
����������
�������

Citation: Bao, X.; Jiang, M.; Fang, W.;

Zhao, C. PCQNet: A Trainable

Feedback Scheme of Precoder for the

Uplink Multi-User MIMO Systems.

Entropy 2022, 24, 1066. https://

doi.org/10.3390/e24081066

Academic Editor: Gwanggil Jeon

Received: 7 July 2022

Accepted: 31 July 2022

Published: 2 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

PCQNet: A Trainable Feedback Scheme of Precoder for the
Uplink Multi-User MIMO Systems
Xiuwen Bao 1, Ming Jiang 1,2,*, Wenhao Fang 1 and Chunming Zhao 1,2

1 National Mobile Communications Research Laboratory, Southeast University, Nanjing 210096, China;
xwbao@seu.edu.cn (X.B.); whfang@seu.edu.cn (W.F.); cmzhao@seu.edu.cn (C.Z.)

2 Purple Mountain Laboratories, Nanjing 211100, China
* Correspondence: jiang_ming@seu.edu.cn; Tel.: +86-139-1290-9162

Abstract: Multi-user multiple-input multiple-output (MU-MIMO) technology can significantly im-
prove the spectral and energy efficiencies of wireless networks. In the uplink MU-MIMO systems,
the optimal precoder design at the base station utilizes the Lagrange multipliers method and the
centralized iterative algorithm to minimize the mean squared error (MSE) of all users under the power
constraint. The precoding matrices need to be fed back to the user equipment to explore the potential
benefits of the joint transceiver design. We propose a CNN-based compression network named
PCQNet to minimize the feedback overhead. We first illustrate the effect of the trainable compression
ratios and feedback bits on the MSE between the original precoding matrices and the recovered ones.
We then evaluate the block error rates as the performance measure of the centralized implementation
with an optimal minimum mean-squared error (MMSE) transceiver. Numerical results show that
the proposed PCQNet achieves near-optimal performance compared with other quantized feedback
schemes and significantly reduces the feedback overhead with negligible performance degradation.

Keywords: MIMO; uplink precoding; limited feedback precoding; MMSE receivers; convolutional
neural networks (CNNs); joint transceiver design

1. Introduction

In recent years, the multi-user multiple-input multiple-output (MU-MIMO) technology
has offered great advantages over conventional point-to-point MIMO systems due to
its improvement on the spectral and the energy efficiencies [1,2]. Specifically, the base
station (BS) of a MU-MIMO system communicates with a large number of user terminals
in the same time-frequency resource by configuring numerous antennas. Furthermore,
multiple antennas bring large improvements in throughput and radiated energy efficiency
through focusing energy into ever smaller regions of space [3]. As a result, the MU-MIMO
systems have become a fundamental and integral part of present and future generations
of wireless networks. Digital beamforming and hybrid analog/digital beamforming are
widely applied for inter-user interference reduction with the evolution and growth of 5G
technical standards [4].

Nowadays, the joint optimization of the transceiver has attracted increasing research
activities as an effective interference management technique for the uplink MU-MIMO
systems [5]. Since the bottleneck of hardware cost and power consumption in the millimeter-
wave mmWave Massive MIMO system will not appear in the uplink MU-MIMO scenarios,
we adopt the digital precoding for its excellent performance in terms of sum rates. Some
early works adopt the non-iterative [6,7] and iterative methods [8,9] to solve the highly
non-convex problem of the joint transceiver optimization. The non-iterative precoding
schemes are based on matrix decomposition, such as the singular value decomposition [6]
and the QR decomposition [7], which cannot cope with the mismatch between the numbers
of transmitting streams and the antennas. We note that the centralized iterative precoding
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scheme utilizing the method of Lagrange multipliers can solve the mismatch between the
numbers of transmitting streams and the antennas. This iterative precoding scheme has the
best end-to-end performance in the joint linear transceiver design but requires a certain
feedback overhead [9]. In another aspect of studies, the high complexity nonlinear detector
is unfeasible. Linear detectors such as the zero-forcing (ZF) detector and the minimum
mean-squared error (MMSE) detector are widely applied for practical systems.

The online implementation of the centralized solution with the optimal MMSE receiver
requires the necessary information feedback for the user equipment (UE) to perform real-
time updating, whereas the offline one requires the feedback of the optimal precoding
matrix. With the subsequent development of beyond fifth-generation (B5G) or sixth-
generation (6G) technologies, the dimensions of the precoding matrices scales with the
number of antennas, which gradually become rather large [10,11]. The increasing feedback
overhead of precoding becomes a challenge for the high spectral efficiency, ultra-low latency,
and high reliability requirements of future B5G and 6G wireless networks. Therefore, the
design of new feedback architecture that lowers the feedback overhead and maintains high
performance is crucial to unlocking the full potential of the uplink MU-MIMO.

Limited feedback of precoding techniques has been intensively investigated to reduce
the feedback overhead in the uplink wireless communication systems [12–14], which mainly
focuses on the design of a low-complexity codebook. An efficient precoding scheme is
proposed in [12], where the optimal precoder is chosen from a finite codebook known to
both the transmitter and the receiver. The application of the Lloyd-Max algorithm in [13]
can be viewed as a vector quantization problem of codebook design. A three-dimensional
MU-MIMO codebook is proposed in [14] which adopts the signal-to-noise ratio (SNR)
maximization criterion to select the optimal codebook. The 3rd generation partnership
project (3GPP) [15] provides a dedicated specification for the precoding matrix indexes
(PMIs). Consequently, this protocol scheme has limited versatility, quantity, and accuracy
performance. By contrast, the non-codebook-based centralized scheme has enormous
throughput advantages compared to the codebook approaches but with relatively high cost
of the feedback of precoding matrices.

Recently, as the success of deep learning reaches more fields, the neural-network-based
auto-encoder has been recently applied to enhance the performance of MU-MIMO systems
in [16–18]. It is worth noting that the auto-encoder is well suited to tackling the vector
compression problem because of its robustness to the unstable wireless channel conditions. The
deep neural network (DNN) in [19] takes the place of the conventional zero-forcing detection
and offers near-optimal transmission quality with much less computational complexity than
the optimal scheme. Motivated by the convolutional neural network (CNN)-based deep
learning compression approaches of channel state information (CSI) [20–22], we propose
a novel compression and quantization network architecture named PCQNet for the joint
transceiver optimization. The proposed PCQNet compresses the high-dimensional precoding
matrices to the low-dimensional vectors. Considering that only bitstreams can be transmitted
in a practical digital system, we also introduce a quantization module to convert the floating-
point vector into bitstreams. Our proposed PCQNet can flexibly adjust the compression ratios
compared with the codebook scheme in [13]. These CNN-based methods considerably improve
the compression performance of the precoding matrices. At the same time, the data-bearing
bitstreams are directly produced during the offline training. Thus, the robustness of the
network for practical deployment is effectively improved on the basis of the compression
network in [19]. Moreover, we extend the CNN-based compression network in [20,21] to the
precoding design of the uplink MU-MIMO scenarios.

Multiple works of the transceiver optimization are limited to single-user scenarios or
the particular MU multiple-input single-output (MISO) systems [23,24]. We focus on the
more general MU-MIMO scenarios considering both the interference of multiple users and
the interference from multiple data streams of the same UE. We aim to design a trainable
compression architecture for the offline implementation of the centralized precoding with
the MMSE receiver. In summary, the major contributions are summarized as follows:
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1. We propose a CNN-based architecture named PCQNet to produce the data-bearing
bitstreams for each UE to recover the precoding matrices. It can achieve near-optimal
performance and further reduce the feedback overhead compared with the existing
3GPP codebook scheme in certain scenarios.

2. We develop a general trainable compression and quantization framework for the
precoding matrices in the uplink MU-MIMO systems. The proposed PCQNet archi-
tecture as well as the Lloyd-Max quantization scheme can flexibly adjust the feedback
overhead by training an auto-encoder.

3. The precoding matrices with different compression ratios (CRs) are evaluated on the
performance of the centralized implementation with an optimal MMSE transceiver.
As far as we know, the effect of the feedback accuracy on the performance has not
been investigated before. Specifically, we explore the trade-off between the block error
rates (BLER) and the CRs of the precoding matrices.

The remainder of this article is organized as follows: Section 2 introduces the system
model and the joint transceiver optimization. Section 3 describes the network architecture
and the training strategy of the PCQNet. Three baseline methods are also presented to
provide a benchmark for our proposed PCQNet. In Section 4, experimental evaluations
and performance analysis are provided to demonstrate the efficiency of our trainable
CNN-based PCQNet. Finally, the concluding statements are given in Section 5.

Notations: Symbols for matrices (vectors) are denoted by boldface upper (lower) case
letters. R, C and N denote the real set, the complex set, and the positive integers, respectively.
CM×N denotes the M×N dimensional complex matrix space. (·)H, ‖·‖F, ‖·‖2, Tr(·), and E[·]
denote the conjugate transpose, the Frobenius norm, the Euclidean norm, the trace operation,
and the expectation, respectively. IN is the N × N identity matrix. CN

(
µ, σ2) is a complex

Guassian vector with mean µ and variance σ2.

2. System Model

In this section, we introduce a simple signal model of an uplink MU-MIMO system,
the joint transceiver design and the channel models.

2.1. Uplink MU-MIMO System

Without loss of generality, we consider the uplink MU-MIMO system consisting of
one BS equipped with Nr antennas and K UEs as depicted in Figure 1. For convenience,
K = {1, . . . , K} denotes the set of UEs. The k-th UE equipped with Nk,t antennas transmits
Nk,s modulated data streams. We denote Nt = ∑K

k=1 Nk,t, Ns = ∑K
k=1 Nk,s as the total

numbers of transmit antennas and independent data streams of all UEs, respectively. For
simplicity, we consider the case where Nk,t and Nk,s are constants. The channel matrix can
be represented as H , [H1, . . . , HK] ∈ CNr×Nt , where Hk ∈ CNr×Nk,t denotes the channel
matrix from the k-th UE to the BS.

 
 

 
 

 
 

 
 

 

 

  
 

 

 

 

 

 
 

 
 

 
 

Figure 1. Block diagram of an uplink MU-MIMO wireless system with an Nr-antenna BS and K UEs
each with Nk,t antennas.
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The BS firstly obtains the CSI of all UEs and calculates the optimal precoding matrices
Fk ∈ CNk,t×Nk,s of the k-th (k ∈ K) UE which will be fed back to the UEs for the deployment of
uplink data transmission. The received signal vector y ∈ Nr at the BS can be represented as

y = HkFksk + ∑
i 6=k

HiFisi + n (1)

where sk ∈ CNk,s×1 represents the data symbol vector with a covariance matrix Φsk =
E
[
sksH

k
]
= INk,s and n ∈ CNr×1 is the received complex white Gaussian noise vector consisting

of independent and identically distributed (i.i.d.) elements with the distribution CN
(
0, σ2INr

)
.

The noise covariance matrix is Φn = σ2INr.
The precoding and the linear detection are jointly optimized to obtain the best system

performance. The recovered data symbol of the k-th UE can be represented by

ŝk = Gky (2)

where Gk represents the detection matrix of the BS. The centralized implementation in [9] aims
to jointly optimize the transceiver to eliminate the MU interference in the uplink system by
minimizing the mean squared error (MSE) between the estimated symbols and the transmitted
symbols. The MSE between the estimated symbols and the actual symbols for the k-th UE is
given by

η =
K

∑
k=1

E
[
(ŝk − sk)

H(ŝk − sk)
]

(3)

2.2. The Joint Precoding and Detection Design

In this paper, we consider the scheme in [9] which jointly designs the precoding and
detection matrices to minimize the MSE between the estimated and the transmitted symbols.
Specifically, we work on the overall system performance with the joint transceiver design
which is subjected to the per user power constraint. The sum-MSE can be formulated as

min
{Fk ,Gk}k=1,...,K

η

s.t. Tr{FkFH
k } 6 pk, k = 1, . . . , K

(4)

where the precoding matrix Fk is subject to the per user power constraint Pk = E
{
‖Fksk‖2

}
=

tr{FkΦskFH
k },∀k ∈ K. The joint minimization of MSE by iteratively updating the transceiver is

carried out as follows

Gk = FH
k HH

k

(
K

∑
j=1

HjFjFH
j HH

j + σ2I

)−1

(5)

Fk = (HH
k (

K

∑
i=1

GH
i Gi)Hk + λkI)−1HH

k GH
k , ∀k (6)

where λk is the Lagrange multiplier associated with the user power constraint. The detailed
minimization process to obtain the optimal transceiver is described in Algorithm 1. The pre-
coding matrix F is initialized with codebooks in the 3GPP protocol, which is simultaneously
normalized to satisfy the power constraints. The Lagrangian formulation is utilized to solve
the jointly convex optimization problem. The MMSE detection can optimally balance the
multi-user interference and Gaussian noise compared with the ZF detector, Thus, we apply
the MMSE detector in the proposed uplink scenario because of its practical implementation
and better performance. The output-precoding matrix Fk and detection matrix Gk are
utilized for precoding and MMSE detection at the k-th UE and the BS, respectively.



Entropy 2022, 24, 1066 5 of 16

Algorithm 1: The centralized implementation with optimal MMSE precoding.

1 Input
2 Hk: the channel matrix;
3 T: the maximum number of iterations;
4 σ: the noise variance;
5 Parameter
6 t: the iteration counter;
7 K: the number of UEs;
8 Initialize Fk, k = 1,. . . ,K and t = 0
9 while t 6 T do

10 for (k = 1,. . . ,K) do
11 compute Gk with (5)
12 end
13 for (k = 1,. . . ,K) do
14 compute Fk with (6)
15 end
16 set t = t + 1
17 end
18 + Output
19 Fk: the precoding matrix;
20 Gk: the detection matrix;

2.3. The Feedback Process of Precoding Matrices

The full feedback of the precoding matrix imposes particularly high feedback over-
head and storage requirements. We propose a CNN-based PCQNet scheme illustrated in
Figure 2 to substantially decrease the feedback overhead. Specifically, the BS compresses
the precoding matrices and then quantizes the compressed matrices to bitstreams for each
UE. The UEs recover the precoding matrices utilizing an error-free transmission of the
feedback bitstreams.

feedback link
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Figure 2. Block diagram of the feedback link for the precoding matrices over an uplink MU-MIMO
System.

2.4. Channel Model

The channels are assumed to be frequency flat and known at the receiver side. We
consider multiple channel models such as the i.i.d. Rayleigh fading channel and the
more realistic NAIE channel provided by Huawei Corporation [25]. The channel matrix
hk

i,j = [Hk]i,j represents the channel fading coefficient between the j-th transmit antenna of
the k-th UE and the i-th received antenna of the BS. The i.i.d. Rayleigh channel matrix H
consists of independent and identically distributed (i.i.d.) CN (0, 1) elements. The NAIE
MIMO channels are taken from the CDLB300_20UE_4T32R dataset provided by the iMaster
NAIE platform, which is a channel environment measured in practical scenarios.

The parameters of the NAIE dataset are listed in Table 1. The dimension of the dataset
matrices is

[
L, K, Nk,t, Nr, N f

]
= [500, 20, 4, 32, 96], which represents the number of data

frames, the number of UEs, the number of antennas for UE, the number of antennas for
BS, and the number of carriers, respectively. When the testing and training datasets are
generated for the NAIE channel, they are randomly picked from the 500 matrix elements
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and then normalized to satisfy the power constraints. If the number of frames is less than
500, the data frames are randomly selected. Otherwise, the datasets will be reused when
the number of data frames is larger than the dimension of the dataset L = 500.

Table 1. Description of parameters of the NAIE dataset for uplink scenarios.

Parameter Description Settings

L The number of data frames 500
K The number of UEs 20

Nk,t
The number of antennas of

each UE 4

Nr The number of antennas of BS 32
N f The number of subcarriers 96

3. The Proposed PCQNet
3.1. Network Architecture

The PCQNet consists of the encoder network and the recovery network as illustrated
in Figure 3. The encoder network is made up of a trainable compression module and a
non-trainable quantization module. The quantization is accomplished during the offline
training, directly feeding back the codeword to the UEs through the data-bearing bitstreams.
The recovery network mainly consists of a dequantizer and the ResNet in [26].
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Figure 3. The encoder and decoder architecture of CNN-based PCQNet.

Considering that the CNNs can efficiently manage the memory requirements on-
device and achieve better memory usage than the DNNs, we apply the CNNs with growing
popularity for the compression networks. We firstly concatenate the real and the imaginary
parts of the precoding matrices Fk, k ∈ K, where the dimension transformation can be
represented by CNk,t×Nk,s 7→ R2×Nk,t×Nk,s . The input of the first convolutional layer is the
real and imaginary parts of the precoding matrices generated at the BS. The compression
module consists of five CNN layers which create a filter kernel that is convolved with the
input layer to produce an output tensor. The CNN layers are parameterized by F× F×K|S,
where F and K denote the filter size and the number of filters, respectively. S represents the
downsampling strides in the convolution layer at the encoder and the upsampling strides
in the transposed convolution layer at the decoder. The hyperparameters of five CNN
layers in the compression module are: 3× 3× 32|1, 3× 3× 32|1, 3× 3× 32|1, 3× 3× 32|1,
3× 3× 16|1, respectively. The linear unit (ReLU) activation function is inserted after each
CNN layer. The output is the compressed vector zk ∈ Rl . The compression function
fθ : CNk,t×Nk,s 7→ Rl can be represented as

zk = fθ(Fk, θk) ∈ Rl , k = 1, . . . , K (7)

where θk is the same parameter for each user, l is the dimension of the compressed output.
We use a uniform quantization module with the quantization factor β. The vector zk is
quantized into an m-dimensional binary vector bk for the feedback transmission of the
k-th UE.

bk = Qϕ(β, zk) ∈ Rm (8)
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where m represents the feedback overhead. For each UE, the CR of the PCQNet can be
defined as

CR =
m

2β×Nk,t ×Nk,s
(9)

The CR and the number of quantization bits β jointly determine the feedback overhead
m which influences the normalized MSE (NMSE) between the recovered precoding matrices
and the original ones. A smaller value of m reflects lower feedback overhead of the
precoding matrices. The binary vector bk ∈ Rm is fed to the UE for the recovery of the
precoding matrices. An error-free channel is assumed when transmitting the encoded
vector bk from the BS to the k-th UE.

The decoder network at the k-th UE outputs the restored complex-valued precoding
matrix F̂k from the feedback bitstream bk. The reconstruction of the precoding matrix can
be functioned with gφ : Rm 7→ CNk,t×Nk,s

F̂k = gφ(bk, φk) ∈ CNk,t×Nk,s , k = 1, . . . , K (10)

where φk represents the parameter sets of the decompression module. The feedback
bitstream bk is reshaped to the dimension of m/β. The decompression module retrieves the
real and the imaginary parts from three fully connected (FC) layers and five ResNet layers.
The ResNet applies shortcut connections that directly pass data flow to later layers to avoid
the vanishing of the gradient caused by multiple stacked non-linear transformations. Each
of the FC layer is followed by a ReLU activation and the hyperparameters of three ResNets
in decoder are: 3× 3× 64|1, 3× 3× 32|1, and 3× 3× 16|1, respectively.

3.2. The Training Strategy of PCQNet

In the offline stage, we compute the precoding matrices in advance by the afore-
mentioned Algorithm 1 and generate the training, testing, and evaluation datasets. In
the online stage, we can directly obtain the low dimensional feedback bitstreams with
the well-trained neural network. The gradient of the quantization module is treated as
a constant to make the network differentiable, and for this reason the encoder and the
recovery network can be trained end-to-end. We jointly optimized the encoder and the
decoder modules with back-propagation and gradients can pass through the quantization
layer during back-propagation.

We formulate the feedback of the precoding matrices into a reconstruction problem
by F̂k = gφ(Qϕ(β, fθ(Fk, θk)), φk). The auto-encoder is optimized by updating the network
parameters θk and φk, which can be applied for all UEs. The loss function is the NMSE,
which quantifies the difference between the recovered precoding matrices and the original
ones with

NMSE =
E
[∥∥F̂− F

∥∥2
F

]
E
[
‖F‖2

F

] (11)

The PCQNet is trained and evaluated on an Nvidia GeForce 3090 platform. We use
the Adam [27] optimizer with a batch size of 32 and the training process stops early with a
patience of eight epochs, where the maximum number of training epochs is 1000. We apply
the adaptive learning rate schedule with a factor of 0.8. If the loss does not improve for
four epochs in a row, the learning rate is reduced.

3.3. Testing of PCQNet
3.3.1. Baseline1: The Protocol Codebook-Based Precoding Scheme

The 3GPP protocol in [15] contains a set of PMIs F(i)
codebook, i ∈ N with corresponding

configurations of streams and antennas. The BS firstly calculates the precoding matrix with
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Algorithm 1 and then feeds back the binary index. The optimal codebook index i(opt) is
acquired with the minimum Euclidean distance by searching the predefined codebooks

i(opt) = argmin
i

∥∥∥F− F(i)
codebook

∥∥∥2

F
(12)

where i represents the index of the standard precoding matrix defined in the 3GPP protocol
supporting limited scenarios (e.g., Nk,t = 4, Nk,s = 2, i(opt) ∈ [0, 21] ). The number of
feedback bits for the protocol codebook scheme under the scenarios with 22 indexes is 5
(m = dlog2 22e = 5).

The protocol codebook-based precoding scheme is labeled as 3GPP codebook in our
simulation. Since this feedback method of the vector quantization only needs to search
the optimal index, it greatly reduces the feedback overhead. However, the scope of the
codebook scheme is limited and the precoding matrices retrieved from the codebook
indexes inevitably have certain quantization error.

3.3.2. Baseline2: The Lloyd-Max Quantization Scheme

We apply the Lloyd-Max quantizer to reduce the dimension of the feedback matrices
which is labeled as LloydMax in our simulation. An optimized Lloyd-Max quantizer
minimizes the mean square quantization error (distortion) as much as possible. The Lloyd-
Max quantization scheme stores the designed codebooks and partitions at the UEs and the
BS, thus the BS only needs to transmit the indexes to specify the precoding matrices.

In the offline stage, we first acquire the datasets generated by Algorithm 1. The empirical
probability distribution function of the real and the imaginary parts of the precoding matrices
is obtained for the design of the Lloyd-Max quantizer in [13,28,29]. Then, we develop a Lloyd-
Max-based quantizer under different SNRs and channel models. The codebooks and partitions
are specifically optimized by the Lloyd-Max algorithm in [30,31].

In the online stage, the UEs can readily recover the precoding matrices utilizing the
received indexes with the prestored Lloyd-Max quantization partitions and codebooks.
Each element in the precoding matrices has to be quantized individually, thus the minimum
number of feedback bits is Nk,t × Nk,s × 2 for each precoding matrix Fk ∈ CNk,t×Nk,s . (e.g.,
Nk,t = 4, Nk,s = 2, β = 1, m = 16). It is necessary to further reduce the feedback overhead
and design a more SNR-adaptive feedback scheme to combat channel variations.

3.3.3. Baseline3: The Ideal Feedback Scheme

We consider the optimal scheme labeled as w/o compression which directly feeds
back the precoding matrices without compression.

4. Experimental Evaluations

In this section, we evaluate the NMSE of the precoding matrices with different CRs
and the influence of the feedback accuracy on the BLER performance. The comprehensive
performance comparisons of the uplink MU-MIMO system with different number of UEs,
different modulation orders, and different channel models are provided. The uplink MU-
MIMO system parameters and the coefficients of the channel coding are listed in Table 2. The
SNR is generally defined as the ratio of the signal power to the noise power at the receiver

SNR =
E
[
‖HFs‖2

2

]
E
[
‖n‖2

2

] =
NtK
σ2 (13)
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Table 2. List of simulation parameters.

Parameter Description Settings

K The number of UEs 4, 6, 8
Nk,t The number of antennas of each UE 4
Nk,s The number of data streams of each UE 2
Nt The total number of transmit antennas 16, 24, 32

Ns
The total number of independent data

streams 8, 12, 16

Nr The number of BS antennas 32

M The number of bits of per modulated
symbol 2, 4

N , Rate The length and code rate of the low
density parity check code 384, 1/2

β1
The quantization bits of the Lloyd-Max

scheme 2, 3

β2 The quantization bits of the PCQNet 4

m1
The numbers of feedback Bits of the

Lloyd-Max scheme 16, 32, 48

m2
The numbers of feedback Bits of the

PCQNet scheme 4, 8, 16, 32, 48

CR The CRs of the PCQNet scheme 1/16, 1/4, 1/2

4.1. Data Generation

We firstly generate L channel realizations
{

H1, . . . , HL} ∈ CL×Nr×Nt for the i.i.d.
Rayleigh channel or randomly sample L data frames from the iMaster NAIE platform [25]
for the NAIE channel. Then, we calculate the noise variance and normalize the channel
matrix. The precoding matrices Fl , [F1, . . . , FK] ∈ CNt×Ns , l = 1, . . . , L are generated by
the channel matrices Hl = [H1, . . . , HK], l = 1, . . . , L utilizing the Algorithm 1. Lastly, we
sample L training data F =

{(
H1, F1), . . .

(
HL, FL)}.

At the training and evaluation stage for the networks, the precoding matrix
Fk ∈ CNk,t×Nk,s of the k-th UE is randomly picked from the set of [F1, . . . , FL], l = 1, . . . , L.
The number of frames of the training, validation, and testing data for our proposed PCQNet
are L1 = 100,000, L2 = 20,000, L3 = 10,000, respectively.

4.2. Simulation Results and Analysis with the i.i.d. Rayleigh Channel
4.2.1. The NMSE Performance

The NMSE performance between the recovered and the original precoding matrices uti-
lizing the LloydMax scheme is depicted in Table 3. The codebooks are specially optimized
over statistical datasets with various SNRs and different quantization bits. Since these
codebook-based schemes are inevitably limited by the quantization error, better NMSE
performance of the LloydMax scheme comes at the expense of the increased feedback
overhead. Although remarkable NMSE performance can be obtained when the evaluating
SNRs (i.e., SNReval) match with the designing SNRs (i.e., SNRdesign) under the same
quantization bits, the performance of the codebook-based scheme is not satisfactory when
SNReval mismatch with the SNRdesign over the i.i.d. Rayleigh channel. Thus, it needs to
store multiple codebooks to combat channel variations under different channel SNRs.
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Table 3. The NMSE performance of the Lloyd-Max quantization scheme with different quantization
factors over the i.i.d. channel.

Quantization Factor β = 2 (m = 32) β = 3 (m = 48)

SNReval (dB)

NMSE (dB) SNRdesign (dB)
1 9 17 1 9 17

1 −16.16 −15.23 −11.98 −21.93 −21.14 −17.61
9 −15.93 −16.60 −16.23 −21.67 −22.37 −20.20

17 −15.37 −17.79 −20.08 −20.07 −23.01 −25.27

The NMSE performance of the LloydMax scheme and the PCQNet is not correlated
with SNRs. Only the generation of different test datasets is related to SNRs and the testing
of NMSE performance is not necessarily related to the value of the SNRs. We provide a
guideline for subsequent research of BLER performance via the visualization of NMSE
performance in Figure 4.

The codebook-based LloydMax scheme is sensitive to the number of bits, the SNRs,
and the realistic channel distribution. The NMSE will significantly drop when the SNReval
mismatches with the SNRdesign. On the contrary, the CNN-based compression scheme is
more SNR-adaptive and we set SNRdesign = 0 dB. The CRs of the PCQNet are set to 1/16,
1/8, 1/4, and 1/2 for m = 4, 8, 16, 32, respectively. The PCQNet can achieve better NMSE
performance than the LloydMax scheme under the same feedback bits (e.g., m = 16, 32, 48)
as shown in Figure 4. The green dotted line with low quantization factor β = 1 is almost
a straight line over the i.i.d. channel. Despite the different input precoding matrices
under different SNRs, the NMSE of the recovered matrices is equally poor. Because the
quantization error is so large that the precoding matrices cannot be correctly recovered.
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Figure 4. The NMSE performance of comparison between the Lloyd-Max scheme and the CNN-based
PCQNet scheme over the i.i.d. channel. ( The x-coordinate represents the SNRs for the generation of
the testing dataset, which are not directly correlated with the NMSE performance).

4.2.2. The BLER Performance

We compare the PCQNet with the aforementioned baselines as depicted in Figures 5 and 6.
The comparisons of feedback overhead between the PCQNet and three baselines (i.e., the 3GPP
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codebook scheme, the w/o compression scheme, and the LloydMax scheme) are provided
in Table 4. The performance upper bound is the ideal centralized iterative scheme w/o
compression which is not appropriate for practical transmission. The protocol codebook-based
precoding scheme is tailored for a specific number of users or transmit antennas. To provide
a benchmark for our proposed method, we consider the precoding matrices Fk ∈ C4×2, k ∈
{1, 2, 3, 4} which is to be fed back to the k-th UE. The number of the feedback bits for the
3GPP codebook scheme is m = 5. The LloydMax scheme separately quantizes the real and the
imaginary parts of the precoding matrices, which respectively takes at least 16 bits and 32 bits
to quantize a R2×4×2 matrix with β = 1 and 2 (m = 16× β = 16, 32).

The proposed PCQNet can dramatically decrease the feedback overhead and exhibit a
slight BLER degradation with the further reduction of feedback bits (i.e., m = 4, 8). Note that
the change of the CRs can be achieved by adjusting the number of feedback bits. Near-optimal
performance can be derived when the number of the feedback bits is beyond 16, where the
feedback overhead can be further reduced. When m = 4, the PCQNet significantly enhances
the BLER performance of the 3GPP codebook scheme with m = 5. Naturally, as we increase
the number of feedback bits to 32, the performance of the PCQNet scheme as well as the
LloydMax scheme will approach that of the ideal w/o compression scheme.
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Figure 5. The BLER performance comparison over the i.i.d. Rayleigh channel with QPSK and K = 4.

Table 4. The comparison of feedback overhead between the PCQNet and three baselines.

Methods The Feedback Overhead (Number of
Feedback Bits)

The 3GPP protocol codebook 5
The LloydMax scheme 16, 32
* The PCQNet scheme 4, 8, 16, 32

w/o compression (ideal) a complex matrix with size (4, 2)
* Our proposed PCQNet. System Paramters: Number of UEs = 4, Nk,t = 4, Nk,s = 2, Nr = 32.
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Figure 6. The BLER performance comparison over the i.i.d. Rayleigh channel with QPSK and K = 8.

4.3. Simulation Results and Analysis with NAIE Channel

We provide more simulation tests to evaluate the performance of the proposed scheme
with various numbers of UEs and higher modulation orders (e.g., 16-QAM) as well as the
NAIE channel in practical scenarios provided by the iMaster NAIE platform [25].

4.3.1. The NMSE Performance

The LloydMax scheme has to design multiple codebooks which are optimized for spe-
cific channel conditions. The best NMSE performance can be achieved when the SNReval
is equal to the SNRdesign in Table 5. The PCQNet has superior NMSE performance than the
LloydMax scheme under the same CRs as depicted in Figure 7. The PCQNet is tested with
the fixed training SNR value SNRdesign = 0 dB while the LloydMax scheme is evaluated
with SNReval = SNRdesign.

Table 5. The NMSE performance of Lloyd-Max quantization scheme with different quantization
factors over the NAIE channel.

Quantization Factor β = 2 (m = 32) β = 3 (m = 48)

SNReval (dB)

NMSE (dB) SNRdesign (dB)
1 9 17 1 9 17

1 −22.10 −21.00 −21.42 −26.78 −26.06 −26.44
9 −18.14 −18.95 −18.78 −22.57 −24.29 −23.88

17 −17.34 −18.44 −19.19 −21.71 −23.84 −24.32
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Figure 7. The NMSE performance of comparison between the Lloyd-Max scheme and the CNN-based
PCQNet scheme over the NAIE channel. (The x-coordinates represent the SNRs for the generation of
the testing dataset, which are not directly correlated with the NMSE performance).

4.3.2. The BLER Performance of the NAIE Channel

Compared with the w/o compression scheme which fully attains the precoding matrix,
the CNN-based PCQNet can enhance the recovery quality of the precoding matrix with
adaptive feedback overhead and obtain near optimal reconstruction performance. Similar
performance can be seen over the NAIE channel in Figures 8 and 9. The CNN-based
PCQNet scheme performs close to the ideal w/o compression scheme when CR = 1/2.
Moreover, there is a slight performance penalty when CR = 1/16 which is still superior
to the 3GPP codebook. With the deployment of the pre-trained PCQNet, the feedback
overhead is substantially reduced while the performance degradation is acceptable. The
PCQNet scheme has better BLER performance than the LloydMax scheme under the
same CRs.

The PCQNet achieves the near-optimal BLER performance when the NMSE of the
recovered precoding matrix is lower than −20 dB. The transmission tends to stop if the
NMSE of the recovered precoding matrices is worse than the threshold of −5 dB. We also
observe that, when the NMSE performance exceeds a certain threshold (e.g., −20 dB),
the overall BLER performance is quite close to the ideal w/o compression scheme. From
the results, we can see that it is a reasonable compromise to set the CR to 1/4 for the
compression of precoding matrices.

The provided numerical results show that our proposed PCQNet achieves a bet-
ter trade-off between the feedback overhead and the BLER performance over the i.i.d.
Rayleigh channel and the NAIE channel. This CNN-based compression scheme signifi-
cantly enhances the BLER performance compared with the 3GPP codebook scheme and the
LloydMax scheme under the same CRs.
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Figure 8. The BLER performance comparison over the NAIE Channel with 16-QAM and K = 6.
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Figure 9. The BLER performance comparison over the NAIE Channel with 16-QAM and K = 8.

5. Conclusions

The proposed PCQNet has achieved considerable gains in BLER performance com-
pared with the protocol codebook-based precoding scheme and the Lloyd-Max quantization
scheme under the same CRs. The adaptability of trainable PCQNet architecture to differ-
ent channel bandwidths is more competitive than the Lloyd-Max quantization scheme in
bandwidth-limited scenarios. The PCQNet also provides better resilience to the mismatch
between the trained SNRs and tested SNRs than the Lloyd-Max quantization scheme due
to channel variations. Our experiments demonstrate that the application of the CNN-based
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PCQNet greatly improves the adaptability and the generality of the precoding matrix feed-
back in the uplink MU-MIMO systems. Importantly, it preserves only a slight degradation
of BLER performance with high compression rate of the precoding matrix, making the
compression architecture more attractive for the deployment of practical systems.
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