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Abstract: This paper aims to present a novel hybrid algorithm named SPSOA to address problems of
low search capability and easy to fall into local optimization of seagull optimization algorithm. Firstly,
the Sobol sequence in the low-discrepancy sequences is used to initialize the seagull population
to enhance the population’s diversity and ergodicity. Then, inspired by the sigmoid function, a
new parameter is designed to strengthen the ability of the algorithm to coordinate early exploration
and late development. Finally, the particle swarm optimization learning strategy is introduced
into the seagull position updating method to improve the ability of the algorithm to jump out of
local optimization. Through the simulation comparison with other algorithms on 12 benchmark
test functions from different angles, the experimental results show that SPSOA is superior to other
algorithms in stability, convergence accuracy, and speed. In engineering applications, SPSOA is
applied to blind source separation of mixed images. The experimental results show that SPSOA can
successfully realize the blind source separation of noisy mixed images and achieve higher separation
performance than the compared algorithms.

Keywords: seagull optimization algorithm; Sobol sequence; sigmoid function; particle swarm optimization;
blind source separation

1. Introduction

Optimization has great importance and applications and is used to address complex
issues to reduce computational cost, increase accuracy, and enhance performance, particu-
larly in the field of engineering. Optimization aims to maximize efficiency, performance,
and productivity through calculation under certain constraints [1]. Traditional optimization
methods such as Newton and conjugate gradient methods can only deal with simple,
continuously differentiable, or high-order differentiable objective functions [2,3]. With the
increasing diversity and complexity of problems, the traditional optimization algorithms
cannot meet the requirements of high computing speed and low error rate. Therefore, it is
of great practical significance to find new optimization methods with fast calculation speed
and strong convergence ability [4].

Metaheuristic algorithms have the characteristics of self-organization, mutual com-
patibility, parallelism, integrity, and coordination characteristics. This kind of algorithm
only needs to know the objective function and the search range and can achieve the target
solution regardless of whether the search range is continuously differentiable, which pro-
vides a new way to solve the optimization problem [5]. Metaheuristic algorithms belong to
the stochastic optimization method and are mainly driven by the random streams (single
or multiple) utilized in the stochastic search mechanism. A recent study shows that if the
randomness of the random streams of interest is deliberately controlled without disturbing
its expectation, then the desired effectiveness in the optimization search can be eventually
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gained [6]. Metaheuristic optimization algorithms are mainly divided into biological evo-
lution, natural phenomena, and species living habits. Biological evolution methods, such
as genetic algorithm (GA) [7] and differential evolution (DE) algorithm [8], are inspired
by biological genetics, mutation, and evolution strategies. A natural phenomenon algo-
rithm is a kind of algorithm based on the physical laws of nature, such as the sine cosine
algorithm (SCA) [9] and biogeography-based optimization (BBO) [10]. The inspiration
for the population life habit algorithm comes from the relationship between population
individuals, including particle swarm optimization (PSO) [11], artificial bee colony (ABC)
algorithm [12], cuckoo search (CS) algorithm [13], bat algorithm (BA) [14], and ant colony
optimization (ACO) [15].

Seagull optimization algorithm (SOA) is a new metaheuristic algorithm inspired by
species’ living habits proposed in 2019 [16]. SOA realizes the function of global and local
search by simulating the long-distance migration behavior and foraging attack behavior of
seagulls. The principle of SOA is relatively simple and easy to implement, and it has been
used to address some engineering problems [17–19]. However, due to the low searchability
of the fundamental SOA, the algorithm falls into local optimization. Therefore, improving
SOA is an essential step to expanding the application scope of SOA and improving the
utilization value of SOA.

In recent years, scholars have proposed many improved algorithms. Che et al. [20]
introduced the reciprocity mechanism and coexistence mechanism in the symbiotic organ-
ism’s search (SOS) algorithm, which improved the development ability of the algorithm.
Zhu et al. [21] applied Henon chaotic map to initialize the seagull population and com-
bined it with differential evolution based on an adaptive formula, which improved the
diversity of the seagull population. Wu et al. [22] used a chaotic tent map to initialize the
population and designed a nonlinear inertia weight and random double helix formula.
Experiments show that the algorithm improves the optimization accuracy and efficiency of
SOA. Muthubalaji et al. [23] designed a hybrid algorithm SOSA, which uses the advantages
of the owl search algorithm (OSA) to improve the global search ability of SOA. Hu et al. [24]
proposed an ISOA with higher optimization accuracy, introducing non-uniform mutation
and an opposite-based learning strategy. Wang et al. [25] analyzed the parameter A of SOA
in detail, presented the best advantage set theory and the idea of the Yin-Yang Pair, and
proposed an improved seagull fusion algorithm, YYPSOA. Ewees et al. [26] introduced
Levy flight strategy and mutation operator to prevent the algorithm from falling into local
optimum. Wang et al. [27] introduced the opposite-based learning strategy to initialize the
population, and used the quantum optimization method to update the seagull population.
The algorithm is effective in multi-objective optimization problems. The above references
are some improvement methods by scholars for SOA. Although they can improve the search
performance of the algorithm and reduce the premature convergence of the algorithm to a
certain extent, most references only focus on the improvement of single search performance
and ignore the balance between global search ability and local development ability.

This paper proposes a new SOA algorithm based on hybrid strategies named SPSOA.
Firstly, the seagull population is initialized by the Sobol sequence so that the seagulls are
more evenly distributed in the initial solution space. Then, through the expansion and
translation of the sigmoid function, a new parameter is proposed to further enhance the
algorithm’s ability to coordinate the early exploration and late development. Finally, the
PSO learning strategy is introduced into the updating method of seagull attack position
to enhance the ability of the algorithm to jump out of local optimization. In this paper,
12 benchmark test functions are selected to test the algorithm’s performance from different
aspects. The experimental results show that the stability, convergence accuracy, and
speed of SPSOA are better than other algorithms. In applying blind source separation
(BSS), SPSOA can successfully separate noisy mixed images and has better separation
performance than the compared algorithms.

The remainder of this paper is organized as follows: Section 2 discusses the details of
the SOA. Section 3 addresses the SPSOA implementation. Section 4 verifies the effectiveness
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of SPSOA through experiments. Section 5 applies SPSOA to the problem of BSS of mixed
images, and Section 6 concludes the paper and proposes future work.

2. The Basic Seagull Optimization Algorithm (SOA)

Seagulls have a natural ability to migrate and attack. Migration is a seasonal long-
distance movement from one place to another. The initial position of seagulls is in different
spatial areas to avoid collision during movement. In group migration, the most suitable
seagull leads the migration group, and the rest of the seagulls follow this leader and update
their current position in the migration process. The attack is manifested in the process of
foraging, making a similar spiral action to attack the prey. SOA was used to establish a
mathematical model for these two behaviors and iteratively seek the optimal solution by
constantly updating the seagull positions.

2.1. Migration Behavior

During migration, SOA simulates how seagulls move from one location to another. At
this stage, seagulls should meet three conditions.

(1) Avoid the collisions:

In order to avoid colliding with the surrounding seagulls, SOA uses variable A to
adjust the position of each seagull.

→
CS = A×

→
PS(t) (1)

where
→
CS represents the position where there is no collision with other seagulls,

→
PS(t) de-

scribes the current position of the seagull, and t represents the current number of iterations.
The calculation formula of variable A is as follows:

A = fC − fC(t/T) (2)

where the value fC is 2, T is the maximum number of iterations. The value of A decreases
linearly from 2 to 0 with the increase of the number of iterations t.

(2) Determine the best seagull direction

After ensuring no collision between seagulls, the best direction of seagulls is calculated.

→
MS = B×

(→
PbS(t)−

→
PS(t)

)
(3)

where
→
MS represents the direction in which the individual seagull moves to the best

position,
→
PbS(t) represents the direction of the best seagull.

The calculation formula of variable B is as follows:

B = 2× A2 × rand (4)

where rand shows a random number between 0 and 1.

(3) Move in the direction of the best seagull

After calculating the best seagull position, the seagull begins to move to this position.

→
DS =

∣∣∣∣→CS +
→
MS

∣∣∣∣ (5)

where
→
DS represents the distance between each seagull and the best position.
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2.2. Attack Behavior

When seagulls attack the prey, they spiral in the air, constantly changing the attack
angle and speed. This behavior in the x′, y′, and z′ planes is described as follows.

x′ = r× cos(k) (6)

y′ = r× sin(k) (7)

z′ = r× k (8)

r = u× ekv (9)

where r represents the radius of each helix circle when the seagull attacks, k is the random
number between [0,2π], u and v are the constants defining the shape of the helix, and e is
the base of the natural logarithm.

→
PS1(t) =

→
DS × x′ × y′ × z′ +

→
PbS(t) (10)

where
→
PS1(t) represents the attack position of seagulls.

The pseudo code of SOA is provided in Algorithm 1

Algorithm 1: SOA

Input: Objective function f (x), seagull population size N, dimensional space D, maximum number
of iterations T.
1. Initialize population;
2. Set fC to 2;
3. Set u and v to 1;
4. While t < T
5. for i = 1 : N
6. Calculate seagull migration position

→
DS by Equation (5);

7. Compute x′,y′,z′,r using Equations (6)–(9);

8. Calculate seagull attack position
→
PS1(t) by Equation (10);

9. Update seagull optimal position
→
P bS(t);

10. t = t + 1;
11. end for
12. end while
13. Output the global optimal solution.

3. SPSOA Search Algorithm
3.1. Sobol Sequence Initialization

In a metaheuristic algorithm, the initialization population’s distribution greatly affects
the algorithm’s convergence speed and accuracy [28]. When dealing with the problem of
unknown distribution, the initial value of the population should be evenly distributed in
the search space as much as possible to ensure high ergodicity and diversity and improve
search efficiency [29]. In SOA, the random number in the search space generates the
initialization population. This method has low ergodicity, uneven individual distribution,
and unpredictability, which affects the algorithm’s performance to a certain extent.

To solve the above problem, some scholars use chaos search to optimize the initializa-
tion sequence [21,22,30–32]. Although the diversity and ergodicity of the population are
improved to a certain extent, the chaotic map is greatly affected by the initial solution, and
the inappropriate initial solution will lead to negative optimization of the algorithm [33].

The Sobol sequence is a low-discrepancy sequence with the advantages of short calcu-
lation cycles, fast sampling speeds, and higher efficiency in processing high-dimensional
sequences [34,35]. Unlike the pseudo-random number, the low-discrepancy sequences use
the deterministic low-discrepancy sequence to replace the pseudo-random sequence. By
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selecting a reasonable sampling direction, the points, as uniform as possible, are filled into
the multi-dimensional hypercube unit. Therefore, it has higher efficiency and uniformity in
dealing with probability problems. Therefore, this paper uses the Sobol sequence to map
the initial population. Let the upper and lower bounds of the optimal solution be ub and lb,
respectively, and the random number generated by the Sobol sequence be Si ∈ [0, 1], then
the mathematical model of the initialization population of the Sobol sequence is:

x = lb + Si × (ub− lb) (11)

Let the search space dimension D be 2, the upper and lower bounds be 1 and 0,
respectively, and the population size N be 100. Compare the initial population distribution
of the Sobol sequence with the random initial population distribution, as shown in Figure 1.

Entropy 2022, 24, x FOR PEER REVIEW 5 of 23 
 

 

sional sequences [34,35]. Unlike the pseudo-random number, the low-discrepancy se-

quences use the deterministic low-discrepancy sequence to replace the pseudo-random 

sequence. By selecting a reasonable sampling direction, the points, as uniform as possible, 

are filled into the multi-dimensional hypercube unit. Therefore, it has higher efficiency 

and uniformity in dealing with probability problems. Therefore, this paper uses the Sobol 

sequence to map the initial population. Let the upper and lower bounds of the optimal 

solution be ub and lb, respectively, and the random number generated by the Sobol se-

quence be [0,1]
i

S  , then the mathematical model of the initialization population of the 

Sobol sequence is: 

( )
i

x lb S ub lb= +  −  (11) 

Let the search space dimension D be 2, the upper and lower bounds be 1 and 0, re-

spectively, and the population size N be 100. Compare the initial population distribution 

of the Sobol sequence with the random initial population distribution, as shown in Figure 

1. 

  

(a) (b) 

Figure 1. Sobol sequence initialization compared with random initialization. (a) Sobol sequence in-

itialization. (b) Random initialization. 

It can be seen from Figure 1 that the spatial distribution of the Sobol sequentially 

initialized population is more uniform than that of the randomly initialized population, 

and there is no overlapping of individuals, resulting in better initial population diversity, 

which lays a foundation for the global search of the algorithm. 

3.2. Improvement of Parameter A 

SOA controls the frequency of parameter A by introducing C
f  so that the value of 

parameter A decreases linearly from 2 to 0 with the iteration to avoid the collision between 

individuals during the flight of seagulls and produce repeated optimization values. Pa-

rameter A plays a vital role in solving optimization problems and balancing algorithms. 

However, in practical optimization problems, the process presents a nonlinear downward 

trend, and the process is also highly complex. Therefore, parameter A of linear conver-

gence is not fully applicable to the search process of SOA. 

This paper proposes an adaptive parameter *A  based on the sigmoid function. In 

this method, the value *A  presents a nonlinear change trend in the decreasing process. In 

each iteration, it can avoid the position conflict between seagulls and better balance early 

exploration and late development. The sigmoid function can map variables between in-

tervals [0,1], and its mathematical expression is: 

Figure 1. Sobol sequence initialization compared with random initialization. (a) Sobol sequence
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It can be seen from Figure 1 that the spatial distribution of the Sobol sequentially
initialized population is more uniform than that of the randomly initialized population,
and there is no overlapping of individuals, resulting in better initial population diversity,
which lays a foundation for the global search of the algorithm.

3.2. Improvement of Parameter A

SOA controls the frequency of parameter A by introducing fC so that the value of
parameter A decreases linearly from 2 to 0 with the iteration to avoid the collision between
individuals during the flight of seagulls and produce repeated optimization values. Pa-
rameter A plays a vital role in solving optimization problems and balancing algorithms.
However, in practical optimization problems, the process presents a nonlinear downward
trend, and the process is also highly complex. Therefore, parameter A of linear convergence
is not fully applicable to the search process of SOA.

This paper proposes an adaptive parameter A∗ based on the sigmoid function. In
this method, the value A∗ presents a nonlinear change trend in the decreasing process.
In each iteration, it can avoid the position conflict between seagulls and better balance
early exploration and late development. The sigmoid function can map variables between
intervals [0,1], and its mathematical expression is:

S(x) =
1

1 + e−x (12)
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As seen from Figure 2a, the sigmoid function is a strictly monotonically increasing,
continuous, and smooth threshold function. Perform telescopic translation on Equation (12)
and introduce amplitude, telescopic, and translational factors to obtain:

S(x) = L× 1
1 + eax+b (13)

where L represents the amplitude gain, and a and b represent the expansion and trans-
lation factors. Figure 2b,d shows the iterative comparison between SOA2 with different
parameters and basic SOA under the Sphere test function [33].
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different translation factor values setting.

As shown in Figure 2b,d, when the maximum number of iterations T is 500L = 2,
a = 1/50, b = −5, the search accuracy and speed of SOA2 are the highest. There is a
negative optimization relative to basic BOA for some other parameters.

When L = 2, a = 1/50, b = −5, the improved parameter A∗ expression is:

A∗ =
2

1 + et/50−5 (14)
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Figure 3 shows the iterative comparison curve of parameters A and A∗.
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It can be seen from Figure 3 that parameter A∗ can make the algorithm maintain a
large individual degree of freedom of the population in the early stage and enhance the
global optimization ability. In the later stage, the individual degree of freedom decreases
rapidly, and the local optimization ability is strengthened. Compared with parameter A,
this paper uses the parameter A∗ to smooth the excessive migration and attack process,
which can better balance early exploration and late development and make the optimization
process nonlinear. Therefore, this improvement can theoretically improve the accuracy of
population optimization and accelerate optimization speed.

3.3. Improvement of Update Function

The optimal global individual primarily guides the location update of SOA. Therefore,
if the optimal global individual falls into the local optimal, the optimization is likely
to stagnate. To solve this problem, this paper introduces the learning strategy in PSO,
introduces the learning factor based on Equation (10), and increases the process of seagull
individual learning to the optimal global position and individual historical optimal position
to improve the optimization performance of the algorithm and weigh the global search and
local search ability through dynamic inertia weight. The attack position update formula
with learning strategy is:
→
P l(t) = (

→
DS × x′ × y′ × z′)×ω +

→
PbS(t) + (

→
PbS(t)−

→
PS1(t))× r1 × c1 + (

→
PGS(t)−

→
PS1(t))× r2 × c2 (15)

ω = ωmax −
ωmax −ωmin

T
× t (16)

where the learning factors c1, c2 are set to 1.5 and r1, r2 are random numbers between

[0,1], ω is the inertia weight, ωmax = 0.95, ωmin = 0.35,
→
PGS(t) is the direction of the best

position in individual history, and
→
P l(t) is the attack position of seagull after learning.

By introducing the learning strategy of PSO, SPSOA updates the global optimal
solution of the current population and updates the optimal historical information of each
individual seagull. This can make the individual seagull jump out of the local extreme
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value and enter the new area of the solution space to continue to search for the optimal
solution and improve the convergence accuracy and speed of the algorithm.

The pseudo code of SPSOA is provided in Algorithm 2.

Algorithm 2: SPSOA

Input: Objective function f (x), seagull population size N, dimensional space D, maximum number
of iterations T, learning factors c1 and c2
1. Sobol sequence initialize population;
2. Set u and v to 1;
3. While t < T
4. for i = 1 : N
5. Calculate seagull migration position

→
DS by Equation (5);

6. Compute x′,y′,z′,r using Equations (6)–(9);

7. Calculate seagull attack position
→
PS1(t) by Equation (10);

8. Compute w using Equation (16);

9. Calculate learning location
→
P l(t) by Equation (15);

10. Update seagull optimal position
→
P bS(t);

11. t = t + 1;
12. end for
13. end while
14. Output the global optimal solution.

3.4. Time Complexity Calculation

In the basic SOA, the dimension of the position-independent variable is n, and the
population size is represented by N. In the initialization stage, generate a uniformly dis-
tributed random number to objectify the time to set the initial value of each parameter.
Then, calculate the value of the objective function and sequence the fitness values of all
individuals to obtain the contemporary optimal individual fitness value is t1, t2, f (n), and
t3 respectively. Then, the overall time complexity of this stage is:

T1 = O(t1 + N × (n× t2 + f (n)) + t3) = O(n + f (n)) (17)

In the collision avoidance stage of migration behavior, parameter A is generated from
Equation (2), which changes with the number of iterations, but the value of parameter A is
the same in the population of the same generation, so the generation time is t4. According to
Equation (1), the time for updating the position of the individual seagull in each dimension
is t5, and the calculation time of the new seagull fitness value is f (n), then the time
complexity of this stage is:

T2 = O(N × (t4 + n× t5 + f (n))) = O(n + f (n)) (18)

In calculating the best seagull direction of migration behavior, parameter B is generated
from Equation (4), and the value of parameter B in the same generation population is the
same, and its generation time is t6. According to Equation (3), the time for updating the
position of the seagull individual in each dimension is t7, and the calculation time of the
new seagull fitness value is f (n), then the time complexity of this stage is:

T3 = O(N × (t6 + n× t7 + f (n))) = O(n + f (n)) (19)

In the stage of moving towards the best seagull direction of migration behavior, the
time of generating each one-dimensional element in the new individual according to
Equation (5) is t8, and the calculation time of the new fitness value is f (n), then the time
complexity of this stage is:

T4 = O(N × (n× t8 + f (n))) = O(n + f (n)) (20)
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In the stage of seagull attack behavior, the time required to calculate x′,y′,z′, and r
according to Equations (6)–(9) is t9, the time of updating according to Equation (10) is t10,
and the time of calculating the new fitness is f (n), then the time complexity of this stage is:

T5 = O(N × (t9 + n× t10 + f (n))) = O(n + f (n)) (21)

In the phase of updating the optimal solution, assuming that the replacement time of
each fitness value compared with the current optimal solution is t11, the time complexity of
this phase is:

T6 = O(N × t11) = O(t11) (22)

To sum up, the total time complexity of SOA is:

T(n) = T1 + T × (T2 + T3 + T4 + T5 + T6) = O(n + f (n)) (23)

where T is the maximum number of iterations.
In SPSOA, the dimensions of population size and location independent variables are

entirely consistent with the basic SOA. In the initialization stage, the time for parameter
setting, solving, and sorting the fitness value of the objective function and obtaining the
contemporary optimal individual fitness value is also the same as that of SOA. The time
for generating the random number of Sobol sequence is t12, so the time complexity of this
stage is:

T∗1 = O(t1 + N × (n× t12 + f (n)) + t3) = O(n + f (n)) (24)

An adaptive parameter based on sigmoid function is introduced in the migration
behavior collision avoidance stage of SPSOA. Its generation time is t13, and the generation
time of new seagull individuals is t14. The parameter also changes with the number of
iterations, and the value in the same generation population is the same. The remaining time
of this stage and the time of calculating the best seagull direction, moving to the best seagull
direction, and updating the optimal solution are the same as those of SOA. Therefore, the
time complexity of the SPSOA migration stage is:

T∗2 = O(N × (t13 + n× t14 + f (n))) + T × (T3 + T4 + T6) = O(n + f (n)) (25)

In the stage of SPSOA attack behavior, the learning strategy of PSO is introduced. The
location update time is t15, and the remaining time is the same as SOA. Therefore, the time
complexity of the SPSOA attack phase is:

T∗3 = O(N × (t9 + n× (t10 + t15))) = O(n + f (n)) (26)

To sum up, the total time complexity of SPSOA is:

T(n) = T × (T∗1 + T∗3 ) + T∗2 = O(n + f (n)) (27)

According to the analysis in this section, compared with the basic SOA, SPSOA does
not add additional time complexity, the two are exactly the same, and the execution
efficiency does not decrease.

4. Simulation and Result Analysis

In this section, to verify the performance of SPSOA more comprehensively, 12 bench-
mark test functions are used for experiments. The experimentation is divided into two parts:
the first part compares the three improvement strategies proposed in this paper with SP-
SOA and basic SOA, respectively, proving that these improvement strategies are effective.
The second one compares SPSOA with other metaheuristic algorithms to verify that the
search performance of SPSOA is better than the compared algorithm. To ensure the fairness
of the experimental results, each algorithm was performed separately 30 times to minimize
the error, and all tests were conducted on a laptop equipped with an Intel (R) Core (TM)
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i7-6500 CPU at 2.50 GHz and 8 GB of RAM. The population size N of all experiments is 30,
and the maximum number of iterations T is 500.

The detailed characteristics of each test function are listed in Table 1. In Table 1, Dim
denotes the function dimension, Scope represents the value range of x, and f min indicates
the ideal value of each function.

Table 1. Basic information of benchmark test functions.

Function Dim Scope f min

F1(x) = ∑n
i=1 x2

i 30 [−100,100] 0
F2(x) = ∑n

i=1|xi |+ ∏n
i=1 |x i | 30 [−10,10] 0

F3(x) = maxi{ |xi |, 1 ≤ i ≤ n} 30 [−100,100] 0
F4(x) = ∑n

i=1

[
100
(
xi+1 − x2

i

)2
+ (xi − 1)2

]
30 [−30,0] 0

F5(x) = ∑n
i=1([xi + 0.5])2 30 [−100,100] 0

F6(x) = ∑n
i=1 ix4

i + random[0, 1) 30 [−1.28,1.28] 0
F7(x) = ∑n

i=1
[
x2

i − 10 cos(2πxi + 10)
]

30 [−5.12,5.12] 0
F8(x) = 1

4000 ∑n
i=1 x2

i −∏n
i=1 cos

(
xi√

i

)
+ 1 30 [−600,600] 0

F9(x) = π
n

{
10 sin(πy1) + ∑n

i=1 (yi − 1)2[1 + 10 sin2(πyi+1)
]
+ (yn − 1)2

}
+ ∑n

i=1 u(xi , 10, 100, 4),

yi = 1 + xi+1
4 u(xi , a, k, m) =

 k(xi − a)m xi > a
0 − a < xi < a
k(−xi − a)m xi < −a

30 [−50,50] 0

F10(x) = 0.1
{

sin2(3πxi) + ∑n
i=1 (xi − 1)2[1 + sin2(3πxi + 1)

]
+ (xn − 1)2[1 + sin2(2πxn)

]}
+ ∑n

i=1 u(xi , 5, 100, 4) 30 [−50,50] 0

F11(x) = ∑11
i=1

[
ai− x1(bi2+bix2)

bi2+bix3+x4

]
4 [−5,5] 0.00030

F12(x) = −∑10
i=1

[
(X− ai)(X− ai)

T + ci

]−1 4 [0,10] −10.5363

4.1. Effectiveness Analysis of Improvement Strategy

The SPSOA proposed in this paper is a hybrid algorithm based on SOA using three
strategies. However, it is not known whether any strategy will work, so it needs to be
verified. In this part, SOA1 (introduce Sobol sequence initialization), SOA2 (design new
parameter A∗), and SOA3 (introduce the learning strategy of PSO) are compared with
SPSOA and basic SOA. Table 2 shows the optimal fitness value (BEST), the worst fitness
value (WORST), the average fitness value (MEAN), and the standard deviation (STD) of
30 experiments of each algorithm under the 12 test functions in Table 1. In Table 2, Dim
denotes the function dimension, Scope represents the value range of x, f min indicates the
ideal value of each function, and the best test results of all algorithms are in bold.

Table 2. Comparative analysis of SOA and its improved algorithms.

Function Index SPSOA SOA SOA1 SOA2 SOA3

F1

BEST 0 0 0 0 0
WORST 1.94 × 10−245 1.35 × 10−192 3.19 × 10−237 5.12 × 10−217 4.40 × 10−241

MEAN 2.84 × 10−247 3.84 × 10−194 1.01 × 10−239 1.38 × 10−219 4.78 × 10−243

STD 0 0 0 0 0

F2

BEST 8.24 × 10−259 2.42 × 10−184 6.89 × 10−221 4.00 × 10−210 7.87 × 10−240

WORST 2.77 × 10−172 3.86 × 10−133 6.75 × 10−168 8.78 × 10−137 1.31 × 10−152

MEAN 4.24 × 10−173 3.33 × 10−135 1.33 × 10−169 6.08 × 10−139 1.01 × 10−154

STD 0 3.58 × 10−134 0 5.88 × 10−138 7.08 × 10−153

F3

BEST 6.90 × 10−248 1.72 × 10−59 1.61 × 10−62 2.09 × 10−60 4.50 × 10−234

WORST 2.81 × 10−118 2.86 × 10−8 1.40 × 10−9 6.76 × 10−11 1.00 × 10−117

MEAN 1.39 × 10−119 9.58 × 10−10 4.78 × 10−11 2.28 × 10−12 3.35 × 10−119

STD 1.62 × 10−118 5.23 × 10−9 2.56 × 10−10 1.23 × 10−11 2.83 × 10−118

F4

BEST 6.30 × 10−4 28.7313 28.7208 28.7117 28.7098
WORST 28.8408 28.9163 28.9036 28.9134 28.8763
MEAN 20.2261 28.8028 28.7897 28.7927 28.7825

STD 10.2558 0.0395 0.0364 0.0388 0.0352
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Table 2. Cont.

Function Index SPSOA SOA SOA1 SOA2 SOA3

F5

BEST 0.0115 0.8335 0.5901 0.3125 0.0218
WORST 3.0266 5.0777 4.6241 4.3920 4.0115
MEAN 1.3783 2.5841 2.5029 2.4464 1.4107

STD 0.9106 1.4569 0.9351 1.3293 1.3016

F6

BEST 2.89 × 10−7 9.43 × 10−5 5.92 × 10−6 3.78 × 10−5 1.86 × 10−6

WORST 4.42 × 10−4 0.0031 8.08 × 10−4 0.0018 5.32 × 10−4

MEAN 1.88 × 10−4 7.57 × 10−4 2.23 × 10−4 6.01 × 10−4 2.67 × 10−4

STD 1.12 × 10−4 7.37 × 10−4 2.04 × 10−4 4.65 × 10−4 1.47 × 10−4

F7

BEST 0 0 0 0 0
WORST 0 0 0 0 0
MEAN 0 0 0 0 0

STD 0 0 0 0 0

F8

BEST 0 0 0 0 0
WORST 0 0 0 0 0
MEAN 0 0 0 0 0

STD 0 0 0 0 0

F9

BEST 3.85 × 10−4 0.0201 0.0021 0.0166 7.44 × 10−4

WORST 0.1239 1.3573 0.7825 0.7481 0.5928
MEAN 0.0425 0.3687 0.3507 0.2640 0.0964

STD 0.0364 0.2880 0.2364 0.2009 0.1321

F10

BEST 1.21 × 10−5 0.1531 0.0869 0.1195 8.17 × 10−4

WORST 1.5300 2.5146 2.2179 2.4815 1.6547
MEAN 0.3992 1.2135 0.8381 1.1573 0.5003

STD 0.4592 0.6591 0.4602 0.6372 0.4570

F11

BEST 3.09 × 10−4 3.73 × 10−4 3.39 × 10−4 3.31 × 10−4 3.13 × 10−4

WORST 2.22 × 10−3 0.0124 0.0067 0.0117 0.0032
MEAN 8.46 × 10−4 0.0033 0.0025 0.0022 0.0012

STD 7.79 × 10−4 0.0032 0.0024 0.0022 8.50 × 10−4

F12

BEST −10.5363 −4.5193 −4.5585 −4.8779 −5.7062
WORST −3.5611 −0.1950 −1.3644 −0.8549 −1.1030
MEAN −6.9625 −1.7858 −2.9798 −3.0082 −3.8766

STD 1.0408 3.0935 1.3543 2.2399 2.4978

According to Table 2, the indexes of SOA1, SOA2, and SOA3 proposed in this paper
improved to varying degrees compared with the basic SOA. In the three test functions, F1,
F7, and F8, all the algorithms can find the theoretical optimal value. However, from the
MEAN and WORST of F1, it can be seen that SOA1, SOA2, and SOA3 have better stability
than the basic SOA. In F4, all algorithms are prone to falling into local optimum, but the
BEST, WORST, and MEAN of SPSOA are better than other algorithms, especially BEST,
which is significantly improved. However, the STD of SPSOA is higher than that of other
algorithms. This is because the characteristics of F4 lead to low search accuracy in most
cases, so the experimental results are within a reasonable range. Based on the data shown
in Table 2, the three improvement strategies proposed in this paper are effective and have
a stable improvement in the convergence speed, convergence accuracy, and jumping out
of the local optimum of the algorithm. In other test functions, the improved SPSOA with
a mixed strategy is better than the enhanced algorithm with a single strategy in solving
the four evaluation indexes, which shows that the optimization ability and stability of the
algorithm are improved to a greater extent under the joint influence of different strategies.

Since each algorithm in some test functions has a strong optimization ability and
cannot reflect the role of each strategy, further explanation and analysis are required. As
shown in Figure 4 with the two test functions, F7 and F8, although SOA can also converge
to the theoretical optimum, it is not as good as other algorithms in terms of search speed.
SOA1, SOA2, and SOA3 improved by three single strategies are better than the basic SOA in
convergence speed and optimization accuracy but inferior to the SPSOA improved by mixed
strategies. It shows that each strategy fully plays its role and is effective. SOA1 introduces
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the Sobol sequence to ensure the initial population’s diversity and evenly distribute the
search space. SOA2 designs a new parameter based on the sigmoid function, which is
more suitable for the nonlinear iterative process of the algorithm and coordinates the global
search and local search of the algorithm. After SOA3 introduces PSO learning strategy,
the ability to jump out of local optimization and convergence speed of the algorithm is
enhanced, which further verifies the effectiveness of the three hybrid strategies proposed
in this paper.
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4.2. Comparative Analysis of Algorithm Performance

To verify the superiority and feasibility of SPSOA, this part adopts six optimization
algorithms: MSOA [36], BSOA [37], PSO [11], GWO [38], WSO [39], and BOA [40], and
makes a comprehensive comparison with SPSOA under the 12 test functions in Table 1. The
parameters of other algorithms are consistent with those in the corresponding references. The
experiment in Table 3 adds the algorithm running time (TIME) based on Table 2, in which the
time unit is second. The best test results of all algorithms have been highlighted in Table 3. In
Section 4.1, it has been proven that SPSOA has better performance than the basic SOA, so the
SOA is not added for comparison in the following comparative experiment.

Table 3. Comparative analysis of SPSOA and other optimization algorithms.

Function Index SPSOA MSOA BSOA PSO GWO WSO WOA

F1

BEST 0 1.09 × 10−130 0 0.0908 2.69 × 10−29 83.5621 1.78 × 10−7

WORST 1.94 × 10−245 1.10 × 10−59 2.73 × 10−221 2.4206 2.08 × 10−26 606.1327 5.87 × 10−7

MEAN 2.84 ×10−247 5.36 × 10−61 9.11 × 10−223 0.5532 1.65 × 10−27 257.9395 3.28 × 10−7

STD 0 2.18 × 10−60 0 0.59168 3.87 × 10−27 124.2097 9.28 × 10−6

TIME 0.1084 0.1241 0.1443 1.014 0.2210 0.2883 0.1894

F2

BEST 8.24 × 10−259 1.36 × 10−77 1.86 × 10−205 0.0358 2.65 × 10−17 1.9215 9.28 × 10−13

WORST 2.77 × 10−172 2.52 × 10−29 7.81 × 10−155 20.0785 3.53 × 10−16 8.1539 1.32 × 10−8

MEAN 4.24 × 10−173 8.42 × 10−31 2.60 × 10−156 1.7606 1.32 × 10−16 5.0475 6.71 × 10−10

STD 0 4.61 × 10−30 1.42 × 10−155 4.6023 8.26 × 10−17 1.3673 2.40 × 10−9

TIME 0.1256 0.1461 0.1605 0.8429 0.1401 0.1814 0.1354

F3

BEST 6.90 × 10−248 1.47 × 10−43 9.33 × 10−214 6.0333 5.62 × 10−8 10.48 5.39 × 10−5

WORST 2.81 × 10−118 2.94 × 10−12 1.84 × 10−31 11.8971 1.88 × 10−6 16.46 1.05 × 10−4

MEAN 1.39 × 10−119 1.06 × 10−13 6.13 × 10−33 8.6624 5.21 × 10−7 13.80 8.20 × 10−5

STD 1.62 × 10−118 5.37 × 10−13 3.36 × 10−32 1.4717 4.33 × 10−7 1.72 1.37 × 10−5

TIME 0.1182 0.1420 0.1422 0.8460 0.1402 0.1867 0.1278

F4

BEST 6.30 × 10−4 2.87 × 10−2 0.0829 75.3648 26.1669 2992.658 28.8767
WORST 28.8408 28.8536 28.8475 90237.8870 28.7378 90507.1557 28.9532
MEAN 20.2261 24.9397 26.6308 27185.0674 27.3274 19976.6055 28.9085

STD 10.2558 12.388 12.1404 41931.1362 0.6798 19264.1293 0.0182
TIME 0.1503 0.1546 0.1644 0.9514 0.1891 0.2117 0.1834

F5

BEST 0.0115 0.0169 0.0641 0.0570 0.1197 138.9501 4.8619
WORST 3.0266 3.2671 4.3176 3.2801 3.5117 695.5827 6.3001
MEAN 1.3783 1.7443 2.1365 1.6012 1.7379 313.6182 5.746

STD 0.9106 1.5751 1.3466 1.4739 1.3640 141.1462 2.3374
TIME 0.1163 0.1557 0.1434 0.8476 0.1574 0.1946 0.1453

F6

BEST 2.89 × 10−7 5.75 × 10−5 6.52 × 10−6 0.0289 7.29 × 10−4 0.0541 6.58 × 10−4

WORST 4.42 × 10−4 0.0041 7.61 × 10−4 0.0935 0.0038 0.2165 0.0039
MEAN 1.88 × 10−4 0.0012 2.84 × 10−4 0.0586 0.0020 0.1265 0.0018

STD 1.12 × 10−4 9.67 × 10−4 2.06 × 10−4 0.0192 7.69 × 10−4 0.0500 8.42 × 10−4

TIME 0.1929 0.2252 0.2279 0.9431 0.2201 0.2623 0.2884

F7

BEST 0 0 0 24.5566 5.68 × 10−14 29.2575 1.70 × 10−13

WORST 0 0 0 97.0660 11.5549 83.9381 2.34 × 10−8

MEAN 0 0 0 56.1656 2.2151 48.4338 8.88 × 10−10

STD 0 0 0 17.5878 3.3643 12.9391 4.26 × 10−9

TIME 0.1471 0.1596 0.1512 0.9208 0.1983 0.1946 0.1685

F8

BEST 0 0 0 0.2068 3.39 × 10−5 1.7447 3.32 × 10−8

WORST 0 0 0 0.9657 0.0305 6.2032 9.27 × 10−7

MEAN 0 0 0 0.5836 0.0038 3.6787 2.92 × 10−7

STD 0 0 0 0.2110 0.0082 1.3271 2.33 × 10−7

TIME 0.1697 0.1883 0.1748 0.8457 0.2108 0.2174 0.1799

F9

BEST 3.85 × 10−4 9.66 × 10−4 0.0012 8.35 × 10−4 0.0132 1.8144 0.4098
WORST 0.1239 0.1500 0.3743 0.9510 0.1933 10.3259 0.7856
MEAN 0.0425 0.0591 0.0801 0.2765 0.0529 4.4220 0.5745

STD 0.0364 0.0452 0.0838 0.2830 0.0417 1.9411 0.0823
TIME 0.3827 0.3887 0.4158 1.1176 0.4226 0.5806 0.6227

F10

BEST 1.21 × 10−5 5.26 × 10−4 0.0015 0.1733 0.1694 29.1694 1.7590
WORST 1.5300 1.6126 1.6774 4.8634 1.8458 7676.9234 2.9953
MEAN 0.3992 0.4495 0.4977 1.3404 0.6365 944.6180 2.4436

STD 0.4592 0.5537 0.4708 1.1938 0.4613 1705.6680 0.6278
TIME 0.3839 0.4256 0.4051 1.1018 0.5169 0.4878 0.6235
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Table 3. Cont.

Function Index SPSOA MSOA BSOA PSO GWO WSO WOA

F11

BEST 3.09 × 10−4 3.11 × 10−4 3.19 × 10−4 6.69 × 10−4 3.14 × 10−4 3.14 × 10−4 3.14 × 10−4

WORST 2.22 × 10−3 2.29 × 10−3 3.07 × 10−3 0.0203 2.85 × 10−3 6.52 × 10−3 8.93 × 10−3

MEAN 8.46 × 10−4 1.03 × 10−3 9.69 × 10−4 0.0190 6.02 × 10−3 2.07 × 10−3 4.77 × 10−3

STD 7.79 × 10−4 2.57 × 10−4 8.56 × 10−4 0.0049 1.07 × 10−3 9.93 × 10−4 1.27 × 10−3

TIME 0.0787 0.1009 0.1049 0.8153 0.1218 0.2401 0.2003

F12

BEST −10.5363 −10.5336 −10.5363 −10.5363 −10.5361 −10.5363 −4.9747
WORST −3.5611 −2.6472 −1.7687 −2.8066 −3.1285 −2.8711 −1.9865
MEAN −6.9625 −5.5595 −5.6402 −4.3569 −6.4729 −6.2699 −3.4686

STD 1.0408 2.7921 2.9755 3.1426 2.3719 2.3389 2.2510
TIME 0.1110 0.1339 0.1355 1.0387 0.1788 0.2288 0.7654

It can be seen from the test results in Table 3 that SPSOA is optimal in the three indexes
of BEST, WORST, and MEAN of all test functions. It shows that the global search ability and
local development ability of SPSOA are better than the compared algorithms. In F1, BSOA
can find the theoretical optimal value, but it is inferior to SPSOA in WORST and MEAN.
In F7 and F8, the performance indexes of MSOA and BSOA are as excellent as SPSOA.
Although in F4, SPSOA is worse than GWO and WOA in STD, it performs better in other
indexes, especially in BEST. This is because the function makes the algorithm fall into local
optimization, and the excellent global search ability of SPSOA improves the probability of
jumping out of local optimization in the iterative process. As for the calculation time in
Table 3, SPSOA has the smallest execution time in all test functions, which shows that the
convergence speed of SPSOA is better than the compared algorithms and can be adopted
to a variety of real-time environments.

To more intuitively display the convergence speed and optimization accuracy of the
algorithm and show the ability of the algorithm to jump out of the local optimization,
Figure 5 gives the convergence curves of 12 test functions according to the number of
iterations and fitness value. In F7 and F8, MSOA and BSOA can also search the optimal
solution, but the number of iterations is more significant than that of SPSOA. The search
speed of PSO is slow in the early iteration of the algorithm. The overall convergence
performance of GWO is mediocre. The search performance of WSO and BOA increases as
the function complexity increases.

To further evaluate the performance of the algorithm, under the significance level of
α = 5%, the Wilcoxon signed rank sum test was performed on the best results of SPSOA
and 6 other algorithms under 30 independent operations [41]. We used the p value of the
test result to compare whether there were differences between the two algorithms. When
p < 0.05, it indicates that there are significant differences between the two algorithms;
when p > 0.05, it shows that the optimization performance of the two algorithms is the
same. The result analysis is shown in Table 4. The symbol “+”, “=“, “−” indicates that
the performance of SPSOA is better than, equivalent to, and worse than the compared
algorithms, respectively, and NaN indicates that the algorithm result is close and cannot be
judged for significance.

By analyzing the results in Table 4, it can be found that in F1, F7, and F8, SPSOA has
the same performance as MSOA and BSOA, both of which can find the optimal solution,
but SPSOA is better in convergence speed and stability. The other p values are basically
less than 0.05, indicating that the performance of the algorithm is statistically significant,
which indicates that SPSOA has better advantages than the compared algorithms.
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Table 4. Wilcoxon signed rank sum test results.

Function SPSOA-MSOA SPSOA-BSOA SPSOA-PSO SPSOA-GWO SPSOA-WSO SPSOA-BOA

F1 NaN NaN 1.10 × 10−11 1.10 × 10−11 1.10 × 10−11 1.10 × 10−11

F2 3.02 × 10−11 1.96 × 10−5 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11

F3 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11

F4 1.66 × 10−4 2.47 × 10−4 3.02 × 10−11 2.27 × 10−5 3.02 × 10−11 3.02 × 10−11

F5 1.85 × 10−4 1.17 × 10−4 4.45 × 10−4 3.33 × 10−4 3.02 × 10−11 3.02 × 10−11

F6 2.92 × 10−4 3.62 × 10−4 3.01 × 10−11 1.10 × 10−8 3.01 × 10−11 3.01 × 10−11

F7 NaN NaN 1.21 × 10−12 4.26 × 10−12 1.21 × 10−12 1.21 × 10−12

F8 NaN NaN 1.21 × 10−12 5.58 × 10−4 1.21 × 10−12 1.21 × 10−12

F9 6.54 × 10−4 1.17 × 10−5 3.32 × 10−6 4.52 × 10−4 3.02 × 10−11 3.02 × 10−11
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Table 4. Cont.

Function SPSOA-MSOA SPSOA-BSOA SPSOA-PSO SPSOA-GWO SPSOA-WSO SPSOA-BOA

F10 8.31 × 10−4 2.29 × 10−4 6.73 × 10−6 6.35 × 10−5 3.02 × 10−11 3.02 × 10−11

F11 3.32 × 10−11 3.01 × 10−11 3.33 × 10−11 3.68 × 10−11 3.01 × 10−11 3.01 × 10−11

F12 1.07 × 10−11 1.07 × 10−11 1.07 × 10−11 1.07 × 10−11 1.07 × 10−11 1.07 × 10−11

+/=/− 9/3/0 9/3/0 12/0/0 12/0/0 12/0/0 12/0/0

5. Application of SPSOA in Blind Source Separation
5.1. Basic Theory of Blind Source Separation

Blind source separation (BSS), sometimes referred to as blind signal processing, is
capable of recovering the source signal from the observed signal in the absence of critical
information such as source and channel [42]. Among them, blind image separation is the
process of estimating or separating the original source image from the fuzzy image features.
It mainly eliminates or minimizes the degradation of the image caused by interference and
noise through the prior knowledge of image degradation [43].

The linear mixed BSS model is described below:

X(t) = AS(t) + N(t) (28)

where t is the sampling moment, A is a mixed matrix of order m× n (m ≥ n), X(t) is a vector
of the m-dimensional observed signals,X(t) = [X1(t), X2(t), . . . , Xm(t)], S(t) is a vector of
the n-dimensional source signals, S(t) = [S1(t), S2(t), . . . , Sn(t)], and N(t) is a vector of the
m-dimensional noise signals. BSS represents the cases in which an optimization algorithm
determines the separation matrix, W, when only the observed signals, X(t), are known.

The separated signals, Y(t), are obtained using Equation (2).

Y(t) = WX(t) (29)

where Y(t) = [Y1(t), Y2(t), . . . , Yn(t)].
Figure 6 shows the linear mixed BSS model.

Entropy 2022, 24, x FOR PEER REVIEW 19 of 23 
 

 

Figure 6 shows the linear mixed BSS model. 

Hybrid System
Am×n

Separation System
Wn×m

N(t)

X(t)

Y(t)

Noise Signals

Observed Signals
Separated Signals

S(t)

Source Signals

 

Figure 6. Linear mixed blind source separation model. 

Independent component analysis (ICA) is an important BSS method [44]. ICA means 

that under the condition that the source signals are independent of each other, the appro-

priate signal independence criterion is used to establish the objective function. The opti-

mal separation matrix is obtained through iterative optimization to maximize the inde-

pendence of the separated signals. 

The commonly used independence criterion of signals includes mutual information, 

kurtosis, and negative entropy. Kurtosis is calculated using Equation (30) as follows: 

= = −4 2 2( ) ( ) { } 3( { } )
i i i i

K y kurt y E y E y  (30) 

where yi is a Gaussian random variable. 

The sum of absolute values of kurtosis is used as a criterion of signal independence 

in this paper, and the objective function is specified as follows: 

1

1

| ( )|
i n

i
i

fit

K y 
=

=

+
 

(31) 

where   is an extremely small amount that prevents division by zero. According to the 

information theory, for a Gaussian random vector yi, when =[ ]TE yy I  the larger the kur-

tosis of the signals, the greater their independence. The SPSOA, as mentioned above, will 

optimize the separation matrix W, maximize the kurtosis, and finally complete the sepa-

ration of the observed signals. 

Before the iterative optimization of the objective function, it is also necessary to pre-

process the observed signal, such as centralization and whitening, which can reduce the 

algorithm’s complexity and make a single observation signal statistically independent. 

Figure 7 shows the flow chart of SPSOA-ICA. 

Figure 6. Linear mixed blind source separation model.

Independent component analysis (ICA) is an important BSS method [44]. ICA means
that under the condition that the source signals are independent of each other, the appro-
priate signal independence criterion is used to establish the objective function. The optimal
separation matrix is obtained through iterative optimization to maximize the independence
of the separated signals.

The commonly used independence criterion of signals includes mutual information,
kurtosis, and negative entropy. Kurtosis is calculated using Equation (30) as follows:

K(yi) = kurt(yi) = E
{

y4
i

}
− 3(E

{
y2

i

}2
) (30)

where yi is a Gaussian random variable.
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The sum of absolute values of kurtosis is used as a criterion of signal independence in
this paper, and the objective function is specified as follows:

f iti =
1

n
∑

i=1
|K(yi)|+ ε

(31)

where ε is an extremely small amount that prevents division by zero. According to the
information theory, for a Gaussian random vector yi, when E[yyT ] = I the larger the
kurtosis of the signals, the greater their independence. The SPSOA, as mentioned above,
will optimize the separation matrix W, maximize the kurtosis, and finally complete the
separation of the observed signals.

Before the iterative optimization of the objective function, it is also necessary to
preprocess the observed signal, such as centralization and whitening, which can reduce the
algorithm’s complexity and make a single observation signal statistically independent.

Figure 7 shows the flow chart of SPSOA-ICA.
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5.2. Image Signal Separation

Three gray-scale images and one random noise image were used as source signals
and combined to produce the observed signals. To acquire the separated signals, SPSOA,
SOA, BSOA, and MSOA were used to separate the observed signals blindly. The simulation
diagram is depicted in Figure 8.
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In order to quantitatively analyze and compare the separation performance of the four
algorithms, Table 5 compares the similarity coefficient, performance index (PI) of separated
signals, and the SSIM of an output image. The data results in Table 5 are the average values
under multiple experiments.
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Table 5. Data of image signal separation performance evaluation index.

Algorithm SOA MSOA BSOA SPSOA

similarity coefficient

0.8574 0.9052 0.9240 0.9784
0.8909 0.8793 0.9065 0.9638
0.8445 0.8961 0.9457 0.9857
0.8283 0.9178 0.9247 0.9863

PI 0.2786 0.2031 0.1549 0.1127
SSIM 0.8233 0.8764 0.9147 0.9592

In Equation (32), ρij is a similarity index used to compare the source signal with the
separated signal. The greater the ρij, more effective the separation. In this section, ρij is a
4× 4 matrix. The maximum value of each channel is taken as the experimental data, and N
is set to 4. In Equation (33) G = WA, the closer the PI is to 0, the more similar the separated
signal is to the source signal. In Equation (34), C1 and C2 are constant, σx̂x represents the
covariance of the image, µx̂ represents the mean value of the two images, respectively, and
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represents the variance of two images, respectively. SSIM is in [0,1], which is a value closer
to one indicating better structure preservation.

As shown in Table 5, SPSOA produces not only the highest similarity coefficient
and SSIM but also the smallest PI of the separated signals, allowing for a more accurate
restoration of the source signals.

It can be seen from Figure 8 that the separated signal obtained by SPSOA proposed
in this paper can restore the source signal better, and its image features are similar to the
source image, which can reduce the degradation of the image caused by noise. However,
the separated signals obtained by other algorithms have different degrees of distortion.
In addition, the sequence of the separated signals is inconsistent with the source signals,
which is caused by the ambiguity of the BSS. However, in most scientific research and
production practices, the ambiguity of BSS will not have a significant impact on the results.

6. Conclusions and Future Work

This paper proposes a hybrid strategy to improve SPSOA, which is a great improve-
ment on the basic SOA. The algorithm uses the Sobol sequence to initialize the population,
which improves the diversity of the initial population and lays a foundation for the global
search of the algorithm. Using the sigmoid function to improve parameters can better
adapt to the nonlinear optimization process of the algorithm and enhance the ability of
the algorithm to coordinate the early exploration and later development. The learning
strategy of PSO is introduced to increase the process of seagull learning from the optimal
global position and individual historical optimal position, and improve the ability of the
algorithm to jump out of the optimal local position. Moreover, compared with the basic
SOA, SPSOA does not increase the time complexity of the algorithm. According to the
simulation results, we draw the following conclusions:

(1) When optimizing 12 benchmark functions, SPSOA outperforms the other 6 algorithms.
The three improvement methods proposed in this study increased the performance of
SOA to varying degrees in the algorithm ablation experiment. All of this demonstrates
that SPSOA has a high level of search performance and strong robustness.

(2) In BSS, SPSOA can successfully separate noisy mixed images. In addition, the algo-
rithm is superior to the compared algorithms in the SSIM of output images, similarity
coefficient, and PI of separated signals. SPSOA has a broad application prospect in
modern signal processing.

In the future, the proposed algorithm can be used to solve more engineering problems,
such as path planning, data compression, and resource allocation. In addition, the capability
of SPSOA in solving multi-objective optimization problems needs further research.
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