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Abstract: The fractional generalized cumulative residual entropy (FGCRE) has been introduced
recently as a novel uncertainty measure which can be compared with the fractional Shannon entropy.
Various properties of the FGCRE have been studied in the literature. In this paper, further results for
this measure are obtained. The results include new representations of the FGCRE and a derivation of
some bounds for it. We conduct a number of stochastic comparisons using this measure and detect
the connections it has with some well-known stochastic orders and other reliability measures. We
also show that the FGCRE is the Bayesian risk of a mean residual lifetime (MRL) under a suitable
prior distribution function. A normalized version of the FGCRE is considered and its properties and
connections with the Lorenz curve ordering are studied. The dynamic version of the measure is
considered in the context of the residual lifetime and appropriate aging paths.

Keywords: FGCRE; generalized cumulative residual entropy; mean residual lifetime; stochastic orders

1. Introduction

The classical Shannon entropy (see Shannon [1]) associated with a random variable
(RV) X has a crucial role in many branches of science to measure the uncertainty contained
in X. Throughout the paper, X denotes a non-negative RV with an absolutely continuous
cumulative distribution function (CDF) with corresponding probability density function
(PDF) f . The Shannon differential entropy is

H(X) = −
∫ ∞

0
f (x) log f (x)dx. (1)

Possible alternative measures of information have been introduced in the literature.
The cumulative residual entropy (CRE) initiated by Rao et al. [2] as a counterpart

to (1), obtained by substituting the survival function (SF) S ≡ 1− F in place of the PDF
f , as

E(X) = −
∫ +∞

0
S(x) log S(x)dx =

∫ +∞

0
S(x)Ω(x)dx, (2)

where
Ω(x) = − log S(x) =

∫ x

0
λ(u)du, x > 0, (3)

is the cumulative the hazard rate (HR) function and λ(t) = f (t)
S(t) , t > 0, is the HR function.

Dynamic versions of the CRE were considered in Asadi and Zohrevand [3] and also
in Navarro et al. [4] where the CRE of the residual lifetime Xt = (X − t|X > t) was
measured as

E(t) = E(X; t) = −
∫ ∞

t

S(x)
S(t)

log
S(x)
S(t)

dx, t > 0.
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For related results, one can see Baratpour [5], Baratpour and Habibi Rad [6] and also
Toomaj et al. [7] and the references therein. In a recent work by Di Crescenzo et al. [8], the
CRE measure was extended to FGCRE as

Eα(X) = c(α)
∫ ∞

0
S(x)[− log S(x)]αdx, (4)

where c(α) = 1
Γ(α+1) , α ≥ 0. The notation c(α) is used across the paper. Note that

c(n) = 1
n! . The properties of fractional cumulative entropy, such as its alteration under linear

transformations, its bounds, its connection to stochastic orders along with its empirical
estimation, and various relations to other functions have been argued and discussed by
Xiong et al. [9]. We note that, as pointed out by [8], if α is a positive integer, say, α = n ∈ N,
then En(X) is identical to the generalized cumulative residual entropy (GCRE) introduced
by Psarrakos and Navarro [10]. It is noticeable that En(X) is considered a dispersion
measure. The measure is also connected to the relevance transformation and interepoch
intervals of a nonhomogeneous Poisson process (see, e.g., Toomaj and Di Crescenzo [11]).
This paper aims to continue this line of research. In this context, we present new findings
on the FGRCE and its dynamic version. The FGCRE is in particular a suitable quantity to
be applied in the proportional HR model.

The subsequent materials of this article are organized in the following order. In
Section 2, we first give an overview of the concept of generalized cumulative residual
entropy and present a similar representation for fractional generalized residual cumulative
entropy. We then give some expressions for the FGCRE, one of which is related to the
MRL function. We also consider the connection of the FGCRE with the excess wealth order
and the Bayesian risk of the FGCRE. A normalized version of the FGCRE is given and its
connection with the Lorenz curve order is studied. Section 3 examines some bounds and
stochastic ordering properties of FGCRE. In Section 4, properties of the dynamic FGCRE
are discussed.

The reader can be referred to [12] for the definitions of stochastic orders ≤st,≤hr,≤lr,
≤ew and≤Lorenz and for the definitions of (increasing) decreasing MRL (IMRL(DMRL)), (de-
creasing) increasing failure rate (DFR (IFR)) and new better (worse) than used in expectation
(NBUE (NWUE)) classes.

2. Basic Properties

As mentioned earlier, the FGCRE in (4) reduces to the GCRE when α = n ∈ N. In
this case,

En(X) = c(n)
∫ ∞

0
S(x)[Ω(x)]n dx = c(n)

∫ ∞

0
S(x)[− log S(x)]n dx (5)

for all n = 0, 1, . . .. As pointed out by Psarrakos and Navarro [10], the GCRE fulfills the
following property:

En(X) = µn+1 − µn, n ≥ 0, (6)

where µn = E[Xn+1] and Xn denotes the epoch times of a Poisson process which is non-
homogeneous having intensity function λ(x). Note that X1 and X are equally distributed.
Signifying by Sn+1(x) the SF of Xn+1, n ∈ {0, 1, 2, . . .}, one has (see Baxter [13])

Sn+1(x) = S(x)
n

∑
k=0

Ωk(x)
k!

, x ≥ 0, (7)

and the PDF of Xn+1 is

fn+1(x) = c(n) f (x)Ωn(x), x ≥ 0. (8)
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In the following, we show that the same results can be obtained for the FGCRE. It is
worth noting that our results are extensions of the results obtained using the GCRE. To this
end, we define the RV Xα+1 with the PDF as

fα+1(x) = c(α)[Ω(x)]α f (x), x ≥ 0, (9)

for all α > 0 where Ω(x) is defined in (3). Denoting by Sα+1(x) the SF of Xα+1, it can be
represented as Sα+1(x) = Bα+1(S(x)), x ≥ 0, where

Bα(t) = c(α)
∫ t

0
(− log u)αdu, t ∈ (0, 1),

is increasing in t for all α ≥ 0. If α is an integer, say, α ∈ {0, 1, 2, . . .}, then (9) reduces to (8).
Notice that from (4), the FGCRE can be rewritten as

Eα(X) = E
(

1
λ(Xα+1)

)
, x > 0, (10)

for all α ≥ 0. From (9), the ratio

fα2(x)
fα1(x)

=
c(α2)

c(α1)
(Ω(x))α2−α1 , x > 0,

is increasing in t and, therefore, Xα1 ≤lr Xα2 for any 0 < α1 ≤ α2. In particular, this implies
that Xα1 ≤st Xα2 . That is, Sα1(x) ≤ Sα2(x) for all 0 < α1 ≤ α2. Hence, if X is IFR (DFR),
then, from (10) and Equation (1.A.7) in [12], we have

Eα1(X) ≤ (≥)Eα2(X), (11)

for all α1 ≤ α2. In Table 1, we give FGCREs for a number of distributions.

Table 1. FGCREs for a number of distributions.

Distribution S(x) Eα(X)

Uniform(0, b) 1− x
b , 0 ≤ x ≤ b b

2α+1 , b > 0.
Weibull(1, k) e−xk

, x > 0 c(α+1)
kc(α+ 1

k )
, k > 0.

Burr Type II(c, k) (1 + xc)−k, x > 0 kα

c ∑∞
i=0 (

1
c−1

i )
(−1)i

(k+i− 1
c )

α+1 , c, k > 0.

Beta(1, b) (1− x)b, 0 ≤ x ≤ 1 bα

(b−1)α+1 , b > 1.

Now, we obtain an analogue representation for the FGCRE which is a generalization
of relation (6) with FGCRE in place of GCRE.

Proposition 1. Let X have FGCRE Eα(X). Then, for all α ≥ 0,

Eα(X) = E[Xα+1]−E[Xα]. (12)

Proof. Recalling (4) and integrating by parts, we obtain

Eα(X) = c(α)
{∫ ∞

0
x[Ω(x)]α f (x)dx− α

∫ ∞

0
x[Ω(x)]α−1 f (x)dx

}
=

∫ ∞

0
x fα+1(x)dx− αc(α + 1)

c(α)

∫ ∞

0
x fα(x)dx

= E[Xα+1]−E[Xα],

where the last equality is obtained by recalling (9) and using c(α) = αc(α + 1).
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Note that Eα(X) is the areas surrounded between Sα+1 and Sα for all α ≥ 0. In
particular, S0 = E(X) is the area under S1 = S. In Figure 1, we depict these areas for the
exponential distribution and various values of α.

Figure 1. Sα(x) for an exponential distribution for α = 1, 1.5, 2, 2.5, 3, 3.5. The area under S1(x) = S(x)
is E(X) and the areas among them give the amounts of the FGCRE Eα(X) for α = 1, 1.5, 2, 2.5, 3, 3.5.

Theorem 1. (i) If, for some p > 1/α, E(Xp) < ∞, then Eα(X) < ∞ for all 0 < α ≤ 1.

(ii) If, for some p > α, E(Xp) < ∞, then Eα(X) < ∞ for all α ≥ 1.

Proof. (i) It is not difficult to see whether for each 0 ≤ α ≤ 1, and 0 ≤ β ≤ 1, one can obtain

x(− log x)α ≤
(

αe−1

1− β

)α

xβ, 0 ≤ x ≤ 1, (13)

By taking β = α for 0 ≤ α ≤ 1, we obtain

x(− log x)α ≤
(

αe−1

1− α

)α

xα, 0 ≤ x ≤ 1.

Thus, one concludes

Eα(X) ≤
(

αe−1

1− α

)α ∫ ∞

0
Sα(x)dx =

(
αe−1

1− α

)α[∫ 1

0
Sα(x)dx +

∫ ∞

1
Sα(x)dx

]
≤

(
αe−1

1− α

)α[
1 +

∫ ∞

1
Sα(x)dx

]
≤
(

αe−1

1− α

)α[
1 +

∫ ∞

1

[
E(Xp)

xp

]α

dx
]

=

(
αe−1

1− α

)α[
1 + [E(Xp)]α

∫ ∞

1

1
xαp dx

]
,

where the third inequality is obtained by virtue of the Markov inequality. The last expres-
sion is finite if p > 1

α and this completes the proof. In the case when α ≥ 1, the results apply
to β = 1/α.
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Note that Eα(X) = Eα(Y), α ≥ 0, does not guarantee equality in the distributions
of X and Y, but the converse holds. If Y = i(X), where i(·) is strictly increasing and
differentiable, then

Eα(Y) = c(α)
∫ ∞

0
i′(u)S(u)[− log S(u)]αdu, (14)

for all α ≥ 0. Below, the connection between the FGCRE and the cumulative HR function of
X given by (3) is realized.

Theorem 2. Let X fulfill Eα(X) < +∞ for all α ≥ 0. Then,

Eα(X) = E[Ω(2)
α (X)], (15)

where
Ω(2)

α (x) = c(α)
∫ x

0
Ωα(t)dt, x ≥ 0. (16)

Proof. From (4) and also by applying Fubini’s theorem,

Eα(X) = c(α)
∫ ∞

0

[∫ ∞

t
f (x)dx

]
Ωα(t)dt = c(α)

∫ ∞

0
f (x)

[∫ x

0
Ωα(t)dt

]
dx,

which immediately validates (15) by using (16).

We note that Ω(2)
α (x) in (16) is increasing and convex in x. This immediately generates

the following property.

Theorem 3. Let X have a finite mean µ. Then,

Eα(X) ≥ Ω(2)
α (µ),

for all α ≥ 0.

Another useful application of Theorem 2 is given here.

Theorem 4. If X and Y are non-negative RVs in the way X ≤icx Y, it holds that

Ω(2)
α (X) ≤icx Ω(2)

α (Y), α ≥ 0,

where the function Ω(2)
α (·) is given in (16). In particular, X ≤icx Y implies

Eα(X) ≤ Eα(Y).

Proof. Since Ω(2)
α (·) is a convex function and also since it is an increasing function for

all α ≥ 0, thus (see Theorem 4.A.8 in [12]), Ω(2)
α (X) ≤icx Ω(2)

α (Y), α ≥ 0. Now, using
relation 4.A.2 in [12], we derive Eα(X) ≤ Eα(Y).

Clearly, Ω(2)
α (·) is increasing and also convex and Ω(2)

α (0) = 0. Hence, for the RVs X
and Y satisfying X ≤hr Y, we obtain that

Eα(X)

E(X)
≤ Eα(Y)

E(Y) , (17)
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for all α ≥ 0. This relation is immediately obtained from Theorem 2 and Shaked and
Shantikumar [12] (see page 24). It is worth pointing out that Equation (17) leads us to
define the normalized FGCRE by

NEα(X) =
Eα(X)

E(X)
. (18)

Under the condition X ≤hr Y, Equation (17) can be rewritten as NEα(X) ≤ NEα(Y)
for α ≥ 0. Moreover, if X is a non-negative RV having IFR (DFR) property, from relation (11),
one can conclude that

E0(X) ≥ (≤)Eα(X), for all α ≥ 0.

From this, we derive that NEα(X) ≤ (≥)1, α ≥ 0. For α = 1, the normalized
cumulative residual entropy NE1(X) is generated (see Rao [2]). This is an analogue
for the coefficient of variation of an RV. In Table 2, we give the normalized FGCREs for
some distributions.

Table 2. FGCREs for several distributions.

Distribution S(x) NEα(X)

Uniform 1− x
b , 0 ≤ x ≤ b 1

2α , b > 0.
Weibull e−xk

, x > 0 c(α)c(1+ 1
k )

kc(α+ 1
k )

, k > 0.

Burr Type II (1 + xc)−k, x > 0 kα−1

cB(k− 1
c ,1+ 1

c )
∑∞

i=0 (
1
c−1

i )
(−1)i

(k+i− 1
c )

α+1 , c, k > 0. *

Beta (1− x)b, 0 ≤ x ≤ 1 bα(b+1)
(b−1)α+1 , b > 1.

* B(·, ·) denotes the complete beta function.

To continue our results, consider the following observation.

Theorem 5. Let Eα(X) < +∞ for all α ≥ 0. Then

NEα(X) =
∫ 1

0
[p− LX(p)]gα(p)dp, (19)

where

gα(p) =
[− log(1− p)]α−2

Γ(α)(1− p)
[− log(1− p)− (α− 1)], 0 ≤ p ≤ 1.

Proof. Recalling Proposition 1 and the change of z = F(x), we have

NEα(X) =
1
µ

∫ 1

0
[F−1(z)− µ]Gα(z)dz, (20)

where

Gα(z) = α[− log(1− z)]α − [− log(1− z)]α−1

Γ(α)
+ 1, 0 ≤ z ≤ 1,

for all α > 0. In (20), let u = Gα(z), α ≥ 0, and dv = [F−1(z)− µ]dz. Then du = gα(z)dz
and v =

∫ p
0 [F−1(z)− µ]dz. Integrating by parts gives

NEα(X) =
∫ 1

0
gα(p)

∫ p

0

[
1− F−1(z)

µ

]
dp,

and this gives the proof.

When α = 1, the De Vergottini index of inequality of an income distribution X is
reached, given by NE1(X) = E1(X)/E(X) (see Rao et al. [2] for more details). The in-
dex (19) belongs to the class of linear measures of income inequality defined by Mehran [14].



Entropy 2022, 24, 1041 7 of 17

It can be obtained by weighting the Lorenz differences p − LX(p) together with the in-
come distribution.

Theorem 6. Let X1 and X2 be non-negative RVs with survival functions S1(x) and S2(x), respec-
tively. If X1 ≤Lorenz X2, then NEα(X1) ≤ NEα(X2) for all 0 ≤ α ≤ 1.

Proof. Assumption X1 ≤Lorenz X2 implies that LX(p) ≥ LY(p), p ∈ [0, 1], due to
Theorem 3.A.10 in [12]. From relation (19), we obtain

[p− LX(p)]gα(p) ≤ [p− LY(p)]gα(p), p ∈ [0, 1],

where the inequality is obtained by noting that gα(p), 0 ≤ p ≤ 1, is a non-negative function
for all 0 ≤ α ≤ 1. The result is obtained by reversing.

The Bayes Risk of MRL

The PDF of Xt is given by ft(x) = f (x)/S(t) for x > t. Denote by m(t) the MRL
function of X. In the decision theoretic framework, the MRL function is the optimal
prediction of [X − t |X > t], under the conditional quadratic loss function L(d, X|t) =
[(X− t− d)2|X > t], as the mean of the PDF ft(x). In other words, we have

d?(t) = arg min
d

EX>t[L(d, X|t)] = m(t), t > 0,

for all α > 0. The function m(t) is a local risk measure, given the value the threshold t takes.
Its global risk of the MRL function of X is the Bayes risk

E(m) = Eπ [m(X)], (21)

where Eπ denotes the average based on the prior PDF for the threshold t (see Ardakani
et al. [15] and Asadi et al. [16] for more details). The following theorem provides expressions
for E(m) under different priors.

Theorem 7. Let X have the MRL function m, and let π(t) = fα(t), t ≥ 0. Then, the Bayes risk
of m(t) is given by the FGCRE functional of the baseline CDF, i.e.,

E(m) = Eα(X). (22)

Proof. By substituting π(t) = fα(t) = c(α− 1)[Ω(t)]α−1 f (t), t ≥ 0, for all α > 0, we have

E(m) =
∫ ∞

0
m(t)π(t)dt =

∫ ∞

0
m(t) fα(t)dt

=
∫ ∞

0

(∫ ∞
t S(x)dx

S(t)

)
fα(t)dt

=
∫ ∞

0
S(x)

(∫ x

0

fα(t)
S(t)

dt
)

dx

= c(α)
∫ ∞

0
S(x)[− log S(x)]αdx.

The second equality follows by observing that∫ x

0

fα(t)
S(t)

dt = c(α− 1)
∫ x

0
[Ω(t)]α−1 f (t)dt = c(α)[Ω(t)]α, t ≥ 0,

and the proof is completed.
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From Theorem 7, it is obvious that

Eα(X) = E[m(Xα)], (23)

for all α ≥ 0. We point out that the representation in (23) is very useful since in many
statistical models one may gather information about the behaviour of MRL. The following
example illustrates a well-known situation in this context.

Example 1. Let us suppose m(x) = cx + d, x ≥ 0, with c > −1, c 6= 0 and d > 0. Oakes and
Dasu [17] observed that the corresponding SF is

S(x) =
(

d
cx + d

) 1
c +1

, x ≥ 0, c > −1, d > 0.

It is a well-known property for the generalized Pareto distribution (GPD) as a fundamental
aspect of this family of distributions. The exponential distribution is reached whenever c→ 0, the
Pareto distribution is resulted for c > 0, and the power distribution is achieved for −1 < c < 0.
Hence, from (23), the FGCRE of the GPD distribution is derived as

Eα(X) = cE[Xα] + d = d(c + 1)α,

where the identity E[Xα] =
d
c [(c + 1)α − 1], for all α ≥ 0, has been applied.

The Bayes risk of m(t) under the prior π(t) = fα(t) is given by Eα(X) ≤ (≥)µ for all
α ≥ 0.

3. Bounds and Stochastic Ordering

In this section, we aim to derive several results on bounds for the FGCRE and provide
results based on stochastic comparisons.

3.1. Some Bounds

It is well known that the cumulative residual entropy of the sum of two non-negative
independent RVs is greater than the maximum of their original entropies (see, for example,
Rao et al. [2]). By a similar approach, we can verify that the same result also holds true for
the FGCRE. We omit the proof.

Theorem 8. If X1 and X2 are non-negative independent RVs, then

Eα(X1 + X2) ≥ max{Eα(X1), Eα(X2)},

for all α ≥ 0.

The following theorem establishes a bound for the FGCRE in terms of the cumulative
residual entropy (2).

Theorem 9. Let X have a finite mean µ and finite E(X). Then

Eα(X)


≤ c(α)[E(X)]α

µα−1 , if 0 ≤ α ≤ 1

≥ c(α)[E(X)]α

µα−1 , if α ≥ 1
. (24)

Proof. Let Xe follow the equilibrium distribution with PDF fe(x) = S(x)/µ, x > 0. The
FGCRE can be rewritten as

Eα(X) = µE[ψα(Ω(Xe))],
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in which ψα(t) = c(α)tα, t > 0, is a concave (convex) function for 0 ≤ α ≤ 1(α ≥ 1).
Therefore, Jensen’s inequality implies

Eα(X) = µE[ψα(Ω(Xe))]

≤ µc(α)ψα(E[Ω(Xe)])

= µc(α)
(

1
µ

∫ +∞

0
S(x)Ω(x)dx

)α

,

and this provides the proof in the spirit of (2). If α ≥ 1, the result is obtained analogously.

In the setting of Theorem 9, the properties given below hold for the normalized FGCRE.

NEα(X)

{
≤ c(α)[NE(X)]α, if 0 ≤ α ≤ 1

≥ c(α)[NE(X)]α, if α ≥ 1
. (25)

Theorem 10. If X has a finite E(X), then, for all α ≥ 0,

(i) Eα(X) ≥ CαeH(X) such that Cα = c(α)e
∫ 1

0 log(x(− log(x))α)dx and H(X) given by (1).

(ii) Eα(X) ≥ c(α)
∫ ∞

0 Fα(x)S(x)dx.

Proof. Part (i) is easily obtained by applying the log-sum inequality (see, e.g., Rao et al. [2]).
By using the identity log x ≤ x− 1 for 0 < x ≤ 1, then part (ii) can be obtained.

We end this subsection by providing two upper bounds for the FGCRE of X. The first
one is based on standard deviation of X. The second one is based on the risk-adjusted
premium introduced by Wang [18] which is defined by

πq(X) =
∫ ∞

0
Sq(x)dx, (26)

for all 0 < q ≤ 1. The risk-adjusted premium is additive when the risk is divided into
layers, which makes it very attractive for pricing insurance layers. For a detailed discussion,
the reader is referred to Wang [18].

Theorem 11. Consider X with standard deviation σ(X) and FGCRE function Eα(X). Then

(i) Eα(X) ≤
√

Γ(2α−1)
Γ(α) σ(X), for all α ≥ 0.5.

(ii) Eα(X) ≤
(

αe−1

1−β

)α πβ(X)

Γ(α+1) where β = α for 0 ≤ α ≤ 1 and β = 1/α for α ≥ 1.

Proof. (i) For all α ≥ 0, by the Cauchy–Schwarz inequality, from (23) we obtain[∫ ∞

0
m(x)Ωα−1(x) f (x)dx

]2
=

[∫ ∞

0
m(x)

√
f (x)

√
f (x)Ωα−1(x)dx

]2

≤
(∫ ∞

0
m2(x) f (x)dx

)(∫ ∞

0
Ω2α−2(x) f (x)dx

)
.

Applying Theorem 21 of Toomaj and Di Crescenzo [11], it holds that E[m2(X)] =
σ2(X). Further, ∫ ∞

0
Ω2α−2(x) f (x)dx = Γ(2α− 1),

which is positive for all α ≥ 0.5. Therefore, the proof is then completed. Part (ii) is easily
obtained from relation (13) by substituting β = α for 0 ≤ α ≤ 1 and β = 1/α for α ≥ 1.

The standard deviation (SD) bound in Theorem 11 is decreasing in 1/2 < α ≤ 1 and
increasing in α ≥ 1, but it is applicable when α > 1/2. However, the risk-adjustment (RA)
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bound is applicable for all α ≥ 0. Therefore, this bound can be a useful alternative for the
case of α < 1/2. The following example illustrates these points.

Example 2. Consider X with SF S(x) = e−xk
, x > 0. Then,

πβ(X) =
∫ ∞

0
Sβ(x)dx =

∫ ∞

0
e−βxk

dx =
Γ( 1

k )

kβ
1
k

,

for all k, β > 0. The variance and the FGCRE of the Weibull distribution as given in Table 1 are

σ2(X) = Γ
(

1 +
2
k

)
−
[

Γ
(

1 +
1
k

)]2
and Eα(X) =

Γ(α + 1
k )

kΓ(α + 1)
,

respectively. Therefore, part (i) of Theorem 11 gives

Eα(X) ≤ c(α− 1)

√√√√Γ(2α− 1)

[
Γ
(

1 +
2
k

)
−
[

Γ
(

1 +
1
k

)]2
]

, α > 1/2.

Moreover, by taking β = α for all 0 ≤ α ≤ 1 and β = 1/α for all α ≥ 1, part (ii) of
Theorem 11 gives

Eα(X) ≤
αα− 1

k e−αΓ( 1
k )

k(1− α)αΓ(α + 1)
, 0 ≤ α ≤ 1, and Eα(X) ≤

α2α+ 1
k e−αΓ( 1

k )

k(α− 1)αΓ(α + 1)
, α ≥ 1.

The left panel of Figure 2 indicates the plots of the SD and the RA bounds given in Theorem 11
along with the plot of Eα(X) for 0 ≤ α ≤ 1, and the right panel is for α ≥ 1. The standard
deviation bound is not valid for 0 ≤ α ≤ 1/2. For 1/2 ≤ α ≤ 1, the standard deviation bound
is outperformed.

Figure 2. The SD (dashed line) and the RA (dotted line) bounds as well as the exact value of FGCRE
(solid line) for the Weibull model with scale parameter k = 2 when 0 ≤ α ≤ 1 (left) and α ≥ 1 (right).

3.2. Stochastic Comparisons

In this subsection, ordering distributions according to the FGCRE is considered. We
provide a counterexample to show that the usual stochastic ordering does not provide
ordered distributions in accordance with their FGCREs.
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Example 3. Let us consider two RVs X1 and X2 coming from the Weibull distribution with the

survival functions S1(x) = ek1−
k1
x2 and S2(x) = ek2−

k2
x2 for all 0 ≤ x ≤ 1 and k1, k2 > 0. It is

not hard to see that for k1 ≤ k2, we have X1 ≤st X2. However, numerical computations illustrate
that for some choices of k1 and k2 and for some choices of α, the condition Eα(X1) ≤ Eα(X2) is not
fulfilled as shown in Table 3.

Table 3. Numerical values of Eα(X1) and Eα(X2) described in Example 3.

k1 k2 α Eα(X1) Eα(X2) k1 k2 α Eα(X1) Eα(X2)

0.2 0.5 0.5 0.2329 0.2271 2 3 0.5 0.1570 0.1297
1.0 0.1843 0.1574 1.0 0.0876 0.0681
1.5 0.1503 0.1155 1.5 0.0551 0.0413
2.0 0.1221 0.0858 2.0 0.0364 0.0266
2.5 0.0980 0.0638 2.5 0.0247 0.0176

Before stating our main results, let us consider the following lemma.

Lemma 1. If X1 ≤st X2, then X1,α ≤st X2,α for all α ≥ 0.

Proof. The SF of Xi,α, i = 1, 2, is Si,α(x) = Bα(Si(x)), x > 0. Since X1 ≤st X2, we have

S1,α(x) = Bα(S1(x)) ≤ Bα(S2(x)) = S2,α(x), x > 0,

in which the inequality follows since Bα(t) is increasing in t. Hence, the proof is completed.

Theorem 12. Let X1 ≤st X2. Then, for all α ≥ 0 :

(i) If X1 ≤mrl X2 and either X1 or X2 is IMRL, then Eα(X1) ≤ Eα(X2).

(ii) If X1 ≥mrl X2 and either X1 or X2 is DMRL, then Eα(X1) ≥ Eα(X2).

Proof. We assume that the SF of Xi,α, i = 1, 2, is given by Si,α(x) = Bα(Si(x)), x > 0. Let
X2 be IMRL. From (22), we obtain

Eα(X1) = E[m1(X1,α)] ≤ E[m2(X1,α)] ≤ E[m2(X2,α)] = Eα(X2).

The first inequality is due to X1 ≤mrl X2 and the last inequality follows since X1 ≤st X2
implies X1,α ≤st X2,α for α ≥ 0 due to Lemma 1 and this is equivalent to E[ψ(X1,α)] ≤
E[ψ(X2,α)] for all functions ψ(·) with increasing behaviour. Suppose X1 is IMRL. Then,

Eα(X1) = E[m1(X1,α)] ≤ E[m1(X2,α)] ≤ E[m2(X2,α)] = Eα(X2),

and hence the result stated in (i) is obtained. The proof for assertion (ii) is quite similar.

Hereafter, we show that the FGCRE is connected with the excess wealth order as
another concept of variability. The excess wealth transform function has some links with
the MRL function as

mX(F−1(p)) =
WX(p)

p̄
, p ∈ (0, 1), p̄ = 1− p. (27)

Recently, Toomaj and Di Crescenzo [11] have shown that a similar result also holds for
the GCRE. The FGCRE can be calculated from the excess wealth transform employing (22).

Theorem 13. For a non-negative RV X, we have, for all α ≥ 0,

Eα(X) = c(α)
∫ 1

0
mX(F−1(p))[− log(1− p)]α−1 dp. (28)
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It has been established by Fernández-Ponce et al. [19] that the variance of X can be
measured by excess wealth as

σ2(X) =
∫ 1

0
[mX(F−1(p))]2 dp.

Notice that X1 ≤ew X2 implies σ2(X1) ≤ σ2(X2) (cf. [12]). From (28), the following
result is reached.

Theorem 14. If X1 ≤ew X2, then Eα(X1) ≤ Eα(X2), for any α ≥ 0.

Consequently,

X ≤disp Y =⇒ X ≤ew Y =⇒ Eα(X) ≤ Eα(Y),

for any α ≥ 0.

4. Dynamic FGRCE

The study of the times for events or the age of units is of interest in many fields. The
FGCRE of Xt is

Eα(t) = Eα(X; t) = c(α)
∫ ∞

t

S(x)
S(t)

[Ω(x)−Ω(t)]αdx, t > 0, (29)

for all α ≥ 0. It is clear that E0(t) = m(t). The HR of Xt is λ(x + t) for x ≥ 0. Hence, if X is
IFR(DFR), then Xt is also IFR(DFR) and, therefore,

Eα1(X; t) ≤ (≥)Eα2(X; t), (30)

for all 0 ≤ α1 ≤ α2. On the other hand, by using the generalized binomial expansion, for all
α ≥ 0,

Eα(X; t) = c(α)
∫ ∞

t

S(x)
S(t)

[Ω(x)−Ω(t)]αdx

=
c(α)
S(t)

∞

∑
k=0

(
α

k

)
(−1)k[Ω(t)]k

∫ ∞

t
S(x)[Ω(x)]α−kdx.

In analogy with Theorem 1, the next result is procured:

Eα(X; t) = E[Xα+1 − Xα |X > t] = c(α)
∫ ∞

0
St(x)[Ωt(x)]α dx, α ≥ 0. (31)

The dynamic version of identity (22) follows from the following identity,

fα(x | t) :=
[Ω(x)−Ω(t)]α−1

Γ(α)
f (x)
S(t)

, x ∈ [t,+∞), t ≥ 0, (32)

which is the PDF of the conditional RV [Xα |X > t], α > 0. This is the generalization of
expression given in (33) of Toomaj and Di Crescenzo [11] when α is a positive integer. The
result in Theorem 10 of Toomaj and Di Crescenzo [11] is generalized as follows:

Theorem 15. In the setting of Theorem 7, for non-negative α and t,

Eα(X; t) = E[m(Xα) |X > t]. (33)
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Theorem 16. For any t ≥ 0 and for all α ≥ 0, it holds that

1
α

Cov[Xα, Ω(Xα) |X > t] = Eα(X; t).

Proof. Let us denote At = [X > t]. We obtain

Cov[Xα, Ω(Xα) |At] = E[Xα Ω(Xα)|At]−E[Xα|At]E[Ω(Xα)|At].

From (32), one can easily obtain

E[Xα Ω(Xα)|At] =
∫ ∞

t
x Ω(x) fα(x | t)dx = αE[Xα+1 |At] + Ω(t)E[Xα |At]

and
E[Ω(Xα) |At] =

∫ ∞

t
Ω(x) fα(x | t)dx = α + Ω(t),

so that
Cov[Xα, Ω(Xα) |At] = α (E[Xα+1 |At]−E[Xn |At]).

The result now follows from (31).

For t = 0, Theorem 16 is reduced to the next achievement:

Corollary 1. For all α ≥ 0,
1
α

Cov(Xα, Ω(Xα)) = Eα(X).

In a similar manner as in Theorem 9, the following bounds for the dynamic measure (4)
are derived for t > 0:

Eα(X; t)


≤ c(α)[E(X; t)]α

[m(t)]α−1 , if 0 ≤ α ≤ 1

≥ c(α)[E(X; t)]α

[m(t)]α−1 , if α ≥ 1
. (34)

The following theorem with the same arguments as in the proof of Theorem 10 gives
the dynamic version of the FGCRE.

Theorem 17. For X with a finite MRL function and finite E(X; t), for all α ≥ 0, we have:

(i) Eα(X; t) ≥ CαeH(X;t) in which Cα is as before. H(X; t) denotes the dynamic Shannon entropy
introduced in [20].

(ii) Eα(X; t) ≥ c(α)
∫ ∞

t

(
1− F(x)

F(t)

)α S(x)
S(t)

dx.

Moreover, following the proof of Theorem 11, a couple of upper bounds for the dy-
namic FGCRE are acquired. The definition and properties of the variance residual lifetime
(VRL) function in the context of lifetime data analysis have been studied in Gupta [21],
Gupta et al. [22] and Gupta and Kirmani [23], among others.

Theorem 18. Let X have a VRL function σ2(X; t) and finite dynamic FGCRE Eα(X; t), for all
α ≥ 0. Then,

(i) Eα(X; t) ≤
√

Γ(2α−1)
Γ(α) σ(X; t), for all α ≥ 0.5.

(ii) Eα(X; t) ≤
(

αe−1

1−β

)α
c(α)πβ(X; t), where β = α for 0 ≤ α ≤ 1 and β = 1/α for α ≥ 1 and

πβ(X; t) =
∫ ∞

t

(
S(x)
S(t)

)α
dx, t > 0.
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Now, we give an expression for the derivative of Eα(X; t).

Theorem 19. We have

E ′α(X; t) = λ(t)[Eα(X; t)− Eα−1(X; t)], (35)

for all α ≥ 1.

Proof. The relation (33) gives

Eα(X; t)S(t) =
∫ ∞

t

[Ω(x)−Ω(t)]α−1

Γ(α)
f (x)m(x)dx.

By differentiating, we obtain

E ′α(X; t)S(t)− f (t)Eα(X; t) = −λ(t)(α− 1)Γ(α− 1)
Γ(α)

∫ ∞

t

[Ω(x)−Ω(t)]α−2

Γ(α− 1)
f (x)m(x)dx.

Applying Γ(α) = (α− 1)Γ(α− 1) and using again (33),

E ′α(X; t)S(t)− f (t)Eα(X; t) = −λ(t)Eα(X; t),

that is, (35) holds.

The preceding theorem can be applied to present the following theorem:

Theorem 20. If X is IFR (DFR), then Eα(X; t) is decreasing (increasing) for all α ≥ 1.

Proof. The result is immediate for α = 1 since Eα(X; t) = m(t) and since the IFR (DFR)
property is stronger than the DMRL (IMRL) property. For all α > 1, using relation (30),
we have

Eα(X; t) ≥ (≤)Eα−1(X; t),

which validates the theorem by using Theorem 19.

Let us define a new aging notion based on the FGCRE.

Definition 1. The RV X has an increasing (decreasing) dynamic FGCRE of order α, and denote it
by IDFEα(DDFEα) if Eα(X; t) is increasing (decreasing) in t.

We note that the IDFE0 and DDFE0 classes correspond to the IMRL (increasing
MRL) and DMRL (decreasing MRL) classes, respectively. In the next theorem, we prove
IDFEα−1(DDFEα−1) is a subclass of IDFEα(DDFEα) for all α ≥ 1.

Lemma 2. Let Eα(X; 0) < ∞ for a fixed α ≥ 1. Then

Eα(X; t) =
1

S(t)

∫ ∞

t
Eα−1(X; x) f (x)dx. (36)

Under the assumptions of Lemma 2, Eα(X; t) is an absolutely continuous function.
Furthermore, for α = 0, then m(t) = E0(X; t) is also absolutely continuous under the
hypothesis that µ < ∞. Moreover, we have the following result.

Theorem 21. If X is IDFEα−1(IDFEα−1), then X is IDFEα(IDFEα) for all α ≥ 1.
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Proof. Suppose that X is IDFEα−1. Then, by using (36), we obtain

Eα(X; t) =
1

S(t)

∫ ∞

t
Eα−1(X; x) f (x)dx

=
1

S(t)

∫ ∞

t
Eα−1(X; t) f (x)dx

= Eα−1(X; t),

for all t ≥ 00. Then (35) yields Eα(X; t) and X is IDFEα. The proof is similarly carried out
when X is DDFEα.

From Theorem 21, we can conclude that

IDFEα1 =⇒ IDFEα2

and
DDFEα1 =⇒ DDFEα2

for all 1 ≤ α1 ≤ α2. An immediate consequence of the above relation is that

IMRL =⇒ IDFEα and DMRL =⇒ DDFEα

for all α ≥ 0. We remark that Navarro et al. (2010) provided some examples showing
that an RV X is IDGCRE1(DDGCRE1) but it is not IMRL (DMRL). However, Navarro
and Psarrakos [24] by some counterexamples showed that X is neither IMRL (DMRL) nor
IDGCRE1(DDGCRE1), but it is included in the class IDGCREα(DDGCREα) when α is an
integer value. Hence, the result holds for all α ≥ 1.

This section is closed by introducing the dynamic normalized version of the FGCRE
as follows:

NEα(X; t) =
Eα(X; t)

m(t)
, (37)

for all t > 0.

Theorem 22. Let X have a finite normalized FGCRE NEα(X; t). If X is IMRL (DMRL), then
NEα(X; t) ≥ (≤)1 for all t > 0.

Proof. Since X is IMRL (DMRL) based on the assumption, we have

m(x)
m(t)

≥ (≤)1, ∀x ≥ t.

Therefore, from Equations (33) and (37), we obtain

NEα(X; t) =
∫ ∞

t

[
m(x)
m(t)

]
fα(x | t)dx ≥ (≤)

∫ ∞

t
fα(x | t)dx = 1,

from which we have the result.

In Table 4, we give the dynamically normalized FGCREs for some distributions. For
example, we present the dynamically normalized FGCRE of the Weibull distribution in
Figure 3. We note that X is IMRL when k ≥ 1 and X is DMRL when 0 ≤ k ≤ 1.
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Table 4. FGCREs, MRLs and normalized FGCREs for some distributions.

Distribution S(x) Parameters Eα(X; t) m(t) NEα(X; t)

Uniform(a, b) b−t
b−a , 0 ≤ x ≤ b 0 ≤ a < b (b−t)

2α+1
(b−t)

2
2−α

Weibull(c, k) e−cxk
, x > 0 c > 0, k > 0 Γ1−1/k(α+1,ctk)

k k√cΓ(α+1)
Γ1−1/k(1,ctk)

k k√c
Γ1−1/k(α+1,ctk)

Γ(α+1)Γ1−1/k(1,ctk)
*

Power(a, b, c) ( b−t
b−a )

c, a ≤ t ≤ b 0 ≤ a < b, c > 0 cα(b−t)
(c+1)α+1

(b−t)
(c+1)

(
c

c+1

)α

Pareto(a, b)
( a

a+t
)b, x ≥ 0 a > 0, b > 1 bα(a+t)

(b−1)α+1
(a+t)
(b−1)

(
b

b−1

)α

* Γr(m, t) =
∫ ∞

0 xm−1(x + t)−re−xdx denotes the generalized gamma function.

Figure 3. The dynamic normalized FGCRE for the Weibull distribution given in case (ii) of
Table 4, with k = 0.2 (left panel) and k = 2 (right panel) as a function of t for various values
of α = 0.2, 0.5, 1, 2, 3.5.

Eventually, the inequalities given in (25) can be developed as

NEα(X; t)

{
≤ c(α)[NE(X; t)]α, if 0 ≤ α ≤ 1

≥ c(α)[NE(X; t)]α, if α ≥ 1
.

The inequalities given above are very useful when the dynamic FGCRE has a compli-
cated form.
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