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Abstract: Probabilistically Checkable Proofs (PCPs) allows a randomized verifier, with oracle access to
a purported proof, to probabilistically verify an input statement of the form “x ∈ L” by querying only
a few proof bits. Zero-Knowledge PCPs (ZK-PCPs) enhance standard PCPs to additionally guarantee
that the view of any (possibly malicious) verifier querying a bounded number of proof bits can be
efficiently simulated up to a small statistical distance. The first ZK-PCP construction of Kilian, Petrank
and Tardos (STOC 1997), and following constructions employing similar techniques, necessitate that
the honest verifier makes several rounds of queries to the proof. This undesirable property, which is
inherent to their technique, translates into increased round complexity in cryptographic applications
of ZK-PCPs. We survey two recent ZK-PCP constructions—due to Ishai, Yang and Weiss (TCC
2016-A), and Hazay, Venkitasubramaniam and Weiss (ITC 2021)—in which the honest verifier makes
a single round of queries to the proof. Both constructions use entirely different techniques compared
to previous ZK-PCP constructions, by showing connections to the seemingly-unrelated notion of
leakage resilience. These constructions are incomparable to previous ZK-PCP constructions: while on
the one hand the honest verifier only makes a single round of queries to the proof, these ZK-PCPs
either obtain a smaller (polynomial) ratio between the query complexity of the honest and malicious
verifiers or obtain a weaker ZK guarantee in which the ZK simulator is not necessarily efficient.
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1. Introduction
Proofs are a cornerstone of cryptography. They are an essential component of many cryp-

tographic systems, guaranteeing correct execution in the presence of mutually-distrusting
parties. Their applications range from mundane tasks such as proving one’s identity
when signing into an email account, to general tasks such as proving honest behaviour in
distributed systems, i.e., attesting that one had followed its prescribed algorithm.

Due to their centrality, in the past decades a long line of works have studied the
notion of proofs, extending it far beyond the traditional notion to also allow for interaction
between a prover P and a verifier V , as well as randomization. Various variants have
arisen, depending on different properties of the system, such as the amount and type of
communication allowed between the prover and verifier, their computational powers, and
the type of randomness (for example, whether the verifier’s random coin tosses are private
or public). These advances have reshaped theoretical computer science.

Our focus is on Probabilistically Checkable Proofs (PCPs) [1,2] augmented with a cryp-
tographic Zero-Knowledge (ZK) property that is very useful when such proofs are used in
cryptographic applications. These zero-knowledge PCPs combine aspects of (interactive)
zero-knowledge proofs and PCPs, concepts which we now discuss.
Probabilistically Checkable Proofs (PCPs). A Probabilistically Checkable Proof (PCP) for a
language L allows a randomized verifier V to verify a statement of the form “x ∈ L”, while
querying only few bits of an oracle proof π that was generated by a prover P . (We note that
the prover entity is not traditionally included as part of a PCP system. However, explicitly
introducing this entity will be useful when PCPs are used for cryptographic applications,
which necessitate efficient proof generation.) More specifically, V is given x as input, and
P—who is usually required to be efficient—may be given additional information needed to
efficiently generate the proof, e.g., a witness in the case of an NP language. More generally,
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for an NP-language L the PCP will usually be designed for some specific NP-relation
R(x, w) associated with L. In standard PCPs the prover is deterministic, whereas the
verifier is randomized. (This is necessary since the verifier only queries few proof bits.)
The verifier accepts true claims with probability 1, whereas the soundness error—namely
the probability that a false claim is accepted—is small, regardless of the purported proof
π∗ given to the verifier. The celebrated PCP theorem [1–3] asserts that any NP language
has a PCP system with soundness error 1/2 in which the verifier V reads only a constant
number of proof bits. Moreover, V is non-adaptive, namely its queries are determined solely
by its randomness.
Interactive and Zero-Knowledge Proofs. Interactive Proofs (IPs) [4] are a different kind of
proof system, in which the efficient probabilistic verifier V interacts with a prover P , the
goal of which is to convince V that x ∈ L for a joint input x. Such proofs are extremely
powerful, compared to classical proofs: any PSPACE language has an interactive proof
with a polynomial-time verifier [5], whereas classic proofs with a polynomial-time verifier
only exist for NP languages. Zero-Knowledge (ZK) Proofs [4] are an important and useful
generalization of IPs for NP, enhancing them to also guarantee privacy of the NP witness.
These proofs carry no extra knowledge other than being convincing, in the sense that any
information V can infer from its interaction with P , it could have (efficiently) computed
given only the input x. This holds even in the presence of a malicious verifier V∗, namely a
verifier who arbitrarily deviates from the protocol. It is important to note that while proofs
are prominently used to protect the verifier (guaranteeing it would reject false claims), ZK is
designed to protect the prover, guaranteeing that its private information (the NP witness, in
this case) remains entirely hidden.
Zero-Knowledge PCPs. Zero-Knowledge PCPs (ZK-PCPs) [6] are proofs systems that com-
bine the advantages of PCPs and ZK proofs. These are PCPs with the additional guarantee
that the view—encompassing all the knowledge which the verifier posses of the interaction—
of any (possibly malicious) verifier V∗ who queries an a-priori bounded number of proof bits
can be efficiently simulated given only the input, up to a small statistical distance.

ZK-PCPs differ from traditional PCPs in several respects. First, whereas the PCP prover
is traditionally deterministic, in ZK-PCPs the proof is randomized, and this is inherent to
obtaining ZK. Second, ZK-PCPs are used to protect the prover’s private information (e.g.,
an NP witness) against malicious verifiers. More specifically, the system is associated with
an a-priori query bound q∗, where ZK holds only against verifiers V∗ who query at most
q∗ proof bits. We stress that this is the only restriction on V∗, and no further assumptions
or limitations are made on its computational power or the manner in which it operates.
It is important to note that bounding the query complexity is inherent in systems with
efficient provers—an essential requirement for such systems to be useful for cryptographic
applications. Indeed, the proof has polynomial length len, so any (efficient) verifier running
in time len could read the entire proof, thus necessarily learning some information about the
witness. Finally, we note that ZK against query-bounded verifiers is a stronger guarantee
than Honest-Verifier ZK (HVZK), namely ZK only against the honest verifier. This is because
the honest verifier is always query bounded.

The models also differ in the main parameters of interest. Specifically, for PCPs these
consist of the randomness and query complexities of the verifier (i.e., the number of coins
it tosses and the number of queries it makes to the proof), which also determine the proof
length. Moreover, it is standard to consider a constant soundness error—with a verifier
that queries a constant number of proof bits—since this setting has strong connections to
proving hardness of approximation results. We currently have PCPs, the length of which is
a quasi-linear length in the witness length, with a constant soundness error (which can be
amplified through repetition), and a non-adaptive honest verifier that queries a constant
number of proof bits [3,7].

On the other hand, for ZK-PCPs we desire the soundness error to be negligible (in the
input length, or some security parameter) as is standard in cryptographic systems, and
thus the query complexity is necessarily polylogarithmic. The query bound q∗ on malicious
verifiers is another important parameter of the system, and would ideally be much larger
than the query complexity of the honest verifier, e.g., polynomial in the input length. Thus,
the query gap between the query complexity needed to verify the proof, and the number of
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queries a malicious verifier can make without violating ZK, would be exponential. Finally,
we would like the honest verifier to be non-adaptive, namely to make a single round of
queries to the proof. This should be contrasted with adaptive verifiers the queries of which
might depend on the oracle answers to previous queries, and who therefore necessarily
make several rounds of queries to the proof. As we will shortly explain, whereas the verifier
in traditional PCPs is non-adaptive, the honest verifier in certain ZK-PCP constructions
is (inherently) adaptive. We note that similar to traditional PCPs, the proof length is also
of interest.

The focus on these parameters in ZK-PCP constructions stems from their effect on the
properties and parameters of cryptographic systems using ZK-PCPs. Specifically, the query
complexity and adaptivity of the honest verifier translates into communication and round
complexities; the query-bound on malicious verifiers corresponds to the privacy guarantee
of the resultant system; and in distributed proof systems (as in, e.g., [8]) the proof length
and query bound translate into the total number of parties and the number of corrupted
parties, respectively.
ZK-PCP Constructions. The first ZK-PCP for NP, due to Kilian, Petrank and
Tardos [6], obtained a negligible soundness error with an honest verifier that queries
q = polylog(|x|) proof bits, and ZK against verifiers making q∗ = p(|x|) queries to the
proof for a fixed polynomial p that is much smaller than the proof length, but is much larger
than q. (Earlier constructions, e.g., [9], obtained only limited ZK guarantees such as HVZK).
Later works [10,11] simplified the system, making it more modular, and also generalized it
to other proof models (specifically, PCPs of proximity with zero knowledge [11]). While
obtaining a desirable exponential query gap, the honest verifier in all these constructions
is adaptive, namely it makes several rounds of queries to the proof, a severe limitation
when the system is used in cryptographic applications. Unfortunately, the honest verifier’s
adaptivity is inherent to these constructions, as we now explain. (We note that another
line of works obtain non-adaptive verification by “pushing” adaptivity to the prover side;
see Section 1.3. Having adaptive proof generation has similar disadvantages to having
adaptive verification.)

These ZK-PCP constructions follow the blueprint of [6], who show a 2-step compiler
from a standard non-ZK PCP into a ZK-PCP. In the first step, the PCP is transformed into
a PCP with HVZK—a weak ZK guarantee that holds only for the honest verifier. In the
second step, HVZK is “boosted” into full-fledged ZK, against any (possibly malicious)
query-bounded verifier V∗. This is obtained by forcing—through modifications made to
the proof—V∗’s queries to be distributed similarly to the queries of the honest verifier V .
This restriction on the verifier’s queries is imposed by combining an information–theoretic
analogue of a standard cryptographic commitment, called a “locking scheme” [6], with a
modified version of the PCP obtained in the first step. The proof generated in this second
step requires adaptive verification, due to the structure of the modified version of the proof,
as well as the use of locking schemes. We note that this description of V∗’s queries as
being distributed “similarly” to the queries of V is in fact a gross over-simplification—for
example, V∗ can query many more proof bits compared to V . Somewhat more accurately,
these works effectively force V∗’s queries to be distributed similarly to a “repeated” version
of V (obtained by emulating V multiple times with independent random coins). We refer
the interested reader to [11,12] for more details. We stress that these works do not make
any assumptions on the query pattern of V∗, but rather by appropriately constructing the
proof they guarantee that any query pattern will be “harmless” in the sense that it reveals
no information about the NP witness.

The second step can be very roughly (and somewhat inaccurately) illustrated through
the following example: Alice is trying to locate a particular CD cd in Bob’s CD collection,
which Bob has mixed in the following way: (1) the CDs were taken out of their cases and
randomly placed back into the cases (where Bob knows which case contains which CD),
and then (2) each CD case was locked in a transparent box. To get cd, Alice must first ask
Bob in which case he put cd. Once this is known, she can locate the box in which this CD
case is, but still needs to ask Bob for the key which unlocks the box. Since Alice cannot
predict in which case cd is, she must first wait for Bob’s answer to her first query, before
making her second query. (The PCP-version of this example will have Bob somehow write
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down the list of pairs (CD, CD case), as well as the keys, in the oracle proof.) In the ZK-PCP,
step (1) of randomly mixing the CDs corresponds to the modifications performed to the
proof to guarantee that V∗’s queries are “harmless”, specifically that V∗ cannot “cherry pick”
specific locations in the HVZK PCP generated in the first step of the compiler. Moreover,
step (2) of locking CDs in boxes corresponds to locking proof symbols in locking schemes,
and even the process of unlocking (given the key) in itself is adaptive.

The cost of ZK in these ZK-PCPs is high: it incurs adaptive verification, even if the
underlying PCP can be verified non-adaptively, which is indeed the case for traditional
(non-ZK) PCPs. This naturally gives rise to the following research goal:

Design ZK-PCPs with a non-adaptive honest verifier, and ZK against malicious
query-bounded verifiers.

Obtaining non-adaptive verification is motivated by the goal of matching the param-
eters of non-ZK PCPs, as well as by cryptographic applications of ZK-PCPs, in which
adaptive verification translates into increased complexity of the resultant system.

The question of designing non-adaptive ZK-PCPs had remained open for nearly
20 years, until Ishai, Weiss and Yang [8] gave the first construction of a non-adaptive ZK-
PCP, which was followed by the non-adaptive ZK-PCP of Hazay, Venkitasubramaniam and
Weiss [13]. The focus of this survey is on describing and comparing these constructions.

1.1. Non-Adaptive ZK-PCPs
We survey two recent works [8,13] that construct ZK-PCPs for NP with a non-adaptive

honest verifier, obtained through a novel connection to the seemingly unrelated field of
leakage-resilient cryptography. These constructions differ drastically from the ZK-PCP con-
structions described above. This is not surprising, since adaptive verification is inherent to
the latter, so obtaining non-adaptive verification necessitates an entirely new approach.
Malicious Verifiers Through the Leakage-Resilience Lens. Recall that the ZK-PCPs
of [6,10,11] are obtained from a PCP with weak ZK guarantees (specifically, HVZK) by
effectively restricting the malicious verifier , i.e., forcing its queries to be distributed similarly
to the queries of (multiple independent copies of) the honest verifier. The ZK-PCPs of [8,13]
take a different approach: instead of forcing a certain structure on V∗’s queries, they classify
the type of information which an arbitrary query-bounded V∗ obtains by querying the proof,
and modify the proof to guarantee this type of information reveals nothing about the
underlying NP witness. Their insight is that the partial information obtained by deviating
from the honest verifier’s query pattern constitutes leakage on the proof and consequently,
on the underlying witness. (In a broader cryptographic context, leakage roughly refers to
the information an adversary obtains by deviating from the assumed adversarial model
for which the system was designed. For example, so-called “side channel” attacks—such
as measuring the power consumption of an object—exploit adversarial capabilities which
were not taken into account when designing the system (adversarial and attack models
traditionally disregard such information, that is obtained from the physical implementation,
and is not part of the more abstract model description). Similarly, a malicious verifier
querying a PCP is capable of querying more—and different sets of—proof bits compared to
the honest verifier for which the system was designed.) Accordingly, they employ tools
from the leakage-resilience literature to protect the witness and proof.

The works of [8,13] differ in the method they use to protect against leakage. Hazay et al. [13]
chose to protect the proof itself, whereas Ishai et al. [8] protect the process of proof generation
from the witness. Put differently, the latter protect computation against leakage, for which
they employ leakage-resilient circuits, whereas the former protect information (the proof,
once it has been generated), by using an appropriate leakage-resilient encoding. Conse-
quently, these works differ in their requirements from the underlying PCP, and in the
parameters and properties of the resultant ZK-PCP. We now elaborate on these differences
(see also Table 1).
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Table 1. Comparison of Existing ZK-PCP constructions. Here, “Underlying LR primitive” refers
to the type of building block used in the leakage-resilience based constructions; “WI” stands for
witness-indistinguishable; “ZK quality” refers to the efficiency of the ZK simulator (which is efficient
in ZK systems and inefficient in WI systems); “Query ratio” is q∗/q, where q∗ is the bound on
the query complexity of a malicious verifier (ZK holds against any verifier querying at most q∗

proof bits), and q is the query complexity of the honest verifier (needed to achieve soundness);
“Underlying PCP” describes the properties which the transformations needs the underlying PCP
system to have; and “Honest verification” refers to the adaptivity of the honest verifier, where “NA”
stands for non-adaptive.

Underlying LR Primitive ZK Quality Query Ratio Underlying PCP Honest Verification

[8] Circuits WI Exponential Any standard PCP Nonadaptive
[13] Encodings ZK Square-root ZK-PCP, large alphabet Nonadaptive

[6,11] — ZK Exponential Any standard PCP Adaptive

1.1.1. The ZK-PCPs of Hazay et al.
Hazay et al. [13] construct a non-adaptive ZK-PCP in which the ratio between the

bound q∗ on the query complexity of a malicious verifier, and the query complexity q of the
honest verifier, is polynomial.

The leakage-resilient primitive they employ is a Leakage-Resilient Encoding (LRE).
Roughly, an LRE consists of a randomized efficient encoding procedure Enc mapping
a bit string m to an encoding c, and an efficient deterministic decoder algorithm that given
an encoding c of m, outputs m. The leakage-resilience guarantee is that for any pair m, m′, if
c← Enc(m), c′ ← Enc(m′), then any small subset of bits in c, c′ are identically distributed.
(They actually need a stronger leakage-resilience guarantee, see Section 3.1.) Non-explicit
constructions of such encodings easily follow from the existence of linear error-correcting
codes with sufficiently “good” parameters, such as random linear codes (see, e.g., [14]). In
Section 3, we also describe an explicit construction of such encodings.

The leakage-resilience guarantee of an LRE is restricted to protecting the codeword
once it has been encoded, and does not protect the encoding procedure itself (as opposed to
leakage-resilient circuits, see below). Therefore to obtain PCPs with full-fledged ZK against
arbitrary query-bounded verifiers, the underlying PCP should possess a zero-knowledge
property, which is weaker than full-fledged ZK, but stronger than the HVZK property
used in [6,10,11]. Specifically, they use a ZK-PCP variant over a large alphabet, which is
much easier to obtain compared to full-fledged ZK for standard PCPs, in which the proof
is binary.

A ZK-PCP variant over a large alphabet can be thought of as a (standard) PCP which is
divided into “regions”, each corresponding to a single symbol in the large alphabet, where
ZK is guaranteed only as long as the verifier queries “full” regions (i.e., all bits in the region).
Thus, a malicious verifier does not have to follow the honest verifier’s query pattern, but
ZK holds only against verifiers querying at most q∗ full regions, for some a-priori bound
q∗. Such ZK-PCPs are constructed from general secure multi-party computation protocols
in [15].

Given a ZK-PCP variant over a large alphabet, [13] design an alphabet reduction that
preserves ZK. (Naïve alphabet reduction techniques do not preserve ZK; see Section 3.) This
reduction uses the underlying PCP (P ′,V ′) as a black box, transforming it into a ZK-PCP
(P ,V) in which the proof is over bits. The high-level idea is to interpret each symbol of
a proof π′ generated by P ′ as a bit string, and encode it using the LRE. V then emulates
V ′, answering an oracle query i by reading the entire encoding of the i’th symbol from its
proof, decoding it, and then providing V ′ with the resultant symbol as the oracle answer.

Hazay et al. [13] then apply their alphabet reduction to the ZK-PCP variant of [15] to
obtain the following (see Theorem 3 in Section 3 for the formal statement).

Informal Theorem 1. There exists a constant ε ∈ (0, 1) such that for any ZK parameter q∗ ∈ N
and any NP-language L there exists a ZK-PCP for L with ZK against q∗-query bounded verifiers,
and a negligible soundness error with a non-adaptive honest verifier that queries (q∗)ε proof bits.



Entropy 2022, 24, 970 6 of 44

We note that the ZK-PCP system described in Informal Theorem 1 requires a tighter
analysis of the ZK-PCP variant of [15], which [13] provide. See Section 3 and [13] for
further details.

1.1.2. The ZK-PCPs of Ishai et al.
Ishai et al. [8] construct a non-adaptive ZK-PCP in which the ratio between the bound

q∗ on the query complexity of a malicious verifier, and the query complexity q of the honest
verifier, is exponential, but ZK holds with an inefficient simulator.

Their starting point is a standard PCP with no zero-knowledge guarantees. Conse-
quently, to obtain full-fledged ZK, they rely on a stronger leakage-resilient tool. To describe
their construction, it would be easier to consider the NP-relationR = R(x, w) associated
with the NP-language L, and its corresponding verification circuit C. We will assume
without loss of generality that a witness w for x has canonical form, namely it consists
of the entire wire values of C given input x, w′, for some w′ such that C(x, w′) = 1. (In
particular, w′ is the information that we wish to keep secret.) The PCP prover generates the
proof from this canonical NP witness w. Therefore, each proof bit is an information bit on
w, i.e., on the wire values of C when evaluated on x, w′. This can be thought of as leakage on
the computation in C, the purpose of which is to reveal information about the secret input
w′ of C. While in general, leakage on the wire values of C might reveal information on
the secret input w′, there are tools to compile C into a leakage-resilient circuit Ĉ that resists
such leakage.

However, it is well known that one cannot protect circuits against general polynomial-
time leakage [16]. Consequently, leakage-resilient circuits are associated with a restricted
leakage class from which leakage functions can be chosen, and the circuit only resists
leakage computed by a function from the class. The main observation of [8] is that every
PCP system naturally has such a restricted class LEAK of leakage functions associated
with it. Indeed, while V∗ can choose which proof bits to query, it has no control over the
type of functions applied to w to generate the proof bits—these functions are determined
solely by the prover algorithm. Specifically, for every subset I of at most q∗ indices in the
proof, the corresponding leakage function `I ∈ LEAK applies the PCP prover function to
w, then outputs the restriction of the proof to the indices in I .

The main building block is therefore a Leakage-Resilient Circuit compiler (LRCC)—a
compiler that transforms a given circuit C into a leakage-resilient circuit Ĉ—that resists
leakage from the class LEAK associated with the underlying PCP system. Informally, an
LRCC is associated with a function class LEAK (the leakage class) and a (randomized) input
encoding scheme E = (Enc,Dec), and compiles a deterministic circuit C into a deterministic
circuit Ĉ that emulates C’s operation over encoded inputs. Ĉ is guaranteed to emulate C on
properly encoded inputs, and is leakage resilient in the sense that for any pair of inputs z, z′

for C such that C(z) = C(z′), and any ` ∈ LEAK, the output of ` on the wire values of Ĉ
when evaluated on a random encoding ẑ← Enc(z) is statistically close to its output when
Ĉ is evaluated on a random encoding ẑ′ ← Enc(z′). (We stress that we will only need to
consider stateless circuits C, in which we wish to hide the circuit’s input. We additionally
do not allow the leakage-resilient circuit Ĉ to have randomized, leak-free components, and
instead the needed randomness will be provided as part of its input encoding.) Notice that
if the prover generated the proof from the wire values ŵ of Ĉ (instead of the wire values w
of C), then V∗’s queries to the proof—which constitute leakage from LEAK on ŵ—would
reveal no information about w′.

This observation gives a general blueprint for compiling traditional PCPs into ZK-
PCPs: given a PCP system (P ′,V ′) with an associated leakage class LEAK as described
above, and a compiler that transforms a given circuit into one that resists leakage from
LEAK, the ZK-PCP system (P ,V) operates as follows. P on input x, w generates the
leakage-resilient version Ĉx of the circuit Cx = C(x, ·) (i.e., C with x hard-wired into it),
uses w to generate the entire wire values ŵ of Ĉx, then emulates P ′ on ŵ to generate a PCP
π. V given input x and oracle access to π generates Ĉx similarly to P , and emulates V ′ on
π to check that Ĉx is satisfiable. In particular, whereas the claim which V set out to verify
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can be phrased as “Cx is satisfiable”, the underlying PCP system (P ′,V ′) is used to verify a
different claim, namely that the leakage-resilient circuit Ĉx is satisfiable.

Unfortunately, this blueprint does not actually work. The reason is that the internal
system (P ′,V ′) is used to prove a different statement, namely that Ĉx is satisfiable. For
(P ,V) to be sound, it should be the case that Ĉx is satisfiable only if Cx is. This, however, is
not generally guaranteed by LRCCs, as we now explain. Recall that the LRCC is correct for
properly encoded inputs, in the sense that on such inputs, Ĉ emulates C. However, LRCCs
in general have no guarantee for inputs which are not properly encoded. This is not just
an artifact of the definition, but is rather essential for leakage resilience to hold in existing
constructions. A main technical contribution of [8] is in defining and constructing an LRCC
that also guarantees soundness, in the sense that the leakage-resilient circuit Ĉ is satisfiable
(even by using invalid encodings as inputs) only if the original circuit C is satisfiable.

To turn this into an actual construction, one needs to design a sound LRCC for a
leakage class LEAK associated with some standard PCP system. The most common
leakage classes considered in the literature are either the “Only Computation Leaks” (OCL)
model that assumes leakage is “local” in the sense that different “regions” of the circuit
leak independently [17], or classes of functions that are “computationally simple” [18], i.e.,
from a low complexity class such as AC0. It is known that the leakage classes associated
with a PCP system cannot be of the former type [19], so Ishai et al. [8] focus on the latter.
Specifically, they show that the PCP system of Arora and Safra [2] has the property that
“small” subsets of proof bits can be generated using the class LEAK of AC0 circuits (i.e.,
constant-depth polynomial-sized circuits with ∧,∨,¬ gates of unbounded fan-in and fan-
out) augmented with a small number of ⊕ gates. (See section 4.3 for a formal definition
of this leakage class.) Then, they use correlation bounds of Lovett and Srivinasan [20] to
show that their sound LRCC resists leakage from LEAK. This yields the following result,
where a witness-indistinguishable PCP is a ZK-PCP in which the ZK property holds with
an inefficient simulator (see Theorem 7 in Section 4 for the formal statement).

Informal Theorem 2. For any ZK parameter q∗ ∈ N and any NP-language L there exists a
witness-indistinguishable PCP for L with witness-indistinguishability against q∗-query bounded
verifiers, and a negligible soundness error with a non-adaptive honest verifier that queries polylog(q∗)
proof bits.

Assuming the existence of one-way functions (a minimal assumption in cryptography),
as well as a Common Random String (CRS) that is available to both parties, and using
a standard cryptographic technique—the so-called “FLS technique” [21]—the witness-
indistinguishable PCP of Informal Theorem 2 can be transformed into a ZK-PCP system
where ZK holds against computationally-bounded query-bounded verifiers in the CRS model.
(We refer the interested reader to [8] for further details, including a formal definition of
the model).

1.2. Comparison between Different ZK-PCP Constructions
The ZK-PCPs of [13] (Informal Theorem 1) obtain ZK with efficient simulation as in

the ZK-PCPs of [6,11], with a query gap of q∗/(q∗)ε. The query gap is inherited directly
from the underlying ZK-PCP variant of [15], which requires the honest verifier to query
Ω((q∗)ε) proof symbols to obtain a negligible soundness error. Therefore, the query gap
could potentially be improved by replacing the underlying building block with a ZK-PCP
variant with a larger query gap.

On the other hand, the witness-indistinguishable PCPs of [8] (Informal Theorem 2)
obtain an exponential query gap, similar to the ZK-PCPs of [6,11]. This is possible because
the underlying (non-ZK) PCP has a negligible soundness error with an honest verifier
that queries a poly-logarithmic number of proof bits. However, the construction is only
witness-indistinguishable, which is weaker than ZK (see Section 2.1.1). Ref. [8] show that
unless NP = BPP, obtaining ZK-PCPs (i.e., with efficient simulation) using their technique
would require a new and entirely different approach towards designing and analyzing
security of leakage-resilient circuits. We further note that while the techniques of [6,13]
extend also to PCPs of Proximity (see Section 2.1.1 for a description of this model, and [11,13]
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for the constructions), the technique of [8] does not seem to readily lend itself to designing
zero-knowledge (or even witness-indistinguishable) PCPs of proximity.

Finally, all the aforementioned ZK-PCP constructions [6,8,11,13] have polynomial-
length proofs (whereas traditional PCPs can have quasi-linear length). However, while a
polynomial blowup in proof length is inherent to the constructions of [6,11] due to their use
of locking schemes, this is not the case for the leakage resilience based constructions [8,13],
which could potentially have shorter proofs. This is an additional advantage of taking the
leakage resilience based approach. The discussion is summarized in Table 1.

1.3. Related Notations, Extensions, and Cryptographic Applications
Many different variants of proof systems and ZK proof systems have been considered

in the literature (see, e.g., Thaler’s survey [22], and references therein). We briefly mention
two notable notions that are closely related to ZK-PCPs; see also Table 2. The first is
Interactive Oracle Proofs (IOPs) [23,24] (a special case of IOPs appeared earlier in [25]) which
combine aspects of IPs and PCPs. Specifically, in an IOP the verifier and prover interact as in
an IP, but the verifier has oracle access to prover messages as in PCPs. These proof systems
have received increasing attention, partly due to their uses in blockchain applications.
Unlike ZK-PCPs, which can be obtained from standard PCPs through generic compilers,
existing ZK-IOPs (see, e.g., [25,26] and references therein) are constructed in an ad-hoc
manner, in which ZK is “tailored” to a specific non-ZK IOP. (It is of course preferable to
have a generic compiler, since it can be used to enhance any new IOP construction to also
guarantee ZK.) The second notion is PCPs of Proximity (PCPPs) [3,7,27]—a generalization
of PCPs in which the verifier does not read its entire input. Instead, V has oracle access
to x, π, and wishes to check whether x is close to L in relative Hamming distance. Zero-
Knowledge PCPPs (ZK-PCPPs) [11] extend ZK-PCPs to the PCPP realm. They guarantee
that the view of any verifier V∗ making q∗ queries to the input and the proof can be efficiently
simulated, up to a small statistical distance, by making only q∗ queries to the input. Ishai
and Weiss [11] construct ZK-PCPPs for NP with comparable parameters to the ZK-PCPs
of [6,10], where soundness holds for inputs which are δ-far from the language, for δ which
is constant or inverse polylogarithmic. The honest verifier in their construction is adaptive.
Hazay et al. [13] show how to extend their techniques to the setting of PCPPs, constructing
ZK-PCPPs for NP with a polynomial query gap with a non-adaptive honest verifier.
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Table 2. Comparison Between Different Probabilistic Proof Systems. IOPPs are IOPs of Proximity,
considered in, e.g., [28], in which the verifier has full access to the input, and oracle access to the
witness. Here, “P ↔ V Communication” refers to whether there is direct communication between
the prover and verifier (in particular, whether the verifier can send messages to the prover); “Access
to Prover Messages” states whether the verifier reads prover messages in full, or has oracle access
to them; similarly, “Access to Input” indicates whether the verifier reads the input in full, or only
has oracle access to it; ”Soundness Guarantee” refers to the type of inputs which are guaranteed to
be rejected, where ”Full” means that all inputs not in the languages are rejected, whereas ”Promise
(input)” means that only inputs that are far (in relative Hamming distance) from the language are
guaranteed to be rejected, and “Promise (witness)” only guarantees that V rejects when given oracle
access to a witness which is far (in relative Hamming distance) from all valid witnesses for the input;
“ZK Variant Hides” of a system X states, for the ZK variant ZK-X of system X , which input of the
prover remains hidden from the verifier, where ”Witness” means verification reveals no information
about the underlying NP witness, and ”Witness, input (partial)” (resp. “Witness (partial)”) roughly
means that a verifier making q queries to the input and proof(s) (resp. witness) learns only q physical
bits of the input (resp., witness).

P ↔ V Com-
munication

Access to Prover
Messages

# Prover
Messages

Access to
Input

Soundness
Guarantee ZK Variant Hides

IP Yes Full Multiple Full Full Witness

PCP No Oracle Single Full Full Witness

IOP Yes Oracle Multiple Full Full Witness

PCPP No Oracle Single Oracle Promise (input) Witness, input
(partial)

IOPP Yes Oracle Multiple Full Promise (witness) Witness (partial)

ZK-PCPs (and ZK-PCPPs) are motivated not only from a purely theoretical perspec-
tive as a natural model of a proof system, but also from their usefulness for cryptographic
applications. Specifically, they enable modular design of cryptographic proofs systems,
by separating a “clean” information–theoretic proof system component, from the cryp-
tographic assumptions (such as hardness assumptions or an augmented model of com-
putation) which can then be used to transform—i.e., “compile” through a cryptographic
compiler—the information–theoretic system into a computationally-secure system than can
be implemented. Thus, one can design, analyze and optimize the information–theoretic
proof system, then apply different cryptographic compilers to obtain different properties of
the resultant system. This paradigm has been extremely successful, and is widely used. For
example, ZK-PCPs are the underlying combinatorial building blocks in constructions of
succinct zero-knowledge arguments [29].

ZK-PCPs and ZK-PCPPs also have more direct cryptographic applications both to
two-party and multiparty scenarios which require highly efficient verification methods
on secret data. In the two-party setting, these include constructions of constant-round (or
non-interactive in the random-oracle model) black box arguments for NP with statistical
ZK [10] (whereas constructions based on non-ZK PCPs are not black box [30,31]). ZK-PCPPs
can additionally be used to design two-party and multiparty black box commit-and-prove
protocols for NP [11]. While these applications only require a weaker ZK guarantee
(specifically, ZK against the honest verifier), applications in multiparty settings require full-
fledged ZK against malicious verifiers. These include constructions of certifiable versions of
verifiable secret sharing from ZK-PCPPs, as well as sublinear ZK proofs in a distributed
setting from ZK-PCPs. (Various other notions of ZK proofs in a distributed setting have
been considered recently.) In the latter application, the prover and verifier are aided by
multiple (potentially corrupted) servers. The motivation for this distributed setting is
to minimize the round complexity, and underlying assumptions, of sublinear ZK proofs.
Specifically, using PCPs with ZK against malicious verifiers, [8] construct distributed 3-round
witness-indistinguishable proofs (respectively, ZK proofs in the computational setting with
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a common random string) for NP, which are unconditionally secure (respectively, based
on the existence of one-way functions) in which the total communication involving the
verifier is sublinear in the input length. This should be contrasted with standard sublinear
ZK arguments, that require at least four rounds of interaction, and require the existence of
collision resistant hash functions [10,30].

2. Preliminaries
Basic notations. We denote the security parameter by κ. A function µ : N→ N is negligible
if for every positive polynomial p(·) and all sufficiently large κ’s it holds that µ(κ) < 1

p(κ) ,
and negl(κ) denotes the set of all negligible functions. We use the asymptotic notations O(·)
and Ω(·), where Õ(n) and Ω̃(n) denote n · poly(log)n and n/poly(log)n ,respectively. We
use the abbreviation PPT to denote Probabilistic Polynomial-Time, and denote by [n] the
set of elements {1, . . . , n}. For a string s of length n, and a subset I ⊆ [n], we denote by s|I
the restriction of s to the coordinates in I.

We usually denote vectors using boldface letters (e.g., a), or as ~a. For a pair x, y
of vectors, 〈x, y〉 denotes their inner product, and Ham(x, y) to denote their Hamming
distance, i.e., Ham(x, y) = |{i : xi 6= yi}|. For functions f , g, we denote their composition
as ( f ◦ g)(x) := f (g(x)). The composition of families F, G of functions is defined as
F ◦ G := { f ◦ g : f ∈ F, g ∈ G}.

For a distribution D, sampling according to D is denote by X ← D, or X ∈R D. For a
pair of random variables X, Y, we use X ≡ Y to denote that X, Y are identically distributed.
For random variables Xκ and Yκ over a finite domain Ω, the statistical distance between
them is defined as

SD(Xκ , Yκ) =
1
2 ∑

w∈Ω

∣∣Pr[Xκ = w]− Pr[Yκ = w]
∣∣.

Xκ and Yκ are ε-statistically close if their statistical distance is at most ε(κ). Ensembles
{Xκ}κ , {Yκ}κ are statistically close, denoted Xκ ≈ Yκ , if there exists an ε(κ) = negl(κ)
such that Xκ , Yκ are ε(κ)-close for every κ. We say that {Xκ}κ , {Yκ}κ are computationally
indistinguishable if they have a negl(κ) computational distance, i.e., for every PPT distinguisher
D there exists an ε(κ) = negl(κ) such that for every κ:

|Pr[D(Xκ) = 1]− Pr[D(Yκ) = 1]| ≤ ε(κ).

Languages and Relations. We will consider NP-relations R = R(x, w), and the corre-
sponding NP-languages L = {x : ∃w s.t. (x, w) ∈ R}. We sometimes writeRL to refer to
the NP-relation, the corresponding language of which is L.
Encoding Schemes and Leakage-Resilient Encoding Schemes. Our constructions will
rely on encodings schemes with leakage-resilience properties. We now provide a simple
definition of an encoding scheme, and refer the reader to Section 3.1 for a more detailed
discussion of the notion.

Definition 1. Let k, n ∈ N. An Encoding Scheme over an alphabet Σ is a pair (Enc,Dec)
where Enc is a PPT algorithm, and Dec is a (deterministic) polynomial-time algorithm, that satisfy
the following.
• Syntax. Enc on input a secret x ∈ Σk outputs a codeword c ∈ Σn. Dec on input c ∈ Σn

outputs x ∈ Σk or a special error symbol ⊥.
• Correctness. There exists a t ≥ 0 such that the following holds for every x ∈ Σk, and every

c ∈ Σn: if there exists cx ∈ Supp(Enc(x)) such that Ham(c, cx) ≤ t then Dec(c) = x,
otherwise Dec outputs ⊥.

A note on terminology. In this section and in Section 3, we use k, n respectively to
denote the input and output lengths of Enc, as is customary in the context of error-correcting
codes. In Section 4, the input and output lengths are denoted by n, n̂, respectively, which is
sometimes used in the context of leakage resilience.
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We now define two useful properties of encoding schemes. The first is that the scheme
is linear. The second is that the scheme is onto, meaning any c ∈ Σn can be interpreted as
the encodings of some x ∈ Σk, in the sense that c would be decoded to x.

Definition 2. An encoding scheme (Enc,Dec) over a field F is linear if for every k: (1) k divides n;
and (2) there exists a decoding vector d such that for every x ∈ Fk: (1) every x ∈ Supp(Enc(x)) can
be partitioned into k sub-vectors x =

(
x1, . . . , xk

)
, such that Dec(x) =

(
〈d, x1〉, . . . , 〈d, xk〉

)
.

(Enc,Dec) is onto, if Dec is defined (i.e., does not output ⊥) for every c ∈ Σn.

Section 4 will use a parameterized notion of encoding schemes. In such encoding
schemes, the encoding and decoding algorithms are given an additional input 1σ, which
is used as a security parameter. The encoding length can then depend also on σ (and not
only on k), and we require that for every σ the resultant scheme is an encoding scheme. A
parameterized encoding scheme is onto (linear, respectively) if it is onto (linear, respectively)
for every σ.

We now define leakage resilience of distributions and encodings.

Definition 3 (Leakage Resilience—Distributions and Encoding Schemes). Let LEAK be a
family of functions, and ε > 0. For a finite set D, a pair of distributions X, Y over D are (LEAK, ε)-
leakage resilient if for any function ` ∈ LEAK with domain D it holds that SD(`(X), `(Y)) ≤ ε.

A randomized function f : Σn → Σm is (LEAK, ε)-leakage resilient if for every x, y ∈ Σn,
the distributions f (x), f (y) are (LEAK, ε)-leakage resilient.

An encoding scheme (Enc,Dec) is (LEAK, ε)-leakage resilient if for every large enough
σ ∈ N, Enc(·, 1σ) is (LEAK, ε)-leakage resilient.

For the construction of Section 3 we will be particularly interested in probing-resilient
encoding schemes, namely ones that are leakage resilient against leakage functions that
probe bits of the codeword.

For a function family LEAK, we sometimes use the term “leakage family LEAK”, or
“leakage class LEAK”, and refer to functions in LEAK as “leakage functions”.

2.1. PCPs and ZK-PCPs
The probabilistic proof system we focus on in this work is Probabilistically Checkable

Proofs (PCPs) with zero-knowledge guarantees. We first describe the (standard, non-zero-
knowledge) notion of PCPs.

At a high level, PCPs allow a randomized verifier to probabilistically verify the validity
of some input statement by querying few bits of a purported proof to which it has oracle
access. PCPs can be defined (and have been studied) in relation to various complexity
classes (e.g., DTIME(n)). In this work, we focus on PCPs for NP since cryptographic
applications usually require proof systems for NP (and this also simplified the presentation).
In the context of complexity theory, the system consists solely of the verifier and the proof
oracle, where the proof generation process is implicit. However, cryptographic applications
necessitate that proof generation be efficient, given the NP-witness. Thus, we define PCPs
as a system consisting of efficient prover and verifier. (This is by now standard in the
literature of PCPs for cryptographic applications, e.g., [6], as well as other proof systems
such as interactive oracle proofs [23,24].)

More specifically, a PCP system for a language L ∈ NP consists of a polynomial-time
prover P that given x ∈ L and a corresponding witness generates a proof π for x, and a
PPT verifier V having direct access (“oracle access”) to individual symbols of π. V will
read only part of its proof string π (called oracle), where the queries to π are determined
by V ’s input and coin tosses. Formally,

Definition 4 (PCP). A Probabilistically Checkable Proof (PCP) for a language L ∈ NP consists
of a polynomial-time prover P and a PPT verifier V such that there exists a negligible function
ngl = negl(κ) for which the following holds:
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• Syntax: The prover P has input 1κ , x, w (κ is the security parameter), and outputs a proof
π ∈ {0, 1}∗ for x. The verifier V has input 1κ , x, and oracle access to π. It makes q queries to
π, and outputs either 0 or 1 (representing reject or accept, respectively). q is called the query
complexity of the system, and the system is called a q-query PCP.

• Semantics: The system satisfies the following semantic properties:
– Completeness: For every (x, w) ∈ RL, and every proof π ∈ P(1κ , x, w),

Pr[Vπ(1κ , x) = 1] = 1,

where the probability is over the randomness of V .
– Soundness: For every x /∈ L and every oracle π∗,

Pr[Vπ∗(1κ , x) = 1] ≤ negl(κ),

where the probability is over the coin tosses of the verifier. negl(κ) is called the soundness
error of the system.

Zero-Knowledge PCPs (ZK-PCPs). Intuitively, ZK-PCPs are PCPs in which the witness
remains entirely hidden throughout the verification procedure, in the sense that even a
malicious verifier which deviates from the specified verification procedure learns nothing
but the validity of the claim. Achieving this property requires some modifications to the
standard notion of a PCP. First, the prover must now be probabilistic. Indeed, completeness
of the PCP requires (intuitively, at least) that the proof encode the witness. That is, certain
proof bits will carry some information about the witness, and by querying them a malicious
verifier V∗ may learn information about the witness. Allowing randomized proof genera-
tion is akin to having a probabilistic prover in zero-knowledge interactive proofs (whereas
in standard interactive proofs the prover may be deterministic).

Second, while we do not impose any restrictions on the query pattern (i.e., the strategy)
of a malicious verifier V∗, we impose a bound on its query complexity, namely the number
of queries it makes to the proof. To see why imposing some restriction is needed, recall that
cryptographic applications necessitate an efficient honest prover, meaning the proof will
have polynomial length. Therefore, a polynomial-time verifier V∗ that is unrestricted in
its access to the proof could potentially read the entire proof and thus necessarily learn
information about the witness (since, as noted above, the proof carries information about
the witness). There are several possible methods of restricting V∗ to reading only part of the
proof (e.g., requiring its runtime to be smaller than the proof length), where the one used in
the literature is to restrict its query complexity to some a-priori bound q∗ which is known prior
to proof generation (in particular, the proof length may depend on q∗). One advantage of
restricting the query complexity is that it allows us to obtain information theoretic ZK, namely
that ZK holds against malicious verifiers with unbounded computational power, so long as the
verifier makes at most q∗ queries to the proof. It is also more inline with the main efficiency
measures of standard PCPs, which focus on the query (and randomness) complexity.

To define ZK-PCPs, we first formalize the restriction on the query complexity of the verifier.

Definition 5 (Query-bounded verifier). We say that a (possibly malicious) verifier V∗ with
oracle access to a proof π is q∗-query-bounded if it makes at most q∗ queries to π.

As noted above, we will allow a malicious verifier to be computationally unbounded.
Moreover, we will allow its query bound q∗ to be much larger than that of the honest
verifier. Ideally, the honest verifier will only make polylog(q∗) queries, and the proof will
have length poly(q∗). We note that traditional PCPs can be verified with a constant number
of queries, achieving a constant soundness error. However, since cryptographic applications
usually necessitate a negligible soundness error, the query complexity of the honest verifier
is necessarily polylogarithmic in the security parameter κ, or in q∗.

Another aspect in which we allow a malicious verifier to be more powerful than the
honest verifier is adaptivity: whereas we would like the honest verifier to be non-adaptive—
namely, make a single round of queries to the proof (as in standard PCPs), we allow a
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malicious verifier to be adaptive—i.e., make several rounds of queries to the proof. This is
formalized in the following definition.

Definition 6 (Adaptive and-non adaptive verifiers). We say that a (possibly malicious) verifier
V∗ is non adaptive if its queries are determined solely by its input x and randomness (in particular,
V∗ can make all its queries to the proof in a single round). Otherwise, we say that V∗ is adaptive
(in particular, the queries of an adaptive verifier may depend on the answers to previous queries).

We are now ready to define ZK-PCPs. Similar to zero-knowledge interactive proofs
(and, more generally, cryptographic protocols), we formalize zero knowledge by requiring
the existence of an efficient simulator algorithm that, given the input 1κ , x, can simulate the
view of the verifier, namely the verifier’s input, random coins, and the oracle answers (the
queries of the verifier can be computed from these values). Intuitively, this guarantees zero
knowledge because the view of the verifier captures the entire “knowledge” it obtained
through verification, and in particular by querying the proof oracle. Since the view can be
simulated from the input alone, without any access to the NP-witness, this implies that the
view contains no information about the witness. We now formalize this intuition.

Notation 1. For a PCP system (P ,V) and a (possibly malicious) verifierV∗, we use ViewV∗ ,P (κ, x, w)
to denote the view of V∗ when it has input 1κ , x and oracle access to a proof that was randomly
generated by P on input (1κ , x, w).

Definition 7 (ZK-PCP). We say that a PCP system (P ,V) for L is a (q∗, ε)-Zero-Knowledge
PCP (ZK-PCP) if for every (possibly malicious and adaptive) q∗-query-bounded verifier V∗ there
exists a PPT simulator Sim, such that for every (x, w) ∈ R, Sim(1κ , x) is distributed ε-statistically
close to ViewV∗ ,P (x, w).

One prevalent approach for designing simulators (which we will use) is to have the
simulator emulate the verifier V∗, simulating the answers to V∗’s oracle queries.

2.1.1. Restrictions, Extensions and Generalizations
Definition 7 can be restricted, or alternatively, generalized, in several ways, as we

now discuss.
A taxonomy based on ZK quality. While we define a statistical notion of ZK as the default
for ZK-PCPs, one can also consider stronger or weaker forms of ZK. Specifically, we
can require a stronger perfect ZK guarantee in which the simulated view is distributed
identically to the real view of the verifier.

Notation 2. We say that a ZK-PCP has q∗-ZK if it has perfect ZK against q∗-query bounded verifiers.

Alternatively, we can settle for a weaker computational ZK guarantee which only holds
against computationally-bounded verifiers V∗, where the simulated view is computationally
indistinguishable from the real view. One particular relaxation of ZK which we consider in
this work is Witness-Indistinguishability which does not require that the ZK simulator be
efficient. This can be obtained by removing the requirement that Sim be PPT in Definition 7,
but the following alternative formulation would be more useful.

Definition 8 (WI-PCP). We say that a PCP system (P ,V) for L is a (q∗, ε)-Witness-
Indistinguishable PCP (WI-PCP) if for every (possibly malicious and adaptive) q∗-query-bounded
verifier V∗, for any x ∈ L, and any pair of corresponding witnesses w1, w2 such that (x, w1),
(x, w2) ∈ RL:

SD(ViewV∗ ,P (x, w1), ViewV∗ ,P (x, w2)) ≤ ε.

There are also various flavors of ZK based on different qualities of the ZK simulator.
These include, for example, whether the simulator is straight line—i.e., it emulates the
verifier without having to rewind it, and whether the simulator interacts with the verifier
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as a black box. The ZK-PCP constructions described in this work have straight line,
black box simulators.
Honest-Verifier ZK. Another natural restriction of the definition is by considering zero
knowledge only against the honest verifier V . Such systems are called Honest-Verifier ZK
(HVZK). As we explain below, it is fairly simple to obtain an HVZK PCP system from a
standard PCP system (e.g., such a system was presented already in the paper of Kilian,
Petrank and Tardos on ZK-PCPs [6], and a weaker construction with a large soundness
error was presented in [9]). However, such a restriction is generally too weak to be used
in cryptographic applications, for example, to prove honest behaviour in cryptographic
protocols, in which case the verifying party might be maliciously corrupted. To see why
settling for HVZK simplifies the problem considerably, notice that HVZK is preserved
under standard soundness amplification techniques. More specifically, assume we have
an HVZK PCP system with a large soundness error (obtaining such systems is relatively
easy given known techniques such as “MPC-in-the-head” [15]). Soundness can then be
amplified by having the prover generate many fresh, independent copies of the proof, and
having the honest verifier repeat the verification procedure several times, each time using a
fresh proof copy. HVZK of this verification procedure easily reduces to the HVZK of the
original system. However, this amplification does not preserve full-fledged ZK (i.e., against
malicious verifiers) even if the original system is ZK against malicious verifiers. Indeed, the
reason is that the query complexity—even of the honest verifier—increases through this
transformation, and in particular would exceed the ZK query bound of the original system.
Thus, a malicious verifier that “concentrates” all its queries to a single proof copy might be
able to violate the ZK of the underlying system.
Verifier Adaptivity. In non-ZK PCP constructions, the honest verifier is non-adaptive. In
contrast, the classic ZK-PCP of [6], and all consequent ZK-PCPs—except the ones based on
leakage resilience [8,13]—have an adaptive honest verifier. As discussed in Section 1, this is
because, very roughly, they enhance an HVZK PCP to have full-fledged ZK, by modifying
the proof such that even honest verification requires multiple rounds of queries to the
proof. Moreover, this is inherent to their technique of using “locking schemes” [6]. Having
a non-adaptive honest verifier is a major advantage of leakage resilience based ZK-PCPs
(see Table 1 for a comparison of existing ZK-PCP systems), since having non-adaptive
honest verification is a desirable feature of the system. Indeed, an adaptive honest verifier
translates into multiple interaction rounds in cryptographic applications of ZK-PCPs.

Notation 3. We say that a ZK-PCP system (P ,V) is a non-adaptive ZK-PCP if the honest
verifier V is non-adaptive.

We note that an orthogonal measure of adaptivity is whether a malicious verifier is re-
stricted to being non-adaptive. Unlike having a non-adaptive honest verifier, guaranteeing
ZK only against non-adaptive malicious verifiers is an undesirable restriction of the system,
since it means there are no guarantees against adaptive verifiers.
Universal vs. Non-Universal Simulation. Definition 7 requires ZK to hold with a non-
universal simulator, requiring, for every malicious verifier V∗, the existence of a simulator
SimV∗ . A stronger possible definition would require the existence of a universal simulator
Sim that can simulate the view of any query-bounded verifier V∗. We note that all the
ZK-PCPs described in this work (in fact, to the best of our knowledge, all existing ZK-PCP
constructions) satisfy this stronger definition.
The Alphabet. Similar to PCPs, ZK-PCPs are defined as bit-strings. One could also
consider a relaxed notion in which the proof is over some larger alphabet Σ (and this
indeed has been done in the PCP context). We note, however, that while for standard PCPs
the choice of alphabet affects only the parameters of the scheme (but not its its semantic
properties), this is not the case for zero-knowledge PCPs. Indeed, any PCP over Σ can be
transformed to a PCP over {0, 1} by replacing each symbol with a bit-string representation
of it, without violating completeness or soundness. (We note that while more elaborate
alphabet reduction techniques have been employed in the context of traditional PCP, e.g.,
in [3], their goal was to improve the system’s parameters.) However, as we explain in
Section 3, doing so for a ZK-PCP does not preserve ZK against malicious verifiers. ZK-PCPs
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over a large alphabet Σ can still be useful as a building block for obtaining ZK-PCPs (with
proofs over {0, 1}), see Section 3.
PCPs of Proximity. A useful generalization of PCPs are PCPs of Proximity (PCPPs), that
allow verification of an input claim while reading only a small portion of it. This is
formalized by giving the verifier oracle access to the input, similar to how it accesses the
proof. Of course, in this case the verifier cannot be expected to distinguish a true claim
from a claim that is false, but very close to being true (e.g., a 3-CNF for which there exists
an assignment that satisfies all but a tiny fraction of the clauses). Instead, soundness is
defined similarly to correctness of promise problems: any input which is sufficiently far
from the corresponding NP-language will be rejected with high probability. PCPPs are an
important building block in PCP constructions, and a useful notion in its own right. There
are PCPP constructions matching the properties of the best-known standard PCPs [32,33].

Zero-Knowledge PCPPs (ZK-PCPPs) [11] have a stronger ZK guarantee than ZK-PCPs:
while ZK-PCPs guarantee that the witness remains entirely hidden through verification,
ZK-PCPPs additionally guarantee that the input itself remains mostly hidden, in the sense
that the verifier (even a malicious one) learns only few physical input bits. This is formalized
using the simulation paradigm as in ZK-PCPs, where instead of giving the entire input to
the simulator, it has oracle access to it, and is restricted to making q∗ queries (where q∗ is
the query complexity of the verifier).

Certain techniques for constructing ZK-PCPs extend also to PCPPs, while others do
not (or, at least, it is not clear how to extend them). In particular, the original ZK-PCP
construction of [6] can be extended to also apply to ZK-PCPPs [11], and the ZK-PCPs based
on leakage-resilient encodings described in Section 3 also applies to PCPPs (see [13] for a
full description of the construction). On the other hand, the construction of ZK-PCPs from
LR circuits (Section 4) does not seem to easily extend to the PCPP realm.

3. The ZK-PCPs of Hazay et al.: ZK from LR Encodings
The main result of this section is a construction of ZK-PCPs for NP with a non-adaptive

honest verifier and a polynomial query gap (between the query complexity of the honest
and malicious verifiers) due to [13]:

Theorem 3 (ZK-PCPs for NP, Formal statement of Informal Theorem 1). There exists a
constant ε ∈ (0, 1) such that for any ZK parameter q∗ ∈ N there exists a non-adaptive (q∗)ε-query
Ω(q∗)-ZK-PCP for NP.

We describe a simplified version of the construction of [13] which nonetheless suffices
for designing ZK-PCPs. The interested reader is referred to [13] for a description of the
more general paradigm which employs an equivocal notion of secret sharing instead of the
weaker leakage-resilient encodings used here.

The construction employs Leakage-Resilient (LR) Encodings. The starting point is a
ZK-PCP variant (P ′,V ′) over a large alphabet Σ, namely where the proof π′ is over Σ. To
obtain a standard ZK-PCP (P ,V)—i.e., one in which the proof π is over bits—we need an
alphabet reduction. That is, we are looking for a transformation that replaces each symbol
π′i ∈ Σ with a bit-string “segment” segmi ∈ {0, 1}∗. Then, given a proof π′ =

(
π′1, . . . , π′N

)
,

the resultant proof would be π = (segm1, . . . , segmN).
As mentioned in Section 2.1.1, the naive alphabet reduction which replaces each

symbol of Σ with a bit string representing it does not preserve ZK. Indeed, this alphabet
reduction necessarily increases the query complexity of the honest verifier V , who will need
to query q · |segm| proof bits (where q is the query complexity of V ′). Thus, a malicious
verifier—the query complexity of which is at least as that of the honest verifier—with
oracle access to the resultant proof π may query subsets of bits in many segments segmi,
effectively learning partial information about many proof symbols (in particular, more than
the ZK guarantee of π′), and violating ZK. Therefore, we need an alphabet reduction which
preserves ZK.

Viewed through the leakage-resilience lens, the information which a malicious verifier
obtains on a symbol π′i ∈ Σ by querying bits of segmi constitutes probing leakage on segmi,
and consequently also on π′i . Thus, intuitively, ZK can be guaranteed by protecting the
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segments segmi from probing leakage. This gives a general blueprint for a ZK alphabet
reduction: replace each symbol σ of Σ with its binary representation sσ, then encode sσ

using a probing-resilient encoding. While this roughly describes the alphabet reduction
of [13], there are a few subtleties, as we now describe.
Simulation Strategy for Malicious Verifiers. A probing-resilient encoding can only protect
against probing of a sufficiently small subset of bits of the encoding, namely against probing
of some a-priori fixed fraction τ of bits. (Indeed, since the message can be decoded from the
encoding, an adversary that probes the entire encoding necessarily learns the underlying
message.) However, a malicious verifier V∗ may query an entire segment segmi. To see why,
notice that the query bound q∗ imposed on the malicious verifier is expected to be much
larger than the length of the encoding. Indeed, q∗ should be at least as large as the query
complexity of the honest verifier, which would need to read at least a few symbols of the
original PCP, i.e., a few full encodings of symbols of the original PCP. More generally, V∗
may read more than a τ-fraction of a segment, in which case the probing-resilience of the
encoding cannot be used. We solve this issue in the simulation by dividing the segments
segmi into two types: “heavy” and “light” segments. Intuitively, heavy segments are ones
from which V∗ queried many bits, in particular, more than a τ-fraction. Light segments are
segments that are not heavy. We use the probing-resilience of the underlying encoding to
claim that V∗ learns no information about the symbols encoded in the light segments, and
use the ZK guarantee of the underlying ZK-PCP system (P ′,V ′) to simulate the symbols
encoded in heavy segments. This gives us a simulation strategy for (P ,V): simulate heavy
symbols using the simulator of the underlying system (P ′,V ′), and simulate light symbols
using random and independent encoding of an arbitrary value (e.g., the all-zeros string).
Simulating Partially-Leaked Symbols. The simulation strategy defined in the previous
paragraph necessitates that the simulator Sim knows in advance which segments are heavy
and which are light, since this determines how to generate the answer to a query. Whether
or not a segment is heavy is a function of the entire query pattern of V∗. Thus, this proof
strategy only works against non-adaptive malicious verifiers, namely ones which make a
single round of queries to the proof. (Indeed, in this case Sim learns all of V∗’s queries before
it needs to simulate the oracle answers.) ZK against adaptive malicious verifiers, namely
ones which make several rounds of queries to the proof, where each query may depend on
the answers to the previous queries, requires a somewhat different simulation strategy, and
a stronger LR guarantee from the probing-resilient encoding, as we now explain.

The high-level idea is as follows. At the onset of the simulation, Sim treats all segments
as light, answering queries using random and independent encodings of ~0. At certain
points in the simulation, a certain segment i may become heavy—namely, the number of
queries V∗ made to it exceeds the probing threshold τ. At this point, Sim uses the simulator
Sim′ of the underlying ZK-PCP system (P ′,V ′) to simulate the symbol π′i . To continue
with the simulation, Sim must now generate an encoding of π′i which is (1) consistent with
the bits already probed from the i’th segment; and (2) is distributed as a random encoding
of π′i subject to (1). For this, we need the underlying probing-resilient encoding to be
equivocal—allowing one to efficiently sample from this distribution. Such encodings are
called Reconstructable Probabilistic Encodings (RPEs) [34,35].
Putting It Together. We are now ready to describe the full alphabet reduction (see Section 3.2,
and Figure 1 in particular) that transforms a ZK-PCP variant (P ′,V ′) over alphabet Σ into
a ZK-PCP (P ,V) (over bits). The reduction employs an RPE (see Section 3.1). For proof
generation, the prover P first runs P ′ to generate a proof π′ =

(
π′1, . . . , π′N

)
over Σ. Then, it

replaces each proof symbol π′i with its binary representation si, and uses the RPE to encode
si into a segment segmi. P outputs the proof π = (segm1, . . . , segmN). The verifier V , given
oracle access to π, verifies the proof by emulating V ′. Whenever V ′ queries a symbol π′q
of π′, V queries segmq from π, RPE-decodes it to obtain the binary representation sq of a
symbol σq ∈ Σ, and provides σq to V ′ as the answer of the oracle. When the emulation ends,
V outputs whatever V ′ outputs. In the following sections, we describe the RPE building
block (Section 3.1), and analyze the resultant ZK-PCP scheme (Section 3.2).
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Construction 4 (Alphabet reduction for ZK-PCPs). Let κ be a security parameter.
Building blocks:
• A PCP system (P ′,V ′) over alphabet Σ of size |Σ| = 2k;
• An RPE (Enc,Dec,Rec) for secrets in {0, 1}k.

Prover algorithm. P has input 1κ , x, w. It runs P ′ with input 1κ , x, w to obtain a proof
π′ =

(
π′1, . . . , π′N

)
over Σ. For every proof symbol π′i , let si denote its bit-string representation,

then P encodes segmi ← Enc(si). Finally, P outputs the proof π = (segm1, . . . , segmN).

Verifier algorithm. V is given input 1κ , x and oracle access to π. It runs V ′ with input 1κ , x,
and emulates the oracle π′ for V ′ as follows. Whenever V ′ reads a symbol σ from π′, V reads
the entire encoding of σ from π. Then, it uses Dec to recover the symbol σ, which it gives to V ′
as the answer of the oracle. When the emulation terminates, V outputs whatever V ′ outputs.

Figure 1. Alphabet Reduction For ZK-PCPs [13].

3.1. Main Building Block: Reconstructable Probabilistic Encdoings (RPEs)
The main building block of the ZK-preserving alphabet reduction is an encoding scheme

with equivocation properties called Reconstructable Probabilistic Encoding (RPE) [34–37]. In this
section, we formally define these objects.

Codes, or encoding schemes, are extensively used in computer science, the most
notable example being Error-Correcting Codes (ECCs), which are used to guarantee that
the data can still be recovered even if faults occur (i.e., some of the symbols of the data are
erased or corrupted). A code consists of an encoding procedure Enc which maps a message
to a codeword, and a decoding procedure Dec which decodes the message from a (possibly
corrupted) codeword. In the context of error-correction, Enc,Dec are usually deterministic.
Most ECCs are linear codes, where the code is defined by a generator matrix, and encoding
simply multiplies the generator matrix with the message. The main parameters of interest
for such codes are: (1) the rate of the code—the ratio between the length of the encoding
(also known as a codeword) and the length of the original message; (2) its distance—namely
the minimal distance between a pair of codewords, which is the number of coordinates
in which they differ; and (3) the alphabet size (where most ECCs are binary). There are
numerous extensions and generalizations of ECCs that guarantee additional properties
beyond error correction.

We will be interested in a generalized notion of an ECC which also guarantees probing-
resilience in the sense that few codeword symbols reveal no information (in an information–
theoretic sense) on the encoded message. Of course, such a guarantee cannot be satisfied
if encoding is deterministic. Probing-resilient encodings therefore allow for a randomized
encoding procedure, where each message has a subset of codewords to which it can
be mapped, and encoding chooses one of them at random. It is fairly simple to obtain
such a leakage-resilient encoding from a linear code, as long as its generator matrix has
a “good” structure. (See, e.g., [38] for a description of the needed properties and how
encoding works.).

As explained above, probing-resilience alone is insufficient to guarantee ZK against
adaptive malicious verifiers. Instead, we rely on a stronger equivocation property which
guarantees that as long as the probing threshold τ had not been violated, the probed
bits can be efficiently “explained” as the bits in an encoding of any arbitrary message
msg. Intuitively, an RPE is an encoding scheme (se defined in Section 2) which is probing-
resilient, and is additionally associated with a resampling/reconstruction algorithm Rec that
can “explain” the probed bits. Formally:

Definition 9 (Reconstructable Probabilistic Encoding (RPE)). Let k, n, ` ∈ N. A (k, n, `)-
Reconstructable Probabilistic Encoding (RPE) is a triple (Enc,Dec,Rec) where Enc,Rec are
PPT algorithms, and Dec is a (deterministic) polynomial-time algorithm, that satisfy the following.
• Syntax. Enc on input a secret x ∈ {0, 1}k outputs a codeword c ∈ {0, 1}n. Dec on input

c ∈ {0, 1}n outputs x ∈ {0, 1}k or a special error symbol ⊥. Rec on input a secret x, a set
I ⊂ [n] of size |I| ≤ `, and ` bits (ci)i∈I , outputs c′ ∈ {0, 1}n;
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• Correctness. There exists a t ≥ 0 such that the following holds for every x ∈ {0, 1}k,
and every c ∈ {0, 1}n: if there exists cx ∈ Supp(Enc(x)) such that Ham(c, cx) ≤ t then
Dec(c) = x, otherwise Dec outputs ⊥;

• `-Secrecy (of partial views). For every pair of secrets x, x′, and any subset I ⊆ [n] such
that |I| ≤ `, Enc(x)|I ≡ Enc(x′)|I ;

• `-Reconstruction (from partial views). For any secret x, any subset I ⊆ [n] of size

|I| ≤ `, and any set
(
c′i
)

i∈I of bits, Rec
(

x, I ,
(
c′i
)

i∈I

)
is distributed identically to an

encoding c ∈ Supp(Enc(x)) that is random subject to being consistent with
(
c′i
)

i∈I .

A few remarks are in order. First, our constructions can make do with a relaxed RPE
notion in which the secrecy and reconstruction properties hold statistically with statistical
distance ε. (In this case, the resultant ZK-PCP will have statistical ZK with a statistical
error of roughly N · ε, where N denotes the proof length, see [13] for details.) Second,
while we define RPEs for a single message length k, the notion naturally generalizes to
families of codes such that for every k ∈ N there exists a code the codewords of which have
length n = n(k); and there exists a uniform algorithm that given 1k as input, generates
the encoding, decoding and resampling procedures for message length k. We will only
consider (efficiently encodable and decodable) families of codes in this work. For simplicity
and clarity of the definitions, we do not explicitly refer to a family of codes, but k should be
understood as a general input length parameter. (This is standard in the literature.) Finally,
we note that non-explicit constructions of RPEs follow easily from the existence of linear
error-correcting codes with sufficiently “good” parameters, which are satisfied by random
linear codes (see, e.g., [14]). Indeed, such codes posses the secrecy property of RPEs, which
guarantees that for every subset of ` codeword symbols, the resultant system of linear
equations has a solution for any possible secret. This gives an efficient reconstructor Rec. We
note that the final ZK-PCP construction will use an explicit RPE construction due to [37,39].

3.2. The ZK-PCP Construction
We now describe the alphabet reduction for ZK-PCPs, which uses RPEs to transform a

ZK-PCP variant over a large alphabet to a ZK-PCP (over bits).
Construction 4 transforms a PCP system over a large alphabet into a PCP (over bits).

The following theorem of ([40], Theorem 9) states that if the underlying PCP system is ZK,
and the RPE is secure, then the resultant scheme is also ZK.

Theorem 5 (ZK-PCPs from LR encodings [13]). Assume Construction 4 is instantiated with:
• A (q∗, ε)-ZK-PCP (P ′,V ′) over alphabet Σ for a language L;
• A (k, n, `)-RPE (Enc,Dec,Rec).

Then, Construction 4 is a ((q∗ + 1) · (`+ 1)− 1, ε)-ZK-PCP for L.
Moreover, the transformation preserves the soundness and completeness of (P ′,V ′). Further-

more, if (P ′,V ′) has proofs of length N that can be verified non-adaptively with q′ queries, then
Construction 4 has proofs of length N · n that can be verified non-adaptively with q = q′ · n queries.

Proof. Completeness follows directly from a combination of the completeness of (P ′,V ′)
and the correctness of the RPE (which guarantees that V perfectly emulates the proof oracle
for V ′). The claim regarding q follows directly from the construction.

Soundness. Let x∗ /∈ L, and let π∗ be a purported proof oracle for V . We show that
V rejects x∗ with the same probability as V ′. We partition π∗ into N length-n segments
π∗,1 · · ·π∗,N , where the i’th segment π∗,i contains the bits in locations (i− 1)n + 1, . . . , i · n.
(Notice that the i’th segment in an honestly-generated proof would contain the RPE-encoding
of the i’th symbol in a proof over Σ.) Then the correctness of the RPE implies that for every
1 ≤ i ≤ N there exists a σi ∈ Σ such that Dec

(
π∗,i

)
= σi (indeed, if Dec

(
π∗,i

)
=⊥ then we

set σi to some arbitrary symbol in Σ). Let π∗′ = (σ1, . . . , σN) ∈ ΣN , and notice that when V
has oracle access to π∗, it emulates V ′ with oracle access to π∗′. The soundness of (P ′,V ′)
therefore guarantees that V ′ (and consequently also V) accepts with probability ε.

Zero Knowledge. Let q∗∗ = (q∗ + 1) · (`+ 1)− 1, and let V∗ be a (possibly malicious
and adaptive) q∗∗-query bounded verifier. For simplicity of the description, we assume V∗
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makes its queries one at a time, and never repeats queries (this is without loss of generality).
We describe a simulator Sim for V∗, which relies on the simulator Sim′ of the underlying
ZK-PCP system (P ′,V ′), and emulates a proof oracle π∗ for V∗ as follows:
1. π∗ ∈ {0, 1}N·n is the concatenation of N segments segm1, . . . , segmN ∈ {0, 1}n,

which Sim initializes as random and independent RPE-encoding of 0k, by computing
segmi ← Enc

(
0k
)

.
Sim additionally maintains N counters Cnt1, . . . ,CntN , initialize to 0, and N sets
I1, . . . , IN , initialized to ∅;

2. Sim answers each oracle query Q of V∗ as follows. Assume that Q is a query to the
j’th bit of the i’th segment (meaning Q queries the (i− 1)n + j’th bit of the proof);
(a) If Cnti < `, or Cnti ≥ ` + 1, then Sim answers with the j’th bit of segmi,

increases Cnti by 1, and adds j to Ii;
(b) Otherwise, Cnti = `, meaning V∗ has already queried ` bits from the encoding

in the i’th segment. In this case, Sim uses Sim′ to simulate the i’th symbol σi of
a proof of the underlying ZK-PCP system. Then, Sim resamples an encoding
of σi by computing segm′i ← Rec

(
σi, Ii, (segmi)|Ii

)
(this resamples a fresh

encoding of σi consistently with the oracle answers already simulated), sets
segmi := segm′i, and provides the j’th bit of segmi as the answer of the oracle.
Finally, it increases Cnti by 1.

We now prove that the simulated and real views of V∗ are ε-statistically close, using a
hybrid argument.

H0: This is the view of V∗ in the simulation described above;

H0
1: H0

1 is obtained from H0 by replacing the simulated answers of Sim′ with the actual
proof symbols of a proof π′ honestly generated by P ′.
ThenH0 andH0

1 are ε-statistically close by the (q∗, ε)-ZK of (P ′,V ′).
Indeed, since Sim′ is used to simulate the i’th proof symbol only when Cnti = `, i.e.,
only on the `+ 1 query to the i’th segment, and since q∗∗ = (q∗ + 1)(`+ 1)− 1, Sim′ is
only used to simulate at most q∗ symbols, and so the (adaptive) ZK of (P ,V) implies
that the simulated answers are ε-statistically close to the corresponding symbols in a
real proof π′.

Hi
1, 1 ≤ i ≤ N: Hi

1 is obtained fromHi−1
1 by replacing the simulated answers of Sim with

the actual bits in the i’th section of the proof π. (In particular, these are bits in random
RPE-encodings of π′1, . . . , π′N .)

ThenHi−1
1 andHi

1 are identically distributed by the `-secrecy or `-reconstruction of the RPE.

To see why this holds, we consider two cases depending on whether or not V∗ made
more than ` queries to the i’th segment. If V∗ made at most ` queries to the i’th
segment, then all queries inHi−1

1 were answered according to an RPE-encoding of 0k,
whereas all queries inHi

1 were answered according to an RPE-encoding of (the binary
representation of) π′i . The bits queried in the i’th segment (and consequently, also the
entire hybrids) are therefore identically distributed by the `-secrecy of the RPE.

If, on the other hand, V∗ made more than ` queries to the i’th segment, then the first `
queries inHi−1

1 were answered according to an RPE-encoding of 0k, and the remaining
queries were answered using a resampled encoding of (the binary representation of)
π′i , resampled consistently with the answers to the first ` queries; whereas inHi

1 all
queries to the i’th segment were answered according to a random encoding of (the
binary representation of) π′i . In this case, the distributions are identically distributed
by the `-reconstruction of the RPE.

We conclude the proof by noting that HN
1 is distributed identically to the real view

of V∗.

Remark 5 (ZK-PCPs from weaker primitives). We note that if one only requires that ZK hold
against malicious non-adaptive verifiers, then it suffices for the underlying ZK-PCP system over
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Σ to have ZK against non-adaptive verifiers. Additionally, the reduction can be instantiated with an
RPE in which secrecy and reconstruction hold statistically with some error ε′, in which case the
overall simulation error will be ε + ε′(N − q∗). We refer the interested reader to [40] for a proof of
these claims.

3.3. ZK-PCPs with Square-Root Gap
In this section we describe the

√
q∗-query q∗-ZK-PCPs of [13] (i.e., the system has

q∗-ZK with an honest verifier that makes
√

q∗ queries), which are obtained by appropriately
instantiating the building blocks of Construction 4. These are the only known PCPs to date
that have full-fledged ZK with a non-adaptive honest verifier. We first describe how we
instantiate the building blocks.
The Building Blocks. Hazay et al. [13] instantiate Construction 4 with a ZK-PCP of [15]
(using an improved soundness analysis given in [13]), and an RPE based on linear codes.

More specifically, the ZK-PCP over Σ is obtained using the “MPC-in-the-head” tech-
nique. It has perfect ZK against malicious verifiers querying at most a constant fraction
of proof symbols (for an a-priori bounded constant), where the honest verifier obtains a
negligible soundness error by non-adaptively querying only a square-root of the proof
symbols. We note that the original soundness analysis of [15] required the honest verifier
to make as many queries as a malicious verifier, but this analysis was recently improved
by [13].

Theorem 6 (Non-adaptive ZK-PCPs over large alphabets with
√

Q-gap, implicit in [15]).
For any L ∈ NP, any Q ≥ 3, and any input length n, there exists an alphabet Σ of size
|Σ| = 2poly(n,log Q) for which there exists a ZK-PCP for L over Σ, with negl(Q) soundness error
with a non-adaptive honest verifier that makes log Q ·

√
Q queries, proofs of length Q, and perfect

Ω(Q)-ZK.

The RPE that [13] uses is obtained by applying a general observation of [37,39]—
that the existence of linear codes implies the existence of RPEs—to the linear codes of
Decatur [41]. Specifically, Ball et al. ([37], Lemma 2) prove the following, where a code
C ⊆ {0, 1}n is linear if its encoding procedure simply multiplies the input with a public
generator matrix, and the distance of the code is minc∈C Ham(c, 0n) (i.e., the minimal weight
of a non-zero codeword):

Lemma 1 (RPEs from linear error-correcting codes [37]). If there exists a linear error-correcting
code C ⊆ {0, 1}n with messages in {0, 1}k and distance d, then there exists a (k, n, d− 1)-RPE.

To obtain an RPE with good parameters, we apply Lemma 1 to any explicit family of
linear codes with constant rate and constant relative distance. For example, we can use the
codes of ([41], Theorem 2.1), which already posses secrecy from partial views. (We note
that the construction of [41] relies on Toeplitz matrices of logarithmic size which generate
codes with good parameters. Such a matrix can be efficiently found by traversing all
these matrices by some pre-defined order, and using the first matrix satisfying the desired
properties.) In particular, we have

Corollary 1 (RPEs). For every message length k ∈ N, there exists a (k, O(k), Ω(k))-RPE.

A ZK-PCP with Square-Root Query Gap. With these building blocks in place, we are
ready to prove Theorem 3.

Proof of Theorem 3. We instantiate Theorem 5 with the ZK-PCP system of Theorem 6 and
the RPE of Corollary 1. We assume without loss of generality that q∗ ≥ n (where n is the
input length). Since we set Q below to be polynomially-related to q∗ (and consequently
also to n), there exists a constant c such that the PCP of Theorem 6 is over an alphabet of
size 2Qc

. Let α = 1/(c + 1), then we instantiate Theorem 6 with Q := (q∗)α, and set k = Qc

in Corollary 1. Then Theorem 5 guarantees that the resultant ZK-PCP has proofs of length
Q ·O(Qc) = O

(
Qc+1) = (q∗)α·(c+1) = O(q∗) with perfect ZK against (possibly malicious
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and adaptive) verifiers making Ω(Q) ·Ω(Qc) = Ω(q∗) queries, and a negl(Q) = negl(q∗)
soundness error with a non-adaptive honest verifier the query complexity of which is
log Q ·

√
Q ·O(Qc) = Õ

(
Qc+1/2

)
= Õ

(
(q∗)(c+1/2)/(c+1)

)
. The theorem now follows for

any ε which is larger than (c + 1/2)/(c + 1) (and for a sufficiently large q∗).

Theorem 3 allows one to choose the ZK query bound q∗. Hazay et al. [13] also give an
alternative formulation of Theorem 3, in which the square-root query gap obtained by the
ZK-PCP system is more clearly manifested.

Corollary 2 (ZK-PCP with
√

n query gap, Corollary 10 of [40]). There exists a constant c > 0
such that there exists ZK-PCP with perfect Ω

(
nc+1)-ZK, and negl(n) soundness error with an

honest verifier that non-adaptively queries Õ
(

nc+1/2
)

proof bits, where n denotes the input length.

Proof. We instantiate Theorem 5 with the ZK-PCP system of Theorem 6 and the RPE of
Corollary 1. Setting Q = n in Theorem 6, let c be a constant such that the PCP of theorem 5
is over an alphabet of size nc. We set k = nc in Corollary 1. Then Theorem 5 guarantees that
the resultant ZK-PCP has proofs of length n ·O(nc) = O

(
nc+1) with perfect ZK against

(possibly malicious and adaptive) verifiers making Ω(n) ·Ω(nc) = Ω
(
nc+1) queries, and a

negl(n) soundness error with a non-adaptive honest verifier the query complexity of which
is log n ·

√
n ·O(nc) = Õ

(
nc+1/2

)
.

4. The ZK-PCPs of Ishai et al.: ZK from LR Circuits
The main result of this section is a construction of witness-indistinguishable PCPs for

NP with a non-adaptive honest verifier and an exponential query gap (between the query
complexity of the honest and malicious verifiers), which was given in [8]:

Theorem 7 (WI-PCPs for NP, formal statement of Informal Theorem 2). Let n ∈ N be
an input length parameter. For any query bound q∗ = poly(n) there exists a non-adaptive
poly(log q∗, κ)-query (q∗, negl(q∗))-WI-PCP for NP with negl(κ) soundness error, where κ is a
statistical security parameter.

The WI-PCP system is constructed from leakage-resilient circuits. Historically, this
construction was presented before the ZK-PCPs of Section 3, and was the first to show a
connection between ZK-PCPs and leakage resilience. Moreover, it was the first construction
of PCPs with (relaxed) ZK against malicious verifiers with non-adaptive honest verification.
Compared to the ZK-PCPs of Section 3, the scheme we describe in this section has the
advantage of obtaining an exponential query gap: the scheme is ZK against q∗-query
bounded verifiers, but the honest verifier only needs to query polylog(q∗) proof bits to
verify the proof (setting κ = polylog(q∗)). However, the PCP system described in this
section obtains a weaker form of ZK called Witness Indistinguishability (WI) in which the
ZK simulator is not guaranteed to be efficient. The construction of Section 3 has the added
feature of being simpler.

The main building-block in the transformation of [8] are leakage-resilient circuits—a
stronger primitive than the leakage-resilient encodings used by [13]. Indeed, leakage-resilient
encodings only protect information, whereas leakage-resilient circuits protect computations.
Thus, while Hazay et al. [13] could only use leakage-resilient encodings to protect the
proof once it was already generated, Ishai et al. [8] employ leakage-resilient circuits to protect
proof generation itself. When used in the context of proof generation, these leakage-resilient
circuits in effect amplify leakage resilience: from a relatively low leakage bound on the
witness, to a much larger leakage bound on the entire computation. This amplification
results in an exponential query gap, which eluded the ZK-PCPs of Section 3.
High-Level Idea: Leakage-Resilient Proof Generation. The goal of the prover P is to
convince the verifier V that x ∈ L, where P has a corresponding witness w. Recall
from Section 1.1.2 that one way of doing so is to emulate the verification circuit C of the
corresponding NP-relationRL on (x, w), where V then checks that this computation was
performed correctly. Indeed, without loss of generality we can assume that RL has a
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canonical form in which the witness consists of the entire wire values of C. In particular, in
a PCP system the prover would generate the PCP from the entire wire values of C, which
we denote by [C, x, w]. While this might blatantly violate ZK (e.g., w itself is part of [C, x, w],
and the PCP might explicitly contain these wire values), the main observation of [8] is that
by querying few proof bits, V is leaking on a computation—namely, the evaluation of C on
(x, w). Therefore, one can use leakage-resilient circuits to guarantee that this leakage gives
V no information on the witness w (i.e., C’s input).

Concretely, one can first replace C with a leakage-resilient version Ĉ, then have V check
the computation performed in Ĉ. If V were reading directly from the wire values of Ĉ, then
we would need Ĉ to resist probing leakage (similar to Section 3). However, V is actually
probing bits in the PCP π, which was generated by applying the prover algorithm to the
wire values of Ĉ. Therefore, V obtains more evolved forms of leakage on these wire values,
and we thus need leakage resilience against a wider class of potential leakage functions.
Still, V cannot obtain any leakage that it wants on the wire values of Ĉ, but rather it is
restricted to whatever the prover computes on these wire values during proof generation.
In particular, by restricting the types of functions the prover applies to the wire values of
Ĉ, we can “control” the type of information which even a malicious verifier V∗ obtains on
the witness. (Indeed, V∗ can deviate from an honest verification strategy by choosing to
read different—and a larger number of—proof bits than the honest verifier, but cannot
affect the proofs generation itself.) This gives a general blueprint for transforming standard
PCPs into ZK-PCPs: the prover and verifier both hard-wire x into the verification circuit
C, to obtain a circuit Cx. Then, they generate the LR-version of it Ĉx, which operates on
encoded inputs (see Section 4.1 below). Then, P randomly encodes the witness w as ŵ, and
generates the PCP from the wire values

[
Ĉ, ŵ

]
. Finally, the verifier V runs the PCP verifier

to verify the proof.
Achieving Soundness. While (for an appropriate choice of the family of leakage functions)
the blueprint described above would indeed yield ZK proofs, they would not be sound.
The reason is that soundness of the original PCP relied on the fact that C(x, ·) is satisfiable
only if x ∈ L, i.e., there exists a corresponding witness w such that (x, w) ∈ RL. This,
however, is not preserved in the leakage-resilient version Ĉx of C(x, ·). In fact, in many (if
not all) existing constructions, Ĉx is necessarily satisfiable—leakage resilience relies on this
fact! To understand why this is the case, and how we can still achieve soundness, we need
to first take a closer look at how these LR constructions work.

4.1. Leakage-Resilient Circuit Compilers (LRCCs)
In this section we describe the main building block used in the ZK-PCPs of this section:

Leakage-Resilient Circuits Compilers (LRCCs). Compared to the LR encodings used in
Section 3, LRCCs offer a stronger LR guarantee: they protect computation rather than
information. More specifically, LRCCs are compilers which transform a given circuit C into
a functionally-equivalent circuit Ĉ, which is leakage resilient in the sense that leakage on
the wire values of Ĉ reveals no information on its input. Of course, this cannot be obtained
if the input of C is given to Ĉ in the clear, since then leakage on the wire values reveals
information about the input. Instead, the LRCC is associated with a (LR) encoding scheme,
which is used to encode the inputs to (and intermediate values in the computation of) the
LR circuit Ĉ.

We first define the circuit model which we use, then define circuit compilers, and
finally define leakage-resilient circuit compilers.
Circuit Model. An (arithmetic) circuit C over the field F and the set X = {x1, . . . , xn} of
variables is a directed acyclic graph the vertices of which are called gates and the edges of
which are called wires, and are labeled with functions over X. Every gate in C of in-degree 0
has out-degree 1 and is either an input gate labeled by a variable from X; or a constant gate
constα labeled by a constant α ∈ F. Gates of in-degree 2 and out-degree 1 are labeled by one
of the operations +,−,×, i.e., addition, subtraction, and multiplication over F. (Jumping
ahead, we will use an LRCC of [42], which employs additional gates, e.g., to duplicate
values in the circuit. Since we do not explicitly use these additional gates, we omit their
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description to simplify the presentation.) The size |C| of a circuit C is the sum of the number
of wires, input gates, and output gates, in C. The depth of C is the number of gates on
the longest path from inputs to outputs. We also consider Boolean circuits, with ∧,∨ gates
(replacing the +,−,× gates of arithmetic circuits), const0 and const1 gates, and ¬ gates with
in- and out-degree 1.

We define several circuit complexity classes, which restrict the size and depth of
Boolean and arithmetic circuits. Specifically,

Notation 4. SHALLOW(d, s) denotes the class of all depth-d, size-s arithmetic circuits over F.
Similarly, BOOL(d, s) denotes the class of all depth-d, size-s Boolean circuits. Somewhat abusing
notation, we use the same notations to denote the families of functions computable by circuits
in the respective class of circuits. AC0 denotes all constant-depth and polynomial-sized Boolean
circuits over unbounded fan-in and fan-out (i.e., in-degree and out-degree) ∧,∨,¬, const0 and
const1 gates.

Definition 10 (Satisfiable Circuits). A circuit C : Fn → F is satisfiable if there exists an x ∈ Fn

such that

C(x) =
{

1 C is Boolean
0 C is arithmetic

Circuit Compilers. We define the notion of a circuit compiler. Informally, it consists of an
encoding scheme and a compiler algorithm, that compiles a given circuit C into a circuit Ĉ
that emulates the operation of C over encoded inputs. Formally,

Definition 11 (Circuit compiler over F). A circuit compiler over F is a pair (Comp, (Enc,Dec))
such that the following holds:
• Syntax:

– (Enc,Dec) is an encoding scheme, where Enc is a PPT algorithm that on input a vector
x ∈ Fn, and an additional length parameter 1len (which is used to determine the amount
of random masks needed to protect the computation from leakage; see Definition 13),
outputs a vector x̂, and Dec is a polynomial-time algorithm; We assume that x̂ ∈ Fn̂ for
some n̂ = n̂(n, len).

– Comp is a polynomial-time algorithm that on input an arithmetic circuit C over F outputs
an arithmetic circuit Ĉ;

• correctness: For any arithmetic circuit C, and any input x for C, we have Pr
[
Ĉ(x̂) = C(x)

]
= 1,

where x̂ ← Enc
(

x, 1|C|
)

.

As discussed above, we will need circuit compilers that are also “sound” in the sense
that the compiled circuit Ĉ is satisfiable only if the original circuit C is satisfiable. We stress
that this property should hold even when the inputs of Ĉ are not valid encodings according
to Enc.

Definition 12 (SAT-respecting circuit compiler). A circuit compiler (Comp, (Enc,Dec)) is
SAT-respecting if for every circuit C : Fn → F, if Ĉ = Comp(C) is satisfiable then C is satisfiable.
That is,
• For arithmetic C: if there exists an x̂∗ ∈ Fn̂ such that Ĉ(x̂∗) = 0, then there exists an x ∈ Fn

such that C(x) = 0;
• For Boolean C: if there exists an x̂∗ ∈ {0, 1}n̂ such that Ĉ(x̂∗) = 1, then there exists an

x ∈ {0, 1}n such that C(x) = 1.

Leakage-Resilient Circuit Compilers. We now define Leakage-Resilient circuit compilers.
An LRCC is associated with a class LEAK of leakage functions, and guarantees that when
the input to Ĉ is properly encoded, then leakage from LEAK on the wire values of Ĉ
reveals no information about the input and internal computations, except for the output of
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Ĉ. This is formalized by requiring that the wire values are distributed statistically close for
every pair of inputs x, x′ such that C(x) = C(x′). We first set some notation.

Notation 5. For a Circuit C, a leakage function ` : F|C| → Fm for some m ∈ N, and an input x
for C, [C, x] denotes the wire values of C when evaluated on x, and `[C, x] denotes the output of `
on [C, x].

Definition 13 (LRCC). Let F be a finite field, LEAK be a function class, S(n) : N→ N be a size
function, and ε(n) : N → R+. A circuit compiler (Comp, (Enc,Dec)) is (LEAK, ε(n),S(n))-
leakage resilient if for all sufficiently large n’s, every arithmetic circuit C : Fn → Fm (for some
m) of size |C| ≤ S(n), every ` ∈ LEAK of input length

∣∣∣Ĉ∣∣∣, and every x, x′ ∈ Fn such that
C(x) = C(x′), we have

SD
(
`
[
Ĉ, x̂

]
, `
[
Ĉ, x̂′

])
≤ ε(n)

where x̂ ← Enc
(

x, 1|C|
)

and x̂′ ← Enc
(

x′, 1|C|
)

.
LRCCs for Boolean circuits are defined similarly.

A few remarks are in order. First, we note that the LR guarantee of Definition 13 is a
relaxed version of the standard notion. Specifically, while Definition 13 only guarantees
indistinguishability—namely, leakage functions cannot distinguish between the wire values
of Ĉ when evaluated on two different inputs (so long as C has the same output on both), the
standard definition (e.g., in [18,42–44]) is simulation-based. That is, the standard definition
requires the existence of a PPT simulator which, for every circuit C, every input x for C, and
any leakage function ` ∈ LEAK, can simulate the leakage on the wire values of Ĉ given
only the description of C and its output C(x). To see why this guarantee is stronger, notice
that if for some input x there exists no x′ such that C(x) = C(x′) then Definition 13 provides
no secrecy guarantee for x. Moreover, Definition 13 is equivalent to a slightly modified
version of the standard definition—specifically, in which there exists a simulator as specified
above, but it is not guaranteed to be efficient. Indeed, given C, C(x) the simulator could
find on its own an x′ such that C(x) = C(x′), then simulate the leakage by computing
`
[
Ĉ, x̂′

]
. We focus on the relaxed version because it captures the security guarantee which

we achieve (in fact, Ishai et al. [8] give strong indications that SAT-respecting LRCCs for
“useful” leakage, with the stronger LR guarantee with efficient simulation, do not exist—see
Section 1.2).

Second, we note that for simplicity, the error in Definitions 12 and 13 depends (only)
on the input length n. This can be naturally extended such that the error depends also on a
security parameter κ, which is given as input to Comp.
Gadget-Based LRCCs. A leading technique in constructing LRCCs — which is the one
employed in all LRCCs described in this work — is gadget-based. Such constructions employ
a double-layer of encoding, where the LRCC (Comp,E) is associated with an internal
encoding scheme

(
Encin,Decin

)
, and Comp outputs a circuit Ĉ in which the gates and wires

of the circuit C over F are replaced with gadgets and bundles. A bundle b is an encoding
(according to Encin) of some b ∈ F, representing the value of a wire in C; and a gadget Gg
is a (Boolean or arithmetic) circuit over F which operates over bundles and emulates the
operation of the corresponding gate g. More specifically, in addition to taking as input
bundle-encodings of g’s inputs, Gg has additional masking inputs. These masking inputs are
encodings (according to Encin) of some masking values in F∗ with a specific, pre-determined
structure (for example, in [42] a masking value is the all-0 string), which are used to obtain
LR. We associate with Gg a setWFg ⊂ F∗ (for Well-Formed) which consists of all encodings
of masking values with the “correct” structure. We say that the masking inputs of Gg
are well formed if they are in WFg (otherwise we say they are ill-formed). A gadget Gg
is guaranteed to emulate g when its inputs are valid encodings of inputs for g, and its
masking inputs are well-formed. For example, if g = ×, then for every x1, x2 ∈ F, for
every bundle encodings xi ← Encin(xi), i = 1, 2, and for every well-formed masking input
bundles m, Gg(x1, x2,m) encodes x1 × x2.
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Remark 8. We note that the double layer of encoding described above is implicit in most works on
leakage resilience. The reason is that, as described in Section 1.1.2, standard LRCCs in the literature
are described as randomized circuits that generate the needed randomness internally (sometimes,
using “opaque” gates which are assumed to be leak-free), whereas we describe the LR circuit as
deterministic, and provide the needed randomness as part of the input to the circuit. For this reason,
we need to explicitly use a double layer of encoding.

Leakage resilience of Ĉ will follow from a combination of the leakage resilience of
the internal encoding scheme Encin, and the following leakage-resilience guarantee of the
gadgets. If the masking inputs are uniformly distributed over Encin

(
WFg

)
, then given any

valid encodings as standard inputs to the gadget: (1) the outputs are random subject to
encoding the correct output (as determined by the standard inputs and the gate operation);
and (2) the internal wire values of G can be reconstructed (i.e., regenerated) in a low
complexity class, where the reconstructed and actual wire values are statistically close.

The masking inputs for all gadgets of Ĉ are provided as part of the inputs to Ĉ, using
the double-layered encoding, as we now explain. To simplify the description, we focus
on describing how this is performed for the LRCC of [42] (see Remark 9 below on how
the double-layered encoding extends to other LRCCs as well). In the LRCC of [42], the
masking values for all gates g are simply the all-0 string, and different gates only differ
in the length of the string (i.e., the number of 0’s). Let M denote the upper bound on the
number of masking values used by any gate g. Then E = (Enc,Dec) where Enc takes as
input an x ∈ F∗, and a size bound S, and outputs an encoding (x, m) = Encin

(
x, 0M·S

)
.

For a given a circuit C of size |C| ≤ S, its leakage-resilient version Ĉ = Comp(C) takes as
input encodings of the form (x, m), where x are the input bundles of Ĉ, and m are used
as the masking inputs of the gadgets of Ĉ. Since each gadget uses at most M encodings
from m, and Ĉ has at most S gadgets, m contains sufficiently-many encodings (according
to Encin) of 0 to enable the evaluation of all gadgets of Ĉ.

The computation in Ĉ is performed over encodings, so the outcome of this
computation — at least as it was described above — results in an encoding of the out-
put of C. Since Ĉ should have the same output as C, the final step in Ĉ consists of a decoder
which decodes the output.

Remark 9. We note that the double-layer encoding idea described above naturally extends to other
LRCCs as well. Indeed, all that is needed is that all gadgets use the same masking values (differing
only in the number of masking values they use). In fact, this idea can also be used if different
gadgets use different masking values, in which case m can include S sets of masking inputs, each
set containing masking inputs for every possible gate g, from which Ĉ can choose the appropriate
masking inputs for each gate. This will result in a correct and leakage resilient (albeit less efficient)
construction.

4.2. An SAT-Respecting LRCC for Arithmetic Circuits
In this section we describe a SAT-respecting LRCC of [8] for arithmetic circuits, which

is based on the LRCC of [42]. We first explain why the LRCC of [42] (and similar LRCCs)
are not SAT-respecting.
Why are standard LRCCs not SAT-Respecting? Recall that an LRCC is SAT-respecting
if for every circuit C, the following holds: if its leakage-resilient variant Ĉ is satisfiable,
then so is C. This is not the case for many LRCCs, and specifically for gadget-based ones
such as [42–44]. Indeed, in such LRCCs, the correctness of the computation relies on the
assumption that the masking inputs of the gadgets are well-formed. However, Ĉ does
not necessarily emulate C if its masking inputs are ill-formed. In fact, in these LRCCs one
can force the output of Ĉ to be any desired value by appropriately choosing the masking
values. This property is crucial for leakage resilience, since the security proof uses such
ill-formed masking inputs to switch the input from x to a different x′. Therefore, the main
challenge in obtaining the SAT-respecting property is to guarantee that the masking inputs
are well-formed while still allowing the security reduction to use ill-formed masking inputs.
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Before describing how this is done, we make two comments. First, recall that (as noted
above) in the leakage-resilience literature the masking inputs are usually assumed to be
generated by leak-free components, or opaque gates. In particular, the outputs of these
components are guaranteed to be distributed according to the correct distribution (i.e., be
well-formed), and their internal wires are unavailable to the leakage function. To eliminate
this trust assumption, we instead have these encodings provided as part of the input, and
check their validity to achieve the SAT-respecting property. Second, we note that the LRCC
of [18] does posses the property that Ĉ is satisfiable only if C is, but this LRCC only resists
AC0 leakage [45], a leakage class which does not seem sufficiently strong to contain the
function one needs to apply to an NP-witness to obtain a PCP.
Checking Validity of Encodings While Preserving Leakage Resilience. The main techni-
cal ingredient in the SAT-respecting LRCC of [8] is their component which checks well-
formedness of encodings in a leakage-resilient manner. The technique is reminiscent of the
“2-key trick” of [46] (used to convert a CPA-secure encryption scheme into a CCA-secure
one) where they hold two copies of C, and in the security reduction one of the copies is
used to achieve the SAT-respecting property, whereas the other is used to obtain leakage re-
silience. This component is tailored to the LRCC of [42], exploiting the fact that well-formed
masking inputs of [42] are simply encodings of the all-0 string.

More specifically, the SAT-respecting LRCC of [8] consists of 3 parts. The first is two
copies Ĉ1, Ĉ2 of the circuit Ĉ, obtained using the LRCC of [42]. The second is a mask-
checking component C0−check, which checks that at least one of the copies Ĉ1, Ĉ2 uses
well-formed masking inputs. The important point is that, for the security proof to go
through, C0−check must hide which of the copies uses well-formed masking inputs. (This is
because in the security proof first Ĉ1 and then Ĉ2 use ill-formed masking inputs; for the
hybrids to be indistinguishable it must be the case that one cannot distinguish between
the two cases.) As it turns out, this can be achieved by replacing C0−check with its leakage-
resilient version Ĉ0−check (obtained using the LRCC of [42]). This now introduces a further
complication since Ĉ0−check has masking inputs of its own, the well-formedness of which
must be verified. Indeed, if Ĉ0−check is allowed to use any masking inputs, then it is no
longer guaranteed to emulate C0−check. In particular, by using ill-formed masking inputs in
Ĉ0−check one can flip its output, thus causing it to accept even when the masking inputs of
both Ĉ1, Ĉ2 are ill-formed, rendering the Ĉ0−check component completely useless. The third
component—a mask decoder Cdec—is used to guarantee that Ĉ0−check uses well-formed
masking inputs. Using a double-layer of mask checking (i.e., checking the masks of Ĉ1, Ĉ2,
and then checking the masks of the mask-checker) is helpful because the computations
in Ĉ0−check are not directly related to the inputs of Ĉ1, Ĉ2. As such, the masking inputs of
Ĉ0−check can be checked directly by simply decoding them (and checking that all decoded
values are 0) without violating LR. We now formally describe each of the components, and
the resultant SAT-respecting LRCC.
The Mask Checker Ĉ0−check. The mask checker verifies that at least one of the copies Ĉ1, Ĉ2
uses well-formed masking inputs, while hiding which one. Recall that in the LRCC of [42]
well-formed masking inputs are encodings of the all-0 string. Thus, if ~m1,~m2 denote the
masking values whose encodings are used in Ĉ1, Ĉ2, it suffices to check that m1

j ×m2
l = 0

for every j, l. (We note that this check assumes that any masking input is a valid encoding
— according to Encin — of some masking value, namely that the internal encoding scheme is
onto. This is indeed the case for the internal encoding scheme used in [42].) We construct
C0−check in two stages. We first describe a “binarization” component T which checks that a
given field element is 0, then use it to construct C0−check.

Notation 6 (“Binarization” component T ). T : F→ F is defined as T (z) = −∏0 6=a∈F (z− a),
computed using O(|F|) constant and × gates arranged in O(log|F|) layers. Notice that

T (z) =
{

1 if z = 0
0 if z 6= 0.
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Notation 7 (Mask Checker C0−check). Let M ∈ N. The mask checker C0−check : FM × FM → F
is defined as follows. C0−check(y, z) = ∏i,j∈[M] T

(
yi × zj

)
, computed using a multiplication

tree of size O
(
M2) and depth O(logM) (on top of the multiplication trees used to compute T ).

Notice that

C0−check(y, z) = 1⇔ T
(
yi, zj

)
= 1 ∀i, j ∈ [M]⇔ y = 0M ∨ z = 0M.

The mask decoder Cdec. As noted above, the mask decoder simply decodes the masking
inputs used in Ĉ0−check, and checks that all decoded values are 0. Decoding is performed
using the decoder Decin of the internal encoding procedure of [42]. We note that this
encoding procedure is linear, and so decoding is performed simply by computing the inner
product of the input encoding with some fixed vector (e.g., the all-1 vector). In particular,
for each encoding length n̂, the corresponding decoding circuit Decin can be implemented
using O(n̂) gates arranged in O(log n̂) layers.

Notation 8 (Mask Decoder Cdec). Let M0 ∈ N, and let n̂ denote the encoding length of(
Encin,Decin

)
. The mask decoder Cdec :

(
Fn̂
)M0 → F, on input r =

(
r1, . . . , rM0

)
(where

ri ∈ Fn̂ for every 1 ≤ i ≤ M0) outputs ∏i∈[M0] T
(
Decin(ri)

)
. Notice that Cdec outputs 1 if and

only if all ri’s are well-formed, otherwise it outputs 0. Cdec is computed using O(M0)-many ×
gates, arranged in a tree of depth O(logM0) (on top of the sub-circuits T ◦Decin).

The SAT-Respecting LRCC. Having defined the three components of the SAT-respecting
LRCC, we are now ready to describe the compiler itself, which is given in Figure 2.

The following claim summarizes the properties of Construction 11. Roughly, it states
that if the internal encoding scheme used in Construction 11 is leakage resilient against a
leakage family LEAKE, then Construction 11 is an SAT-respecting LRCC against a slightly
weaker leakage family LEAK. Formally,

Claim 10 (SAT-respecting LRCC over F). Let LEAK,LEAKE be families of functions, S(n) :
N → N be a size function, and ε(n) : N → R+. Let Ein =

(
Encin,Decin

)
be a linear, onto,

(LEAKE, ε(n))-leakage-resilient encoding scheme with parameters n, σ and n̂ = n̂(n, σ), such
that LEAKE = LEAK ◦ SHALLOW

(
7, O

(
n̂4(1, S(n)) · S(n)

))
. Then, there exists an SAT-

respecting, (LEAK, 4ε(n) · (n̂(1,S(n)) + 1) · S(n),S(n))-LRCC over F. Moreover, for every
C : Fn → F, the compiled circuit Ĉ has size

∣∣∣Ĉ∣∣∣ = O
(
|F|2 · n̂4(1, S(n)) · |C|2

)
.

Proof. The SAT-respecting property follows from Lemma 2. The leakage resilience prop-
erty follows from Lemma 3. As for the size

∣∣∣Ĉ∣∣∣ of the leakage-resilient version Ĉ of C, in

each of the copies Ĉ1, Ĉ2 each gate is replaced with a size-O
(
n̂2(1, S(n))

)
gadget (this is the

size of gadgets generated by Comp?, see Fact 12 below), So
∣∣∣Ĉ1

∣∣∣, ∣∣∣Ĉ2

∣∣∣ ≤ O
(
n̂2(1,S(n)) · |C|

)
.

Since each gadget uses at most O(n̂(1, S(n))) masking inputs (see Fact 12 below), then
C0−check contains O

(
n̂2(1, S(n)) · |C|2

)
“binarization” components T , each of size at most

O(|F|), arranged in a tree with O
(

n̂2(1,S(n)) · |C|2
)

multiplications, so |C0−check| ≤

O
(
|F| · n̂2(1,S(n)) · |C|2

)
, and consequently

∣∣∣Ĉ0−check

∣∣∣ ≤ O
(
|F| · n̂4(1, S(n)) · |C|2

)
. Fi-

nally, Cdec contains a decoding sub-circuit for each of the O(n̂(1,S(n))) masking in-
puts used in the O

(
|F| · n̂2(1,S(n)) · |C|2

)
gadgets of Ĉ0−check. Because E is linear, each

of these decoding sub-circuits consists of n̂(1,S(n)) × gates followed by n̂(1, S(n)) +
gates. In addition, Cdec contains a “binarization” component T of size O(|F|) for
each decoding sub-circuit, followed by O

(
|F| · n̂3(1,S(n)) · |C|2

)
× gates, so overall

|Cdec| ≤ O
(
|F|2 · n̂3(1,S(n)) · |C|2

)
.
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The proof of Claim 10 used the following fact regarding the LRCC of [42].

Construction 11 (SAT-Respecting LRCC). Let σ be a security parameter, and
M = M(σ),M0 = M0(σ) : N → N (the value of these parameters will be set
in Remark 11 below). Let (Comp?, (Enc?,Dec?)) denote the LRCC of [42], and let(
Encin : Fn × {1}∗ → Fn̂in(n,σ),Decin

)
denote the internal encoding scheme which it em-

ploys.
The SAT-respecting LRCC (Comp,E = (Enc,Dec)) is defined as follows.

The Encoding Scheme. Enc : Fn × {1}∗ → F2n̂in+2M̂+2M̂0 on input x, 1σ outputs an
encoding (x̂1, x̂2), where x̂i ← Encin

((
x, 0M+M0

)
, 1σ
)

, and n̂in, M̂, M̂0 denote the lengths of
encodings of messages of length m,M,M0, respectively. Dec on input (x̂1, x̂2), 1σ computes
Decin(x̂1, 1σ), and discards the last M+M0 field elements. We use n̂ = n̂(n, σ) to denote the
length of encodings output by Enc. For (x̂1, x̂2)← Enc(x, 1σ), we interpret x̂i =

(
x̂ini , ri, ri,0),

where x̂ini encodes x, and ri, ri,0 encode 0M, 0M0 , respectively. (We note that r2,0 is not used by
the leakage-resilient circuit, but is included in x̂2 because the same internal encoding scheme
Encin is used to generate both x̂1 and x̂2.)

The Compiler Comp. On input a circuit C : Fn → F, the compiler Comp outputs the circuit
Ĉ : Fn̂(n,|C|) → F that on input

(
x̂in1 , r1, r1,0), (x̂in2 , r2, r2,0) operates as follows.

• Let C1 = C2 = C denote two copies of C, let Ĉi = Comp?(Ci) for i = 1, 2, and
Ĉ0−check = Comp?(C0−check).

• Ĉ computes

f := T
(

Ĉ1

(
x̂in1 , r1

)
− Ĉ2

(
x̂in2 , r2

))
× Ĉ0−check

((
r1, r2

)
, r1,0

)
× Cdec

(
r1,0
)

.

(Notice that f = 1 if and only if (1) Ĉ1
(

x̂in1 , r1) = Ĉ2
(

x̂in2 , r2), and (2) the masking inputs
used in at least one of them, as well as in Ĉ0−check, are well-formed. Otherwise, f = 0.)

• Ĉ outputs(
1− f

((
x̂in1 , r1, r1,0

)
,
(

x̂in2 , r2, r2,0
)))

+ f
((

x̂in1 , r1, r1,0
)

,
(

x̂in2 , r2, r2,0
))
· Ĉ1

(
x̂in1 , r1

)
(Notice that the output is Ĉ1

(
x̂in1 , r1, r1,0) if f = 1, otherwise it is 1.)

Figure 2. SAT-Respecting LRCC [8].

Remark 11 (Setting the parameters). Let M? = M?(σ) denote the maximal number of masking
inputs used in a gadget of Comp?, and S0(M

′) denote the size of C0−check on inputs of length M′.
Then M(σ) = σ ·M? and M0(σ) = M? · S0(M) = M? · S0(σ ·M?).

Fact 12. Each gadget generated by the LRCC (Comp?,E?) of [42] has size at most O
(
n̂2(1,S(n))

)
,

and uses at most O(n̂(1, S(n))) masking inputs.

Lemma 2. If Ein is linear and onto, then Construction 11 is SAT-respecting.

Proof. Assume that Ĉ(x̂) = 0 for some x̂ ∈ Fn̂, and denote x̂ =
((

x̂∗1 , r1, r1,0), (x̂∗2 , r2, r2,0)).
We show that there exists an x ∈ Fn such that C(x) = 0. Since Ĉ(x̂) = 0 then by the
definition of Ĉ, we have (1) f = 1, and (2) Ĉ1

(
x̂∗1 , r1) = 0. By (1), Ĉ1

(
x̂∗1 , r1) = Ĉ2

(
x̂∗2 , r2), and

Cdec, C0−check output 1. Notation 8 then guarantees that r1,0 is well-formed which—by the
correctness of Comp?—guarantees that Ĉ0−check emulates C0−check. (Here, we also use the
fact that Cdec is independent of all other components of, and inputs to, Ĉ.) Moreover, since
the encoding scheme is onto then r1, r2 define inputs to C0−check which cause it to output
1(because Ĉ0−check outputs 1, and its masking inputs are well-formed). Notation 7 then
guarantees that at least one of r1, r2 is well-formed. Assuming (without loss of generality)
that r1 is well-formed, then the correctness of Comp? guarantees that Ĉ1 emulates C, so
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0 = Ĉ1
(

x̂∗1 , r1) = C(x), where x ∈ Fn is obtained by computing x = Decin
(

x̂∗1
)

(x is
well-defined because Ein is onto).

Lemma 3. If Ein is (LEAKE, ε(n))-leakage resilient, then for every function class LEAK such
that LEAK ◦ SHALLOW

(
7, O

(
n̂5(S(n)) · S(n)

))
⊆ LEAKE, every circuit C : Fn → F

of size |C| ≤ S(n), and every x, y ∈ Fn such that C(x) = C(y), it holds that
[
Ĉ, x̂

]
and[

Ĉ, ŷ
]

are (LEAK, 4ε(n) · (n̂(1,S(n)) + 1) · S(n))-leakage resilient, where x̂ ← Enc
(

x, 1|C|
)

and ŷ← Enc
(

y, 1|C|
)

.

Proof of Lemma 3
In this section we prove the leakage-resilience property of Construction 11. The

analysis follows a (by now standard) proof paradigm for gadget-based LRCCs, but is
more complex (compared to, e.g., the analysis in [42]) because of the mask-checker and
mask-decoder components.
High-Level Description of the Leakage-Resilience Argument. Recall that the goal is to
prove that leakage functions in some leakage class LEAK cannot distinguish between
the wire values of Ĉ when evaluated on (encodings of) two different inputs x, y. This is
achieved by reduction to the leakage resilience of the underlying encoding scheme E against
leakage classes in a somewhat larger leakage class LEAKE. The wire bundles of Ĉ are
divided into two sets: internal bundles that are part of the internal computations in a gadget,
and external bundles that connect two gadgets. The proof uses a hybrid argument in which
we first replace all the internal bundles from carrying the real encodings to “simulated”
encodings, and then replace all external bundles from encodings of the real values to
encodings of random values. We then prove leakage resilience by showing that each pair
of adjacent hybrids are computationally indistinguishable.

More specifically, consider two hybrid distributionsH,H′ in which we replace some
external bundle i. Proving that H ≈ H′ is by reduction to the leakage resilience of the
underlying encoding scheme, where we show that if H and H′ are distinguishable by a
function ` ∈ LEAK, then there exists a function `E ∈ LEAKE that can distinguish between
encodings of two different values v, v′. The idea is that given an encoding e of either v
or v′, `E would use e to generate the entire hybrid distribution (which would be either H
or H′, depending on whether e encodes v or v′, respectively), then evaluate `. It turns
out that the only wires ofH,H′ that depend on e are the internal wire bundles of the (at
most two) gadgets that “touch” bundle i, in the sense that bundle i is either an input or
output bundle of the gadget. Thus, while all other wire bundles can be hard-wired into
`E, it would still need to generate the internal wire bundles of the gadget(s) that touch
bundle i. In particular, the computational complexity of `E would be higher than that of `,
which causes a loss in leakage resilience. It is therefore imperative that the internal wire
values of the gadgets could be generated from their inputs and outputs by a function in
a low complexity class. These functions are called local reconstructors. The crucial point
here is that the local reconstructor is given not only the gadget’s inputs, but also its outputs
(otherwise, it would be impossible to generate the internal wires in a low complexity class,
because some of the gadgets perform complex computations). Before delving deeper into
the details of the analysis, we first set the needed terminology regarding gadgets and their
local reconstructors.
Properties of Gadgets. The analysis will use two properties of gadgets. The first is local
reconstructibility: for every pair of “legal” input and output encodings, the internal wires
of the gadget (as determined by the input-output pair, and its masking inputs), can be
simulated in a low complexity class.

Definition 14 (Local reconstructibility). Let G be a gadget andWF denote its set of well-formed
masking inputs. A pair (x, y) of encodings is plausible for G if G(x,m) = y for some m ∈ WF .
For ε > 0, and families LEAK,FG of functions, G is (LEAK, ε)-reconstructible by FG if the
following holds. There exists a distribution REC over functions rec such that:
• Supp(REC) ⊆ FG .
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• rec takes as input G’s inputs and output, and simulates the masking inputs, and internal wires,
of G.

• The following distributions are (LEAK, ε)-leakage resilient for any plausible pair (x, y) for
G: (1) rec(x, y) for rec← REC; and (2) the actual distribution of the wires of G (as determined
by the distribution of the masking inputs), conditioned on x, y.

We will need the following result of [42] which shows that all gadgets in their
LRCC (Comp?,E?) are locally reconstructible in a low complexity class. (We note that
Faust et al. [42] actually prove a stronger result, where some of the gadgets have local
reconstructors in lower complexity classes than the one stated here, and indistinguishabil-
ity holds regardless of the leakage resilience of E. For clarity reasons, we chose to give a
simplified and weaker version of their results which nonetheless suffices for our needs).

Lemma 4 (Gadgets are locally reconstructible [42]). Let σ ∈ N be a security parameter,
let n : N × N → N be a length parameter, let ε(n) : N → R+, and let LEAK,LEAKE
be families of functions such that LEAKE = LEAK ◦ SHALLOW(3, O(n̂(1, σ))). Let
(Comp?,E?) denote the LRCC of [42], and let Ein denote the internal encoding scheme which
it uses. If Ein is (LEAKE, ε(n))-leakage resilient, then all gadgets used in (Comp?,E?) are
(LEAK, n̂(1, σ) · ε(n))-reconstructible by SHALLOW

(
2, O

(
n̂2(1, σ)

))
.

The second property is that gadgets are re-randomizing in the sense that the encodings
at the output of each gadget are uniform subject to encoding the “correct” value. Formally,

Definition 15 (Gadget Re-Randomization). A gadget G with setWF of well-formed masking
inputs is re-randomizing if for every standard input x = Enc(x), when the masking input is
sampled m←WF then G(x,m) is random subject to encoding the correct output (as determined
by x, and the gate which G emulates).

The Hybrid Argument. Let C : Fn → F be an arithmetic circuit of size |C| ≤ S(n), and let
x, y ∈ Fn. We show that for every ` ∈ LEAK,

SD
(
`
[
Ĉ, x̂

]
, `
[
Ĉ, ŷ

])
≤ ε′(n)

where ε′(n) := 4ε(n) · (n̂(1, S(n)) + 1) · S(n). We bound the statistical distance using a
hybrid argument. We define:

Hx :=
([

Ĉ1, x̂1, r1
]
,
[
Ĉ2, x̂2, r2

]
,
[
Ĉ0−check, r1, r2, r1,0

]
,
[
Cdec, r1,0

])
Hy :=

([
Ĉ1, ŷ1, r1

]
,
[
Ĉ2, ŷ2, r2

]
,
[
Ĉ0−check, r1, r2, r1,0

]
,
[
Cdec, r1,0

])
Hy,x :=

([
Ĉ1, ŷ1, r1

]
,
[
Ĉ2, x̂2, r2

]
,
[
Ĉ0−check, r1, r2, r1,0

]
,
[
Cdec, r1,0

])
and notice thatHx are the wire values of Ĉ on input an encoding of x,Hy are the wire values
of Ĉ on input an encoding of y, and Hy,x is a hybrid distribution, consisting of the wire
values of Ĉ when the first copy Ĉ1 has input (an encoding according to Encin) of x, whereas
the second copy Ĉ2 has input (an encoding according to Encin) of y. We note thatHy,x is only
used in the proof—it is never obtained in an actual evaluation of Ĉ. The proof proceeds by
showing that for every ` ∈ LEAK, SD(`(Hx), `(Hy,x)) and SD(`(Hy,x), `(Hy)) are upper
bounded by 2ε(n) · (n̂(1,S(n)) + 1) · S(n), through a sequence of hybrids.
Bounding SD(`(Hx), `(Hy,x)) for a leakage function `. The difference between these
distributions is that in Hx both copies Ĉ1, Ĉ2 of (the leakage-resilient version of) C are
evaluated on input x, whereas inHy,x the first is evaluated on y (and the second on x). We
bound the statistical distance through a sequence of hybrids, defined as follows.

Hx
in: this hybrid distribution replaces the internal wires of gadgets, and is obtained by:

(1) evaluating Ĉ honestly on x̂ ← Enc
(

x, 1|C|
)

; (2) picking local reconstructors for
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all gadgets of Ĉ1 (such reconstructors exist by Lemma 4), and re-computing their
internal wires using these reconstructors; and (3) re-evaluating Ĉ0−check on the new
masking inputs generated for the gadgets of Ĉ1, by re-computing the internal wires
of all gadgets G ′ of Ĉ0−check, the inputs of which are masking inputs used in gadgets
of Ĉ1—but without changing the masking inputs these G ′ gadgets use, or their
outputs. Lemma 5 below shows that this is indeed possible. (Crucially, since re-
evaluating Ĉ0−check does not influence its masking inputs, this does not influence the
computation in Cdec, so there is no need to re-evaluate it.)

Hx
ext: this distribution replaces the external wires (i.e., wires connecting gadgets), and is

obtained as follows:

• Generating the wires of Ĉ2: encode x̂ =
((

x̂1, r1, r1,0), (x̂2, r2, r2,0))← Enc
(

x, 1|C|
)

,

and honestly evaluate Ĉ2 on x̂2 with masking inputs r2.
• Generating the wires of Ĉ1: pick a random encoding out← Encin

(
1, 1|C|

)
for the

output of Ĉ1, and honestly compute the wires of the output decoder of Ĉ1. (As
discussed in Section 4.1, Ĉ1 contains an output decoder, which is needed because
the computations in Ĉ1 are performed over encodings.) Then, pick a random
input z ∈R Fn for Ĉ1 and encode ẑ1 ← Encin

(
z, 1|C|

)
. Next, pick random

encodings (according to Encin) for the outputs of all gadgets (except the gadgets
the outputs of which are the inputs of the output decoder, since the outputs of
these gadgets have already been fixed). This effectively determines the standard
inputs, and outputs, of all gadgets of Ĉ1. Next, pick local reconstructors for
all gadgets of Ĉ1, and use them to compute the internal wires of the gadgets.
The reconstructors determine the (possibly ill-formed) masking inputs of the
gadgets, which we denote by r1′. r1′ together with r2 form the standard inputs
of Ĉ0−check.

• Generating the wires of Ĉ0−check: Evaluates Ĉ0−check on r1′, r2, with masking
inputs r1,0.

• Generating the wires of Cdec: Evaluate Cdec on r1,0.
• Use the outputs of Ĉ1, Ĉ2, Ĉ0−check, Cdec to generate the flag f, and the output

of Ĉ.
• Hx

ext consists of the concatenation of all these wire values.

Hy,x
ext: this hybrid is generated similarly to Hx

ext, except that instead of evaluating Ĉ on
an encoding of x, we use the internal encoding scheme to generate encodings of(
ŷ1, r1, r1,0) and

(
x̂2, r2, r2,0) (where ŷ1, x̂2 encode y, x, respectively), and use them as

inputs to Ĉ1, Ĉ2, respectively.

Hy,x
in : this hybrid is generated similarly toHx

in, except that instead of evaluating Ĉ on an
encoding of x, we use

(
ŷ1, r1, r1,0) and

(
x̂2, r2, r2,0) as inputs to Ĉ1, Ĉ2, respectively.

We now bound the statistical distance between the outputs of leakage functions on
each pair of adjacent hybrids. The following notation will be useful.

Notation 9. We say that a gadget G ′ of Ĉ0−check is connected to a gadget G1 Ĉ1 (alternatively, a
gadget G2 of Ĉ2) if an input of G ′ is a masking input of G1 (alternatively, G2).

Bounding SD
(
`(Hx), `

(
Hx

in

))
: we show that SD

(
`(Hx), `

(
Hx

in

))
≤ ε(n) · n̂(1,S(n)) ·

S(n) for all ` ∈ LEAK′ such that LEAK′ ◦ SHALLOW
(
5, O

(
n̂5(1, S(n)) · S(n)

))
⊆

LEAKE. We use a hybrid argument, replacing the internal wires of the M ≤ S(n) gadgets
of Ĉ1 one at a time. We define hybridsH0, . . . ,HM whereHi is obtained by evaluating Ĉ
on (an encoding of) x, then recomputing the internal wires of the first i gadgets of Ĉ1 using
their local reconstructors. Additionally, we recompute the internal wires of gadgets G ′
of Ĉ0−check connected to one of these i gadgets, but without changing the masking inputs
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of G ′ (this is possible by Lemma 5 below). Then H0 = Hx,HM = Hx
in. To show that

SD
(
`(Hx), `

(
Hx

in

))
≤ ε(n) · n̂(1, S(n)) · S(n) for all ` ∈ LEAK′, we show that for every

m ∈ [M], and any ` ∈ LEAK′, it holds that SD(`(Hm), `(Hm−1)) ≤ ε(n) · n̂(1, S(n)). De-
note the m’th gadget by G. We use Lemma 4 to show that this follows from the leakage
resilience of the internal encoding scheme Ein. For this, we will need to generate—in a
low complexity class—the entire hybrid distributions given only the (either real or recon-
structed) internal wires of G. The problem is that since the internal wires of G contain also
its masking inputs, changing them affects also computations in Ĉ0−check. The following
lemma from [8] states that the influence of modifying the masking inputs of G can be
blocked, specifically: (1) that it only affects the internal wires of gadgets G ′ of Ĉ0−check
connected to G, and more importantly (2) these internal wire values can be reconstructed
without changing the masking inputs used in G ′.

Lemma 5 (Restating of Lemma 3.13 of [47]). Let G ′ be a gadget of Ĉ0−check connected to gadgets
of Ĉ1, Ĉ2. Then for any fixed well-formed inputs r1, r2 from gadgets of Ĉ1, Ĉ2 (respectively), and
any fixed well-formed masking inputs m for G ′, the following holds. For any r1′, the internal wires
of G ′ on input r1′, r2,m can be computed in SHALLOW

(
2, O

(
n̂2(1,S(n))

))
given r1′ and the

output out of G ′ when evaluated on input r1, r2 and masking inputs m.

Using an averaging argument, we can fix all wires of Ĉ2, and all wires of Ĉ1 except
the internal wires of G (its input and output wires can be fixed). Lemma 5 (which can be
used because Ĉ2 and Ĉ0−check use well-formed masking inputs) shows that we can further
fix all wires of Ĉ0−check and Cdec, except for the internal wires of all gadgets G ′ of Ĉ0−check
connected to G (crucially, the masking inputs of these gadgets can be fixed).

Consequently, given the wire values of G (either the real values WR, or the re-
constructed wires WS), we can generate the entire hybrid distribution (either Hm−1 or
Hm, respectively) in SHALLOW

(
2, O

(
n̂5(1,S(n)) · S(n)

))
by recomputing the internal

wires of each of the (at most) O
(
n̂3(1, S(n)) · S(n)

)
gadgets of Ĉ0−check connected to

G. (Here, we use Fact 12—G uses at most n̂(1, S(n)) masking inputs; Ĉ2 has at most
O(n̂(1,S(n)) · S(n)) gadgets, each using at most n̂(1,S(n)) masking inputs; and each
masking input of G is connected to every masking input used in Ĉ2.) Using Lemma 5,
the internal wires of each G ′ can be computed in SHALLOW

(
2, O

(
n̂2(1, S(n))

))
, and

all these computations can be performed in parallel. Therefore, the hybrid distribu-
tions can be generated in SHALLOW

(
2, O

(
n̂5(1, S(n))

)
· S(n)

)
. By the assumption of

Claim 10, Ein is (LEAKE, ε(n))-leakage resilient, which by Lemma 4 implies thatWR,WS
are (LEAK′′, ε(n) · n̂(1,S(n)))-leakage resilient for any class LEAK′′ of leakage func-
tions such that LEAK′′ ◦ SHALLOW(3, O(n̂(1,S(n)))) ⊆ LEAKE. We now claim that
Hm−1,Hm are (LEAK′, ε(n) · n̂(1,S(n)))-leakage resilient for every family LEAK′ of leak-
age functions such that LEAK′ ◦ SHALLOW

(
2, O

(
n̂5(1, S(n)) · S(n)

))
⊆ LEAK′′, i.e.,

for any LEAK′ such that LEAK′ ◦ SHALLOW
(
5, O

(
n̂5(1,S(n)) · S(n)

))
⊆ LEAKE. In-

deed, this follows from the following lemma of [42] (by choosing F to be a singleton
containing the function described above which generatesHm−1,Hm fromWR,WS).

Lemma 6 ([42]). Let n ∈ N, letWR,WS be distributions over Fn, let LEAK,F be families of
functions, and let ε > 0. Let D be a distribution over functions in F of input length n. For
f ← D, letW ′R := f (WR),W ′S := f (WS). IfWR,WS are (LEAK, ε)-leakage resilient, then
W ′R,W ′S are (LEAK′, ε)-leakage resilient for any family LEAK′ of leakage functions such that
LEAK′ ◦ F ⊆ LEAK.

Using Lemma 6, for any ` ∈ LEAK′ we have

SD(`(Hm), `(Hm−1)) = SD(`(WS), `(WR)) ≤ ε(n) · n̂(1,S(n)).

Bounding SD
(
`(Hx

ext), `
(
Hx

in

))
: We show that SD

(
`(Hx

ext), `
(
Hx

in

))
≤ ε(n) · S(n) for

all ` ∈ LEAK′ such that LEAK′ ◦ SHALLOW
(
4, O

(
n̂4(1, S(n)) · S(n)

))
⊆ LEAKE. We

again use a hybrid argument, this time replacing the M ≤ S(n) inputs bundles of Ĉ1 (i.e.,
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bundles corresponding to input wires of C), and bundles at the output of gadgets of Ĉ1
(except for bundles that are used as input of the output decoder of Ĉ1). We define hybrids
H0, . . . ,HM, whereHi is generated as follows. We evaluate Ĉ on a random encoding of x.
Then, we replace the first i bundles with random encodings of random values, except if one
of these bundles corresponds to the output wire of C, in which case we replace it with a
random encoding of 1. Finally, we recompute the internal wires of the gadgets of Ĉ1 using
their gadget reconstructors (Lemma 4), and recompute (using Lemma 5) the internal wires
(except the masking inputs and outputs) of all gadgets G ′ of Ĉ0−check connected to one of
these gadgets. In particular, since the inputs of Ĉ0−check contain also masking inputs used in
gadgets of Ĉ1, this re-computation of wires of Ĉ0−check uses the masking inputs generated
by the reconstructors (for any gadget of Ĉ1 whose internal wires were re-constructed). Then
H0 = Hx

in andHM = Hx
ext. Therefore, to prove that SD

(
`(Hx

ext), `
(
Hx

in

))
≤ ε(n) · S(n) for

all ` ∈ LEAK′, it suffices to prove that SD(`(Hm), `(Hm−1)) ≤ ε(n) for all m ∈ [M]. Let
Go (Gi) denote the gadget the output (input) of which is the m’th bundle. (If the m’th bundle
is an input bundle, then we consider only the gadget Gi.) Using an averaging argument,
we can fix all wires inHm,Hm−1 except for: the m’th bundle; the masking inputs, outputs,
and internal wires of Go; the masking inputs, and internal wires, of Gi, as well as its input
wire corresponding to the m’th bundle; and the internal wires of all gadgets G ′ of Ĉ0−check
connected to Go or Gi (except for the masking inputs and the output of G ′, which can be
fixed, see Lemma 5).

Let b denote the value encoded by the m’th bundle in Hx
in. LetWR ← Encin

(
b, 1S(n)

)
,

and WS ← Encin
(

r, 1S(n)
)

for a random r (except when the m’th bundle corresponds

to the output wire of C, in which case we set WS ← Encin
(

1, 1S(n)
)

). Then WR,WS

are distributed identically to the m’th bundle in Hm−1,Hm, respectively. We define a
distributionF over SHALLOW

(
4, O

(
n̂4(1,S(n)) · S(n)

))
as follows. Sampling a function

f ← F is performed by sampling reco, reci from the distribution over reconstructors for
Go,Gi, respectively (see Definition 14). The function f has all the hard-wired values ofHm−1
hard-wired into it. On input e ∈ Fn̂(1,S(n)), f performs the following: (1) evaluates reco on
the (hard-wired) inputs of Go, and the output e (this reconstructs the masking inputs, and
internal wires, of Go); (2) evaluates reci on e as one of the inputs, and the other (hard-wired)
input and output of Gi; and finally (3) for every gadget G ′ of Ĉ0−check connected to Go or
Gi, generates its internal wires using Lemma 5 (without changing the output or masking
inputs of G ′). Then f ∈ SHALLOW

(
4, O

(
n̂4(1, S(n)) · S(n)

))
. Indeed, by Lemma 4,

reco, reci ∈ SHALLOW
(
2, O

(
n̂2(1, S(n))

))
(and given e, they can be evaluated in parallel).

Moreover, given the internal wires of Go,Gi, the wires that need to be computed in a gadget
G ′ connected to them are computable in SHALLOW

(
2, O

(
n̂2(1,S(n))

))
(by Lemma 5, and

since the masking inputs of Ĉ2 and Ĉ0−check are well-formed). We conclude by noting that
there are at most O

(
n̂2(1,S(n))

)
· S(n) such gadgets, and they can be evaluated in parallel.

DenoteW ′R := f (WR),W ′S := f (WS)) for f ← F , thenW ′R ≡ Hm−1 andW ′S ≡ Hm
because the gadgets are re-randomizing (which, in particular, guarantees that these equiv-
alences hold despite the fact some of the values in the computation were fixed in ad-
vance). By the assumption of Lemma 3, WR,WS—which are encodings according to
Ein—are (LEAKE, ε(n))-leakage resilient. Therefore, by Lemma 6, W ′R,W ′S (and conse-
quently also Hm−1,Hm) are (LEAK′, ε(n))-leakage resilient for any LEAK′ such that
LEAK′ ◦ SHALLOW

(
4, O

(
n̂4(1, S(n)) · S(n)

))
⊆ LEAKE.

Bounding SD
(
`(Hx

ext), `
(
Hy,x

ext

))
: We show that SD

(
`(Hx

ext), `
(
Hy,x

ext

))
= 0 for every

`. Indeed,Hx
ext ≡ H

y,x
ext because the hybrids are independent of the input for Ĉ1 (since the

input is re-sampled as a fresh z ∈R Fn in both hybrids).
Bounding SD

(
`
(
Hy,x

ext

)
, `
(
Hy,x

in

))
: We show that SD

(
`
(
Hy,x

ext

)
, `
(
Hy,x

in

))
≤ ε(n) ·

S(n) for all ` ∈ LEAK′ whereLEAK′ ◦ SHALLOW
(
4, O

(
n̂4(1,S(n)) · S(n)

))
⊆ LEAKE.

The proof is similar to the proof that SD
(
`(Hx

ext), `
(
Hx

in

))
≤ ε(n) · S(n), because the argu-

ment was independent of the actual inputs used in Ĉ1, Ĉ2 (as long as both hybrids use the
same input in each copy).
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Bounding SD
(
`
(
Hy,x

in

)
, `(Hy,x)

)
: We show that SD

(
`
(
Hy,x

in

)
, `(Hy,x)

)
≤

ε(n) · n̂(1, S(n)) · S(n) for all ` ∈ LEAK′, where LEAK′ ◦
SHALLOW

(
5, O

(
n̂5(1,S(n)) · S(n)

))
⊆ LEAKE. The proof is similar to the proof that

SD
(
`(Hx), `

(
Hx

in

))
≤ ε(n) · n̂(1, S(n)) · S(n), because the argument was independent of

the actual inputs used in Ĉ1, Ĉ2.
Bounding SD(`(Hy), `(Hy,x)) for a leakage function `. The argument here follows the
same blueprint as the one used to bound SD(`(Hx), `(Hy,x)), but is more involved because
we now need to switch the input of the second copy Ĉ2. In particular, the wire values
in this hybrid argument will no longer correspond to the values in an actual evaluation
of Ĉ2. While the computations in Ĉ1 will still be performed honestly, we will no longer
be able to claim that reconstructing the internal wires of gadgets of Ĉ2 (or the external
wires connecting gadgets of Ĉ2) does not affect the computations in Ĉ0−check and Cdec.
This is because the manner in which Ĉ0−check uses the masking inputs from Ĉ1, Ĉ2 is not
symmetric, and in particular, resampling the masking inputs used in Ĉ2 (as is performed by
the local reconstructors of gadgets of Ĉ2) will affect the computations in Ĉ0−check, and will
necessitate reevaluating it. This, in turn, will affect the masking inputs used in Ĉ0−check,
which will affect the computations in Cdec. However, we cannot simply re-evaluate Ĉ0−check
and Cdec in the hybrid argument. Indeed, this would require evaluating circuits of large
depth, and the leakage resilience guarantee will therefore deteriorate significantly. Instead,
Ishai et al. [8] use an alternative method of locally reconstructing the needed wire values
of Ĉ0−check, Cdec. Specifically, they show a low-depth reconstructor for the gadgets G ′ of
Ĉ0−check connected to gadgets of Ĉ2, which generates the “correct” distribution if the input
of G ′ from Ĉ1, and G ′’s output, are well formed. In particular, this implies that the internal
wires of G ′ can be reconstructed without modifying its output. They also show a low-depth
reconstructor for each decoding circuit of Cdec, that generates the “correct” distribution if
its inputs are well formed (again, without changing the output of these decoding circuits).
Specifically, we will use the following results from [8].

Lemma 7 (Local reconstructors for Ĉ0−check, Cdec, restatement of Lemmas 3.17 and 3.18
of [47]). There exists a distribution REC over SHALLOW

(
2, O

(
n̂2(1,S(n))

))
such that the

following holds for any gadget G ′ of Ĉ0−check connected to a gadget of Ĉ1 or Ĉ2. For every plausible
pair

((
r1,0, r2,0), c

)
for G ′ such that r1,0 is well formed, when rec← REC then rec

(
r1,0, r2,0, c

)
is

distributed identically to the wire values of G ′ in a real execution, conditioned on the input-output
pair

((
r1,0, r2,0), c

)
. In particular, c and the masking inputs computed by rec are well-formed.

Moreover, for a fixed rec ∈ Supp(REC), and any fixed well-formed r1,0, c, there exists a
function recr1,0,c,rec

Dec ∈ SHALLOW(2, O(n̂(1,S(n)))) such that the following holds for any

input r2,0 of G ′. If
((

r1,0, r2,0), c
)

is a plausible pair for G ′, then recr1,0,c,rec
Dec

(
r2,0) generates the

wire values of the decoding sub-circuits of Cdec, the inputs of which are the masking inputs of G ′
which rec generated. In particular, because the masking inputs generated by rec are well-formed, the
outputs of these decoding sub-circuits are 0.

The proof now follows using a hybrid argument. The hybrids are similar to the ones
used to bound SD(`(Hx), `(Hy,x)), except that we will need to regenerate the internal wires
of Ĉ0−check, Cdec using the reconstructors of Lemma 7. We now define the hybrids.

Hy
in: this hybrid distribution replaces the internal wires of gadgets (similar to Hx

in), and

is obtained by: (1) evaluating Ĉ honestly on ŷ ← Enc
(

y, 1|C|
)

; (2) picking local

reconstructors for all gadgets of Ĉ2, and re-computing their internal wires using
these reconstructors; (3) re-computing the internal wires of Ĉ0−check using rec← REC,
where REC is the distribution of Lemma 7; and (4) re-computing the internal wires of

Cdec using the functions recr1,0,c,rec
Dec defined in Lemma 7 (here, r1,0, c are determined

by the re-computed wires values of Ĉ0−check);
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Hy
ext: this distribution replaces the external wires (similar to Hx

ext), and is obtained
as follows:

• Generating the wires of Ĉ1: encode ŷ =
((

ŷ1, r1, r1,0), (ŷ2, r2, r2,0))← Enc
(

y, 1|C|
)

,

and honestly evaluate Ĉ1 on ŷ1 with masking inputs r1;
• Generating the wires of Ĉ2: pick a random input z ∈R Fn for Ĉ2, and generate

random encodings out← Encin
(

1, 1|C|
)

, ẑ1 ← Encin
(

z, 1|C|
)

for the output and

input of Ĉ2. Next, pick random encodings (according to Encin) for the outputs
of all gadgets (except the gadgets whose outputs are the inputs of the output
decoder, since the outputs of these gadgets have already been fixed). Then, pick
local reconstructors for all gadgets of Ĉ2, and use them to compute the internal
wires of the gadgets. The reconstructors determine the (possibly ill-formed)
masking inputs r2′ of the gadgets, which (together with r1) form the standard
inputs of Ĉ0−check;

• Generating the wires of Ĉ0−check: for every gadget G ′ of Ĉ0−check connected to
a gadget of Ĉ2, pick a reconstructor for it according to the distribution REC
(Lemma 7) and use it to compute the internal wires of G ′. These reconstructors
determine the inputs to the decoding sub-circuits of Cdec;

• Generating the wires of Cdec: Use the functions of Lemma 7 to compute the internal
wires of the decoding sub-circuits of the Cdec;

• Use the outputs of Ĉ1, Ĉ2, Ĉ0−check, Cdec to generate the flag f, and the output
of Ĉ;

• Hy
ext consists of the concatenation of all these wire values.

Hy,x
ext,2: this hybrid is generated similarly to Hy

ext, except that instead of evaluating Ĉ on
an encoding of y, we use the internal encoding scheme to generate encodings of(
ŷ1, r1, r1,0) and

(
x̂2, r2, r2,0) (where ŷ1, x̂2 encode y, x, respectively), and use them as

inputs to Ĉ1, Ĉ2, respectively;

Hy,x
in,2: this hybrid is generated similarly toHy

in, except that instead of evaluating Ĉ on an

encoding of y, we use
(
ŷ1, r1, r1,0) and

(
x̂2, r2, r2,0) as inputs to Ĉ1, Ĉ2, respectively.

The indistinguishability of the hybrids now follows similarly to the proof bounding
SD(Hx,Hy,x), and we only sketch the difference.

Bounding SD
(
`(Hy), `

(
Hy

in

))
: We show that SD

(
`(Hy), `

(
Hy

in

))
≤

ε(n) · n̂(1,S(n)) · S(n) for all ` ∈ LEAK′ such that LEAK′ ◦
SHALLOW

(
7, O

(
n̂4(1,S(n)) · S(n)

))
⊆ LEAKE. We define the hybrids H0, . . . ,HM,

where Hi is obtained by: (1) evaluating Ĉ on (an encoding of) y, then recomputing the
internal wires of the first i gadgets of Ĉ2 using their local reconstructors; (2) re-computing
the internal wires of Ĉ0−check that are influenced by this re-computation of the first i
gadgets of Ĉ2 (i.e., gadgets of Ĉ0−check that are connected to one of these i gadgets);
and (3) (using the functions of Lemma 7) recomputing the internal wires of Cdec that were
influenced by re-computing Ĉ0−check. Then H0 = Hy,HM = Hy

in, and we show that
SD(`(Hm), `(Hm−1)) ≤ ε(n) · n̂(1, S(n)) for every m ∈ [M], and any ` ∈ LEAK′. Denote
the m’th gadget by G. We can fix all wires of Ĉ1, all wires of Ĉ2 except the internal wiresW
of G (its input and output wires can be fixed), and all the internal wires of Ĉ0−check, Cdec
that are influenced byW . (These consist of the internal wires—but not the output—of any
gadget G ′ of Ĉ0−check connected to G, and the internal wires—but not the outputs—in the
decoding sub-circuits of Cdec that decode masking inputs of G ′.)

We now describe a distribution F over SHALLOW
(
4, O

(
n̂4(1,S(n)) · S(n)

))
, where

given the wire values of G (either the real wire values WR or the reconstructed wires
WS), f ∈ F generates the entire hybrid distribution (either Hm−1 or Hm, respectively),
as follows. For every gadget G ′ of Ĉ0−check connected to G, F chooses a reconstruc-
tor recG ′ ← REC (see Lemma 7). The function f has all the hard-wired values of Hm
hard-wired into it. On input W it evaluates the recG ′ ’s on the masking inputs of G (as
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reported in W) and the hard-wired values, to generate the internal wires (including
the masking inputs) of G ′, and then uses the functions defined in Lemma 7 to recon-
struct the internal wires of the decoding sub-circuits of Cdec that decode the masking
inputs of G ′. Then f ∈ SHALLOW

(
4, O

(
n̂4(1,S(n)) · S(n)

))
because by Lemma 7 the

reconstructors for the G ′’s (the decoding sub-circuits, respectively) are computable in
SHALLOW

(
2, O

(
n̂2(1,S(n))

))
(SHALLOW(2, O(n̂(1,S(n)))), respectively); the recon-

structors of all the (at most) O
(
n̂2(1,S(n)) · S(n)

)
gadgets G ′ can be computed in parallel);

and the reconstructors for all of the (at most) O
(
n̂3(1,S(n)) · S(n)

)
decoding sub-circuits

(each G ′ is connected to O(n̂(1,S(n))) decoding sub-circuits) can be computed in parallel.
SinceWR,WS are (LEAK′, ε(n) · n̂(1,S(n)))-leakage resilient for any class LEAK′ of

leakage functions such that LEAK′ ◦ SHALLOW(3, O(n̂(1, σ))) ⊆ LEAKE (this follows
from Lemma 4 because Ein is (LEAKE, ε(n))-leakage resilient), Lemma 6 guarantees that
Hm−1,Hm are (LEAK′′, ε(n) · n̂(1,S(n)))-leakage resilient for every family LEAK′′ of leak-
age functions such that LEAK′′ ◦ SHALLOW

(
4, O

(
n̂4(1, S(n)) · S(n)

))
⊆ LEAK′, i.e.,

for any LEAK′′ such that LEAK′′ ◦ SHALLOW
(
7, O

(
n̂4(1,S(n)) · S(n)

))
⊆ LEAKE.

Bounding SD
(
`
(
Hy

ext

)
, `
(
Hy

in

))
: We show that SD

(
`
(
Hy

ext

)
, `
(
Hy

in

))
≤ ε(n) · S(n)

for all ` ∈ LEAK′ such that LEAK′ ◦ SHALLOW
(
6, O

(
n̂4(1,S(n)) · S(n)

))
⊆ LEAKE.

The proof is by a hybrid argument in which we replace the input bundles of Ĉ2, and the
bundles at the output of gadget of Ĉ2, one at a time. More specifically, we define hybrids
H0, . . . ,HM, where Hi is generated from Hy

in, by: (1) replacing the first i bundles with
random encodings of random values (except for the bundle corresponding to the output
of Ĉ2, which is set to a random encoding of 1); (2) recomputing the internal wires of the
first i gadgets of Ĉ2 using the gadget reconstructors; (3) re-computing the internal wires
of Ĉ0−check that are influenced by this re-computation of the first i gadgets of Ĉ2; and
(4) (using the functions of Lemma 7) recomputing the internal wires of Cdec that were
influenced by re-computing Ĉ0−check. ThenH0 = Hy

in andHM = Hy
ext, and we show that

SD(`(Hm), `(Hm−1)) ≤ ε(n) for all m ∈ [M] and ` ∈ LEAK′. We denote by Go (Gi) the
gadget whose output (input) is the m’th bundle, and fix all wires inHm,Hm−1 except for:
the m’th bundle; the masking inputs, outputs, and internal wires of Go; the masking inputs,
and internal wires, of Gi, as well as its input wire corresponding to the m’th bundle; the
internal wires of all gadgets G ′ of Ĉ0−check connected to Go or Gi; and the internal wires of
the decoding sub-circuits of Cdec whose inputs are masking inputs of one of these G ′’s.

Let WR ← Encin
(

b, 1S(n)
)

(where b is the value encoded by the m’th bundle in

Hy
in), and WS ← Encin

(
r, 1S(n)

)
for a random r (except if m corresponds to the out-

put bundle, in which case WS ← Encin
(

1, 1S(n)
)

). We define a distribution F over

SHALLOW
(
6, O

(
n̂4(1,S(n)) · S(n)

))
as follows. Sampling a function f ← F is per-

formed by sampling reco, reci from the distribution over reconstructors for Go,Gi, respec-
tively (see Definition 14), and sampling reconstructors recG ′ for the gadgets of Ĉ0−check
connected to Go or Gi. The function f has all the hard-wired values of Hm−1 hard-
wired into it. On input e ∈ Fn̂(1,Sn), f : (1) evaluates reco on the (hard-wired) inputs
of Go, and the output e (this reconstructs the masking inputs, and internal wires, of
Go); (2) evaluates reci on e as one of the inputs, and the other (hard-wired) input and
output of Gi; (3) for every gadget G ′ of Ĉ0−check connected to Go or Gi, uses recG ′ to
generate its internal wires; and finally (4) uses the functions of Lemma 7 to generate
the internal wires of the decoding sub-circuits that decode the masking inputs used
in the G ′’s. Then f ∈ SHALLOW

(
6, O

(
n̂4(1,S(n)) · S(n)

))
because the reconstructors

reco, reci ∈ SHALLOW
(
2, O

(
n̂2(1,S(n))

))
(by Lemma 4) and can be evaluated in par-

allel, the O
(
n̂2(1, S(n)) · S(n)

)
reconstructors recG ′ ∈ SHALLOW

(
2, O

(
n̂2(1,S(n))

))
(by

Lemma 7), and can be evaluated in parallel, and the O
(
n̂3(1, S(n)) · S(n)

)
reconstructors

of the decoding sub-circuits are each computable in SHALLOW(2, O(n̂(1,S(n)))) (by
Lemma 7) and can be evaluated in parallel.



Entropy 2022, 24, 970 37 of 44

Consequently, if W ′R := f (WR),W ′S := f (WS) for f ← F , then W ′R ≡ Hm−1,
W ′S ≡ Hm and by Lemma 6,W ′R,W ′S are (LEAK′, ε(n))-leakage resilient for any LEAK′
such that LEAK′ ◦ SHALLOW

(
6, O

(
n̂4(1,S(n)) · S(n)

))
⊆ LEAKE.

Bounding SD
(
`
(
Hy

ext

)
, `
(
Hy,x

ext,2

))
: it holds that SD

(
`
(
Hy

ext

)
, `
(
Hy,x

ext,2

))
= 0 for

every ` because the hybrids are independent of the input for Ĉ2 (since the input is re-
sampled as a fresh z ∈R Fn in both).

Bounding SD
(
`
(
Hy,x

ext,2

)
, `
(
Hy,x

in,2

))
: We show that SD

(
`
(
Hy,x

ext,2

)
, `
(
Hy,x

in,2

))
≤ ε(n) ·

S(n) for all ` ∈ LEAK′ such that LEAK′ ◦ SHALLOW
(
6, O

(
n̂4(1, S(n)) · S(n)

))
⊆

LEAKE. The proof is similar to the proof that SD
(
`
(
Hy

ext

)
, `
(
Hy

in

))
≤ ε(n) · S(n), be-

cause the argument was independent of the actual inputs used in Ĉ1, Ĉ2 (as long as both
hybrids use the same input in each copy).

Bounding SD
(
`
(
Hy,x

in,2

)
, `(Hy,x)

)
: We show that SD

(
`
(
Hy,x

in,2

)
, `(Hy,x)

)
≤

ε(n) · n̂(1,S(n)) · S(n) for all ` ∈ LEAK′ such that LEAK′ ◦
SHALLOW

(
7, O

(
n̂4(1,S(n)) · S(n)

))
⊆ LEAKE. The proof is similar to the proof that

SD
(
`(Hy), `

(
Hy

in

))
≤ ε(n) · n̂(1,S(n)) · S(n), because the argument was independent of

the actual inputs used in Ĉ1, Ĉ2.
Bounding SD(`(Hx), `(Hy)) for ` ∈ LEAK′. From this analysis, we can now conclude
using the union bound that for every ` ∈ LEAK′ such that

LEAK′ ◦ SHALLOW
(

7, O
(

n̂5(1, S(n)) · S(n)
))
⊆ LEAKE

it holds that
SD(`(Hx), `(Hy)) ≤ 4ε(n) · S(n) · (n̂(1, S(n)) + 1).

4.3. An SAT-Respecting LRCC Against “Useful” Leakage
Ishai et al. [8] use Construction 11 to devise an SAT-respecting LRCC which they later

employ in their WI-PCP construction (described in Section 4.4). This is performed in two
steps. First, since the LRCC will be used to compile verification circuits of NP relations,
we need the compiler to be Boolean. Second, we need to instantiate the internal encoding
scheme E such that it would resist leakage computable by functions that: (1) apply the
PCP-prover algorithm, and then (2) restrict the output to a small subset of bits. Indeed, this
is exactly the “leakage” on the witness which a query-bounded verifier (even a malicious
one) obtains by querying the proof. We now provide more details on each of these steps.
Step (1): An SAT-Respecting LRCC for Boolean Circuits. The high-level idea is to trans-
form the Boolean circuit C : {0, 1}n → {0, 1} into a functionally-equivalent arithmetic
circuit C3 over F3 (i.e., the field with 3 elements), use Construction 11 over the field F3
to compile C3 into its leakage-resilient version Ĉ3, and then output the Boolean circuit
Ĉ that emulates Ĉ3 using Boolean operations. This is an over-simplified description of
the compiler, where the actual construction needs to address several subtleties. We now
describe each of these steps, and the subtleties that arise, in more detail.

From Boolean to Arithmetic Operations. The circuit C3 is obtained from C by repre-
senting each Boolean operation using an appropriate polynomial over F3 in the natural way.
While C3 is guaranteed to be functionally equivalent to C on binary strings, two issues arise
concerning the SAT-respecting property. First, satisfiability over F2 means that C(x) = 1
for some x, whereas satisfiability over F3 means C3(y) = 0 for some y. In particular, we
want the leakage-resilient circuit to output 1 only if there exists an x such that C(x) outputs
1, whereas the SAT-respecting property guarantees only that if Ĉ3(ŷ) = 0 for some ŷ, then
C3(y) = 0 for some y. Therefore, we need to “translate” a 1-output of C into a 0-output of
C3, and a 0-output of C into a non-0-output of C3. Thus, we will have that Ĉ3 = (ŷ) = 0 for
some ŷ only if C3(y) = 0 for some y. This brings us to the second issue: while we would
like to use the function-equivalence of C and C3 to claim that if C3(y) = 0 for some y ∈ Fn

3
then C(x) = 1 for some x ∈ Fn

2 , this is not necessarily the case, because C3’s inputs are from
Fn

3 and might not correspond to an input in Fn
2 . To overcome this issue, we add to C3 an
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“input checker” component which checks that each of its n inputs is a bit. We denote this
“enhanced” version of C3—which flips the output and checks validity of the inputs—by C′3.

From Arithmetic Back To Boolean. Once we generate the leakage-resilient version
Ĉ′3 of C′3, we need to represent it using a Boolean circuit. (Indeed, the original circuit C
was Boolean, and its leakage-resilient version should also be a Boolean circuit.) We do so
by replacing each field element with a binary string representing it, and implementing
each gate over F3 by a Boolean sub-circuit. We also flip the output of Ĉ′3, so the resultant
circuit would again be functionally-equivalent to C. There are two important points that we
need to handle. First, while we can represent field elements using any (injective) encoding
scheme, to preserve the SAT-respecting property it must also be onto. Otherwise, the
Boolean circuit could potentially be satisfied using invalid encodings, namely ones that do
not encode any field element, and thus the computation in the Boolean circuit would not
correspond to a computation in Ĉ′3. In particular, the Boolean sub-circuits implementing
gates over F3 must be defined for all possible encodings—even ones that would not be
used in an honest evaluation of the circuit.

Second, these Boolean sub-circuits should have small depth and size. The reason is
the reduction from the leakage resilience of the final circuit Ĉ to the leakage resilience of
Ĉ′3. More specifically, the reduction proceeds by assuming that a leakage function ` in

some class LEAK can distinguish between the wire values
[
Ĉ, x̂

]
of Ĉ on an encoding x̂ of

some input x, and its wire values
[
Ĉ, x̂′

]
on the encoding x̂′ of some other input x′ such

that C(x) = C(x′). It then uses this to break the leakage resilience of Ĉ′3 for some leakage
function `3 in the leakage class LEAK3 against which the arithmetic LRCC is secure. This is
performed as follows: given the wire values of Ĉ′3 on some input (these values are elements
of F3), the reduction first replaces the field elements with the corresponding encodings. The
resultant values constitute only part of the wire values of Ĉ. Specifically, these are the values
of the wires between the sub-circuits emulating the gates over F3, whereas Ĉ contains also the
internal wires of these sub-circuits, namely wires which do not appear in Ĉ′3. Thus, the
leakage function `3 must first generate these missing wires, and only then can it evaluate `.
In particular, LEAK ⊂ LEAK3, where the difference between the two classes depends on
the complexity of the Boolean sub-circuits implementing gates over F3. Fortunately, these
sub-circuits are both shallow and small.

In summary, Ishai et al. show [47, Proposition 3.31] the following Boolean LRCC.

Claim 13 (Boolean SAT-respecting LRCC). Let LEAK,LEAKE be families of functions,
S(n) : N → N be a size function, and ε(n) : N → R+. Let Ein =

(
Encin,Decin

)
be a linear, onto, (LEAKE, ε(n))-leakage-resilient encoding scheme with parameters n, σ
and n̂ = n̂(n, σ), such that LEAKE = LEAK ◦ BOOL

(
33, O

(
n̂6(1,S(n)) · S2(n)

))
.

Then there exist constants c, c′ > 0 for which there exists an SAT-respecting,
(LEAK, c′ · ε(n) · (n̂(1, c · S(n)) + 1) · c · S(n),S(n))-LRCC over {0, 1}. Moreover, for every
C : {0, 1}n → {0, 1}, the compiled circuit Ĉ has size

∣∣∣Ĉ∣∣∣ = O
(

n̂6(1, c · S(n)) · |C|2
)

.

Step (2): Leakage Resilience Against “Useful” Leakage. The second component of the
construction is an internal encoding scheme Ein—resisting leakage from a “useful” class of
leakage functions—with which we instantiate Claim 13. More specifically, the leakage class
consists of AC0 circuits (namely, constant-depth, polynomial-sized Boolean circuits over
unbounded fan-in and fan-out ∧,∨,¬ gates), augmented with a sublinear number of ⊕ gates of
unbounded fan-in and fan-out. Formally,

Notation 10 (Lm
n,d,s,⊕t leakage family). Let n, d, s ∈ N be length, depth and size parameters

(respectively), and let t ∈ N be a parity gate bound. The family Ln,d,s,⊕t consists of all func-
tions computable by a Boolean circuit C : {0, 1}n → {0, 1} of size at most s and depth d, with
unbounded fan-in and fan-out ∧,∨,¬,⊕ gates, out of which at most t are ⊕ gates. We denote
Ld,s,⊕t = ∪n∈NLn,d,s,⊕t.
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For a length parameter m ∈ N, and a function f : {0, 1}n →
{0, 1}m, let fi(x1, . . . , xn), i ∈ [m] denote the i’th output bit of f . We
denote: Lm

n,d,s,⊕t =
{

f : {0, 1}n → {0, 1}m : ∀1 ≤ i ≤ m, fi ∈ Ln,d,s,⊕t
}

, and

Lm
d,s,⊕t := ∪n∈N

(
Lm

n,d,s,⊕t

)
.

The encodings scheme we use encodes elements γ ∈ F3 as binary strings whose sum
mod 3 is γ. Formally:

Notation 11. For γ ∈ {0, 1, 2} and n ∈ N, Un
γ denotes the uniform distribution over{

v ∈ {0, 1}3n : #1(v) ≡ γ mod 3
}

, where #1(v) denotes the number of 1’s in v.

Definition 16. The encodings scheme E3 = (Enc3,Dec3) is defined as follows. For every γ ∈ F3,
Enc3(γ, 1n) samples from Un

γ , and Dec3(v) returns (#1(v) mod 3). We note that E3 is linear
and onto.

Remark 14. Enc3 can be computed efficiently by repeating the following procedure n2 times. Pick
v ∈ {0, 1}3n uniformly at random, compute t := #1(v), and if t = γ then return v. If all iterations
fail, return a fixed vγ ∈ {0, 1}3n such that #1(vγ) = γ. Then the output of Enc3 is thus statistically
close to Un

γ .

Ishai et al. [8] show that the encoding scheme of Definition 16 resists leakage from
AC0 circuits augmented with few ⊕ gates:

Corollary 3 (Corollary 3.44 in [47]). For every constant depth parameter d ∈ N there exist
constants c, ε ∈ (0, 1), such that for every constant l ∈ N there exists a minimal length pa-
rameter n0 ∈ N such that for every n ≥ n0 the encoding scheme Enc3(·, 1n) of Definition 16 is(
L3n,d,nl ,⊕nε , 2−nc

)
-leakage resilient.

Instantiating Claim 13 with the encoding scheme of Definition 16 as the internal
encoding scheme, and using Corollary 3, ref. [8] show the existence of a Boolean LRCC
resisting leakage from AC0 circuits with few ⊕ gates:

Theorem 15 (Boolean SAT-respecting LRCC for AC0 circuits with ⊕ gates, Theorem 3.37
in [47]). Let n ∈ N be an input length parameter. For every positive constant d, c, polynomials
m = m(n), t = (n), and polynomial size bound s = s(n), there exists a polynomial l(n), such
that the following holds. There exists an SAT-respecting

(
Lm

l,d,lc ,⊕t, 2−nc
, s(n)

)
-LRCC over {0, 1},

which on input a circuit C : {0, 1}n → {0, 1} of size |C| ≤ s(n) outputs a circuit Ĉ of size∣∣∣Ĉ∣∣∣ ≤ l(n).

4.4. The Witness-Indistinguishable PCP
In this section, we describe the WI-PCPs for NP of [8], which rely on the Boolean

SAT-respecting LRCC of Theorem 15. They use also a PCP system (P ′,V ′) for the language
3SAT of all satisfiable 3CNF formulas, in which the prover algorithm can be implemented
in a low complexity class.

The high-level idea of the construction for an NP-relationR with verification circuit C
is that given input x, instead of verifying that Cx(·) := C(x, ·) is satisfiable (which holds if
and only if x ∈ L for the corresponding NP-language L), the verifier will check that the
leakage-resilient version Ĉx is satisfiable. For this, the prover and verifier will first represent
Ĉx as a 3CNF formula ϕ in the natural way. That is, ϕ will have a variable for each wire of
Ĉx. It will contain, for each gate g of Ĉx, a sub-formula verifying that the output wire of g is
consistent with the input wires and the operation of g, and it will also check that the output
wire of Ĉx is 1. A satisfying assignment for ϕ is the wire values of Ĉx when evaluated on
(an encoding of) a witness w for x. Then, the prover and verifier will use the PCP system
(P ′,V ′) to verify that ϕ ∈ 3SAT. The construction is described in Figure 3.
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Construction 16 (A Witness-Indistinguishable PCP). LetR = R(x, w) be an NP-relation
with verification circuit C. (We note thatR is actually associated with a family {Cn} of circuits,
where Cn is applied to inputs x ∈ {0, 1}n. Somewhat abusing notation, we refer to all these
circuits simply as “C”.)
Building blocks:
• A PCP system (P ′,V ′) for 3SAT;
• A Boolean LRCC (Comp,E = (Enc,Dec)).

Prover algorithm. P , on input (x, w) ∈ R, operates as follows:

• Computes Ĉx(·) = Comp(Cx), where Cx denotes the circuit C with x hard-wired into it.;

• Samples a random encoding ŵ← Enc
(

w, 1|Cx |
)

, and evaluates Ĉx on ŵ to generate the

wire valuesW of Ĉx;
• Constructs the 3CNF ϕx representing Ĉx;
• Computes a PCP π = P ′(ϕx,W) for the claim “ϕx ∈ 3SAT”, and outputs π.

Verifier algorithm. V is given input x and oracle access to π. It computes
Ĉx(·) = Comp(Cx), and constructs the 3CNF formula ϕx. Then, V emulates V ′ with in-
put ϕx and oracle access to π, and outputs whatever V ′ outputs.

Figure 3. Witness-Indistinguishable PCPs from SAT-Respecting LRCCs [8].

The following theorem (which is a combination of ([47], Proposition 4.4) and ([47],
Corollary 4.10)) asserts the connection between the properties of the LRCC and the resultant
PCP system (P ,V).

Theorem 17. Let n ∈ N be a length parameter, q∗ = q∗(n),S = S(n) be query and size functions,
ε, ε′ ∈ [0, 1], and LEAK be a family of leakage functions. Assume that Construction 16 is
instantiated with:
• A Boolean SAT-respecting (LEAK, ε,S)-LRCC such that there exists a polynomial g(·) for

which |Comp(C)| ≤ g(|C|) for every circuit C; and
• A PCP system (P ′,V ′) for 3SAT with proofs of length len(n), such that for every

(ϕ,W) ∈ 3SAT, every subset Q of q∗ bits of an honestly-generated proof π = π(ϕ,W)
is computable fromW by a function fϕ,Q ∈ LEAK.
Then for every NP-relation R with verification circuit C of size |C| ≤ S, the PCP system

(P ,V) is a (q∗, ε∗)-WI-PCP for R, where ε∗ = O
(

ε · q∗ · len2q∗(t)
)
+ e−Ω

(
q∗ ·lenq∗ (t)

)
and

t = O(g(|C|)). Moreover, if V ′ is non-adaptive, the so is V .
Furthermore, the system is (q∗, ε)-WI against non-adaptive (possibly malicious) verifiers.

Moreover, proofs generated by P have length len(t), and if V ′ has query complexity q(n) and tosses
r(n) coins, then V has query complexity q(t), tosses r(t) coins.

Proof. We first analyze the parameters of the system. The wire assignmentW to Ĉx has
size |W| =

∣∣∣Ĉx

∣∣∣ ≤ g(|Cx|) ≤ g(|C|), and |ϕx| = O
(∣∣∣Ĉx

∣∣∣) ≤ O(g(|C|)). Therefore, the

internal PCP system (P ′,V ′) is emulated using inputs of size t = g(|C|).
Completeness follows directly from the completeness of the building blocks.
Soundness follows from a combination of the soundness of (P ′,V ′) and the SAT-

respecting property of (Comp,E), Indeed, if x /∈ L, then Cx is not satisfiable, and so (by the
SAT-respecting property) Ĉx is not satisfiable, i.e., ϕx /∈ 3SAT. Therefore, by the soundness
of (P ′,V ′) we have that Pr

[
Vπ∗(x) = 1

]
= Pr

[
V ′π∗(ϕx) = 1

]
is negligible.

Witness-indistinguishability. Let x ∈ L, ϕx be the 3CNF formula representing Ĉx,
and w1, w2 be two witnesses for x. We first show witness indistinguishability against
non-adaptive verifiers. Let V∗ be a non-adaptive q∗-query-bounded verifier, and let
πi ← P(x, wi) for i = 1, 2. Since V∗’s entire view can be generated from the oracle answers
to its queries (and this cannot increase the statistical distance), it suffices to show that
SD(π1|Q, π2|Q) ≤ ε for every set Q of queries of V∗ such that size |Q| ≤ q∗, where πi|Q
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denotes the restriction of πi to the entries in Q. Since |C| = |Cx| ≤ S, the leakage resilience
of the LRCC guarantees that SD

(
`
[
Ĉx, ŵ1

]
, `
[
Ĉx, ŵ2

])
≤ ε for every ` ∈ LEAK. We con-

clude the proof by noting that fϕx ,Q ∈ LEAK, and πi|Q = fϕx ,Q
[
Ĉx, ŵi

]
. We have shown

that (P ,V) is (q∗, ε)-witness indistinguishable against non-adaptive verifiers V∗. Using
Theorem 18 below, this implies that (P ,V) is (q∗, ε∗)-WI (even against adaptive verifiers),

for ε∗ = O
(

ε · q∗ · len2q∗(t)
)
+ e−Ω

(
q∗ ·lenq∗ (t)

)
.

The proof of Theorem 17 used the following theorem, which is implicit in [48] (see
also [47], Theorem 4.11).

Theorem 18 (Implicit in [48]). Let (P ,V) be a PCP system that is (q∗, ε)-WI against non-
adaptive verifiers, with proofs of length len. Then (P ,V) is (q∗, ε∗)-WI against adaptive verifiers,

where ε∗ = O
(

ε · q∗ · len2q∗
)
+ e−Ω

(
q∗ ·lenq∗

)
.

Theorem 7 now follows as a corollary of Theorem 17, using the SAT-respecting LRCC
of Theorem 15, and a PCP system of [2], whose prover algorithm can be implemented in a
low complexity class (the analysis of the prover complexity is due to ([47], Appendix B)):

Theorem 19 (PCPs for NP, [2]). 3SAT has a PCP system (P ,V) with soundness error 1/2 with
an honest verifier that queries O

(
log2 n

)
proof bits. The proofs have length poly(n), where every

proof bit can be generated by an AC0 circuit with a single ⊕ gate of unbounded fan-in.

We are now ready to prove Theorem 7.

Proof of Theorem 7. We instantiate Construction 16 with the PCP system (P ′,V ′) of
Theorem 19 and the LRCC of Theorem 15. By Theorem 19, there exist constants d, c ∈ N
such that every bit in a proof generated by P ′ is computable from the NP-witness in Ld,nc ,⊕1,
where n is the witness length, and the proofs have length nc′′ , for some constant c′′.

LetR be an NP-relation with verification circuit C, then |C| = nc′ for some constant c′.
We instantiate Theorem 15 with parameters d∗ = d, s∗ = |C|, n∗ = n, t∗ = 1, m∗ = q∗, and
c∗ ≥ c which is a sufficiently large constant whose value is set below. Here, the superscript
∗ is used to denote the parameters of Theorem 15, and s∗, t∗, m∗ are in poly(n). Let (Comp,E)
denote the LRCC obtained from Theorem 15. We compute Ĉ = Comp(C), where

∣∣∣Ĉ∣∣∣ ≤ l(n)

which, because |C| ≤ s∗, is
(
Lq∗

d,lc(n),⊕1, 2−nc∗
)

-LR (where l(n) is the polynomial whose
existence is guaranteed by Theorem 15).

Let ϕ denote the 3CNF representing Ĉ. Then by Theorem 19 (and using the fact that

|W| =
∣∣∣Ĉ∣∣∣ ≤ l(n)), every bit of a proof generated by P ′ for ϕ can be generated from a wire

assignmentW of Ĉ in Ld,lc(n),⊕1, so every q∗ proof bits are computable fromW in Lq∗

d,lc(n),⊕1.
Therefore, Theorem 17 guarantees that the system (P ,V) of Construction 16 is a non-

adaptive WI-PCP system forR, with
(

q∗, O
(

2−nc∗ · q∗ · len2q∗(l(n))
)
+ e−Ω

(
q∗ ·lenq∗ (l(n))

))
-

WI (where len(l(n)) denotes the proof length), and soundness error 1/2 with an honest
verifier that queries O

(
log2(l(n))

)
= polylog(n) ≤ polylog(q∗) proof bits. We set c∗ to be

sufficiently large, such that the statistical LR error satisfies

O
(

2−nc∗ · q∗ · len2q∗(l(n))
)
+ e−Ω

(
q∗ ·lenq∗ (l(n))

)
= negl(q∗) ≤ negl(κ).

(We note that such a constant exists since we assume that q∗ = poly(n).) We conclude the
proof by noting that soundness can be amplified to negl(κ) with only a poly(κ) blowup in
the query complexity of the honest verifier.
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5. Discussion
The works of [8,13] show a connection between ZK-PCPs and the seemingly-unrelated

field of leakage-resilient cryptography, and use it to circumvent an inherent limitation
of previous constructions—that the honest verifier is adaptive. Specifically, using tools
from the leakage-resilience literature, [8,13] put forth two new paradigms of constructing
ZK-PCPs, yielding PCPs with ZK against malicious verifiers, in which the honest verifier
is non-adaptive. In the context of cryptographic applications of ZK-PCPs, non-adaptive
verification translates into fewer communication rounds. The paradigm of [13] also extends
to ZK-PCPs of proximity.

Despite this recent progress, several interesting questions remain open. The obvious
open problem is to obtain ZK-PCPs and ZK-PCPPs with an exponential query gap as
in [6,11] but which can be verified non-adaptively. One possible approach is to design
a ZK-PCP variant over a large alphabet with negligible soundness error and an honest
verifier that makes fewer queries than [15] (hopefully, polylogarithmic). Another interesting
research direction is to extend the techniques of [8,13] to other related proof systems, such
as interactive oracle proofs. Finding further applications of ZK-PCPs and ZK-PCPPs is
also an interesting question. Finally, though in this survey we have focused on other
parameters of ZK-PCPs, reducing the proof length is a fascinating open problem worthy of
study. Whereas the locking-scheme-based ZK-PCPs of [6,11] inherently incur a polynomial
blowup in proof length, another advantage of the leakage-resilience-based approach is
that it opens up the possibility of reducing the proof length of ZK-PCPs, potentially even
matching the proof length of non-ZK PCPs.
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