statistical order as represented by the statistical order index D. This role is related
to the free energy, using a parameter (for an arbitrary fixed temperature T0) q = T0/T
defined as a ratio of temperatures [9]. It was argued in Ref. [3] that, physically, T0 is the
temperature for which the system automatically has zero free energy.

Therefore, Baez shows in Equation (9) of Ref. [3] that

RT0/T(T0) = −
A0(N, V, T)− A0(N, V, T0)

kB(T − T0)
. (24)

Setting now T0 = T/2 and employing Equation (10), one finds

D(N, V, T) = e−R1/2(N,V,T/2), (25)

which is the wished-for direct relation between Rényi’s entropy of order 1/2 and the
statistical order index D. To summarize, it has been connected to Rényi’s entropy with
statistical order [9].

Indeed, a possible generalized LMC-like complexity family that involves Rényi’s
entropy instead of Shannon’s is given by this expression

Cq(N, V, T) = eRq(N,V,T)−R1/2(N,V,T/2), (26)

as it was pointed out in Ref. [9]. We see that one can also express Cq solely in Rényi’s terms.
To sum up: statistical order is represented by R1/2(N, V, T/2).
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3. Real Gases Application
3.1. Notions about Real Gases

Consider now intermolecular interactions in a classical gas of identical particles,
confined into a space of volume V and in equilibrium at the temperature T. The pertinent
Hamiltonian reads as a sum over the number of particles N [7]. Considering particles i and
j, we have

H(r, p) = H0(r, p) + ∑
i<j

uij, (27)

where H0(r, p) = ∑N
i=1(p2

i /2m) is the free Hamiltonian, and m is the mass of the system.
Moreover, uij = u(|ri − rj|) is the energy of interaction between the particles ith and jth, a
function of the inter-particle distance only. The second sum in the right-hand term of the
Hamiltonian runs over the N(N − 1)/2 extant pairs of particles [7]. For such a system, the
canonical partition function is the product of the ideal gas partition function Q(0)

N and a
configuration integral ZN [7]

QN(V, T) = Q(0)
N (V, T) ZN(V, T), (28)

where, as just stated, the canonical partition function for the ideal gas is

Q(0)
N (V, T) =

∫
dΩ exp(−β H0(r, p)) =

1
N!

(
V
λ3

)N
, (29)

with λ as the particles’ mean thermal wavelength λ = h/
√

2πmkBT and h the Planck’s
constant [7]. The quantity ZN(V, T) is the well-known configuration integral given by [7,14]

ZN(V, T) =
1

VN

∫
d3Nr exp (−β ∑

i<j
uij). (30)

3.2. Rényi Entropy for a Real Gas

In this article, one focuses attention on the relation of Rényi’s entropy to statistical order
via its connection with the free energy, as explained by Baez in Ref. [3]. For such purpose,
one first defines Rényi’s entropy of order q for a classical system in the following manner

Rq =
kB

1− q
ln
∫

d Ω [ρ(r, p)]q, (31)

where dΩ is the differential of the phase space and ρ(r, p) the probability distribution of
the system. With the motif of connecting with thermodynamics, one adds the Boltzmann
constant to the definition (31). Second, one considers ρ(r, p) = exp(−βH(r, p))/QN(V, T),
which is associated with the Hamiltonian (27) of the vdW gas. Therefore, setting

X =
1

h3N N![QN(V, T)]q
, (32)

one obtains,

Rq =
kB

1− q
ln

[
X
∫

d3N p exp(−qβH0(r, p))
∫

d3Nr exp (−qβ ∑
i<j

uij)

]
. (33)

Let us single out the following two terms∫
d3N p exp(−qβH0(r, p)) =

h3N N!
VN Q(0)

N (V, T/q), (34)
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and ∫
d3Nr exp (−qβ ∑

i<j
uij) = VN ZN(V, T/q). (35)

Then, replacing Equations (34) and (35) in Equation (33), one is immediately led to the
Ré’s entropy given by

Rq =
kB

(1− q)
ln
{

QN(V, T/q)
[QN(V, T)]q

}
. (36)

Via Equation (28), one then rewrites Equation (36) as

Rq = kB ln

{
1

N!

(
V
λ3

)N
}
+

kB
1− q

ln
{

q−3N/2 ZN(V, T/q)
[ZN(V, T)]q

}
, (37)

where one has considered the canonical partition function of the ideal gas given by
Equation (29). Note that we have changed T by T/q. In addition, one has taken into
account the transformation QN(V, T/q) = Q(0)

N (V, T/q)ZN(V, T/q), with Q(0)
N (V, T/q) =

q3N/2 Q(0)
N (V, T).

Using Stirling’s approximation (ln N! ≈ N ln N − N) and conveniently rearranging
terms in Equation (37), one arrives at

Rq = kB ln
(

V
Nλ3

)N
+ NkB

(
1− 3

2
ln q

1− q

)
+

kB
1− q

ln
{

ZN(V, T/q)
[ZN(V, T)]q

}
. (38)

A reminder now that the classical entropy of the ideal gas is called the Sackur–
Tetrode [14]

S0 = kB ln
(

V
Nλ3

)N
+

5NkB
2

. (39)

Finally, considering Equation (39), one sees that Equation (38) can be also written as

Rq = S0 −
3NkB

2

(
1 +

ln q
q− 1

)
+

kB
1− q

ln
{

ZN(V, T/q)
[ZN(V, T)]q

}
. (40)

3.3. Dilute Gas

If the gas density is low enough (n = N/V = 1/v � 1), the configuration integral
is suitably approximated, as it was shown in Ref. [14]. One usually approximates the
interaction uij above in the form of a suitable function u(r) [14].

ZN(V, T) ≈ exp(−n N B2(T)), (41)

where B2(T) is the second Virial coefficient, given by [14]

B2(T) = −
1
2

∫
d3r [exp(−βu(r))− 1]. (42)

In this case, Equation (40) becomes

Rq = S0 −
3NkB

2

(
1 +

ln q
q− 1

)
+

nNkB
q− 1

[B2(T/q)− qB2(T)]. (43)

3.4. The Van Der Waals Instance

One appeals now to the van der Waals assumptions [9]: u(r) = ∞ for r < ro, and
exp(−βu(r)) ≈ 1− βu(r) for r > ro, where ro denotes here the minimum possible sepa-
ration between molecules [14]. It is easy then to compute the second virial coefficient by
recourse to Equation (42), which, in this case, the virial coefficient B2 becomes

B2(T) = b− βa, (44)
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where b = 2πr3
0/3 is related to the volume of a hard-sphere molecular gas, and

a = 2π
∫ ∞

r0

dr r2u(r), (45)

is the mean potential energy, which measures the intermolecular interaction strength. One
also sees that

B2(T/q) = b− qβa. (46)

Therefore, the van der Waals Rényi’s entropy given by Equation (43) becomes

Rq = SvdW −
3NkB

2

(
1 +

ln q
1− q

)
, (47)

where

SvdW = S0 − NkB

(
b
v

)
, (48)

is the Shannon’s entropy for the van der Waals gas [15]. Notice that, in the limit that q tends
to unity, the term ln q/(1− q)→ −1, then R1 = limq→1 Sq = SvdW .

In addition, one calculates the statistical complexity according to definition (26) and
using Equation (48). Thus, one has

Cq = exp
(
−3NkB

2

(
ln q

1− q
+ 2 ln 2

))
, (49)

which is independent of the temperature T. Note that as N grows, the system becomes
less complex.

In Figure 1, Rényi’s entropy is plotted for q = 1/2, corresponding to some noble gases
versus the parameter b of Equation (44). Here, one evaluates things at the van der Waals
critical (1) temperature Tc and (2) volume per particle vc [12,15]. Also, we plot the Rényi’s
entropy against temperature T for several values of parameter q in Figure 2.

Helium Neon Argon Krypton Xenon

Hydrogen Nitrogen Oxygen Fluorine

0.00 0.02 0.04 0.06 0.08 0.10

0.0055

0.0060

0.0065

0.0070

b

R
1/
2
/N

Figure 1. Rényi’s entropy per particle being q = 1/2 for the typical van der Waals values
T = Tc = 8a/(27b) and v = vc = 3b versus b. One considers the noble gases helium, neon,
argon, krypton, and xenon, and also, hydrogen, nitrogen, oxygen, and fluorine. The numerical values
of a and b are given in the table of Ref. [16]. The lines are visual aids representing virtual trajectories
as b varies.
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q=0.1

q=0.5

q=1

q=2

0 2 4 6 8 10

0.0046

0.0048

0.0050

0.0052

T

R
q
/N

Figure 2. Rényi’s entropy per particle versus temperature T for several values of q. One takes
v = 0.0001. The solid curve corresponds to b 6= 0 (vdW case) and the dashed curve to b = 0 (ideal
case). The numerical value of b is of the helium, obtained in the table of Ref. [16].

4. Some Relations for the Statistical Order in the vdW Approximation

In this section, one will apply some ideas developed in Section 2. Therefore, one needs
to consider the statistical order index D in the vdW instance.

In order to repeat the procedure developed in Section 2, one uses the general definition
of D, which in this case is

D(N, V, T) =
QN(V, T/2)

[QN(V, T)]2
= D0(N, V, T)

ZN(V, T/2)

[ZN(V, T)]2
. (50)

Taking first the logarithm of D and then differentiating with respect to β, one obtains(
∂ ln D

∂β

)
N,V

=

(
∂ ln D0

∂β

)
N,V

+
∂

∂β

(
ZN(V, T/2)

[ZN(V, T)]2

)
N,V

. (51)

Considering Equation (41), one arrives at(
∂ ln D

∂β

)
N,V

=

(
∂ ln D0

∂β

)
N,V

+
N
v

∂

∂β
[2B2(T)− B2(T/2)]. (52)

Now, taking into account the virial coefficient B2 given by Equation (46), one
finally obtains (

∂ ln D
∂β

)
N,V

=

(
∂ ln D0

∂β

)
N,V

= U0, (53)

where the last equality is due to Equation (21).
The result (53) can also be achieved via the statistical order obtained in Ref. [15], whose

appearance is
D(N, V, T) = D0(N, V, T) exp(Nb/v). (54)

One must emphasize that the derivative of the vdW ln D with respect to β is not equal
to the energy of the ideal gas. This is because the term 2B2(T)− B2(T/2) = b does not
depend on T and then ∂b/∂β = 0. Note also the vdW Hamiltonian is not quadratic, unlike
that for the ideal gas.

5. Rq−Related Statistical Complexity via Fisher’S Information Measure

The statistical complexity can be thought of as the product of a measure of order times
a measure of disorder (the entropy). Accordingly, one considers now, for thee sake of
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completeness, an alternative, Rényi related, definition of the statistical complexity (26) for
the case b = 0 (ideal gas) as follows

Cq = Ip Rq, (55)

where Ip is the Fisher information measure [17]. This quantity is a measure of order [17],
as D, so that it can legitimately replace D in the Cq definition. Ip in the phase-space
appearance appears as

Ip =
∫

dΩ ρ0(r, p)
3N

∑
i=1

(
∂ ln ρ0(r, p)

∂pi

)2

, (56)

where the probability distribution ρ0(r, p) = exp(−βH0(r, p))/Q(0)
N , and Rq is Rényi’s

entropy obtained in Equation (47). Performing the above integral, one can analytically
obtain (this is the great advantage of this Cq)

Ip =
3N

mkBT
. (57)

One appreciates the shape of Cq in Figure 3. The complexity Cq reaches its maximum
value near T = 0 and approaches zero as T approaches infinity, as one sees in the figure.
Of course, the complexity diminishes as T augments and grows when the particle number
increases (see Figure 3). The complexity grows as q decreases. Its maximum corresponds
to temperatures for which the classical treatment is no longer valid. This last statement is
carefully investigated in Ref. [15].

q=0.1

q=0.5

q=1

q=2

0  2.0×10-19 4.0×10-19 6.0×10-19 8.0×10-19  1.0×10-18
0

5.0×1045

1.0×1046

1.5×1046

2.0×1046

T (°K)

C
q
/N
2

0 100 200 300

2.50×1026
5.00×1026
7.50×1026
1.00×1027
1.25×1027

T(°K)

Figure 3. Statistical complexity Cq/N2 versus the temperature T for several values of q. One considers
v = 2 and b = 0 (ideal case).

6. Conclusions

In this paper, one has connected Rényi’s entropy (RE) with the statistical order–
disorder disjunction. Disorder is represented by several types of entropies, Rényi’s being
one of them. Order is represented by Fisher’s information measure and also by high values
of different types of distances in probability space from incumbent probability distribu-
tion to the uniform one (PU). The Euclidean distance is called the disequilibrium D. The
Kullback–Leibler divergences involving the PU are another possibility.

Equation (25) directly links D with the q = 1/2 Rényi’s entropy, which gives this
special entropy a privileged role in the order–disorder disjunction. This equation straight-
forwardly states that the degree of order/disorder (O/D) links, at the same time, RE to D.
This jointly expresses the same O/D situation. One has chosen de van der Waals gas to
illustrate some O/D instances in an actual system: several gases.



Entropy 2022, 24, 1067 10 of 10

Accordingly, one has shown in this review note that, in a classical phase space context,
with continuous probability distributions, the LMC notion of statistical order index D has a
suitable role in statistical thermodynamics by virtue of Equation (25), plus a host of other
thermal relations that have been discussed above.

Indeed, for the classical ideal gas, in the new thermal relations, the partition func-
tion QN does not need to appear at all, so that one may be tempted to suggest that it has
been replaced by the statistical order index. All important thermodynamic relations can
indeed be expressed in terms of D. One might argue that the logarithm of D exhibits prop-
erties analogous to those of Massieu potentials. Finally, D itself can be simply expressed
in terms of a particular Rényi’s entropy. This is not exactly so for the vdW gas because its
Hamiltonian is not quadratic.

Interesting future work and open problems would be to apply the exposed ideas
considering other information quantifiers, for example, (1) Tsallis entropy, (2) gas equations
different from the van der Waals one, or (3) alternative statistical quantifiers.
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