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Abstract: The multi-scale line-to-line vascular channels (LVCs) widely exist in nature because of
their excellent transmission characteristics. In this paper, models of LVCs with turbulent convection
heat transfer are established. Based on constructal theory and the entropy generation minimization
principle, the constructal optimizations of LVCs with any order are conducted by taking the angles
at bifurcations as the optimization variables. The heat flux on the channel wall per unit length is
fixed and uniform. The areas occupied by vasculature and the total volumes of channels are fixed.
The analytical expressions of the optimal angles, dimensionless total entropy generation rate and
entropy generation number (EGN) of LVCs with any order versus dimensionless mass flow rate
are obtained, respectively. The results indicate that the dimensionless total entropy generation rate
of LVCs with any order can be significantly decreased by optimizing the angles of LVCs, which is
significantly more when the order of LVCs is higher. As the dimensionless mass flow rate increases,
the optimal angles of LVCs with any order remain unchanged first, then the optimal angles at the
entrance (root) increase, and the other optimal angles decrease continuously and finally tend to the
respective stable values. The optimal angles of LVCs continue to increase from the entrance to the
outlet (crown), i.e., the LVCs with a certain order gradually spread out from the root to the crown.
The dimensionless total entropy generation rate and EGN of LVCs first decrease and then increase
with the growth of the dimensionless mass flow rate. There is optimal dimensionless mass flow
rate, making the dimensionless total entropy generation rate and the EGN reach their respective
minimums. The results obtained herein can provide some new theoretical guidelines of thermal
design and management for the practical applications of LVCs.

Keywords: constructal theory; entropy generation minimization principle; turbulence; line-to-line
vasculature; generalized thermodynamic optimization

1. Introduction

Electronic devices are widely used in various engineering fields. The heat generation
rate of electronic device per unit volume increases sharply with the smaller volume and
larger power and higher integration, which poses new challenges to the thermal control of
electronic devices, and the thermal design optimization for electronics cooling is one of the
advisable and effective ways to meet these challenges [1–4]. The branching structures, such
as tree branches, leaf veins, bronchial trees, blood vessels and rivers, exist widely in nature,
which provide some meaningful references for liquid-cooled microchannel designs for the
thermal management of electronic devices.

Constructal theory was proposed by Bejan in 1996 [5,6], and the basic gist of constructal
theory is constructal law, which can be described as “For a finite-size flow system to persist
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in time (to live), its configuration must change in time such that it provides easier and
easier access to its currents”, which explained the profound reasons for the formation of
various flow structures in nature and social fields. The constructal theory can be used
to seek the optimal designs of devices and systems, and thus it has also been named
as a new philosophy of geometry. Since it was proposed, constructal theory has been
widely used in various fields [7–22]. As one of the main fields, it has opened up new
research on the optimizations of heat and mass transfer, such as heat source [23–26], heat
conduction [27–30], convection heat transfer [31–33] and heat exchange equipment [34–38].

The vascular channels are composed of many multi-scale branching channel units
and have excellent transmission characteristics (which are expected to effectively resolve
the technical bottleneck problem of heat dissipation for electronic devices), and they have
become one of the hottest objects in constructal design [39–45]. Lorente and Bejan [39]
proposed the novel dendritic flow architecture called line-to-line trees in 2006, and they
optimized the performance of line-to-line trees by minimizing the maximum pressure
difference and found that it was far superior to the traditional parallel vasculature.

Kim et al. [46] optimized the design of tree-shape vasculature by minimizing the
maximum pressure difference, and the optimal shape and optimal diameter ratio of a
vascular network were obtained. Wang et al. [47,48] indicated that the flow performance
of multi-scale vascular channels was better than that of single-scale vascular channels.
Lee et al. [49] optimized the vascular channels in the square areas by minimizing the
pressure drop. The results showed that the non-uniform structure provided greater overall
flow access.

Liu et al. [50] optimized the design of a T-Y-shaped vascular channel by minimizing the
pressure difference. Miguel [51] optimized the bifurcated vascular channels by taking the
minimum flow resistance as the optimization objective. The relationships between the size
of the parent and daughter tubes at bifurcations, and the branching angles of the bifurca-
tions were obtained. Hu et al. [52] studied H-shaped vascular channels and found that the
vascular network with multiple primary channels had better transmission performance.

Jing and Song [53] compared the thermal and hydraulic performances of two tree-like
networks with the fixed surface areas and fixed volumes. The results showed that the
optimal channel diameter ratio to reach a minimum hydraulic resistance varied with surface
area constraint and volume constraint. Lu et al. [54] studied the relationships between
the branching level and the cooling performance of Y-shaped liquid cooling heat sink and
obtained the effects of branching level on the pressure loss and maximum temperature.
The above studies of optimization for vascular channels were mainly conducted with the
single objective of flow or heat transfer performance.

Reducing thermal resistance often increases the flow resistance. It is necessary to
consider the two contradictory objectives, i.e., heat transfer performance and hydraulic
performance, to make the optimization results more in line with the practical needs. The
objective of entropy generation minimization is to seek the minimization of thermody-
namic irreversibility, which can reflect the comprehensive performance of the heat trans-
fer and hydraulics of a system and is widely used in various heat transfer process and
system optimizations.

Wechsatol et al. [55] studied the effect of junction losses on the optimized geometry of
tree-shaped flows. Zimparov et al. [56,57] optimized the H-shaped vascular channels in the
rectangular domain and the Y-shaped vascular channels in the disk domain under laminar
flow by taking the total entropy generation rate (EGR) of heat transfer and fluid flow as
the objective. Furthermore, under turbulent flow, the designs of T-shaped and H-shaped
vasculatures were optimized [58,59].

Feng et al. [60] optimized the asymmetric vasculature in a disc-shaped body by mini-
mizing dimensionless total entropy generation rate and dimensionless entropy generation
ratio, respectively. Xie et al. [41] optimized the LVCs with fixed vascular areas and total
channel volumes by taking the minimum dimensionless total entropy generation rate per
unit load of heat transfer as the objective. Feng et al. [61] optimized the design of X-shaped
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vasculature and indicated that the EGR of X-shaped vascular channels was smaller than
that of H-shaped vascular channels under the same geometric constraints.

Miguel [62,63] optimized the Y-shaped vasculature, the optimum ratios of channel
diameters and channel lengths, and the optimum angle between branches were investigated.
Shi et al. [64] optimized the LVCs with convection heat transfer under laminar conditions by
taking the angles as the optimization variables and the minimum EGR as the optimization
objective. The results showed that the EGR of the LVCs decreases when the angle freedom
increases with the constant dimensionless mass flow rate. When the order increases, the
EGR of the LVCs increases but the EGN decreases. Both the EGR and the EGN increase
with the increase of the dimensionless mass flow rate.

The branching angles at bifurcations of LVCs have great influences on both fluid flow
and heat transfer, which need to be further studied; however, there is no study on the angle
optimization for multi-scale LVCs with turbulent convection heat transfer by combining
method of constructal theory and entropy generation minimization principle in the open
literatures. In this paper, the analytical method is used to optimize the geometric structures
of multi-scale LVCs with turbulent convection heat transfer based on entropy generation
minimization principle.

The expressions of the dimensionless total entropy generation rate and EGN of LVCs
with any order versus dimensionless mass flow rate are deduced by taking the linear heat
flux as a constant and the branching angles at bifurcations as the optimization variables
with the constraints of fixed areas and fixed total channel volumes. Constructal optimiza-
tions of LVCs with turbulent convection heat transfer are conducted by minimizing the
dimensionless total entropy generation rate and EGN. It is expected to provide some new
theoretical supports for the practical applications of a line-to-line vascular system.

2. Geometric Model of LVCs

The LVCs are a self-similar branching network composed of circular section channels.
The ith channel with two branches with the same diameter and length assemble into
(i + 1)th-level channel. The first order LVCs with turbulent convection heat transfer are
shown in Figure 1. The fluid flows into the root of LVCs and flows out from the crown of
LVCs, and convection heat transfer occurs between the inner walls of LVCs and the fluid.
For each level, the length is Li, and the vertical distance is Hi. The temperature of fluid is
Tin (K) at the entrance and Tout (K) at the outlet.
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Figure 1. The first order LVCs with turbulent convection heat transfer.

The thermal conductivity of fluid is k (W·(m·K)−1), the density is ρ (kg·m−3), the
kinematic viscosity is ν (m·s−2), and the mass flow rate is

.
m (kg·s−1) (

.
mi+1 = 2

.
mi). The

heat flow on the each axially uniform channel of circular cross-section surface is fixed per
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unit length, i.e., the linear heat flux q′ (W·m−1) of channel is taken as a constant. The flow
is assumed to be fully developed turbulence. The local pressure losses at the junctions of
LVCs are negligible.

The area occupied by vasculature and the total channel volumes can be expressed as
follows [39,64]:

An = 2n−1d
n

∑
i=0

Hi (1)

Vn =
π

4

n

∑
i=0

2n−iDi
2Li (2)

The length and vertical distance of the ith order vascular channels are:

Li =
2i−1d
sin αi

(3)

Hi = Li cos αi (4)

Under turbulent flow conditions, assuming that the diameters of channels at any
two adjacent vascular channels follow Di+1 = 22/5Di [55,58]. Thus, one can obtain from
Equation (2):

D0 = (

π
n
∑

i=0
2

5n−i−10
5 Li

V
)

−1/2

(5)

Combining Equations (1), (3) and (4), one can obtain:

(d/A1/2)n = (
n

∑
i=0

2n+i−2 cot αi)
−1/2

(6)

When the linear heat flux is constant and the cooling fluid flow is fully developed
turbulence, the EGR in ith channel with convection heat transfer is [58]:

.
Sgen,i =

qi∆T
T2

i

1

(1 + ∆Ti
x

Ti
)
+

32
.

mi
3 fiLi

ρ2π2TiD5
i

ln(1 + ∆Ti
x

Ti
)

∆Ti
x

Ti

(7)

assuming that:

fi = 0.046Re−1/5
i = 0.023π1/523/5µ1/5(Di/

.
mi)

1/5

Nu = 0.023Re4/5
i Pr2/5 = 0.023Pr2/5(

.
mi/Di)

4/5/(πµ)4/5 (8)

Thus, the EGR in ith channel with convection heat transfer is:

.
Sgen,i =

q′2µ4/5Li

0.023π1/528/5kT2Pr2/5 (
Di
.

mi
)

4/5
+

0.023µ1/5228/5Li

ρ2π9/5T
(

.
m7

i

D12
i
)

2/5

(9)

Equation (9) can be presented in dimensionless form:

S̃gen,i =
T

.
Sgen,i

q′ q̃′A1/2
=

Di
4/5

A2/5M4/5 L̃i + B0M14/5 µ3 A7/5

ρ2kTD24/5
i

L̃i (10)

where q̃′ = q′/(0.023π1/528/5kT) is the dimensionless linear heat flux, M =
.

mPr1/2/(µA1/2)

is the dimensionless mass flow rate, B0 = 24/(q̃′
2
π2Pr7/5) is the coefficient, and

L̃i = Li/A1/2 is the dimensionless channel length.



Entropy 2022, 24, 999 5 of 16

3. Constructal Optimizations of LVCs with Minimum EGR
3.1. Constructal Optimizations of the First Order LVCs

The first order LVCs with the angles as optimization variables are shown in Figure 1.
The dimensionless total entropy generation rate can be obtained by combining Equation (10)
with the geometric structure characteristics:

S̃gen,1 = 1
M4/5A2/5 (29/5D0

4/5 L̃0 + D1
4/5 L̃1) + B0M14/5 µ3A7/5

kTρ2 (2−9/5 L̃0
D24/5

0
+ L̃1

D24/5
1

) (11)

According to Equations (5) and (11), one can obtain:

S̃gen,1 = V2/5

π2/5A3/5
1

M4/5 (2−1 L̃0 + 2−6/5 L̃1)
−2/5(29/5 L̃0 + 28/25 L̃1)

+B0M14/5 µ3π12/5A13/5

ρkTV12/5 (2−1 L̃0 + 2−6/5 L̃1)
12/5(2−9/5 L̃0 + 2−48/25 L̃1)

(12)

By further simplifying Equation (12), one can obtain:

S̃∗gen,1 = π2/5A3/5

V2/5 S̃gen,1 = 1
M4/5 (2−1 L̃0 + 2−6/5 L̃1)

−2/5(29/5 L̃0 + 28/25 L̃1)

+B′0M14/5(2−1 L̃0 + 2−6/5 L̃1)
12/5(2−9/5 L̃0 + 2−48/25 L̃1)

(13)

where B′0 = 24

q̃′
2
Pr7/5

µ3π4/5A16/5

ρkTV14/5 .

Substituting Equations (3) and (6) into Equation (13):

S̃∗gen,1 = 1
M4/5 (2−2 csc α0 + 2−6/5 csc α1)

−2/5
(24/5 csc α0 + 28/25 csc α1)(2−1 cot α0

+ cot α1)
−3/10 + B′0M14/5(2−2 csc α0 + 2−6/5 csc α1)

12/5
(2−14/5 csc α0

+2−48/25 csc α1)(2−1 cot α0 + cot α1)
−17/10

(14)

According to Equation (14), when the dimensionless mass flow rate M and the di-
mensionless coefficient B′0 are constant, the dimensionless total entropy generation rate is
only related to the two angles α0 and α1. When B′0 = 1 (for the convenience of calculation,
B′0 is uniformly taken as 1 for the following calculations) and M = 1, the optimal angles
αopt,0 = 72.6◦ and αopt,1 = 27.2◦ can be obtained. The dimensionless total entropy genera-
tion rate decreases by 10.65% compared with that of the first order LVCs with fixed angles
(αi = 45.0◦).

However, there are two extreme cases in the optimization process:
When 1

M4/5 � B′0M14/5, i.e., B′0M18/5 � 1, the dimensionless total entropy generation
rate can be expressed as:

S̃∗gen,1 = B′0B′0M14/5(2−2 csc α0 + 2−6/5 csc α1)
12/5

(2−14/5 csc α0

+2−48/25 csc α1)(2−1 cot α0 + cot α1)
−17/10 (15)

The optimal angles αopt,0 = 49.7◦ and αopt,1 = 42.5◦ can be obtained by calculation.
When 1

M4/5 � B′0M14/5, i.e., B′0M18/5 � 1, the dimensionless total entropy generation
rate can be expressed as:

S̃∗gen,1 = 1
M4/5 (2−2 csc α0 + 2−6/5 csc α1)

−2/5
(24/5 csc α0

+28/25 csc α1)(2−1 cot α0 + cot α1)
−3/10 (16)

The optimal angles αopt,0 = 77.8◦ and αopt,1 = 20.7◦ can be obtained by calculation.
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3.2. Constructal Optimizations of the Second Order LVCs

The second order LVCs with the angles as optimization variables are shown in Figure 2.
Combining Equations (3), (5), (6) and (10) with the geometric structure characteristics of
the second order LVCs, the dimensionless total entropy generation rate can be written as:

S̃∗gen,2 = 1
M4/5 (213/5 csc α0 + 253/25 csc α1 + 241/25 csc α2)(2−1 csc α0

+2−1/5 csc α1 + 23/5 csc α2)
−2/5(cot α0 + 2 cot α1 + 22 cot α2)

−3/10

+B′0M14/5(2−23/5 csc α0 + 2−93/25 csc α1 + 2−71/25 csc α2)(2−1 csc α0

+2−1/5 csc α1 + 23/5 csc α2)
12/5(cot α0 + 2 cot α1 + 22 cot α2)

−17/10

(17)Entropy 2022, 23, x FOR PEER REVIEW 7 of 17 
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Figure 2. The second order LVCs with turbulent convection heat transfer.

According to Equation (17), when the dimensionless mass flow rate M is constant,
the dimensionless total entropy generation rate is only related to the three angles α0, α1
and α2. The results show that, when the dimensionless mass flow rate M = 1, the optimal
angles αopt,0 = 81.6◦, αopt,1 = 69.1◦ and αopt,2 = 17.2◦. The dimensionless total entropy
generation rate decreases by 24.54% compared with that of the second order LVCs with
fixed angles (αi = 45.0◦).

3.3. Constructal Optimizations of the Third and Higher Order LVCs

The third order LVCs with the angles as optimization variables are shown in Figure 3.
Combining Equations (3), (5), (6) and (10) with the geometric characteristics of the third
order LVCs, the dimensionless total entropy generation rate of the third order LVCs with
turbulent convection heat transfer can be obtained:

S̃∗gen,3 = 1
M4/5 (222/5 csc α0 + 298/25 csc α1 + 286/25 csc α2 + 274/25 csc α3)

×(csc α0 + 24/5 csc α1 + 28/5 csc α2 + 212/5 csc α3)
−2/5

(2 cot α0 + 22 cot α1

+23 cot α2 + 24 cot α3)
−3/10

+ B′0M14/5(2−32/5 csc α0 + 2−138/25 csc α1
+2−116/25 csc α2 + 2−94/25 csc α3)(csc α0 + 24/5 csc α1 + 28/5 csc α2

+212/5 csc α3)
12/5

(2 cot α0 + 22 cot α1 + 23 cot α2 + 24 cot α3)
−17/10

(18)
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Figure 3. The third order LVCs with turbulent convection heat transfer. The numbers 1–3 in the
figure express the (1–3)th-level channels.

According to Equation (18), when the dimensionless mass flow rate M is constant,
the dimensionless total entropy generation rate is only related to the four angles α0, α1, α2
and α3. When the dimensionless mass flow rate M = 1, the optimal angles αopt,0 = 86.2◦,
αopt,1 = 80.6◦, αopt,2 = 66.1◦ and αopt,3 = 11.6◦. The dimensionless total entropy generation
rate decreases by 43.75% compared with that of the third order LVCs with fixed angles
(αi = 45.0◦).

Combining Equations (3), (5), (6) and (10) with geometrical characteristics of the LVCs,
the dimensionless total entropy generation rate of nth order LVCs with turbulent convection
heat transfer can be further derived as:

S̃∗gen,n = 1
M4/5 (

n
∑

i=0
2

45n−12i−25
25 csc αi)(

n
∑

i=0
2

5n+4i−15
5 csc αi)

−2/5
(

n
∑

i=0
2n−2+i cot αi)

−3/10

+B′0M14/5(
n
∑

i=0
2

22i−45n−25
25 csc αi)(

n
∑

i=0
2

5n+4i−15
5 csc αi)

12/5
(

n
∑

i=0
2n−2+i cot αi)

−17/10 (19)

The fourth order LVCs with the angles as optimization variables are shown in Figure 4.
When M = 1, the optimal angles αopt,0 = 88.2◦, αopt,1 = 86.2◦, αopt,2 = 79.1◦, αopt,3 = 61.8◦

and αopt,4 = 9.1◦ can be obtained from Equation (19).
When M = 1, the optimal angles, αopt,0 = 88.8◦, αopt,1 = 88.8◦, αopt,2 = 85.2◦,

αopt,3 = 77.1◦, αopt,4 = 61.6◦ and αopt,5 = 6.6◦ of the fifth order LVCs, can be obtained by
further calculation from Equation (19). The dimensionless total entropy generation rate of
the fourth and fifth order LVCs decreases by 66.99% and 93.67% compared with that with
fixed angles (αi = 45.0◦), respectively.

By optimizing the angle freedom of vascular channels, the dimensionless total en-
tropy generation rate of LVCs with any order can be significantly decreased. When the
order of LVCs is higher, the dimensionless total entropy generation rate is decreased
significantly more.
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Figure 4. The fourth order LVCs with turbulent convection heat transfer. The numbers 1–4 in the
figure express the (1–4)th-level channels.

4. Effects of the Dimensionless Mass Flow Rate on Constructal Optimizations,
Dimensionless Total Entropy Generation Rate and EGN
4.1. Effects of the Dimensionless Mass Flow Rate on Constructal Optimizations

The influences of the dimensionless mass flow rate on the constructal optimizations
of the first to fifth order LVCs are shown in Figure 5. When the dimensionless mass flow
rate increases, the optimal angles of LVCs with any order first remain unchanged, and
then the optimal angle αopt,i at the entrance increases, the other optimal angles decrease
continuously and finally tend to respective stable values.
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Figure 5. Effects of the dimensionless mass flow rate on the optimal angles.

The optimal angles of LVCs continue to increase from the entrance to the outlet, that
is, the LVCs with a certain order gradually spread out from the root to the crown. When
the dimensionless mass flow rate is large or small enough, the optimal angles of LVCs with
any order remain unchanged versus the change of the dimensionless mass flow rate. The
characteristics of αopt,i versus M are listed in Table 1. When the dimensionless mass flow is
constant, the optimal angles of LVCs at the entrance decrease and the optimal angles of
LVCs at the outlet increase as the order of LVC increases.

Table 1. Characteristics of αopt,i versus M.

αopt,0/◦ αopt,1/◦ αopt,2/◦ αopt,3/◦ αopt,4/◦ αopt,5/◦

M = 0.1

n = 1 78.0 21.3
n = 2 87.0 78.0 8.6
n = 3 88.0 86.0 77.8 5.6
n = 4 88.6 87.8 86.0 77.0 3.6
n = 5 88.8 88.8 88.8 87.0 77.8 1.8

M = 1

n = 1 72.6 27.2
n = 2 81.6 69.1 17.2
n = 3 86.2 80.6 66.1 11.6
n = 4 88.2 86.2 79.1 61.8 9.1
n = 5 88.8 88.8 85.2 77.1 61.6 6.6

M = 5

n = 1 49.9 42.9
n = 2 60.0 47.2 40.6
n = 3 60.8 54.4 48 39.8
n = 4 66.2 59.0 52.2 46.2 39.4
n = 5 72.6 65.4 59.0 52.2 46.2 37.6

4.2. Effects of the Dimensionless Mass Flow Rate on the Dimensionless Total Entropy
Generation Rate

When the dimensionless coefficient B′0=1, the influences of the dimensionless mass
flow rate on the dimensionless total entropy generation rate are shown in Figure 6. For
any n, the dimensionless total entropy generation rate first decreases and then increases
sharply with the growth of the dimensionless mass flow rate M, this change is attributed to
the sharp increase of EGR produced by fluid heat exchange when the mass flow is small
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and the sharp increase of EGR produced by fluid flow when the mass flow is large. When
the dimensionless mass flow rate M is between 1 and 2, there are optimal dimensionless
mass flow rates that can make the dimensionless total entropy generation rate with any
order to reach their respective minimums.
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Figure 6. Effects of the dimensionless mass flow rate on the dimensionless total entropy
generation rate.

The dimensionless total entropy generation rate of the first order LVCs is the smallest,
and the fifth order LVCs is the largest, the dimensionless total entropy generation rate of
LVCs increases gradually as the order of LVC increases. When the dimensionless mass flow
rate M is greater than 2, the differences of the dimensionless total entropy generation rate
among the first to fifth order LVCs are slightly smaller than dimensionless mass flow rate
M less than 2.

The characteristics of S̃∗gen,n versus M and αi are listed in Table 2. The dimensionless
total entropy generation rate of the first to fifth order LVCs with optimal angles αopt,i
significantly decrease compared with that with fixed angles αi, which is significantly more
when the order of LVCs is higher. When the angles αi of LVCs are fixed, the dimensionless
total entropy generation rate of LVCs increases as the order of LVCs increase.

Table 2. Characteristics of S̃∗gen,n versus M and αi.

M=0.1 M=1 M=5

αi = 45◦ αi = 60◦ αi = 75◦ αi = αopt,i αi = 45◦ αi = 60◦ αi = 75◦ αi = αopt,i αi = 45◦ αi = 60◦ αi = 75◦ αi = αopt,i

S̃∗gen,1 23.918 24.973 29.448 21.105 4.059 4.301 5.539 3.701 25.373 32.158 80.325 25.215
S̃∗gen,2 38.356 40.048 47.223 27.710 6.468 6.843 8.747 5.193 36.880 46.706 116.439 36.407
S̃∗gen,3 58.785 61.377 72.374 33.715 9.788 10.330 13.003 6.809 45.311 57.264 142.027 44.202
S̃∗gen,4 87.645 91.510 107.905 39.582 14.417 15.175 18.810 8.633 51.473 64.840 159.503 49.689
S̃∗gen,5 128.261 133.917 157.910 45.052 20.888 21.939 26.845 10.785 56.317 70.612 171.657 53.726

4.3. Effects of the Dimensionless Mass Flow Rate on EGN

Furthermore, EGN (EGR of per unit heat transfer rate) is introduced to study the
turbulent convection heat transfer performance of LVCs. The total dimensionless heat
transfer rate of nth order LVCs can be expressed as:

q̃n = q/(q′A1/2) = q′
n

∑
i=0

2n−iLi/(q′A1/2) (20)
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Combining Equations (19) and (20) with the geometric structure characteristics of
LVCs, the EGN of nth order LVCs can be obtained as follows:

Ns,n =
S̃∗gen,n

q̃n
= 1

M4/5 (
n
∑

i=0
2

45n−12i−25
25 csc αi)(

n
∑

i=0
2

5n+4i−15
5 csc αi)

−2/5
(

n
∑

i=0
2n−2+i cot αi)

−3/10

[
n
∑

i=0
2n−i(2i−1 csc αi(

n
∑

i=0
2i+n−2 cot αi)

−1/2
)]

−1

+ B′0M14/5(
n
∑

i=0
2

22i−45n−25
25 csc αi)(

n
∑

i=0
2

5n+4i−15
5 csc αi)

12/5

(
n
∑

i=0
2n−2+i cot αi)

−17/10
[

n
∑

i=0
2n−i(2i−1 csc αi(

n
∑

i=0
2i+n−2 cot αi)

−1/2
)]

−1

(21)

The relationships between EGN and dimensionless mass flow rate are shown in
Figure 7. As the dimensionless mass flow rate increases, the EGN of LVCs with any order
first decreases sharply, reach the minimum near M = 1 and then increases sharply. When
the dimensionless mass flow rate M is less than 2, the EGN of the first order LVCs is the
smallest and that of the fifth order is the largest, the EGN of LVCs increases as the order of
LVC increases. When the dimensionless mass flow rate M is greater than 2, the EGN of
LVCs decreases gradually as the order of LVC increases.
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Figure 7. Effects of the dimensionless mass flow rate on EGN.

The characteristics of Ns ,n versus M and αi are listed in Table 3. The EGN of the first
to fifth order LVCs with optimal angles αopt,i significantly decrease compared with that
with fixed angles αi, which is significantly more when the order of LVCs is higher.

Table 3. Characteristics of Ns ,n versus M and αi.

M = 0.1 M = 1 M = 5

αi = 45◦ αi = 60◦ αi = 75◦ αi = αopt,i αi = 45◦ αi = 60◦ αi = 75◦ αi = αopt,i αi = 45◦ αi = 60◦ αi = 75◦ αi = αopt,i

Ns ,1 10.357 10.063 9.017 4.807 1.758 1.733 1.696 1.585 11.528 13.553 25.672 10.987
Ns ,2 11.960 11.621 10.412 5.656 2.017 1.986 1.928 1.711 11.499 12.958 24.594 10.937
Ns ,3 14.230 13.826 12.388 5.904 2.369 2.327 2.226 1.871 10.968 12.910 24.311 10.089
Ns ,4 17.253 16.764 15.020 6.303 2.838 2.780 2.618 2.061 10.133 11.878 22.202 8.217
Ns ,5 21.209 20.608 18.464 6.579 3.454 3.376 3.139 2.217 9.313 10.866 20.071 6.528
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5. Conclusions

Based on the entropy generation minimization principle and constructal theory, the
constructal optimizations for first to fifth order LVCs with turbulent convection heat
transfer by taking the angles at bifurcations as the design variables were conducted with
the constraints of fixed vascular areas and the total channel volumes. The analytical
expressions of the dimensionless total entropy generation rate and EGN of LVCs with any
order versus dimensionless mass flow rate were derived, and the optimal angles of LVCs
with first to fifth order were obtained.

(1) The dimensionless total entropy generation rate of LVCs with any order can be
significantly decreased by optimizing the angles of LVCs. From the first to fifth order,
the dimensionless total entropy generation rate of LVCs with optimal angles were
10.65%, 24.54%, 43.75%, 66.99% and 93.67% smaller than those with fixed angles
(α = 45.0◦), respectively. As the order of LVCs is higher, the dimensionless total
entropy generation rate of LVCs decreases significantly more.

(2) Based on the minimum dimensionless total entropy generation rate, as the dimen-
sionless mass flow rate increases, the optimal angles of LVCs with any order remain
unchanged first, then the optimal angles of LVCs at the entrance increase, and the
other optimal angles of LVCs decrease continuously and finally tend to respective
stable values. The optimal angles of LVCs continue to increase from the entrance
to the outlet, i.e., the LVCs with a certain order gradually spread out from the root
to the crown.

(3) As the dimensionless mass flow rate increases, the dimensionless total entropy gener-
ation rate and EGN of LVCs with turbulent convection heat transfer decrease first and
then increase sharply. There is optimal dimensionless mass flow rate M can make the
dimensionless total entropy generation rate and EGN of LVCs with any order obtain
their respective minimums.

(4) The dimensionless total entropy generation rate of LVCs increases gradually as the
order of LVC increases for the same dimensionless mass flow rate M. When the
dimensionless mass flow rate M is less than 2, the EGN of LVCs increases as the order
of LVC increases; however, when the dimensionless mass flow rate M is greater than
2, this is simply reversed.
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Nomenclatures

A areas (m2)
B0 coefficient
B′0 coefficient
D diameter (m)
d distance between adjacent outlets (m)
H height (m)
k thermal conductivity (W·(m·K)−1)
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L length (m)
M dimensionless mass flow rate
.

m mass flow rate (kg·s−1)
Ns dimensionless entropy generation number
q′ linear heat flux (W·m−1)
.
Sgen entropy generation rate (J·(K·s)−1)
S̃gen dimensionless entropy generation rate
T temperature (K)
V volume (m3)
Greek letters
α angel (◦)
ρ density (kg·m−3)
ν kinematic viscosity (m·s−2)
Superscripts
~ dimensionless
∗ transform of physical quantity
Subscripts
i channel rank
in inlet
n number of construction orders
out outlet
opt optimal
Abbreviation
EGN entropy generation number
EGR entropy generation rate
LVC line-to-line vascular channel
Nu Nusselt number
Pr Prandtl number
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