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Abstract: The input–output (IO) network is the quantitative description of an IO-based economy in
which nodes represent industries and edges connecting nodes represent the economic connection
between industries. Robustness refers to the ability of tolerating perturbations that might affect the
system’s functional body. There is both practical and theoretical significance to explore the robustness
of the IO network for economic development. In this paper, we probe the robustness of the Chinese
IO network based on the relative entropy of the probability distribution of network parameters (node
degree, strongest path betweenness, downstream closeness and upstream closeness) under random
node or edge failure and intentional node or edge attack. It is found that the Chinese IO network
shows relatively weak robustness when it is under intentional attack, but relatively strong robustness
when it is under random failure. Our experiment also verifies the applicability and effectiveness of
the relative entropy model in measuring the robustness of the IO network.

Keywords: input–output network; robustness; relative entropy; degree; strongest path

1. Introduction

Industrial relation is the basic relation in economic activity. With the rapid devel-
opment of economic globalization and network information technology, the dependence
and restriction relationship between industries has strengthened, and the interaction and
division of labor among industries have played an increasingly prominent role in regional
economic development. The input–output model established by Leontief [1] is a basic
method to describe industrial correlation and is committed to quantitatively measuring the
correlation between different industries.

The national economy is regarded as an organic whole in input–output analysis, in
which a series of industrial sectors are mapped into a crisscrossed input–output table
according to the input–output relationship in a certain period. Then, scholars can compre-
hensively study the quantitative relationship between each specific sector and make an
economic analysis and prediction based on the input–output table. In essence, the interme-
diate matrix of the input–output table is a complex network in the sense that industries as
nodes are linked with the exchange of products between industries whose structure can
be characterized by power–law distributions or similar ones [2–6]. The complex network
theory is employed by a large number of scholars to detect key industries [7,8] and indus-
trial communities [9,10] and probe the risks of the transmission mechanism [11,12] in the
input–output system.

Robustness is an important feature of complex networks which describes the ability to
maintain structural integrity and function in the case of random failure or intentional attack
for nodes or edges. Initially, Albert et al. [13] compared the robustness characteristics of
random networks and scale-free networks under node attack through analogue simulation.
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Holme et al. [14] further comprehensively summarized that there are four main types of
intentional attack against complex networks, namely, “ID removal”, “RD removal”, “IB
removal” and “RB removal”, which are based on different attack strategies, initial degree
distribution, initial betweenness, recalculated degree distribution and recalculated between-
ness. Subsequently, research on robustness for the complex network is widely applied to
the power network [15,16], biological molecular network [17] and trade network [18,19].
At present, studies on robustness are mainly focused on robustness measures [14,20,21]
and robust control [15,17,19]. The former mainly quantitatively measures robustness by
using various indicators to solve the problem of “which network has better robustness”,
while the latter mainly tends to improve the network robustness by designing reasonable
and effective measures, so as to achieve the purpose of controlling network robustness.

Information entropy, first proposed by Shannon, is used to measure the randomness
of a system. The bigger the information entropy is, the more chaotic the system is, and
vice versa. As an important branch of information entropy, relative entropy is a new
concept developed by Kullback and Leibler [22] on the basis of information entropy. It
is powerful in measuring the distance or similarity between two random distributions,
and has been applied to hierarchical policy search by many scholars [23,24], key nodes
identification [25,26] and node similarity measurement [27,28].

However, distinguished from other complex networks, the current research on the ro-
bustness of the input–output network is relatively weak. For example, while the “fragility”
of the global input–output network mentioned by Grazzini and Spelta [12] is similar to its
robustness, there are no relevant experiments under random failure or intentional attack
that systemically measure the robustness of the input–output network using traditional
methods. Thus, in this paper, we evaluate the robustness of the Chinese input–output
network under random failure or intentional attack based on the relative entropy model.

2. Relative Entropy Model
2.1. Relative Entropy Theory

Relative entropy, known as Kullback–Leibler divergence (KLD), is a way of describing
the difference between two probability distributions P and Q, shown in Equations (1) and (2).
The former is the definition of relative entropy for the discrete random variables, and the
latter is the definition for the continuous random variables.

D(P||Q) = ∑P(x)log
(

P(x)
Q(x)

)
(1)

D(P||Q) =
∫

P(y)log
(

P(y)
Q(y)

)
d(y) (2)

where the base is generally omitted, which is usually set to 2, e, or 10 if needed. As long as
the base is greater than 1, the above equations can be used to calculate the relative entropy.

In the field of information, relative entropy is used to measure the number of bits
required to encode the average sample from P using Q-based encoding. In particular, P
is the real distribution of data and Q is the theoretical distribution, model distribution
or approximate distribution of P. The distance between two random distributions can be
measured by relative entropy. The more similar the two distributions are, the smaller the
relative entropy is. As the difference between the two distributions increases, the relative
entropy value also increases. Therefore, relative entropy can compare the similarity of the
distributions of something, and evaluate the relative size of change.

2.2. Relative Entropy Model on the Network Robustness

Robustness is used to characterize the insensitivity of the control system to characteris-
tic or parameter disturbance, that is, the anti-interference ability of the system. In this paper,
the robustness is used to characterize the degree of the structural characteristic changes
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in the input–output network under random failure or intentional attack, namely, network
anti-interference.

As for the types of attack, complex networks are generally under random failure
or intentional attack [18,20,29]. In this paper, the distribution range [Lmin, Lmax] of the
relevant indicators of each node is divided into m segments. The probability of the relevant
indicators of each node falling in each interval is P(xi) = pi (i = 1, 2, . . . , m) before random
failure or intentional attack, Q(xi) = qi (i = 1, 2, . . . , m) after random failure and R(xi) = ri
(i = 1, 2, . . . , m) after intentional attack. Thus, Equation (1) for the discrete random variables
is adopted to calculate the relative entropy.

3. Relevant Indicators of the Input–Output Network
3.1. Node Degree Distribution

For the input–output network, G = (N, E), where N is the number of nodes, E is the
number of connected edges, and node degree is the number of edges connecting to a node.
For a directional and weighted network, the weighted degree is the sum of the weighted
indegree and the weighted outdegree,

Di = ∑N
j=1 eij+∑N

j=1 eji, i 6= j (3)

where Di is the weighted degree, eij is the weight of edges of node i pointing to node j, and
eji is the weight of edges of node j pointing to node i.

Once the network is under attack and nodes or edges are deleted, the weighted degree
of each node will change, and the relative size of the change can be used as an indicator to
measure the robustness of the input–output network.

3.2. Centrality Based on the Strongest Path (SP)

Different from the traditional concept of the shortest path, which is the path connecting
two particular nodes in the network with the least number of steps among all possible
paths, Xu and Liang [5] put forward the concept of the SP rooted from SPA in the IO model,
and redefined three new concepts of centrality: SP betweenness, downstream closeness
and upstream closeness.

3.2.1. Strongest Path

Structural path analysis (SPA) is a method to find supply chain paths that contribute
most to a particular consumption-based account (CBA). In particular, to supply the produc-
tion of sector j, there are multiple paths originating from all other sectors in the economy.
Contributions of particular paths to the unitary output of sector j can be measured using
the Taylor expansion of the Leontief inverse matrix [30].

The SP can be defined as a particular path that contributes the most to the unitary
output of industry j among all possible paths from industry i to industry j, which represents
the most important path of all possible paths of supply from one particular industry to
another. The strength of a particular SP from industry i to industry j is measured as

qij = ∏ aik1 ak1k2 . . . akm j (4)

where aij indicates the technical coefficient, and the SP from industry i to j is identified as
i→k1→ . . . . . . →km→j.

3.2.2. SP Betweenness

The SP betweenness of nodes or links indicates their ability as centers of transforming
resources from all over the economic system into finished products to supply the whole
economy. For a particular industry, the SP betweenness is defined as the weighted sum of



Entropy 2022, 24, 1043 4 of 12

strengths of all SPs in the IO network passing through it, not including those SPs that start
or end at it:

bi = Σn
s=1,s 6=i ∑

n
t=1, t 6=i Xtqst (5)

Similarly, the SP betweenness for a particular link i→j (all of which can be coalesced
into the SP matrix) is

bi→j = Σn
s=1 ∑n

t=1 Xtqst (6)

3.2.3. Downstream Closeness and Upstream Closeness

Closeness in network analysis measures how far a particular node is to all other
nodes based on their shortest paths. In IO networks, two SP-based closeness measures are
defined including downstream closeness and upstream closeness. The former represents an
important role as the supplier to downstream industries, has the ability to drive economic
development, and is the average value of all SPs starting from a particular industry i:

CD.
i
=

1
n− 1 ∑n

j=1 Xjqij (7)

Similarly, the latter represents the important role as the consumer of downstream
industries, drives economic development, and is defined as the average value of all SPs
ending at a particular industry j:

CU.
j
=

1
n− 1

Xj ∑n
j=1 qij (8)

where Xt and Xj represent the output of industries i and j, respectively.
Once the input–output network is under attack and node or edge fails occur, the

value of SP betweenness, downstream closeness and upstream closeness will change. The
magnitude of the change can be used to measure the robustness of the network.

4. Experiment
4.1. Chinese Input–Output Network Model

The Chinese input–output network model (Figure 1) was built by the Chinese input–
output table for the year 2018 from the most recent OECD input–output database (2021 edition,
https://www.oecd.org/, accessed on 26 December 2021), which has 45 unique indus-
tries based on ISIC Revision 4 (while modeling, the 45th industry is deleted because all
its data are zero). A list of OECD industries and corresponding abbreviations are in
Appendix A Table A1. We will replace the full names of these industries with correspond-
ing abbreviations in the following paragraphs.

Table 1 shows the node degree, SP betweenness, downstream closeness and upstream
closeness of all the industries in the Chinese input–output network. It can be seen that the
relative ordering of the four kinds of parameters is different. The top five industries by
degree are the basic metals industry, the agriculture, hunting, and forestry industry, the
construction industry, the computer, electronic and optical equipment industry and the tex-
tiles, textile products, leather and footwear industry, indicating the strength of connections
between them and other nodes (industries). The top five industries by SP betweenness
are the mining, quarrying, and energy-producing products industry, the basic metals in-
dustry, the coke and refined petroleum products industry, the food products, beverages
and tobacco industry and the agriculture, hunting and forestry industry, indicating their
ability to transform resources from all over the economic system into finished products
to supply the whole economy. The top five industries by downstream closeness are the
wholesale and retail trade and motor vehicle repair industry, the basic metals industry, the
agriculture, hunting and forestry industry, the mining, quarrying, and energy-producing
products industry and the chemical and chemical products industry, indicating their im-
portant role as suppliers to downstream industries and their ability to drive economic
development. The top five industries by upstream closeness are the construction industry,
the food products, beverages and tobacco industry, the basic metals industry, the machinery

https://www.oecd.org/


Entropy 2022, 24, 1043 5 of 12

and equipment NEC industry and the wholesale and retail trade and motor vehicle repair
industry, indicating their important role as consumers of downstream industries that then
drive economic development.

Table 1. Relevant parameters (node degree, SP betweenness, downstream closeness and upstream
closeness) in the Chinese input–output network.

Serial
Number

Industrial
Abbreviation

Weighted
Degree SP Betweenness Downstream

Closeness
Upstream
Closeness

1 AGR 2,562,629 92,472 26,293 16,338
2 FA 256,312 2461 3340 2338
3 MQE 1,339,448 245,831 24,536 7366
4 MQN 587,029 8003 10,456 4708
5 MSS 49,156 0 1724 505
6 FBT 2,255,791 131,243 15,269 25,130
7 TTP 2,297,492 711 6788 12,821
8 WWC 415,010 2724 4125 2791
9 PPP 789,608 7407 7092 4918
10 CRP 1,069,326 152,486 14,323 13,828
11 CCP 2,283,824 85,214 23,024 13,646
12 PMB 517,523 26,165 3523 4108
13 RPP 969,176 19,281 9262 8350
14 OMP 1,713,398 89,729 18,940 11,706
15 BM 3,072,146 185,195 30,339 18,371
16 FMP 1,142,253 13,689 11,234 11,366
17 CEO 2,471,357 3147 8713 14,210
18 EE 1,301,461 23,716 10,668 14,316
19 MAC 1,578,061 7072 9637 17,375
20 MTS 1,596,877 16,268 6142 12,870
21 OTE 256,789 4996 1272 3352
22 MAN 392,986 9027 2860 5779
23 EGS 1,443,474 21,102 13,240 11,682
24 WSW 257,270 211 2869 2204
25 CON 2,516,932 4015 676 55,852
26 WRR 2,082,205 65,849 31,445 16,458
27 LR 1,171,919 64,100 15,539 11,879
28 WR 206,296 2067 2490 2408
29 AR 204,366 1227 2582 1987
30 TS 258,371 0 3526 2831
31 PCA 165,302 127 2257 1390
32 AFS 708,324 40,696 7459 9312
33 PAB 70,715 0 606 981
34 TEL 299,942 0 2722 2831
35 IT 277,840 0 2850 2721
36 FIA 998,099 4019 18,777 3434
37 RS 489,535 82 7268 4375
38 PST 911,260 3791 11,206 8695
39 ASS 1,190,835 6898 14,674 10,311
40 PD 282,407 0 251 6113
41 EDU 170,692 0 357 3498
42 HS 177,786 354 192 4433
43 AER 79,489 0 410 994
44 OS 176,348 0 1752 2129
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Figure 1. The Chinese input–output network model in 2018 (size per node indicates the weighted
degree and width per edge indicates the edge weight).

4.2. Robustness Analysis

Complex networks usually face two types of attack: random failure and intentional
attack. Random failure means that nodes or edges are attacked randomly with a certain
probability and then become invalid. Intentional attack means that nodes or edges are
attacked according to certain strategies and then become invalid. In this paper, the distribu-
tion range of the network parameters of each node is divided into 10 segments, and the
original probability falling in each interval is P(xi) = pi (i = 1, 2, . . . , 10), before random
failure or intentional attack (Table 1, Figure 2). The subsequent probability falling into
each interval is Q(xi) = qi (i = 1, 2, . . . , 10) after random failure, and R(xi) = ri (i = 1, 2,
. . . , 10) after intentional attack. After each attack, we can calculate the relative entropy
according to the subsequent probability distribution of the network parameters and the
original probability distribution.

Figure 2. The original probability distribution of (a) node degree, (b) SP betweenness, (c) downstream
closeness and (d) upstream closeness.
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4.2.1. Node Attack

In the case of random node failure, nodes are deleted randomly in corresponding
proportions, and then the average value of node degree, SP betweenness, downstream
closeness and upstream closeness are calculated with 100 simulations, respectively. In the
case of intentional node attack, nodes are deleted in corresponding proportions according to
node degree, SP betweenness, downstream closeness and upstream closeness, respectively,
and then the probability distributions of three network parameters (node degree, node
clustering coefficient and intermediary centrality under the strongest path) are calculated.
Based on the relative entropy theory, the relative entropy of the probability distribution
of the relevant parameters before and after random attack and intentional attack of the
Chinese input–output network are calculated, respectively (Figure 3).

Figure 3. The changing situation of entropy under node random failure and intentional attack accord-
ing to (a) node degree, (b) SP betweenness, (c) downstream closeness and (d) upstream closeness.

As can be seen from Figure 3a, the relative entropy of the node degree distribution of
the Chinese input–output network gradually increases with the increase in the proportion
of nodes under random failure and intentional attack. Under random node failure, the
relative entropy of node degree distribution increases slowly. Under intentional node
attack, the relative entropy of node degree distribution increases rapidly, and remains
stable when the number of nodes exceeds 33. When the Chinese input–output network
is under intentional attack, the relative entropy of node degree distribution is always



Entropy 2022, 24, 1043 8 of 12

larger than when the Chinese input–output network is under random failure, indicating
that intentional node attack on the node degree distribution of the Chinese input–output
network may make an even stronger impact than random node failure.

As can be seen from Figure 3b, the relative entropy of SP betweenness distribution of
the Chinese input–output network gradually increases with the increase in the proportion
of nodes under random failure and intentional attack, which is similar to node degree.
Under random node failure, the relative entropy of SP betweenness distribution increases
slowly. Under intentional node attack, the relative entropy of SP betweenness distribution
increases rapidly, and remains stable when the number of nodes exceeds 29. When the
Chinese input–output network is under intentional attack, the relative entropy of SP
betweenness distribution is always larger than when the Chinese input–output network
is under random failure, indicating that intentional node attack on the SP betweenness
of the Chinese input–output network may make an even stronger impact than random
node failure.

As can be seen from Figure 3c, the relative entropy of the downstream closeness
distribution of the Chinese input–output network gradually increases with the increase
in the proportion of nodes under random failure and intentional attack. Under random
node failure, the relative entropy of downstream closeness distribution increases slowly
at first and rapidly afterwards. Under intentional node attack, the relative entropy of
downstream closeness distribution increases with a circle variation, and tends to coincide
with that of random failure when the number of nodes exceeds 40. When the Chinese
input–output network is under intentional attack, the relative entropy of downstream
closeness distribution is always larger than when the Chinese input–output network is
under random failure, indicating that intentional node attack on the downstream closeness
of the Chinese input–output network may make an even stronger impact than random
node failure.

As can be seen from Figure 3d, the relative entropy of the upstream closeness dis-
tribution of the Chinese input–output network gradually increases with the increase in
the proportion of nodes under random failure and intentional attack. When the Chinese
input–output network is under intentional attack, the relative entropy of upstream close-
ness distribution increases with a circle variation, which is similar to downstream closeness,
and it is always larger than when the Chinese input–output network is under random
failure, indicating that intentional node attack on the upstream closeness of the Chinese
input–output network may make an even stronger impact than random node failure.

In general, when the Chinese input–output network is under intentional node attack,
the relative entropy of network node parameters is higher than that under random node
attack, and increases faster. Therefore, when the Chinese input–output network is under
intentional node attack, its structure and function change greatly, that is, the robustness
is weak. When subjected to random node failure, the economic structural characteristics
remain good within a certain range, and the damage degree of the structure shows a slow
trend, which indicates that the robustness is strong.

4.2.2. Edge Attack

The SP betweenness for links (namely, the SP matrix) between all industries in the
Chinese input–output network using Equations (6) and (8) can also reflect the ability to
transform resources.

In the case of intentional edge attack, we delete the corresponding edges in the input–
output matrix according to the data size of the SP matrix, and then calculate the node
probability distribution of four types of network parameters (node degree, SP between,
downstream closeness and upstream closeness), respectively. In the case of random edge
failure, we randomly delete the edges in corresponding proportion, run 100 simulations to
calculate the average value of node degree, SP betweenness, downstream closeness and
upstream closeness, respectively, and then calculate the probability distribution of three
network parameters (node degree, node clustering coefficient and intermediary centrality
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under the strongest path). Based on the relative entropy theory, the relative entropy of
the probability distribution of relevant parameters before and after random attack and the
intentional attack of the Chinese input–output network is calculated, respectively (Figure 4).

Figure 4. The changing situation of entropy under edge random failure and intentional attack
according to (a) node degree, (b) SP betweenness, (c) downstream closeness and (d) upstream
closeness.As can be seen from Figure 4a, the relative entropy of node degree distribution of the
Chinese input–output network gradually increases slowly at first and quickly afterwards, with
an increase in the proportion of edges under random failure and intentional attack. Overall, the
relative entropy of node degree distribution under intentional edge attack is slightly larger than
under random edge attack, except when the 1300th–1600th edges are under attack, indicating that an
intentional edge attack on the node degree of the Chinese input–output network may make an even
stronger impact than random edge failure.

As can be seen from Figure 4b, the relative entropy of SP betweenness distribution of
the Chinese input–output network gradually increases with the increase in the proportion of
edges under random failure and intentional attack. The relative entropy of SP betweenness
distribution under random edge failure increases with a circle variation, and is apparently
higher than that under random edge failure, indicating that the intentional edge attack on
SP betweenness of the Chinese input–output network may make an even stronger impact
than random edge failure.

As can be seen from Figure 4c, the relative entropy of downstream closeness distribu-
tion of the Chinese input–output network gradually increases with a circle variation with
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an increase in the proportion of edges under random failure and intentional attack. The
relative entropy of downstream closeness distribution hits a plateau when the 400th–1600th
edges are under intentional attack, and then increases quickly. Overall, when the Chinese
input–output network is under intentional edge attack, the relative entropy of downstream
closeness distribution is always larger than when the Chinese input–output network is
under random edge failure, indicating that intentional edge attack on the downstream
closeness of the Chinese input–output network may make an even stronger impact than
random edge failure.

As can be seen from Figure 4d, the relative entropy of the upstream closeness dis-
tribution of the Chinese input–output network gradually increases with the increase in
the proportion of edges under random failure and intentional attack. The relative entropy
of upstream closeness distribution hits a plateau when the 400th–1600th edges are under
intentional attack, and then increases quickly, which is quite similar to that of downstream
closeness. When the Chinese input–output network is under intentional edge attack,
the relative entropy of upstream closeness distribution is always larger than that under
random edge failure, indicating that intentional edge attack on the upstream closeness
of the Chinese input–output network may make an even stronger impact than random
edge failure.

In general, when the Chinese input–output network is under intentional edge attack,
the relative entropy of the network node parameters is higher than that under random edge
attack, and increases faster. Therefore, when the Chinese input–output network is under
intentional edge attack, its structure and function change greatly, that is, the robustness
is weak. When subjected to random edge failure, the economic structural characteristics
remain good within a certain range, and the damage degree of the structure shows a slow
trend, which indicates that the robustness is strong.

5. Conclusions

(1) The relative entropy of network node parameters (node degree, SP betweenness,
downstream closeness and upstream closeness) is relatively large, and increases relatively
quickly when the Chinese input–output network is under intentional node or edge attack,
indicating strong robustness.

(2) The relative entropy of network node parameters (node degree, SP betweenness,
downstream closeness and upstream closeness) is relatively small, and increases relatively
slowly when the Chinese input–output network is under random node or edge failure,
indicating weak robustness.

(3) Meanwhile, our experiments show that the relative entropy model is applicative
and effective in measuring the robustness of the IO network.

Author Contributions: Software, W.X.; Supervision, A.W.; Writing–original draft, W.L. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by grants from the National Natural Science Foundation of China
(Grant No. 71991485, No. 71991480), and Basic Science Center Project for National Natural Science
Foundation of China (No. 72088101, the Theory and Application of Resource and Environment
Management in the Digital Economy Era). The APC was funded by the Basic Science Center Project
for National Natural Science Foundation of China (No. 72088101).

Conflicts of Interest: The authors declare no conflict of interest.



Entropy 2022, 24, 1043 11 of 12

Appendix A

Table A1. List of OECD industries and corresponding abbreviations.

Serial
Number ISIC Rev.4 Industry Abbreviation

1 D01T02 Agriculture, hunting, forestry AGR
2 D03 Fishing and aquaculture FA
3 D05T06 Mining and quarrying, energy producing products MQE
4 D07T08 Mining and quarrying, non-energy producing products MQN
5 D09 Mining support service activities MSS
6 D10T12 Food products, beverages and tobacco FBT
7 D13T15 Textiles, textile products, leather and footwear TTP
8 D16 Wood and products of wood and cork WWC
9 D17T18 Paper products and printing PPP
10 D19 Coke and refined petroleum products CRP
11 D20 Chemical and chemical products CCP
12 D21 Pharmaceuticals, medicinal chemical and botanical products PMB
13 D22 Rubber and plastics products RPP
14 D23 Other non-metallic mineral products OMP
15 D24 Basic metals BM
16 D25 Fabricated metal products FMP
17 D26 Computer, electronic and optical equipment CEO
18 D27 Electrical equipment EE
19 D28 Machinery and equipment, nec MAC
20 D29 Motor vehicles, trailers and semi-trailers MTS
21 D30 Other transport equipment OTE
22 D31T33 Manufacturing nec; repair and installation of machinery and equipment MAN
23 D35 Electricity, gas, steam and air conditioning supply EGS
24 D36T39 Water supply; sewerage, waste management and remediation activities WSW
25 D41T43 Construction CON
26 D45T47 Wholesale and retail trade; repair of motor vehicles WRR
27 D49 Land transport and transport via pipelines LR
28 D50 Water transport WR
29 D51 Air transport AR
30 D52 Warehousing and support activities for transportation TS
31 D53 Postal and courier activities PCA
32 D55T56 Accommodation and food service activities AFS
33 D58T60 Publishing, audiovisual and broadcasting activities PAB
34 D61 Telecommunications TEL
35 D62T63 IT and other information services IT
36 D64T66 Financial and insurance activities FIA
37 D68 Real estate activities RS
38 D69T75 Professional, scientific and technical activities PST
39 D77T82 Administrative and support services ASS
40 D84 Public administration and defence; compulsory social security PD
41 D85 Education EDU
42 D86T88 Human health and social work activities HS
43 D90T93 Arts, entertainment and recreation AER
44 D94T96 Other service activities OS

45 D97T98 Activities of households as employers; undifferentiated goods- and
services-producing activities of households for own use HOU

References
1. Leontief, W. Quantitative Input and Output Relations in the Economic Systems of the United States. Rev. Econ. Stat. 1936, 18,

105–125. [CrossRef]
2. James, M.; Brian, D.F.; Gerald, S. Network structure of inter-industry flows. Phys. A Stat. Mech. Appl. 2013, 392, 6427–6441.
3. Blochl, F.; Theis, F.J.; Vega-Redondo, F.; Fisher, E.O.N. Vertex centralities in input–output networks reveal the structure of modern

economies. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 2011, 83, 046127. [CrossRef] [PubMed]
4. McNerney, J. Network Properties of Economic-Input Output Networks; lnternational lnstitute for Applied Systems Analysis: Laxen-

burg, Austria, 2009.

http://doi.org/10.2307/1927837
http://doi.org/10.1103/PhysRevE.83.046127
http://www.ncbi.nlm.nih.gov/pubmed/21599260


Entropy 2022, 24, 1043 12 of 12

5. Xu, M.; Liang, S. Input–output networks offer new insights of economic structure. Phys. A Stat. Mech. Appl. 2019, 527, 121178. [CrossRef]
6. Gonçalves, J.; Matsushita, R.; Da Silva, S. The asymmetric Brazilian input–output network. J. Econ. Stud. 2021, 48, 604–615. [CrossRef]
7. Cerina, F.; Zhu, Z.; Chessa, A.; Riccaboni, M. World Input-Output Network. PLoS ONE 2015, 10, e0134025. [CrossRef]
8. Theodore, T. Network analysis of inter-sectoral relationships and key sectors in the Greek economy. J. Econ. Interact. Coord. 2017,

12, 413–435.
9. He, X.; Dong, Y.; Wu, Y.; Wei, G.; Xing, L.; Yan, J. Structure analysis and core community detection of embodied resources

networks among regional industries. Phys. A Stat. Mech. Appl. 2017, 479, 137–150. [CrossRef]
10. Li, W.; Wang, A.; Zhong, W.; Xing, W.; Liu, J. The role of mineral-related industries in Chinese industrial pattern. Resour. Policy

2022, 76, 102590. [CrossRef]
11. Acemoglu, D.; Carvalho, V.M.; Ozdaglar, A.; Tahbaz-Salehi, A. The Network Origins of Aggregate Fluctuations. Econometrica

2012, 80, 1977–2016. [CrossRef]
12. Grazzini, J.; Spelta, A. An empirical analysis of the global input–output network and its evolution. Phys. A Stat. Mech. Appl. 2022,

594, 126993. [CrossRef]
13. Albert, R.; Jeong, H.; Barabási, A.-L. Error and attack tolerance of complex networks. Nature 2000, 406, 378–382. [CrossRef]
14. Holme, P.; Kim, B.J.; Yoon, C.N.; Han, S.K. Attack vulnerability of complex networks. Phys. Rev. E 2002, 65, 056109. [CrossRef]
15. Schneider, C.M.; Moreira, A.A.; Andrade, J.S.; Havlin, S.; Herrmann, H.J. Mitigation of malicious attacks on networks. Proc. Natl.

Acad. Sci. USA 2011, 108, 3838–3841. [CrossRef]
16. Sen, A.; Mazumder, A.; Banerjee, J.; Das, A.; Compton, R. Identification of K most vulnerable nodes in multi-layered network

using a new model of interdependency. In Proceedings of the 2014 IEEE Conference on Computer Communications Workshops
(INFOCOM WKSHPS), Toronto, ON, Canada, 27 April–2 May 2014; pp. 831–836.

17. Liu, X.; Maiorino, E.; Halu, A.; Glass, K.; Prasad, R.B.; Loscalzo, J.; Gao, J.; Sharma, A. Robustness and lethality in multilayer
biological molecular networks. Nat. Commun. 2020, 11, 6043. [CrossRef]

18. Foti, N.J.; Pauls, S.; Rockmore, D.N. Stability of the World Trade Web over time—An extinction analysis. J. Econ. Dyn. Control
2013, 37, 1889–1910. [CrossRef]

19. Liu, X.; Stanley, H.E.; Gao, J. Breakdown of interdependent directed networks. Proc. Natl. Acad. Sci. USA 2016, 113, 1138–1143. [CrossRef]
20. Dorogovtsev, S.N.; Mendes, J.F.; Samukhin, A.N. Giant strongly connected component of directed networks. Phys. Rev. E Stat.

Nonlin. Soft Matter Phys. 2001, 64 Pt 2, 025101. [CrossRef]
21. Qin, J.; Wu, H.; Tong, X.; Zheng, B. A quantitative method for determining the robustness of complex networks. Phys. D Nonlinear

Phenom. 2013, 253, 85–90. [CrossRef]
22. Kullback, S.; Leibler, R.A. On Information and Sufficiency. Ann. Math. Stat. 1951, 22, 79–86, 88. [CrossRef]
23. Izadi, N.H.; Palhang, M.; Safayani, M. Layered Relative Entropy Policy Search. Knowl.-Based Syst. 2021, 223, 107025. [CrossRef]
24. Mahdavi, M.; Fesanghary, M.; Damangir, E. An improved harmony search algorithm for solving optimization problems. Appl.

Math. Comput. 2007, 188, 1567–1579. [CrossRef]
25. Fei, L.G.; Deng, Y. A new method to identify influential nodes based on relative entropy. Chaos Solitons Fractals 2017, 104, 257–267. [CrossRef]
26. Chen, B.; Wang, Z.X.; Luo, C. Integrated evaluation approach for node importance of complex networks based on relative entropy.

J. Syst. Eng. Electron. 2016, 27, 1219–1226. [CrossRef]
27. Wen, T.; Duan, S.Y.; Jiang, W. Node similarity measuring in complex networks with relative entropy. Commun. Nonlinear Sci.

Numer. Simul. 2019, 78, 104867. [CrossRef]
28. Zhang, Q.; Li, M.Z.; Deng, Y. Measure the structure similarity of nodes in complex networks based on relative entropy. Phys. A

Stat. Mech. Appl. 2018, 491, 749–763. [CrossRef]
29. Hong, C.; He, N.; Lordan, O.; Liang, B.-Y.; Yin, N.-Y. Efficient calculation of the robustness measure R for complex networks. Phys.

A Stat. Mech. Appl. 2017, 478, 63–68. [CrossRef]
30. Defourny, J.; Thorbecke, E. Structural path analysis and multiplier decomposition within a social accounting matrix framework.

Econ. J. 1984, 94, 111–136. [CrossRef]

http://doi.org/10.1016/j.physa.2019.121178
http://doi.org/10.1108/JES-05-2020-0225
http://doi.org/10.1371/journal.pone.0134025
http://doi.org/10.1016/j.physa.2017.02.068
http://doi.org/10.1016/j.resourpol.2022.102590
http://doi.org/10.2139/ssrn.1947096
http://doi.org/10.1016/j.physa.2022.126993
http://doi.org/10.1038/35019019
http://doi.org/10.1103/PhysRevE.65.056109
http://doi.org/10.1073/pnas.1009440108
http://doi.org/10.1038/s41467-020-19841-3
http://doi.org/10.1016/j.jedc.2013.04.009
http://doi.org/10.1073/pnas.1523412113
http://doi.org/10.1103/PhysRevE.64.025101
http://doi.org/10.1016/j.physd.2013.03.002
http://doi.org/10.1214/aoms/1177729694
http://doi.org/10.1016/j.knosys.2021.107025
http://doi.org/10.1016/j.amc.2006.11.033
http://doi.org/10.1016/j.chaos.2017.08.010
http://doi.org/10.21629/JSEE.2016.06.10
http://doi.org/10.1016/j.cnsns.2019.104867
http://doi.org/10.1016/j.physa.2017.09.042
http://doi.org/10.1016/j.physa.2017.02.054
http://doi.org/10.2307/2232220

	Introduction 
	Relative Entropy Model 
	Relative Entropy Theory 
	Relative Entropy Model on the Network Robustness 

	Relevant Indicators of the Input–Output Network 
	Node Degree Distribution 
	Centrality Based on the Strongest Path (SP) 
	Strongest Path 
	SP Betweenness 
	Downstream Closeness and Upstream Closeness 


	Experiment 
	Chinese Input–Output Network Model 
	Robustness Analysis 
	Node Attack 
	Edge Attack 


	Conclusions 
	Appendix A
	References

