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Abstract: In recent years, research on applications of three-way decision (e.g., TWD) has attracted the
attention of many scholars. In this paper, we combine TWD with multi-attribute decision-making
(MADM). First, we utilize the essential idea of TOPSIS in MADM theory to propose a pair of new ideal
relation models based on TWD, namely, the three-way ideal superiority model and the three-way
ideal inferiority model. Second, in order to reduce errors caused by the subjectivity of decision-
makers, we develop two new methods to calculate the state sets for the two proposed ideal relation
models. Third, we employ aggregate relative loss functions to calculate the thresholds of each object,
divide all objects into three different territories and sort all objects. Then, we use a concrete example
of building appearance selection to verify the rationality and feasibility of our proposed models.
Furthermore, we apply comparative analysis, Spearman’s rank correlation analysis and experiment
analysis to illustrate the consistency and superiority of our methods.

Keywords: three-way decision; multi-attribute decision-making; ideal relations; decision-theoretic
rough set

1. Introduction

MADM, also known as finite scheme multi-criteria decision-making, refers to the
decision problem of choosing the optimal alternative or ranking the scheme under the
condition of multi-attribute. MADM is an important feature of human cognition and
problem solving and plays a vital role in modern decision science. It has been widely
applied in many fields such as engineering, technology, economics, management, military
affairs and so forth.

In the past, decision-makers used to approach a decision-making problem based on
two kinds of decisions: acceptance or rejection. However, this approach usually does not
yield the optimal decisions or desired decision results. In view of this, Yao [1] put forward
the concept of TWD in 2009. TWD is a decision model that is summarized and refined in
the process of long-term research on rough sets, especially probabilistic rough sets and
decision-theoretic rough sets, and is in line with the actual cognitive ability of human
beings. TWD usually utilizes the probabilistic rough set model with two parameters, α and
β, to divide the entire universe into three disjointed territories, namely positive territory,
boundary territory and negative territory, and then adopts different strategies and methods
for each of the three territories. In this paper, we construct a pair of new ideal relations by
using the most essential ideas of TOPSIS [2], the ideal superiority relation and the ideal
inferiority relation, in MADM theory [3]. Using the ideal superiority relation, we construct
a TWD model based on the ideal superiority class. Similarly, the ideal inferiority class
is constructed upon the ideal inferiority relation, upon which the other TWD model is
proposed. Subsequently, we use the proposed models to analyze and evaluate an example
of an architectural-appearance selection problem.

There are three main motivations of this paper:
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(1) First of all, traditional MADM methods are generally combined with the two-way
decision model, while we combine MADM with TWD. In this paper, we use the basis
behind TOPSIS together with TWD in MADM. The main idea of TOPSIS is that the
optimal object should have the minimal distance to the best target solution (BTS);
at the same time, the larger the distance is from the worst target solution (WTS),
the better. However, its limitation is that we cannot determine the order of the objects
when they only meet one of the conditions or neither of the two conditions. To solve
the problem, some scholars proposed equivalence relations [4], similar relations [5–7],
dominance relations [8,9] and neighborhood operators [10,11], while we propose a
new pair of ideal relations.

(2) Secondly, in most probability rough sets, the values of α and β are given artificially,
and they do not answer why they should be set like this. Moreover, regarding the cal-
culation of conditional probability [12] in decision-theoretic rough set models [1,5,13],
scholars have different understanding and calculation methods from different angles
and analysis directions; the properties of state sets generally have two types: classic
sets [14,15] and fuzzy sets [16]. In classic sets, object membership values are given
subjectively, while few studies have calculated state set values. However, different
decision-makers have different opinions and preferences, and the given membership
values also have great differences. Therefore, in order to reduce the error caused by
subjectivity, we propose a new method of objectively calculating the state.

(3) Thirdly, since there are two states and three behaviors for each object, an object
has six loss functions, each of which is either a subjective loss function [17–19] or
an objective loss function [7,16,20]. If multiple attributes of an object are considered
separately, there are six loss functions for each attribute, which requires a huge amount
of calculation and lots of stored data. In this paper, we use the relative loss function
proposed by Jia and Liu, which aggregates the relative loss function values for each
object to reduce the amount of calculation. Besides, in order to improve the accuracy
and reliability of TWD division, we calculate the threshold of each object and then
divide all objects into three territories according to the threshold of each object.

The research contributions of this paper are as follows:

(1) We combine MADM with TWD and use TOPSIS to propose a pair of new ideal rela-
tions, namely ideal superiority relations and ideal inferiority relations, which have
opposite definition conditions. Based on these two relations, we construct the ideal
superiority class on the basis of the ideal superiority relations and the ideal inferiority
class on the basis of the ideal inferiority relations. Furthermore, we construct a pair
of new models: one is the TWD model based on the ideal superiority class, that is,
the TWD ideal superiority model; the other is the TWD model based on the ideal
inferiority class, that is, the TWD ideal inferiority model. These two models com-
bined with TWD can be applied to the classification and sorting of objects. Moreover,
the models we propose provide a new theoretical basis for research on uncertain
decision-making, decision-making model selection, dynamic monitoring and intelli-
gent decision-making technology. Meanwhile, these two models also provide new
insights and ideas for decision-makers who are studying TWD.

(2) In the current paper, we provide a new calculation method for the state set of con-
ditional probability. In Wang’s method [21], fixed values of parameters are given
subjectively; however, for different decision-makers, the research limits are different,
so this method has certain limitations and inflexibility. On the basis of Wang’s method,
we set up an adjustable preference parameter k to control the cardinality of the ob-
ject class, which could help calculate the values of state sets objectively to provide
decision-makers with various choices. Our proposed method of calculating state sets
provides new insight into the field of decision analysis.

(3) In terms of the loss function, the relative loss function of Jia and Liu is calculated ob-
jectively using the evaluation value in the information matrix. In this paper, different
from the calculation methods of Jia and Liu, we set the risk-aversion coefficient of
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each attribute in the relative loss function to the same value instead of subjectively
measuring the risk-aversion coefficient of each attribute by the decision maker, and it
has been further expanded by computing the threshold of each object. The threshold
is used to determine the three territories of TWD. Due to the inconsistency between
the nature of attributes and the standards of the criteria for each object, we calculate
the threshold of each object instead of using the same threshold standard. Hence,
the measurement scale is more in line with human cognition and persuasive, and the
research results obtained are more accurate and reasonable.

The specific structure of this paper is as follows: Section 2 introduces some funda-
mental knowledge. In Section 3, we construct a pair of new TWD models based on the
ideal relations. In Section 4, we explore an application of the proposed TWD-MADM
approach. In Section 5, we conduct experimental analysis and Spearman’s correlation
coefficient analysis. In Section 6, we give a brief overview of this paper and the outlook for
future research.

2. Preliminaries

In this section, we introduce some fundamental knowledge of MADM, decision-
theoretic rough sets and relative loss functions.

2.1. MADM

An MADM problem is about finding an optimal object from a set of related alter-
natives according to the specified preferences, given the attributes for each of the alter-
natives. In this paper, a nonempty finite set of objects is denoted by O = {Oi|i ∈ η}
(η = {1, 2, · · · , n}), where Oi is the i-th object. A nonempty finite set of attributes is ex-
pressed by S = {Sj|j ∈ µ}(µ = {1, 2, · · · , m}), where Sj is the j-th attribute. Then, the pair
(O, S) is called an information system. The value of object Oi with respect to attribute Sj is
denoted by Sj(Oi) (i.e., uij). If there exists uij ∈ S and uij is a fuzzy attribute, i.e., uij ∈ (0, 1),
then (O, S) is referred to as a fuzzy information system. If each attribute of S is fuzzy,
then (O, S) is called a full fuzzy information system. Here, a fuzzy information system is
represented by I = (O, S), and W = {wj|j ∈ µ} is the attribute weight vector set, where

wj shall satisfy two conditions: 0 ≤ wj ≤ 1 and
m
∑

j=1
wj = 1. For the sake of simplicity, all

information systems in this paper refer to fuzzy information systems unless specifically
stated. A fuzzy information system can be illustrated as an n× m MADM information
matrix. Usually, we choose an optimal alternative from O by evaluating and ranking all
objects under the m attributes. Regarding the above description, in what follows, Table 1
demonstrates the multi-attribute information matrix.

Table 1. The initial decision-making matrix.

S1 S2 · · · Sm

O1 u11 u12 · · · u1m
O2 u21 u22 · · · u2m
...

...
... · · ·

...
On un1 un2 · · · unm

In Table 1, there can be multiple types of attributes, such as profit attributes, expense
attributes, public attributes, private attributes and so on. Accordingly, in order to classify
and sort all objects accurately as well as to obtain the expected ranking result, we need to
unify these diverse attributes into the same dimension before making a decision, which
requires a normalized decision-making matrix. The normalized decision-making matrix
is shown in Table 2. For any decision-making problem, using the same dimension and
standard to measure different objects makes the decision-making process easier and simpler,
and the decision-making results are more convincing.
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Table 2. The normalized decision-making matrix.

S1 S2 · · · Sm

O1 v11 v12 · · · v1m
O2 v21 v22 · · · v2m
...

...
... · · ·

...
On vn1 vn2 · · · vnm

2.2. The TWD Model Based on Decision-Theoretic Rough Set (DTRS)

The decision-theoretic rough set model is based on the process of the Bayesian decision
and the main idea of TWD. The decision-theoretic rough set model uses two states and three
actions to describe the decision-making process. In this paper, we let Ω = {R,¬R} be a set
of states, which means an object is either in R or not in R. Meanwhile, let T = {TP, TB, TN}
be a set of actions, where TP, TB, TN are used to classify an object into three categories.
When object Oi ∈ R, we classify Oi based on which one of the following conditions holds
true: Oi ∈ POS(R), Oi ∈ BND(R) or Oi ∈ NEG(R).

Considering that different actions will result in diverse losses correspondingly, we
respectively let θPP

i , θBP
i and θNP

i represent the loss functions of selecting the action TP,
TB and TN when the object Oi belongs to R. Likewise, when Oi ∈ ¬R, θPN

i , θBN
i and θNN

i
represent the loss functions for choosing the action TP, TB and TN , respectively. At the same
time, let [Oi] stand for the ideal class of Oi that we construct in this paper.

For an object Oi, the expected losses Q(T � |[Oi])(� = P, B, N) of choosing three
different actions can be calculated by the following formulas:

Q(TP | [Oi]) = θPP
i P(R | [Oi]) + θPN

i P(¬R | [Oi]), (1)

Q(TB | [Oi]) = θBP
i P(R | [Oi]) + θBN

i P(¬R | [Oi]), (2)

Q(TN | [Oi]) = θNP
i P(R | [Oi]) + θNN

i P(¬R | [Oi]), (3)

where P(R | [Oi]) is the conditional probability of an alternative Oi when it is in R. In the
same way, P(¬R | [Oi]) represents the conditional probability of an alternative Oi when
it’s not in R.

According to the Bayesian minimal risk decision theory, the set of actions with the
least expected loss is chosen as the remarkable course of action. Hence, we can draw the
corresponding three decision rules as follows:

(P) If Q(TP | [Oi]) ≤ Q(TB | [Oi]) and Q(TP | [Oi]) ≤ Q(TN | [Oi]), then Oi ∈ POS(R),

(B) If Q(TB | [Oi]) ≤ Q(TP | [Oi]) and Q(TB | [Oi]) ≤ Q(TN | [Oi]), then Oi ∈ BND(R),

(N) If Q(TN | [Oi]) ≤ Q(TP | [Oi]) and Q(TN | [Oi]) ≤ Q(TB | [Oi]), then Oi ∈ NEG(R).

In light of the properties of the probability function, we conclude that P(R | [Oi]) +
P(¬R | [Oi])=1. From the semantic interpretation of risk in real life, we suppose that θPP

i ≤
θBP

i < θNP
i and θNN

i ≤ θBN
i < θPN

i . Thus, the rules (P)− (N) can be simplified as follows:

(P1) If P(R | [Oi]) ≥ αi and P(R | [Oi]) ≥ γi, then Oi ∈ POS(R),

(B1) If P(R | [Oi]) ≤ αi and P(R | [Oi]) ≥ βi, then Oi ∈ BND(R),

(N1) If P(R | [Oi]) ≤ βi and P(R | [Oi]) ≤ γi, then Oi ∈ NEG(R),

where

αi =
θPN

i − θBN
i

(θPN
i − θBN

i ) + (θBP
i − θPP

i )
, (4)
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βi =
θBN

i − θNN
i

(θBN
i − θNN

i ) + (θNP
i − θBP

i )
, (5)

γi =
θPN

i − θNN
i

(θPN
i − θNN

i ) + (θNP
i − θNN

i )
. (6)

To find out the magnitude relationship between the three thresholds α, β and γ, we
have two reasonable assumptions based on the magnitude of the loss functions:

Given (θPN
i − θBN

i )(θNP
i − θBP

i ) > (θBP
i − θPP

i )(θBN
i − θNN

i ), we have 0 ≤ βi < γi <
αi ≤ 1. As a result, the above decision rules of (P1)–(N1) can be further simplified as follows:

(P2) If P(R | [Oi]) ≥ αi, then Oi ∈ POS(R),

(B2) If βi < P(R | [Oi]) < αi, then Oi ∈ BND(R),

(N2) If P(R | [Oi]) ≤ βi, then Oi ∈ NEG(R).

Given (θPN
i − θBN

i )(θNP
i − θBP

i ) ≤ (θBP
i − θPP

i )(θBN
i − θNN

i ), we have 0 < αi ≤ γi ≤
βi < 1. As a result, the decision rules of (P1)–(N1) above can be further simplified as follows:

(P3) If P(R | [Oi]) ≥ γi, then Oi ∈ POS(R),

(N3) If P(R | [Oi]) < γi, then Oi ∈ NEG(R).

2.3. The Relative Loss Functions

To reduce the computational cost of thresholds, Jia and Liu [3] recently rewrote the
calculation formulas of the three thresholds:

α =
θ(P−B)N

θ(P−B)N + θ(B−P)P
, (7)

β =
θ(B−N)N

θ(B−N)N + θ(N−B)P
, (8)

γ =
θ(P−N)N

θ(P−N)N + θ(N−P)P
, (9)

where θ(N−P)P represents the difference between the boundary territory and the positive
territory when an object belongs to R. Other loss functions have similar explanatory principles.

The relative loss functions simplify the calculation process of the original loss functions,
i.e., the loss is zero when accepting the action is correct or rejecting the action is wrong. Jia
and Liu also carried out a regular transformation on loss functions, i.e., the loss functions
in R: θPP

′ = 0, θBP
′ = θBP − θPP, θNP

′ = θNP − θPP; the loss functions in ¬R: θPN
′ =

θPN − θNN , θBN
′ = θBN − θNN , θNN

′ = 0. The results are shown in Table 3.

Table 3. The relative loss functions of rule conversion.

R ¬R

LP 0 θPN
′

LB θBP
′ θBN

′
LN θNP

′ 0

For example, the relative loss functions of object Oi under attribute Sj is shown in
Table 4.
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Table 4. The relative loss functions of rule conversion.

Rj ¬Rj

LP 0 vj
max − vij

LB σ(vij − vj
min) σ(vj

max − vij)

LN vij − vj
min 0

In Table 4, σ stands for the risk-aversion coefficient, whose value range has certain
requirements. In this paper we focus on TWD, therefore σ ∈ [0, 0.5]. Furthermore, in an
MADM decision problem, there is more than one attribute that needs to be considered for
an object. If the loss functions need to be calculated for each attribute, the whole process
will be cumbersome and time-consuming. Hence, we aggregate the relative loss function
values of each object to reduce the computational cost. The results are shown in Table 5.

Table 5. The aggregate relative loss functions of Oi.

R ¬R

LP 0 vmax − Σjwjvij
LB Σjσjwj(vij − vmin) Σjσjwj(vmax − vij)
LN Σjwjvij − vmin 0

3. TWD Models Based on the Ideal Relations

In this section, we construct a pair of ideal relations with opposite definitions by
applying the TOPSIS method. Then we explore the ideal relations to construct two TWD
ideal models. In this section, O = {Oi|i ∈ η} (η = {1, 2, · · · , n}) is the object set.

3.1. A TWD Model Based on the Ideal Superiority Relation

In the following, we introduce in detail how to construct the ideal superiority relation
and the ideal superiority class, as well as relevant definitions and theorems. Then, we
describe the process of establishing the TWD model with DTRS by using our proposed
superiority class.

3.1.1. Construction of the Ideal Superiority Relation and Class

According to the TOPSIS method, for any two objects Oi and Oj, if the distance
between Oi and the BTS is less than the distance between Oj and the BTS, and the distance
between Oi and the WTS is greater than the distance between Oj and the WTS, then we can
conclude that Oi precedes Oj.

In what follows, based on Table 2, we name the distance between Oi and the BTS as
the best target ideal distance (BTID), represented by O+

i . In the same way, the distance
between Oi and the WTS is referred to as the worst target ideal distance (WTID), denoted
by O−i . According to the above definitions, O+

i and O−i can be computed as follows.

O+
i =

√√√√ m

∑
j=1

wj(vij −max
i∈η

vij)2, O−i =

√√√√ m

∑
j=1

wj(vij −min
i∈η

vij)2. (10)

Utilizing O+
i and O−i , the ideal superiority relation based on the TOPSIS method is

described below.

Definition 1. Based on the fuzzy information system I = (O, S), e.g., Table 2, we define the ideal
superiority relation as follows:

E = {(Oi, Oj) ∈ O×O | O+
j ≤ O+

i and O−j ≥ O−i , j ∈ η}. (11)
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Remark 1. The explanation for Formula (11): if the BTID of Oj is less than or equal to that of
Oi, and, simultaneously, the WTID of Oj is greater than or equal to that of Oi, then (Oi, Oj) ∈ E,
i.e., Oj superior to Oi. From the perspective of profit and expense attributes, the lower the expense,
the higher the profit, which is the optimal decision effect.

Definition 2. Based on fuzzy information system I = (O, S) and Definition 1, the ideal superiority
class of Oi is constructed as follows:

[Oi]E = {Oj | O+
j ≤ O+

i and O−j ≥ O−i , Oj ∈ O}. (12)

Obviously, the ideal superiority class of object Oi is a collection of objects that are
superior to Oi.

Example 1. Let us take a simple fund selection problem as an example to explain the above
definition. There are five available funds S = {s1, s2, s3, s4, s5} and four related attributes
R = {r1, r2, r3, r4}. Among them, r1 and r3 are profit attributes, while r2 and r4 are expense
attributes; w = {0.3, 0.1, 0.2, 0.4} is the weight vector of these four attributes; τ = {τ1, τ2, τ3, τ4}
is the risk avoidance coefficient of these four attributes. The specific values are presented in Table 6:

Table 6. The multi-attribute information matrix of five funds.

r1 r2 r3 r4

s1 0.8 0.7 0.1 0.6
s2 0.4 0.4 0.5 0.7
s3 0.5 0.1 0.2 0.1
s4 0.4 0.7 0.9 0.3
s5 0.6 0.7 0.5 0.6

According to the steps of the TOPSIS model and Definition 2, we can calculate the
ideal superiority classes of these five funds as follows:

[s1]E = {s1, s3, s4}.
[s2]E = {s2, s3, s4, s5}.
[s3]E = {s3}.
[s4]E = {s3, s4}.
[s5]E = {s3, s4, s5}.

Proposition 1. For the ideal superiority relation E, we summarize that it has the following properties:
(a) Reflexivity: For Oi ∈ O (i ∈ η), if it satisfies Oi ∈ [Oi]E, then [Oi]E possesses reflexivity;
(b) Transitivity: For Ox, Oy, Oz ∈ O (x, y, z ∈ η), if Ox ∈ [Oy]E and Oy ∈ [Oz]E, then we

can draw that Ox ∈ [Oz]E.

Proof. As can be seen from Definition 2, the above two properties are easily proven.

Definition 3. In light of Definition 1, we construct a brand new state set Π = {T1, T2}, where
T1 represents a collection of outstanding objects, and T2 represents a collection of non-outstanding
objects. The state set of the ideal superiority class is defined as follows:

T1 = {Oi |
|[Oi]E|
|n| ≤ k1}, T2 = {Oi |

|[Oi]E|
|n| > k1}, k1 ∈ (0, 0.5],

where |[Oi]E| is the cardinality of the ideal superiority class of Oi, and k1 is called the
preference parameter of the ideal superiority class. When the two states are constructed,
the conditional probability under the ideal superiority class P(∗|[Oi]E) can be computed as
P(∗|[Oi]E) =

|∗⋂[Oi ]E |
|[Oi ]E |

(∗ = {T1, T2}).
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The selection of k1 is based on the decision-maker’s preference, the perspective of
the problem or the research direction. Every decision-maker has different standards for
the measurement of problems. For example, some decision-makers require the definition
of excellence to be extremely strict, i.e., all conditions must be met. On the other hand,
for some decision-makers the standard is loosened and only a certain number of conditions
need to be met. In view of the above-mentioned reasons, different researchers will select
different preference parameters for the same decision problem, and the resulting decisions
will be diverse as well.

For preference parameter k1 of the ideal superiority class, we set it between 0 and 0.5,
and the lower limit is 0, and it must be an open interval. If it is a closed interval, the decision
conditions are too harsh, resulting in all objects belonging to a state set. The upper limit of
0.5 is considered to determine excellence based on the principle of majority. For example,
if the number of the ideal superiority classes of object Oi is greater than half of the object
set, it indicates that object Oi is a non-outstanding object.

For any object Oi, if the cardinality of the ideal superiority class of Oi divided by
the total number of objects is less than or equal to k1, we say that Oi belongs to the
outstanding objects; the reason for taking the equal sign here is that when we define the
ideal superiority class, we include the object itself to avoid taking an empty set. On the
contrary, if the cardinality of the ideal superiority class of Oi divided by the total number
of objects is greater than k1, then Oi belongs to non-outstanding objects. Obviously, for the
states T1 and T2, when the preference parameter k1 grows larger, the number of objects
in T1 becomes bigger, while the number of objects in T2 becomes smaller. On the contrary,
when k1 decreases, the cardinality of T1 decreases, whereas the cardinality of T2 increases.

Remark 2. The state set of the ideal superiority class is Π = {T1, T2}. It possesses the following
two properties: (1) T1

⋃
T2 = O, (2) T1

⋂
T2 = φ.

From the above analysis and discussion, the union of the two states is the set of all
objects, namely, the object set O; it indicates that all objects are assigned to one of two
states. At the same time, the intersection of two form sets is an empty set, it means that it is
impossible for an object to belong to both state sets in the meantime.

Example 2. (Continued from Example 1) Suppose that k1 = 0.3. In line with Definition 3, we can
obtain the state set of the ideal superiority class as follows:

T1 = {s3}, T2 = {s1, s2, s4, s5}.

Knowing the ideal superiority class set and state set of each object, we next calculate
the conditional probability of each object in different states under the ideal superiority class.

P(T1|[s1]E) =
|T1

⋂
[s1]E |

|[s1]E |
= |{s3}

⋂{s1,s3,s4}|
|{s1,s3,s4}|

= 1
3 .

P(T1|[s2]E) =
|T1

⋂
[s2]E |

|[s2]E |
= |{s3}

⋂{s2,s3,s4,s5}|
|{s2,s3,s4,s5}|

= 1
4 .

P(T1|[s3]E) =
|T1

⋂
[s3]E |

|[s3]E |
= |{s3}

⋂{s3}|
|{s3}|

= 1.

P(T1|[s4]E) =
|T1

⋂
[s4]E |

|[s4]E |
= |{s3}

⋂{s3,s4}|
|{s3,s4}|

= 1
2 .

P(T1|[s5]E) =
|T1

⋂
[s5]E |

|[s5]E |
= |{s3}

⋂{s3,s4,s5}|
|{s3,s4,s5}|

= 1
3 .

In the same way, we can replace the T1 state with T2 and perform the same calculation
method to obtain the conditional probability of each ideal superiority class object in the
T2 state.

3.1.2. The Three-Way Process Based on the Ideal Superiority Class

In the decision-theoretic rough set, each decision behavior has a corresponding risk
loss, which means various actions will produce different loss functions. Since each object
has two possible states and three possible actions in DTRS, there are six loss functions
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in total for each object. In the proposed ideal superiority class and state set, the symbols
LP, LB, LN express acceptance, deferred consideration and rejection, respectively. Subse-
quently, acceptance, deferred consideration and rejection represent the positive, boundary
and negative territory in TWD, respectively.

In this paper, we use the relative loss functions proposed by Jia and Liu [3]. When
an object belongs to T1, taking the loss of action LP as the standard, θPT1

[Oi ]E
, θBT1

[Oi ]E
and θNT1

[Oi ]E

minus θPT1
[Oi ]E

respectively; then the relative losses of LP, LB and LN are 0, θ
(BT1)∗

[Oi ]E
and θ

(NT1)∗

[Oi ]E
,

respectively; when an object belongs to T2, taking the loss of action LN as the standard,
θPT2
[Oi ]E

, θBT2
[Oi ]E

and θNT2
[Oi ]E

minus θNT2
[Oi ]E

, respectively, then the relative losses of LP, LB and LN

are θ
(PT2)∗

[Oi ]E
, θ

(BT2)∗

[Oi ]E
and 0, respectively.

For an object Oi in T1, the risk of dividing it into the positive territory is less than or
equal to the risk of dividing it into the boundary territory; both risks are smaller than the
risk of dividing it into the negative territory. Similarly, for an object Oi in T2, the risk of
dividing it into the negative territory is less than or equal to the risk of dividing it into
the boundary territory; both risks are smaller than the risk of dividing it into the positive
territory. Therefore, we put forward a reasonable hypothesis with practical significance:

0 ≤ θ
(BT1)∗

[Oi ]E
< θ

(NT1)∗

[Oi ]E
,

0 ≤ θ
(BT2)∗

[Oi ]E
< θ

(PT2)∗

[Oi ]E
.

Based on Definitions 2 and 3, as well as the expected risk formulas, the expected losses
when Oi takes actions are:

Q(LP | [Oi]E) = θ
(PT2)∗

[Oi ]E
P(T2 | [Oi]E), (13)

Q(LB | [Oi]E) = θ
(BT1)∗

[Oi ]E
P(T1 | [Oi]E) + θ

(BT2)∗

[Oi ]E
P(T2 | [Oi]E), (14)

Q(LN | [Oi]E) = θ
(NT1)∗

[Oi ]E
P(T1 | [Oi]E). (15)

The property that P(T1 | [Oi]E) + P(T2 | [Oi]E) = 1 implies P(T2 | [Oi]E) =
1−P(T1 | [Oi]E). As a result, we can simplify the above formulas as follows:

Q(LP | [Oi]E) = θ
(PT2)∗

[Oi ]E
(1−P(T1 | [Oi]E)), (16)

Q(LB | [Oi]E) = θ
(BT1)∗

[Oi ]E
P(T1 | [Oi]E) + θ

(BT2)∗

[Oi ]E
(1−P(T1 | [Oi]E)), (17)

Q(LN | [Oi]E) = θ
(NT1)∗

[Oi ]E
P(T1 | [Oi]E). (18)

The practical implication of the Bayesian decision process, according to the minimum
risk principle, is that an action is performed when the risk of the action does not exceed the
risk of taking the other two choices (in the form of dividing an object into the corresponding
territory). Hence, we can represent the divisions of TWD as follows:

(P4) If Q(LP | [Oi]E) ≤ Q(LB | [Oi]E) and Q(LP | [Oi]E) ≤ Q(LN | [Oi]E), then Oi ∈ POS(T1),

(B4) If Q(LB | [Oi]E) ≤ Q(LP | [Oi]E) and Q(LB | [Oi]E) ≤ Q(LN | [Oi]E), then Oi ∈ BND(T1),

(N4) If Q(LN | [Oi]E) ≤ Q(LP | [Oi]E) and Q(LN | [Oi]E) ≤ Q(LB | [Oi]E), then Oi ∈ NEG(T1).

Since different attributes of an object correspond to different loss functions, we need
to integrate the loss functions to reduce the amount of calculation. Table 7 displays the
aggregate relative loss functions.
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Table 7. The aggregate relative loss functions of Oi(i ∈ η).

T1 T2

LP 0 vmax − Σjwjvij
LB Σjτwj(vij − vmin) Σjτwj(vmax − vij)
LN Σjwjvij − vmin 0

In Table 7, vmax = max
j∈µ

vij, vmin = min
j∈µ

vij, and τ ∈ (0, 0.5) is the risk avoidance coeffi-

cient. The risk avoidance coefficient τ is determined by the decision-makers according to
the characteristics of the attribute. Consequently, the values of τ for realistic problems vary.

Based on the aggregate relative loss functions exhibited in Table 7, the thresholds
αE

i , βE
i and γE

i of Oi can be computed as below:

αE
i =

Σjwj(1− τ)(vmax − vij)

Σjwj(1− τ)(vmax − vij) + (Σjwjτ(vij − vmin)
, (19)

βE
i =

Σjwjτ(vmax − vij)

Σjwjτ(vmax − vij) + Σjwj(1− τ)(vij − vmin)
, (20)

γE
i =

Σjwj(vmax − vij)

vmax − vmin
. (21)

Given the three thresholds above, the rules of TWD can be rewritten as follows:

(P5) If P(T1 | [Oi]E) ≥ αE
i and P(T1 | [Oi]E) ≥ γE

i , then Oi ∈ POS(T1),

(B5) If P(T1 | [Oi]E) ≤ αE
i and P(T1 | [Oi]E) ≥ βE

i , then Oi ∈ BND(T1),

(N5) If P(T1 | [Oi]E) ≤ βE
i and P(T1 | [Oi]E) ≤ γE

i , then Oi ∈ NEG(T1).

From Section 2.3, we can see that when 0 ≤ βE
i < γE

i < αE
i ≤ 1, the conditions of TWD

are met. Therefore, we can further simplify the decision rules in (P3)− (N3) as follows:

(P6) If P(T1 | [Oi]E) ≥ αE
i , then Oi ∈ POS(T1),

(B6) If βE
i < P(T1 | [Oi]E) < αE

i , then Oi ∈ BND(T1),

(N6) If P(T1 | [Oi]E) ≤ βE
i , then Oi ∈ NEG(T1).

Example 3. (Continued from Examples 1 and 2) In order to make the three-way process based
on the ideal superiority class method easier to understand, we will explain in detail with the help
of examples. Assume τ = {0.4, 0.4, 0.4, 0.4}, next we give the specific calculation process of the
relative loss function and threshold of object s1 and the classification process of TWD.

Since we have obtained the aggregate relative loss function of object s1 in Table 8
above, we can calculate the three thresholds of object s1 according to Formulas (19)–(21).

αE
1 =

0.3581
0.3581 + 0.1168

= 0.7540, βE
1 =

0.2387
0.2387 + 0.1752

= 0.5767,γE
1 =

0.5968
1.0000− 0.1111

= 0.6714.

Table 8. The aggregate relative loss functions of s1 under the ideal superiority class.

T1 T2

LP 0 vmax − Σjwjv1j = 0.5968
LB Σjτwj(v1j − vmin) = 0.1168 Σjτwj(vmax − v1j) = 0.2387
LN Σjwjv1j − vmin = 0.2921 0
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Now that we know the αE
1 , βE

1 , γE
1 and the conditional probability P(T1|[s1]E) of object

s1, according to the rules of TWD, we get P(T1|[s1]E) = 0.3333 < βE
1 = 0.5767; then, object

s1 is divided into the negative territory. The thresholds of other objects can be obtained in
the same way. In Example 2, we have obtained the conditional probability of all objects.
Finally, according to the rules of (P6)–(N6), the division results of the remaining objects are
presented in Table 9:

Table 9. The thresholds and division results of the other four objects.

s2 s3 s4 s5

αE
i 0.6138 0.4410 0.6799 0.6456

βE
i 0.4139 0.2596 0.4856 0.4473

γE
i 0.5144 0.3446 0.5861 0.5484

P(T1|[si]E) 0.2500 1.0000 0.5000 0.3333
Decision rules NEG POS BND NEG

3.2. A TWD Model Based on the Ideal Inferiority Relation

This subsection explains in detail how to construct the ideal inferiority relation and
class, as well as the essential definitions and theorems. Then, we discuss the process of
developing the TWD model with DTRS by utilizing our proposed inferiority class.

3.2.1. The Construction of the Ideal Inferiority Relation and Class

Similar to Section 3.1, we make use of the TOPSIS method to establish the ideal
inferiority relation and the ideal inferiority class, which are defined as follows:

Definition 4. Based on the fuzzy information system I = (O, S), we define the ideal inferiority
relation as follows:

F = {(Oi, Oj) ∈ O×O | O+
j ≥ O+

i and O−j ≤ O−i , j ∈ η}. (22)

Remark 3. The semantic explanation of the ideal inferiority relation: Given two objects Oi and
Oj, if the BTID of Oj is greater than or equal to that of Oi, and simultaneously the WTID of Oj
is less than or equal to that of Oi, then (Oi, Oj) ∈ F. In terms of profit and expense attributes,
the higher the expense, the lower the profit. High expenses and low earnings are the worst types of
decision-making outcomes for decision-makers.

Definition 5. Based on the fuzzy information system I = (O, S) and Definition 4, for ∀ Oi ∈ O,
the ideal inferiority class of Oi is constructed as follows:

[Oi]F = {Oj | O+
j ≥ O+

i and O−j ≤ O−i , Oj ∈ O}. (23)

The ideal inferiority class of Oi is the set of all objects whose BTID is greater than
that of Oi, and whose WTID is smaller than that of Oi, i.e., the set of all objects inferior to
object Oi.

Example 4. To illustrate the above definitions better, we use a tableware color selection problem
as an example. There are six tableware colors to pick from B = {B1, B2, B3, B4, B5, B6}, with five
corresponding attributes L = {L1, L2, L3, L4, L5}. Among them, L2, L3 and L4 are profit attributes,
L1, L5 are expense attributes, and w = {0.1, 0.1, 0.2, 0.3, 0.3} are the weights of these five attributes.
The multi-attribute information matrix in Table 10 represents the specific values of this project:
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Table 10. The multi-attribute information matrix of six tableware colors.

L1 L2 L3 L4 L5

B1 0.86 588 294 147 2
B2 0.82 602 118 121 3
B3 0.76 701 356 145 5
B4 0.90 637 343 165 2
B5 0.86 588 294 118 3
B6 0.82 634 348 163 3

According to the steps of the TOPSIS model and Definition 5, we can calculate the
ideal inferiority classes of these six tableware colors as follows:

[B1]F = {B1, B2, B3, B5, B6}.
[B2]F = {B2}.
[B3]F = {B2, B3}.
[B4]F = {B1, B2, B3, B4, B5, B6}.
[B5]F = {B2, B5}.
[B6]F = {B2, B3, B5, B6}.

Definition 6. In light of Definition 5, we define a new state set based on the ideal inferiority class
as follows:

G1 = {Oi |
|[Oi]F|
|n| ≥ k2}, G2 = {Oi |

|[Oi]F|
|n| < k2}, k2 ∈ [0.5, 1],

where |[Oi]F| is the cardinality of the ideal inferiority class of Oi, and k2 is the preference
parameter of the ideal inferiority class decided by decision-makers; we set the value range
of k2 to be between 0.5 and 1. G1 represents “excellent” objects; then, G2 represents “non-
excellent” objects. If the cardinality of the inferiority class of Oi divided by the total number
of objects equals the preference parameter k2, then we divide object Oi into the set of
“excellent” objects. The formula for calculating conditional probability under the ideal
inferiority class is P(�|[Oi]F) =

|�⋂
[Oi ]F |

|[Oi ]F |
, (� = {G1, G2}).

Example 5. (Continued from Example 4) Let k2 = 0.5. In line with Definition 6, we can obtain
the state set of the ideal inferiority class as follows:

G1 = {B1, B4, B6}, G2 = {B2, B3, B5}.

When the ideal inferiority class and state set for each object are known, then, we
calculate the conditional probability of each object in different states under the ideal
inferiority class. In the G1 state, the conditional probabilities of each ideal inferiority class
object are as follows:

P(G1|[B1]F) =
|G1

⋂
[B1]F |

|[B1]F |
= |{B1,B4,B6}

⋂{B1,B2,B3,B5,B6}|
|{B1,B2,B3,B5,B6}|

= 2
5 .

P(G1|[B2]F) =
|G1

⋂
[B2]F |

|[B2]F |
= |{B1,B4,B6}

⋂{B2}|
|{B2}|

= 0.

P(G1|[B3]F) =
|G1

⋂
[B3]F |

|[B3]F |
= |{B1,B4,B6}

⋂{B2,B3}|
|{B2,B3}|

= 0.

P(G1|[B4]F) =
|G1

⋂
[B4]F |

|[B4]F |
= |{B1,B4,B6}

⋂{B1,B2,B3,B4,B5,B6}|
|{B1,B2,B3,B4,B5,B6}|

= 1
2 .

P(G1|[B5]F) =
|G1

⋂
[B5]F |

|[B5]F |
= |{B1,B4,B6}

⋂{B2,B5}|
|{B2,B5}|

= 0.

P(G1|[B6]F) =
|G1

⋂
[B6]F |

|[B6]F |
= |{B1,B4,B6}

⋂{B2,B3,B5,B6}|
|{B2,B3,B5,B6}|

= 1
4 .

In the G2 state, the ideal inferiority class conditional probability of each object can be
obtained in the same way.
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3.2.2. The Three-Way Process Based on the Ideal Inferiority Class

For the ideal inferiority class, there is a similar DTRS process. When an object Oi
belongs to the state G1, the relative losses of selecting the action LP, LB and LN are 0,
θ
(BG1)∗

[Oi ]F
and θ

(NG1)∗

[Oi ]F
respectively. Likewise, when Oi belongs to G2, the relative losses of

selecting the action LP, LB and LN are θ
(PG2)∗

[Oi ]F
, θ

(BG2)∗

[Oi ]F
and 0 , respectively. Similar to the

ideal superiority class, there is also a reasonable hypothesis with practical significance for
the ideal inferiority class:

0 ≤ θ
(BG1)∗

[Oi ]F
< θ

(NG1)∗

[Oi ]F
,

0 ≤ θ
(BG2)∗

[Oi ]F
< θ

(PG2)∗

[Oi ]F
.

On the basis of Definitions 5 and 6, the expected losses of Oi are divided into the positive
territory, the boundary territory and the negative territory, which are computed as follows:

Q(LP | [Oi]F) = θ
(PG2)∗

[Oi ]F
P(G2 | [Oi]F), (24)

Q(LB | [Oi]F) = θ
(BG1)∗

[Oi ]F
P(G1 | [Oi]F) + θ

(BG2)∗

[Oi ]F
P(G2 | [Oi]F), (25)

Q(LN | [Oi]F) = θ
(NG1)∗

[Oi ]F
P(G1 | [Oi]F). (26)

In Table 11, we give the aggregate relative losses of Oi based on G1 and G2.

Table 11. The aggregate relative loss functions of Oi(i ∈ η).

G1 G2

LP 0 vmax − Σjwjvij
LB Σjτwj(vij − vmin) Σjτwj(vmax − vij)
LN Σjwjvij − vmin 0

In Table 11, vmax = max
j∈µ

vij, vmin = min
j∈µ

vij, and the risk avoidance coefficient τ

complies with the requirement τ ∈ (0, 0.5).
In light of the aggregate relative loss functions exhibited in Table 5, the thresholds

αF
i , βF

i and γF
i of Oi under the ideal inferiority relation F can be calculated as below:

αF
i =

Σjwj(1− τ)(vmax − vij)

Σjwj(1− τ)(vmax − vij) + (Σjwjτ(vij − vmin)
, (27)

βF
i =

Σjwjτ(vmax − vij)

Σjwjτ(vmax − vij) + Σjwj(1− τ)(vij − vmin)
, (28)

γF
i =

Σjwj(vmax − vij)

vmax − vmin
. (29)

Finally, we give the TWD rules of the ideal inferiority class directly as follows:

(P7) If P(G1 | [Oi]F) ≥ αF
i , then Oi ∈ POS(G1),

(B7) If βF
i < P(G1 | [Oi]F) < αF

i , then Oi ∈ BND(G1),

(N7) If P(G1 | [Oi]F) ≤ βF
i , then Oi ∈ NEG(G1).

Example 6. (Continued from Examples 4 and 5) In the tableware color selection problem, we set
the risk-aversion coefficient of five attributes as τ = {0.2, 0.2, 0.2, 0.2, 0.2}; next, we take object B1
as an example and give the detailed Steps of the three-way process based on the ideal inferiority class.
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In the ideal inferiority class model, object B1 is in two different states, and the relative
loss functions of the three different behaviors have been obtained in Table 12, so now we
solve the respective thresholds of object B1.

Table 12. The aggregate relative loss functions of B1.

G1 G2

LP 0 vmax − Σjwjv1j = 0.0953
LB Σjτwj(v1j − vmin) = 0.0158 Σjτwj(vmax − v1j) = 0.0191
LN Σjwjv1j − vmin = 0.0789 0

αF
1 =

0.0762
0.0762 + 0.0158

= 0.8283, βF
1 =

0.0191
0.0191 + 0.0631

= 0.2323,γF
1 =

0.0953
0.1742

= 0.5471.

In Example 5, we calculated P(G1|[B1]F) = 0.4000; it can be seen that the conditional
probability of object B1 is less than αF

1 and greater than βF
1 ; then, using the rules of (P7)–(N7),

object B1 is divided into the boundary territory. Similarly, the thresholds and classification
results of other objects are in Table 13:

Table 13. The thresholds and classification results of the five other objects.

B2 B3 B4 B5 B6

αF
i 0.7586 0.6929 0.5087 0.8607 0.6843

βF
i 0.1642 0.1236 0.0608 0.2786 0.1193

γF
i 0.4400 0.3606 0.2056 0.6070 0.3514

P(G1|[Bi]F) 0.0000 0.0000 0.5000 0.0000 0.2500
Decision rules NEG NEG BND NEG BND

3.3. Description of the above Two Models

There are similarities and differences in the two TWD models constructed by using the
TOPSIS method (the TWD ideal superiority model and the TWD ideal inferiority model).
Differences: the definitions of the two models are definitely different and opposite; due
to the different definitions of ideal classes, the definitions of state sets in the two models
are also different. Similarities: the two models are defined using the core ideas of TOPSIS,
and both of these models use relative loss functions.

All objects are classified into three regions according to the relationship between the
thresholds α, β, γ and conditional probabilities P(?|[Oi]). Regarding the ordering of objects,
objects in each domain are sorted according to their expected losses, and objects with
lower expected losses are at the top of the list in these three regions. The expected loss
represents the cost of an action, so when the object performs an action, the lower the loss,
the better, which means that the action is a possible desirable decision. Finally, based
on POS(?) � BNG(?) � NEG(?), where ? = {T1, T2, G1, G2} and � is the superiority
relationship, we can obtain the ranking of all objects.

4. An Application of the Proposed TWD-MADM Approach

We apply the new TWD models established in Section 3 to a concrete application
example, namely the selection of building appearances. The dataset is selected from the
UCI database. Meanwhile, we provide decision algorithms based on the models, as well as
the time complexity of those algorithms.



Entropy 2022, 24, 986 15 of 31

4.1. Introduction of the Problem

In our daily lives, we might see a wide range of building appearances. Buildings come
in a variety of shapes and sizes, some for functional purposes, some for aesthetic reasons
and some to represent regional culture. Real estate decision-makers must select the best
out of numerous building look possibilities to develop in a certain location by taking into
account a wide range of features, which is an MADM issue.

Buildings differ with respect to glazing area, glazing area distribution and orientation,
among other parameters. We simulate various settings as functions of the aforementioned
characteristics to obtain 768 building shapes. The dataset is comprised of 768 samples
and 8 features. Let I = (O, S) be an information system for building shape selection,
where Oi ∈ O(i ∈ η) stands for the set of building shapes and Sj ∈ S(j ∈ µ) represents
the set of building attributes. In this example, we have a total of eight different building
attributes. S1 stands for “ Relative Compactness”. S2 stands for “Surface Area”. S3 stands
for “Wall Area”. S4 stands for “Roof Area”. S5 stands for “Overall Height”. S6 stands for
“Orientation”. S7 stands for “ Glazing Area”. S8 stands for “ Glazing Area Distribution”.
The original data for building shape selection are shown in Table 14.

Table 14. The original data for 385 building shapes.

S1 S2 S3 S4 S5 S6 S7 S8

O1 0.98 514.50 294.00 110.25 7.00 2 0.00 0
...

...
...

...
...

...
...

...
...

O56 0.90 563.50 318.50 122.50 7.00 2 0.10 1
...

...
...

...
...

...
...

...
...

O109 0.86 588.00 294.00 147.00 7.00 4 0.10 2
...

...
...

...
...

...
...

...
...

O160 0.82 612.50 318.50 147.00 7.00 3 0.10 3
...

...
...

...
...

...
...

...
...

O216 0.76 661.50 416.50 122.50 7.00 3 0.10 4
...

...
...

...
...

...
...

...
...

O242 0.62 808.50 367.50 220.50 3.50 5 0.10 4
...

...
...

...
...

...
...

...
...

O310 0.79 637.00 343.00 147.00 7.00 5 0.25 1
...

...
...

...
...

...
...

...
...

O385 0.74 686.00 245.00 220.50 3.50 2 0.25 3

4.2. The Decision-Making Algorithms

In order to illustrate the correctness of the application of our proposed models in
MADM, Algorithms 1 and 2 show the detailed decision-making processes of the building
appearance selection problem.

The decision process of Algorithm 1 based on the ideal superiority class is as follows:
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Algorithm 1 Decision-making algorithm based on the ideal superiority class
Input: I information system, W weight, τ risk avoidance coefficient.
Output: The optimal building shape and the order of all building shapes.
Step 1: Choose different normalization formulas to normalize all of the evaluation values
based on the nature of the attributes.
Step 2: Calculate the BTID and the WTID of each object by using Formula (10).
Step 3: Find the ideal superiority class of each object by Formula (12).
Step 4: For each object, determine whether it is in the T1 or T2 state by Definition 3.
Step 5: Compute the conditional probability of each object by Remark 2.
Step 6: Calculate the loss function θ by using the evaluation value vij, weight W and risk
avoidance coefficient τ in the information matrix, and then use Formulas (19)–(21) to obtain
the three thresholds αE, βE and γE.
Step 7: Divide all objects into three regions according to (P6)–(N6), the relationship between
thresholds and conditional probabilities.
Step 8: Use Formulas (16)–(18) to obtain the expected loss of each object.
Step 9: Sort objects in each region according to the expected losses, and then derive the
optimal building shape and the order of all shapes based on POS(?) � BNG(?) � NEG(?).

Remark 4. Analysis of the time complexity of each step of the above algorithm: The first step is to
normalize each evaluation value with a time complexity O(n). Step 2 computes the BTID and WTID
for each object, with a time complexity of O(n). Step 3 is to determine the ideal superiority class of
each object, with a time complexity of O(n2). The fourth step is to determine whether each object is
in the T1 or T2 state, with a time complexity of O(n). Step 5 calculates the conditional probability
of each object in the ideal superiority class using the conditional probability formula, with a time
complexity O(n). Step 6 computes the thresholds for each object with a time complexity O(n). Step
7 is to divide all objects into three areas according to the TWD rules, with a time complexity O(n).
Step 8 computes the expected loss of each object with a time complexity O(n). Step 9 sorts all objects
according to POS(?) � BNG(?) � NEG(?), which has a time complexity O(nlogn). Therefore,
the time complexity of the entire algorithm is O(n2).

The decision process of Algorithm 2 based on the ideal inferiority class is as follows:

Algorithm 2 Decision-making algorithm based on the ideal inferiority class
Input: I information system, W weight, τ risk avoidance coefficient.
Output: The optimal building shape and the order of all building shapes.
Step 1: Choose different normalization formulas to normalize all of the evaluation values
based on the nature of the attributes.
Step 2: Compute the BTID and the WTID of each object by using Formula (10).
Step 3: Find the ideal inferiority class of each object by using Formula (23).
Step 4: For each object, determine whether it is in the G1 or G2 state by Definition 6.
Step 5: Compute the conditional probability of each object by the conditional probability
formula of the ideal inferiority class P(�|[Oi]F), i ∈ η.
Step 6: Calculate the loss function θ, and then use Formulas (27)–(29) to compute the three
thresholds αF, βF and γF.
Step 7: Divide all objects into three regions according to (P7)–(N7).
Step 8: Obtain the expected loss of each object via Formulas (24)–(26).
Step 9: Sort objects in each region according to the expected losses, and then derive the
optimal building shape and the order of all shapes based on POS(?) � BNG(?) � NEG(?).

Remark 5. Similar to the analysis of Algorithm 1, we obtain that the time complexity of Algorithm 2
is also O(n2).

4.3. An Application Example

We use our proposed algorithms to address the problem of architectural shape se-
lection in order to demonstrate the practicality of our proposed models. Consider a
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scenario where a developer purchases a block of land with the intention of developing
a retro-style residential district comprised entirely of single-family apartments. Since
the overall height of the buildings must be consistent for coordination and aesthetics,
we need not consider S5 (Overall Height). Because of the retro style, S7 (Glazing Area)
and S8 (Glazing Area Distribution) are not taken into account either. Meanwhile, we
randomly select eight objects from Example 4 for the sake of simplicity. Consequently,
we use O = {O1, O2, O3, O4, O5, O6, O7, O8} to represent the set of eight building shapes,
and S = {S1, S2, S3, S4, S5} to represent the set of five building attributes (i.e., Relative
Compactness, Surface Area, Wall Area, Roof Area and Orientation), while the weights of
the five attributes above are 0.2, 0.1, 0.3, 0.2 and 0.2, respectively. Among all attributes, S3
is an expense attribute, and the rest are profit attributes. The risk-aversion coefficient for
each attribute is 0.35, and the overall dataset is shown in Table 15.

Table 15. The eight building shapes.

S1 S2 S3 S4 S5

O1 0.98 514.50 294.00 110.25 3
O2 0.90 563.50 318.50 122.50 5
O3 0.76 661.50 416.50 122.50 3
O4 0.98 514.50 294.00 110.25 3
O5 0.62 808.50 367.50 220.50 4
O6 0.82 612.50 318.50 147.00 4
O7 0.69 735.00 294.00 220.50 5
O8 0.79 637.00 343.00 147.00 2

First, we must normalize the values in Table 15 using the following two formulas:

vij =
uij

max
i∈η

uij
, Sj is the profit attribute. (30)

vij =

min
i∈η

uij

uij
, Sj is the expense attribute. (31)

The normalized results are shown in Table 16.

Table 16. The eight building shapes after normalization.

S1 S2 S3 S4 S5

O1 1.0000 0.6364 1.0000 0.5000 0.6000
O2 0.9184 0.6970 0.9231 0.5556 1.0000
O3 0.7755 0.8182 0.7059 0.5556 0.6000
O4 1.0000 0.6364 1.0000 0.5000 0.6000
O5 0.6327 1.0000 0.8000 1.0000 0.8000
O6 0.8367 0.7576 0.9231 0.6667 0.8000
O7 0.7041 0.9091 1.0000 1.0000 1.0000
O8 0.8061 0.7879 0.8571 0.6667 0.4000

(1) The decision-making process using the TWD model based on the ideal superi-
ority class.

By means of the TOPSIS method and Definition 1, we can obtain the following list of
ideal superiority classes for all objects:

[O1]E = {O1, O2, O4, O5, O6, O7}
[O2]E = {O2, O7}
[O3]E = {O1, O2, O3, O4, O5, O6, O7}
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[O4]E = {O1, O2, O4, O5, O6, O7}
[O5]E = {O5, O7}
[O6]E = {O6, O7}
[O7]E = {O7}
[O8]E = {O1, O2, O4, O5, O6, O7, O8}.

After obtaining the ideal superiority class of each object, we know the number of
objects each object is superior to; the next step is to compute the state set by utilizing our
newly established state set method. In the process of solving the state set, we divide all
objects into two states, T1 or T2. The specific steps are in Step 4 of Algorithm 1, and the
results are as follows (the preference parameter k1 = 0.2 in this project):

T1 = {O7}
T2 = {O1, O2, O3, O4, O5, O6, O8}.
Knowing the set of ideal superiority classes and state set, we can calculate the con-

ditional probabilities for all building shapes; the specific calculation results are shown in
Table 17.

Table 17. The conditional probability of the eight building shapes.

O O1 O2 O3 O4 O5 O6 O7 O8

P(T1|[Oi]E) 0.1667 0.5000 0.1429 0.1667 0.5000 0.5000 1.0000 0.1429

According to Table 7, we work out the relative loss function of each building shape
taking three actions in two different states. To further calculate the threshold of each
building shape, by using the rules of (P6)–(N6) and comparing the conditional probability
of each building shape with its three thresholds αE, βE and γE, each building shape can be
divided into a specific domain. The specific thresholds and partition results of the eight
building shapes are shown in Table 18.

Table 18. Decision information for the eight building shapes under the TWD ideal superiority model.

O O1 O2 O3 O4 O5 O6 O7 O8

αE 0.5862 0.5075 0.6741 0.5862 0.6243 0.5814 0.3577 0.4673
βE 0.2912 0.2300 0.3749 0.2912 0.3251 0.2871 0.1390 0.2028
γE 0.4327 0.3568 0.5269 0.4327 0.4722 0.4279 0.2307 0.3208

Decision rules NEG BND NEG NEG BND BND POS NEG

In the end, the objects in each domain are ordered based on their expected losses:
the lower the expected loss, the higher the ranking. The ranking between domains can
be obtained from the positive territory being superior to the boundary territory, and the
boundary territory being superior to the negative territory. The specific ranking results are
shown in Table 19.

Table 19. The ranking of the eight building shapes under the TWD ideal superiority model.

Domains Rankings

POS O7
BND O2 � O5 � O6
NEG O3 � O8 � O1 � O4

Overall ranking O7 � O2 � O5 � O6 � O3 � O8 � O1 � O4

From Table 19, we know that the building shape classified into the positive domain of
TWD is O7, which is the optimal building shape in this project. For O2, O5 and O6 divided
in the boundary domain of TWD, further consideration and evaluation are needed before
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making a decision. At the same time, it is also provided that O2 is given priority over O5,
and O5 is given priority over O6. Whereas O3, O8, O1 and O4 are divided in the negative
domain of TWD and can be discarded. Hence, under the ideal superiority class model,
developers can give priority to building shape O7 in the project.

(2) The decision-making process using the TWD model based on the ideal inferi-
ority class

Through the TOPSIS method and Definition 4, we can obtain the following list of ideal
inferiority classes for all objects:

[O1]F = {O1, O3, O4, O8}
[O2]F = {O1, O2, O3, O4, O8}
[O3]F = {O3}
[O4]F = {O1, O3, O4, O8}
[O5]F = {O1, O3, O4, O5, O8}
[O6]F = {O1, O3, O4, O6, O8}
[O7]F = {O1, O2, O3, O4, O5, O6, O7, O8}
[O8]F = {O8}.

Having obtained the ideal inferiority class of each object, we need to compute the state
under the ideal inferiority class by using Step 4 in Algorithm 2, and then divide these eight
objects into two states, i.e., G1 or G2 (the preference parameter k2 = 0.5 in this project).

G1 = {O1, O2, O4, O5, O6, O7}
G2 = {O3, O8}.
Once the set of ideal inferiority classes and state set are known, we can separately

compute the conditional probabilities for these eight building shapes; the results are shown
in Table 20.

Table 20. The conditional probabilities for the eight building shapes under the TWD ideal inferior-
ity model.

O O1 O2 O3 O4 O5 O6 O7 O8

P(G1|[Oi]F) 0.5000 0.6000 0 0.5000 0.6000 0.6000 0.7500 0

Likewise, according to Table 11, we can work out the relative loss function of taking
three behaviors respectively when the object is in G1 or G2 state, and the threshold value of
each object is further obtained by using the rules of (27)–(29). Then, we can divide each
object into a clear domain via using the division rule of TWD, which is (P7)–(N7). Table 21
shows the thresholds and decision rules for the eight building shapes under the TWD ideal
inferiority model.

Table 21. Decision information for the eight building shapes under the TWD ideal inferiority model.

O O1 O2 O3 O4 O5 O6 O7 O8

αF 0.5862 0.5075 0.6741 0.5862 0.6243 0.5814 0.3577 0.4673
βF 0.2912 0.2300 0.3749 0.2912 0.3251 0.2871 0.1390 0.2028
γF 0.4327 0.3568 0.5269 0.4327 0.4722 0.4279 0.2307 0.3208

Decision rules BND POS NEG BND BND POS POS NEG

Finally, we categorize the eight objects into three domains. In each domain, we rank
the objects by their own expected loss: the smaller the expected loss, the higher the object
ordering. The ordering between domains is given by POS(?) � BNG(?) � NEG(?),
and the final ranking results are shown in Table 22.
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Table 22. The ranking of the eight objects under the TWD ideal inferiority model.

Domains Rankings

POS O7 � O2 � O6
BND O1 � O4 � O5
NEG O3 � O8

Overall ranking O7 � O2 � O6 � O1 � O4 � O5 � O3 � O8

From Table 22, we know that O7, O2 and O6 are in the positive domain, and O7 is
superior to O2 and O2 is superior to O6, thus the optimal building shape under the TWD
ideal inferiority class model is also O7. In the boundary domain, there are three objects, O1,
O4 and O5. In the negative domain, there are two objects, O3 and O8.

In comparison to the TWD ideal superiority model, we can analyze from three aspects:
the optimal object, the partial ordering and the classification of objects. First of all, the opti-
mal building shape for both models is O7, which shows the two models are consistent in
selecting the optimal object. Afterwards, the partial ordering of the two models is consistent
to a certain extent, such as the ordering of the first three objects is the same: O7 � O2 � O6;
further, O1 � O4 and O3 � O8. In the end, for the classification of objects, some objects
are divided into the same domain in the two models. For instance, O7 is divided into the
positive domain, O5 is divided into the boundary domain, and O3 and O8 are divided into
the negative domain. Analysis and comparison of the above three aspects shows that the
two new models proposed in this paper are consistent to a certain extent.

4.4. Comparison Analysis and Spearman’s Rank Correlation Analysis

In the following, we compare and analyze the ranking results of the two proposed
models with five other MADM methods.

4.4.1. Comparison Analysis of Different MADM Approaches

In order to verify the effectiveness and reasonableness of the models we proposed, we
take the example in Section 4.3 to compare and analyze the ranking results of our models
with five other MADM methods: TOPSIS [2], PROMETHEE [22], Ye’s method [11], Zhang’s
method [23] and Jia’s method [3]. The specific ranking results obtained from the above
methods are shown in Table 23 below:

Table 23. The ranking results for the eight building shapes in different MADM methods.

Method Ranking Results Optimal Object

IS O7 � O2 � O6 � O5 � O3 � O8 � O1 � O4 O7
IF O7 � O2 � O6 � O1 � O4 � O5 � O3 � O8 O7

TOPSIS O7 � O2 � O1 � O4 � O6 � O5 � O8 � O3 O7
PROMETHEE O7 � O2 � O5 � O6 � O1 � O4 � O8 � O3 O7

Ye’s O7 � O5 � O2 � O6 � O1 � O4 � O3 � O8 O7
Zhang’s O7 � O2 � O6 � O5 � O1 � O4 � O8 � O3 O7

Jia’s O7 � O2 � O5 � O6 � O1 � O4 � O8 � O3 O7

In Table 23, IS represents the TWD ideal superiority model, and IF represents the TWD
ideal inferiority model. For these seven MADM methods, we implement a comprehensive
analysis and discussion from three perspectives, namely overall ranking analysis, partial
ranking comparison and selection of the optimal object.

(a) From the perspective of overall ranking, we can conclude that the seven MADM
methods all give the ranking results of the eight objects, but compared with the traditional
TOPSIS and PROMETHEE methods, the two proposed methods not only give the ranking
of the objects, but also the classification of the objects. Further, we can see that Jia’s method
and the PROMETHEE method yield identical ranking results, O7 � O2 � O5 � O6 � O1 �
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O4 � O8 � O3, and other MADM methods all have sorting differences. Our proposed IS
method and Zhang’s method have the same ordering of the first four objects.

(b) From the perspective of the partial ranking comparison, the ordering of O1 and O4
in all MADM methods is the same as O1 � O4. In seven of the MADM methods (in all but
Ye’s method), the ranking position of O2 is second to the best option O7. In Ye’s method,
the second sorting position is O5. Hence, O2 and O5 are either divided into the positive
territory or the boundary territory. Furthermore, O3, O4 and O8 are the worst selections,
which are sorted at the bottom in all methods. Moreover, O3 is ranked in the last position
in TOPSIS, PROMETHEE, Zhang’s and Jia’s, O8 is ranked in the last position in IF and Ye’s,
and O4 is ranked in the last position in IS. This means the approximate range of sorting
positions for all objects is the same.

(c) From the perspective of the selection of the optimal object, it is not difficult to
find that the best choice of our two proposed methods and other MADM methods are O7,
and in our proposed methods, O7 is classified into the positive domain, which shows that
our proposed method and other methods are consistent in the selection of the best object,
and also shows the feasibility of our proposed method.

In general, Table 23 shows that our proposed models are consistent with the five other
MADM methods, and our method not only has the sorting results, but also the classification
of each object. From the overall analysis and discussion, our proposed method has certain
feasibility and rationality.

4.4.2. Spearman’s Rank Correlation Analysis

In order to analyze and compare the correlations and differences between the selected
MADM methods, we use the Spearman’s correlation coefficient (SRCC) as an indicator.
The SRCC is calculated as follows:

SRCC = 1−
6Σn

i=1q2
i

n3 − n
, (32)

where n is the total number of objects, and qi = xi − yi, in which xi is the ranking
position of Oi in one MADM method and yi is the ranking position of Oi in another MADM
method. If the SRCC of the two ranking results is greater, then we may say that they are
highly relevant and consistent between the two decision-making methods. That is, for any
two decision-making methods after processing the same data, the larger the correlation
coefficient value of the SRCC, the better the correlation and consistency between the two
methods. On the basis of Table 23, we can calculate the SRCC between any two different
methods, as shown in Table 24.

Table 24. The SRCC between any two of the seven decision-making methods.

Method IS IF TOPSIS PROMETHEE Ye’s Zhang’s Jia’s

IS 1.0000 0.5714 0.3810 0.7857 0.7857 0.7619 0.7857
IF 0.5714 1.0000 0.9048 0.8333 0.7619 0.9048 0.8333

TOPSIS 0.3810 0.9048 1.0000 0.7857 0.6667 0.8095 0.7857
PROMETHEE 0.7857 0.8333 0.7857 1.0000 0.9524 0.9762 1.0000

Ye’s 0.7857 0.7619 0.6667 0.9524 1.0000 0.9048 0.9524
Zhang’s 0.7857 0.9048 0.8095 0.9762 0.9048 1.0000 0.9762

Jia’s 0.7619 0.8333 0.7857 1.0000 0.9524 0.9762 1.0000

To visualize the SRCC and enhance the readability of the data, this paper uses a
heatmap, which is a matrix that shows the data in terms of color changes that represent the
magnitude of the correlation coefficient, thus showing the correlation between different
indicators and different samples. The heatmap of Table 24 described above is shown in
Figure 1.
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Figure 1. The heatmap of SRCC in seven multi-criteria decision-making methods.

From Table 24, for the IS method we proposed, the SRCC values of IF and TOPSIS
method is low, only 0.5714 and 0.3810, respectively; however, the SRCC values between
it and PROMETHEE, Ye’s method, Zhang’s method and Jia’s method are all greater than
0.648, indicating that the IS method has certain rationality and feasibility. For our proposed
IF method, the SRCC values of it and the other five MADM methods are all greater than
0.648, and the lowest value is 0.7619 with the Ye’s method; the SRCC value with the TOPSIS
and Zhang’s methods is as high as 0.9048, which shows that the IF method has strong
consistency with all other MADM methods. Further, the two methods we proposed also
have certain differences in the SRCC value. Compared with the IS method, the IF method
has higher consistency with other MADM methods. On the whole, the proposed method
has high consistency and similarity with other MADM methods.

4.4.3. Other Example Analysis

In order to verify the high reliability and practicability of our proposed model, we
additionally cite two sets of data from [3,16]; then, the results of the proposed method are
compared and analyzed with those of other MADM methods.

Example 7. A classic corporate investment problem. There are eight investment objects O =
{O1, O2, O3, O4, O5, O6, O7, O8} and five attributes S = {S1, S2, S3, S4, S5}, i.e., expected benefits,
environmental influence, market saturation, social benefits and energy conservation, respectively.
Among them S2 and S3 are cost attributes, and S1, S4 and S5 are benefit attributes. The weight
vectors of these five attributes are w = {0.3, 0.1, 0.3, 0.2, 0.1}, and the risk avoidance coefficient
vectors are τ = {0.1, 0.1, 0.1, 0.1, 0.1}. Consequently, the specific relevant data of eight investment
objects over five attributes are presented in Table 25.

Table 25. The data of the example in [3].

S1 S2 S3 S4 S5

O1 0.8 0.4 0.3 0.8 0.9
O2 0.9 0.5 0.5 0.7 0.6
O3 0.3 0.4 0.6 0.4 0.3
O4 0.5 0.2 0.2 0.7 0.6
O5 0.7 0.6 0.6 0.5 0.8
O6 0.4 0.8 0.7 0.7 0.3
O7 0.9 0.5 0.1 0.8 0.7
O8 0.6 0.8 0.8 0.3 0.4

Using the data in Table 25, we conduct a comprehensive analysis and discussion of
the results obtained by our two proposed methods and those obtained by other MADM
methods. The ranking results for these eight objects in different MADM methods are
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presented in Table 26, and the SRCC values for each method in relation to the ranking
results are shown in Table 27. In order to visualize SRCC, the heatmap of SRCC values in
Table 27 is shown in Figure 2.

Table 26. The ranking results for the eight investment objects of different MADM methods.

Method Ranking Results Optimal Object

IS O7 � O2 � O5 � O1 � O4 � O6 � O8 � O3 O7
IF O7 � O4 � O2 � O5 � O1 � O3 � O6 � O8 O7

TOPSIS O7 � O1 � O2 � O4 � O5 � O6 � O8 � O3 O7
PROMETHEE O7 � O1 � O2 � O4 � O5 � O6 � O8 � O3 O7

Ye’s O7 � O1 � O4 � O2 � O5 � O6 � O3 � O8 O7
Zhang’s O7 � O1 � O4 � O2 � O5 � O6 � O8 � O3 O7

Jia’s O7 � O1 � O4 ≈ O2 � O5 � O6 � O3 � O8 O7

Table 27. The SRCC values between any two of the seven decision-making methods.

Method IS IF TOPSIS PROMETHEE Ye’s Zhang’s Jia’s

IS 1.0000 0.7857 0.8810 0.8810 0.7857 0.8095 0.7857
IF 0.7857 1.0000 0.7619 0.7619 0.8333 0.7857 0.8333

TOPSIS 0.8810 0.7619 1.0000 1.0000 0.9524 0.9762 0.9524
PROMETHEE 0.8810 0.7619 1.0000 1.0000 0.9524 0.9762 0.9524

Ye’s 0.7857 0.8333 0.9524 0.9524 1.0000 0.9762 1.0000
Zhang’s 0.8095 0.7857 0.9762 0.9762 0.9762 1.0000 0.9762

Jia’s 0.7857 0.8333 0.9524 0.9524 1.0000 0.9762 1.0000

Figure 2. The heatmap of SRCC in seven multi-criteria decision-making methods.

Remark 6. From the ranking results in Table 26, the optimal objects selected by our proposed
methods and other MADM methods are uniform: O7. The worst objects are O3 and O8. In IS,
TOPSIS, PROMETHEE and Zhang’s, the worst object is O3, while in IF, Ye’s and Jia’s, the worst
object is O8. Moreover, Objects O2 and O4 cannot be prioritized and classified in Ye’s method, but in
our proposed IS method, we conclude that O2 is better than O4, and they are both classified into
the boundary domain. Likewise, in our proposed IF method, we can conclude that O4 is better than
O2 and is also classified into the boundary domain. It shows that our method has more sorting and
classification advantages over Ye’s. From Table 27, we can find that the SRCC values of the IS and
IF methods and other existing MADM methods are all greater than 0.648, which shows that our
method is consistent and feasible with existing MADM methods.

Example 8. An energy selection program: there are six energy projects
O = {O1, O2, O3, O4, O5, O6} and four attributes S = {S1, S2, S3, S4}. Among them S2 is a
cost attribute, and S1, S3 and S4 are benefit attributes. The weight vectors of these four attributes are
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w = {0.2, 0.2, 0.3, 0.3}. The specific data of six energy projects over four attributes are presented in
Table 28.

Table 28. The data of the example in [16].

S1 S2 S3 S4

O1 0.80 0.69 0.64 0.74
O2 0.65 0.85 0.72 0.67
O3 0.73 0.77 0.78 0.61
O4 0.82 0.68 0.64 0.75
O5 0.54 0.96 0.57 0.82
O6 0.88 0.62 0.70 0.69

In this energy project example, we choose to compare our two proposed methods with
three other MADM methods: two classic methods, TOPSIS and PROMETHEE, and the
state-of-the-art Zhang’s method. The ranking results of the five methods are shown in
Table 29 following.

Table 29. The ranking results for six investment objects for different MADM methods.

Method Ranking Results Optimal Object

IS O6 � O4 � O1 � O2 � O5 � O3 O6
IF O6 � O4 � O1 � O5 � O2 � O3 O6

TOPSIS O6 � O4 � O1 � O3 � O2 � O5 O6
PROMETHEE O6 � O4 � O1 � O3 � O2 � O5 O6

Zhang’s O6 � O4 � O1 � O2 � O3 � O5 O6

From the results in Table 29, the optimal project determined by our proposed methods
and the three existing methods is identical: O6. Moreover, from the perspective of overall
ranking results, the ranking positions of objects in our method are generally similar to other
methods, which implies that the proposed methods are credible and reasonable. To more
clearly illustrate the connection and consistency between our proposed method and the
TOPSIS, PROMETHEE and Zhang’s methods, we calculate the SRCC between any two
MADM methods in Table 30 and Figure 3, and provide statistical significance ranking
results for different methods.

Figure 3. The heatmap of SRCC in five multi-criteria decision-making methods.
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Table 30. The SRCC between any two of five decision-making methods.

Method IS IF TOPSIS PROMETHEE Zhang’s

IS 1.0000 0.9429 0.8286 0.8286 0.9429
IF 0.9429 1.0000 0.7714 0.7714 0.8286

TOPSIS 0.8286 0.7714 1.0000 1.0000 0.9429
PROMETHEE 0.8286 0.7714 1.0000 1.0000 0.9429

Zhang’s 0.9429 0.8286 0.9429 0.9429 1.0000

5. Experiment Analysis

In this section, we conduct relevant experiment analyses on the adjustable parameters
of our proposed models, including the preference parameter k1 in the ideal superiority
class model, the preference parameter k2 in the ideal inferiority class model and the risk-
aversion factor τ. Since we arbitrarily change the value of a parameter, the ranking and
classification results of the decision will change, so it is very necessary to analyze and
discuss the influence of the parameter value on the decision result. In the following, we
continue to use the example in Section 4.3 to conduct experiments, the classification and
ranking results in the two models are shown by varying the parameters k1, k2 in steps of
0.05 and the risk-aversion factor τ in steps of 0.1.

5.1. Analysis of the Preference Parameter k1 and the Risk Aversion Factor τ in the Ideal Superiority
Class Model

In each model, we have two variable parameters that are determined by the decision-
maker according to the experimental situation. If the two parameters change at the same
time, there will be countless possibilities. Therefore, we use the method of controlling
variables to implement the experiment.

(1) In the first case, we set the risk-aversion coefficient of each attribute to a fixed
value and adjust the value of k1 to obtain the following classification and sorting results for
the eight objects in the TWD ideal superiority model. According to Definition 3, the value
of k1 ranges from 0 to 0.5 and changes with a step size of 0.05. In order to present our
results more clearly and intuitively, we will show the sorting results of different values of
k1 in the form of a graph as follows.

Remark 7. From Table 31 and Figures 4 and 5, we find that the results obtained for different
values of k1 will be different when k1 is less than or equal to 0.1. There are no objects that meet the
conditions. We can obtain that the objects in the T1 state set are empty sets, so in the T1 state set,
the conditional probabilities of the eight objects are all 0, and it can be seen that they are all divided
into the negative domain, and the ranking result is O1 � O2 � O3 � O4 � O5 � O6 � O7 � O8.
In this project, due to the small number of objects, when the value of k1 is less than or equal to 0.1,
it is obviously unreasonable because it is impossible to reasonably distinguish and classify objects.
When k1 = 0.15 or k1 = 0.2, the results are the same, and the broken line trajectories of the two
values also coincide. This shows that the ideal number of superiority classes of each object is less than
2; that is, it satisfies the condition of T1 state set: there is object O7, and the conditional probability of
each object is calculated to not be 0. The final ranking and classification results are highly consistent
with other MADM methods. Specifically, the ranking result is O7 � O2 � O5 � O6 � O3 �
O8 � O1 � O4, with O7 in the positive domain, objects O2, O5 and O6 in the boundary domain,
and objects O1, O3, O4 and O8 in the negative domain. Furthermore, when k1 is in [0.25, 0.5], we
find that the classification and ranking results of the objects are identical, which means that the
results tend to stabilize when k1 reaches a certain threshold, and the ranking result after stabilization
is O2 � O5 � O6 � O7 � O1 � O4 � O8 � O3, and O1, O2, O4, O5, O6, O7, O8 is in the
positive domain and O3 is in the boundary domain.
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Table 31. The ranking results of different preference parameters k1.

Preference Parameter k1 Ranking Results

k1 = 0.05 O1 � O2 � O3 � O4 � O5 � O6 � O7 � O8
k1 = 0.10 O1 � O2 � O3 � O4 � O5 � O6 � O7 � O8
k1 = 0.15 O7 � O2 � O5 � O6 � O3 � O8 � O1 � O4
k1 = 0.20 O7 � O2 � O5 � O6 � O3 � O8 � O1 � O4
k1 = 0.25 O2 � O5 � O6 � O7 � O1 � O4 � O8 � O3
k1 = 0.30 O2 � O5 � O6 � O7 � O1 � O4 � O8 � O3
k1 = 0.35 O2 � O5 � O6 � O7 � O1 � O4 � O8 � O3
k1 = 0.40 O2 � O5 � O6 � O7 � O1 � O4 � O8 � O3
k1 = 0.45 O2 � O5 � O6 � O7 � O1 � O4 � O8 � O3
k1 = 0.50 O2 � O5 � O6 � O7 � O1 � O4 � O8 � O3
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Figure 4. The sorting results of eight objects with different preference parameters k1.
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Figure 5. The classification results of eight objects with different preference parameters k1.

(2) In the second case, we set the preference parameter k1 with a fixed value and adjust
the value of risk-aversion coefficient τ to obtain the following classification and sorting
results for the eight objects in the TWD ideal superiority model.

Remark 8. From Table 32 and Figures 6 and 7, we find that no matter what the value of τ is, O7 is
the optimal object and is in the positive domain. When τ = 0 and τ = 0.1, from the classification of
Figure 7, the classification of the objects is the same, i.e., O7 is in the positive domain, and objects
O1, O2, O3, O4, O5, O6, O8 are in the boundary domain. However, from the ranking of Figure 6,
the ordering is different: for τ = 0, the ordering is O7 � O1 � O2 � O3 � O4 � O5 � O6 � O8,
while for τ = 0.1, the ranking is O7 � O1 � O4 � O8 � O3 � O2 � O5 � O6. In contrast to
the above, when τ = 0.4 and τ = 0.5, objects are ranked identically but classified differently: for τ
= 0.4, 05, O6 are classified into the boundary domain, but whenτ = 0.5, 05, O6 is divided into the
positive domain.
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Table 32. The ranking results for different risk-aversion coefficients τ.

The Risk Aversion Coefficient τ Ranking Results

τ = 0.0 O7 � O1 � O2 � O3 � O4 � O5 � O6 � O8
τ = 0.1 O7 � O1 � O4 � O8 � O3 � O2 � O5 � O6
τ = 0.2 O7 � O1 � O4 � O8 � O2 � O5 � O6 � O3
τ = 0.3 O7 � O5 � O6 � O2 � O3 � O8 � O1 � O4
τ = 0.4 O7 � O2 � O5 � O6 � O3 � O8 � O1 � O4
τ = 0.5 O7 � O2 � O5 � O6 � O3 � O8 � O1 � O4
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Figure 6. The sorting results of eight objects with different risk-aversion coefficients τ.
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Figure 7. The classification results of eight objects with different risk-aversion coefficients τ.

5.2. Analysis of the Preference Parameter k2 and the Risk Aversion Factor τ in the Ideal Inferiority
Class Model

(1) In the first case, we set the risk-aversion coefficient of each attribute to a fixed
value and adjust the value of k2 to obtain the following classification and sorting results for
the eight objects in the TWD ideal inferiority model. According to Definition 6, the value of
k2 ranges from 0.5 to 1 and changes with a step size of 0.05. In order to present our results
more clearly and intuitively, we will show the sorting results of different values of k2 in the
form of a graph as follows.

Remark 9. According to Table 33 and Figures 8 and 9, we derive the following information:
when k2 = 0.50, the sorting result is O7 � O2 � O6 � O1 � O4 � O5 � O3 � O8,
in which the positive domain has objects O2, O6 and O7, the boundary domain has objects O1, O4
and O5, and the negative domain has objects O3 and O8. The value of k2 is 0.5, indicating that
the number of ideal inferiority classes of each object needs to be greater than or equal to half of the
total number of objects before being classified into G1. From the perspective of this project, the ideal
inferiority class with objects O1, O2, O4, O5, O6, O7 satisfies the condition and is divided into the
G1 state set. In the ideal inferiority class model, this value k2 = 0.50 is reasonable and feasible,
neither too harsh nor too loose. When k2 is between 0.55 and 0.60, the ranking results are the
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same: O7 � O1 � O3 � O4 � O8 � O6 � O5 � O2, with only O7 in the positive domain and the
remaining objects in the negative domain. When k2 is greater than or equal to 0.65 in the TWD
ideal inferiority model, all objects are divided into the negative domain, and the sorting result is
O1 � O2 � O3 � O4 � O5 � O6 � O8 � O7. In this example, when k2 is 0.65, if the object
is divided into G1, the ideal number of inferiority classes of the object must satisfy six or more,
but from these eight objects, only O7 satisfies the condition. Therefore, the ranking and classification
results are consistent.

Table 33. The ranking results for different preference parameters k2.

Preference Parameter k2 Ranking Results

k2 = 0.50 O7 � O2 � O6 � O1 � O4 � O5 � O3 � O8
k2 = 0.55 O7 � O1 � O3 � O4 � O8 � O6 � O5 � O2
k2 = 0.60 O7 � O1 � O3 � O4 � O8 � O6 � O5 � O2
k2 = 0.65 O1 � O2 � O3 � O4 � O5 � O6 � O8 � O7
k2 = 0.70 O1 � O2 � O3 � O4 � O5 � O6 � O8 � O7
k2 = 0.75 O1 � O2 � O3 � O4 � O5 � O6 � O8 � O7
k2 = 0.80 O1 � O2 � O3 � O4 � O5 � O6 � O8 � O7
k2 = 0.85 O1 � O2 � O3 � O4 � O5 � O6 � O8 � O7
k2 = 0.90 O1 � O2 � O3 � O4 � O5 � O6 � O8 � O7
k2 = 0.95 O1 � O2 � O3 � O4 � O5 � O6 � O8 � O7
k2 = 0.10 O1 � O2 � O3 � O4 � O5 � O6 � O8 � O7
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Figure 8. The sorting results of eight objects with different preference parameters k2.
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Figure 9. The classification results of eight objects with different preference parameters k2.

(2) In the second case, we set the preference parameter k2 with a fixed value and adjust
the value of risk-aversion coefficient τ to obtain the following classification and sorting
results for the eight objects in the TWD ideal inferiority model.



Entropy 2022, 24, 986 29 of 31

Remark 10. According to Table 34 and Figures 10 and 11, we analyze from the perspective of the
optimal object, discovering that except for τ = 0, the rest of the optimal objects are O7. Furthermore,
regardless of the value of τ, O3 and O8 are both classified into the negative domain, which indicate
that O3 and O8 are not considered objects. When τ = 0, that is, each attribute has no risk-
aversion value, the final classification result is that there are no objects in the positive domain:
O1, O2, O4, O5, O6, O7 are in the boundary domain, and O3 and O8 are in the negative domain.
The sort order is O1 � O2 � O4 � O5 � O6 � O7 � O3 � O8. When τ = 0.1 and τ = 0.2,
the results of classification and ranking are identical. In Figure 10, it can be seen that the red line
and the green line are coincident, and the sorting result is O7 � O1 � O4 � O6 � O5 � O2 �
O3 � O8. In Figure 11, the division of the three areas of the histogram is the same: O7 is in the
positive domain, O1, O2, O4, O5, O6 are in the boundary domain, and O3 and O8 are in the negative
domain. When τ = 0.4 and τ = 0.5, although they are sorted the same, the classification is different.
When τ = 0.4, O1 and O4 are in the boundary domain; however, when τ = 0.5, O1 and O4 are
classified into the positive domain.
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Figure 10. The sorting results of eight objects with different risk-aversion coefficients τ.

0.0 0.1 0.2 0.3 0.4 0.5

The risk aversion coefficient  

0

1

2

3

4

5

6

7

8

T
h

e
 n

u
m

b
e

r 
o

f 
o

b
je

c
ts

Negative region

Boundary region

Positive region

O
1

O
2

O
4

O
5

O
6

O
1

O
4

O
5

O
6

O
1

O
2

O
4

O
5

O
6

O
7

O
1

O
2

O
4

O
5

O
6

O
7

O
1

O
2

O
4

O
5

O
6

O
2

O
5

O
6

O
7

O
7

O
7 O

2

O
7

O
1

O
4

O
3

O
8

O
3

O
8

O
3

O
8

O
3

O
8

O
3

O
8

O
3

O
8

Figure 11. The classification results of eight objects with different risk-aversion coefficients τ.

Table 34. The ranking results for different risk-aversion coefficients τ.

Risk Aversion Coefficient τ Ranking Results

τ = 0.0 O1 � O2 � O4 � O5 � O6 � O7 � O3 � O8
τ = 0.1 O7 � O1 � O4 � O6 � O5 � O2 � O3 � O8
τ = 0.2 O7 � O1 � O4 � O6 � O5 � O2 � O3 � O8
τ = 0.3 O7 � O2 � O1 � O4 � O6 � O5 � O3 � O8
τ = 0.4 O7 � O2 � O5 � O6 � O1 � O4 � O3 � O8
τ = 0.5 O7 � O2 � O5 � O6 � O1 � O4 � O3 � O8
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6. Conclusions

In this study, we present two novel TOPSIS-based TWD models with opposing defi-
nitions: one of them is the TWD ideal superiority model, and the other is the TWD ideal
inferiority model. When applied to practical fuzzy information systems, these two decision-
making models demonstrate clear feasibility and rationality. In this paper, the datasets
applicable to both models are fuzzy attribute environments. In addition, we propose a
new method for objective computation of the state set that reduces the subjectivity of the
decision process and makes the decision-making results more objective. Furthermore, we
employ the relative loss functions of Jia and Liu to calculate the thresholds of each object,
however, differently from Jia’s and Liu’s methods. Considering that it is subjective and
undesirable to assign artificial, random values to each attribute of the risk-aversion factor,
we set the risk avoidance coefficient of each attribute in the relative loss function to the same
value. Moreover, due to the fact that this is a study of TWD in this paper, the risk-aversion
coefficients range from 0 to 0.5, in spite of the values taken for each attribute being the
same. Finally, according to the thresholds of each object and the TWD rules, all objects are
divided into three different territories. The objects in the positive territory are acceptable,
the objects in the boundary territory need further consideration, and the objects in the
negative territory are rejected directly. Further, the objects in different domains are sorted
according to the value of the loss function: the smaller the loss value, the more priority is
given to sorting; finally, the sorting of all objects can be obtained, and it is known that the
first object in the positive territory is the optimal object.

In the future, we will consider extending the applicability of the two models we
proposed to other environments. Further, we can discuss and analyze the following
three directions in depth: The first is to expand the TWD theories, which includes the
expansion of relations, the expansion of related classification models and fusion with other
classification methods. The second is the study of methodological aspects, such as decision-
risk minimization and reduction methods, cost-sensitive rule acquisition and decision risk
minimum rule acquisition. The third is the application of TWD in the fields of engineering,
management and medicine.
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