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Abstract: The breakthrough of wireless energy transmission (WET) technology has greatly promoted
the wireless rechargeable sensor networks (WRSNs). A promising method to overcome the energy
constraint problem in WRSNs is mobile charging by employing a mobile charger to charge sensors via
WET. Recently, more and more studies have been conducted for mobile charging scheduling under
dynamic charging environments, ignoring the consideration of the joint charging sequence scheduling
and charging ratio control (JSSRC) optimal design. This paper will propose a novel attention-shared
multi-agent actor–critic-based deep reinforcement learning approach for JSSRC (AMADRL-JSSRC).
In AMADRL-JSSRC, we employ two heterogeneous agents named charging sequence scheduler and
charging ratio controller with an independent actor network and critic network. Meanwhile, we
design the reward function for them, respectively, by considering the tour length and the number
of dead sensors. The AMADRL-JSSRC trains decentralized policies in multi-agent environments,
using a centralized computing critic network to share an attention mechanism, and it selects relevant
policy information for each agent at every charging decision. Simulation results demonstrate that the
proposed AMADRL-JSSRC can efficiently prolong the lifetime of the network and reduce the number
of death sensors compared with the baseline algorithms.

Keywords: wireless rechargeable sensor network; deep reinforcement learning; multi-agent; attention-
shared; mobile charging

1. Introduction

Wireless sensor networks (WSNs) have been widely applied in target tracking, envi-
ronment monitoring, intelligent medical and military monitoring, etc. [1,2], which have
advantages including fast construction, self-organization, fault tolerance, and low-cost
deployment [3]. Meanwhile, WSNs are usually composed of a large scale of sensors de-
ployed in an area. However, sensors in WSN are always powered by batteries, and the
capacity of these batteries is constrained by the volume of the sensor, which limits the
lifetime of the sensors. Furthermore, the energy constraint problem affects the quality of
service of WSN directly and greatly hinders the development of WSN. In recent years, the
breakthrough of wireless energy transmission (WET) technology has greatly promoted the
wireless rechargeable sensor networks (WRSNs) [4], since it provides a highly reliable and
efficient energy supplement for the sensors. Particularly, a promising method to overcome
the energy constraint problem in WRSNs is mobile charging by employing one or more
mobile chargers (MCs) with a high capacity to charge sensors via WET. The MC can move
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to sensors autonomously and charge them according to a mobile charging scheduling
scheme, which is formulated by MC based on the status information of sensors, including
the residual energy, energy consumption rate, and position of sensors in WRSN. The status
information of sensors is highly controllable and predictable. Theoretically, WRSNs could
work indefinitely under a well-designed charging scheme [5]. Therefore, the design of
the charging scheme in WRSN is critical, and it has drawn extensive attention from the
research community.

There are plenty of works that have been presented to design the mobile charging
schemes on WRSN. According to whether MC carries the determined charging scheme
before starting from the base station, the existing works can be divided into two cat-
egories [6–16]: (1) offline methods [7–12] and (2) online methods [6,13–16]. In offline
methods, before starting from the base station, MC will formulate a transparent charging
scheme according to the status of sensors, including accurate location, fixed energy con-
sumption rate, regular information transmission rate, etc. The MC will charge sensors with
a scheduled trajectory determined by the charging scheme. The offline methods ignore the
dynamic change in the status of sensors. Hence, the offline method is not suitable for deal-
ing with application scenarios where the energy consumption rate of the sensor changes in
real time and the large-scale WRSN. For example, Yan et al. [17] first attempted to introduce
particle swarm optimization into optical wireless sensor networks, which could optimize
the positioning of nodes, reduce the energy consumption of nodes effectively and converge
faster. In [18], Shu et al. made the first attempt to deal with the jointly charging energy
and designing operation scheduling in WRSN. They proposed an f-Approximate algorithm
to address this problem and verify that the proposed algorithm could obtain an average
39.2% improvement of network lifetime beyond the baseline approaches. In [19], Feng et al.
designed a novel algorithm called the newborn particle swarm optimization algorithm for
charging-scheduling in industrial rechargeable sensor networks by adding new particles to
improve the particle diversity. This improvement made the algorithm achieve better global
optimization ability and improved the searching speed. V.K. Chawra et al. proposed a
novel algorithm for scheduling multiple mobile rechargers using the hybrid meta-heuristic
technique in [20], which combined the best features of the Cuckoo Search and Genetic
Algorithm to optimize the path scheduling problem to achieve shorter charging latency
and more significant energy usage efficiency. To enhance the charging efficiency [21–24],
Zhang et al., Liang et al., and Wu et al. proposed some hierarchical charging methods for
multiple MCs to charge sensors and themselves.

Different from the offline methods, in some application scenarios, the energy consump-
tion rate of sensors is time-variant, and there are many uncertain factors in the network,
which make the offline approaches unable to obtain an acceptable charging scheduling
scheme according to the information in the network, while online approaches could suc-
cessfully deal with these issues. The specific implementation is that the MC does not need
to know the status of sensors clearly before starting from the base station but only needs to
build candidate charging queues. When the residual energy of the sensor is lower than the
set threshold, it will send a charging request and its energy information to the MC. The
MC accepts the charging request and inserts it into all candidate charging queues. Then,
the charging sequence will update according to the status of the sensors. For example, Lin
et al. aimed to maximize the charging efficiency while minimizing the number of dead
sensors to achieve the purpose of prolonging the lifetime of WRSN in [16]. Therefore,
they developed a temporal–spatial real-time charging scheduling algorithm (TSCA) for the
on-demand charging architecture. Furthermore, they also verified that the TSCA algorithm
could obtain a better charging throughput, charging efficiency, and successful charging rate
than the existing online algorithms, including Nearest-Job-Next with Preemption scheme
and Double Warning thresholds with Double Preemption charging scheme. Feng et al. [25]
proposed a mobile energy charging scheme that can improve the charging performance
in WRSN by merging the advantages of online mode and offline mode. It includes the
dynamicity of sensors’ energy consumption in the online mode and the benefit of lower
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charging consumption by optimizing the charging path of the mobile charger in offline
mode. Kaswan et al. converted a charging scheduling problem to a linear programming
problem and presented a gravitational search algorithm [26]. This approach presented a
novel agent representation scheme and an efficient fitness function. In [27], Tomar et al.
proposed a novel scheduling scheme for on-demand charging in WRSNs to address the
joint consideration of multiple mobile chargers and the issue of ill-timed charging response
to the nodes with variable energy consumption rates.

Unfortunately, although the online methods can address the mobile charging dynamic
scheduling problem, they still have disadvantages, including short-sightedness, non-global
optimization, and unfairness. Specifically, most recent works assume that the sensor closest
to MC is usually inserted into the current charging queue. Meanwhile, sensors with low
energy consumption rates are always ignored, resulting in their premature death and a
reduction in the service quality of the WRSN. It is generally known that the mobile charging
path planning problem in WRSN is a Markov decision process, which has been proved to
be an NP-hard problem in [28]. Therefore, the most difficult problem is how to design an
effective scheduling scheme to find the optimal or near-optimal solution more quickly and
reliably when the size of network increases gradually.

It is known that Reinforcement Learning (RL) is an effective method to address the
Markov decision process. As mentioned above, the charging scheduling problem in WRSN
is NP-hard; thus, it is unable to provide available optimal labels for supervised learning.
However, the quality of a set of charging decision can be evaluated via the reward feedback.
Therefore, we need to design a reasonable reward function according to the states of WRSN
for RL. During the interaction between agent and environment, the charging scheduling
scheme will be found through learning strategies that can maximize the reward. There are
several works that have tried to solve the charging scheduling problem with RL algorithms.
For example, Wei et al. [29] and Soni and Shrivastava [30] proposed a charging path
planning algorithm (CSRL), combining RL and MC to extend the network lifetime and
improve the autonomy of MC. However, the proposed CSRL method only suits offline
mode, where the energy consumption of sensor nodes is time-invariant. Meanwhile, this
method can only be used to address small-scale networks, since the Q-learning algorithm
generally fails to handle high-dimensional state space or large state space. Cao et al. [28]
proposed a deep reinforcement learning-based on-demand charging algorithm to maximize
the sum of rewards collected by the mobile charger in WRSN, which is subject to the
energy capacity constraint on the mobile charger and the charging times of all sensor nodes.
A novel charging scheme for dynamic WRSNs based on an actor–critic reinforcement
learning algorithm was proposed by Yang et al. [31], which aimed to maximize the charging
efficiency while minimizing the number of dead sensors to prolong the network lifetime.
The above works have made significant model innovation and algorithm innovation,
yet they ignore the impact of sensor charging energy on the optimization performance.
Although Yang et al. [31] proposed a charging coefficient to constrain the upper charging
energy threshold, they assumed that all sensors have a fixed charging coefficient during
the scheduling, which cannot adjust according to the needs of the sensors. Specifically, the
charging coefficient could directly determine the charging energy for the sensor. Therefore,
how to select the next sensor to be charged and determining its corresponding charging
energy brings novel challenges to the design of the charging scheme.

We study a joint mobile charging sequence scheduling and charging ratio control
problem (JSSRC) to address the challenges mentioned above, where charging ratio is a pa-
rameter introduced to determine the charging energy for the sensor and replace on-demand
charging requests with real-time changing demands. JSSRC provides timely, reliable, and
global charging schemes for WRSNs in which sensors’ energy changes dynamically. Mean-
while, we propose the attention-shared multi-agent actor–critic deep reinforcement learning
approach for JSSRC; this approach is abbreviated as AMADRL-JSSRC. We assume that the
network deployment scenarios are friendly, barrier-free, and accessible. The transmission
of information about real-time changes in energy consumption is reliable and deterministic.
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When the residual energy of MC is insufficient, it is allowed to return to the depot to renew
its battery.

Table 1 highlights the performance comparison of the existing approaches and the
proposed approach with respect to four key attributes.

Table 1. Performance Comparison of the Existing Approaches and the Proposed Approach.

Approach
Dynamic Change of
the Sensor Energy

Consumption

Charging
Sequence

Scheduling

Charging
Ratio Control

Charging Sequence
Scheduling and Charging

Ratio Control
Simultaneously

Off-line

[17] No Yes No No
[18] No Yes No No
[19] No Yes No No
[20] No Yes No No
[21] No Yes No No

On-line

[16] Yes Yes No No
[25] Yes Yes No No
[26] Yes Yes No No
[27] Yes Yes Yes No

RL

[28] No Yes No No
[29] No Yes No No
[30] No Yes No No
[31] Yes Yes No No

Ours Yes Yes Yes Yes

The main contributions of this work are summarized as follows.

(1) Different from the existing works, we consider both charging sequence and charging
ratio optimization simultaneously in this paper. We introduce two heterogeneous
agents named charging sequence scheduler and charging ratio controller. These two
agents give the charging decisions separately under the dynamic changing environ-
ments, which aims to prolong the lifetime of the network and minimize the number
of dead sensors.

(2) We design a novel reward function with a penalty coefficient by comprehensively
considering the tour length of MC and the number of dead sensors for AMADRL-
JSSRC, so as to promote the agents to make better decisions.

(3) We introduce the attention shared mechanism in AMADRL-JSSRC to the problem that
charging sequence and charging ratio have different contributions to the reward function.

The rest of the paper is organized as follows: Section 2 describes the system models
of WRSN and formulates the JSSRC problem. The proposed AMADRL-JSSRC approach
is described in Section 3. Simulation results are reported in Section 4. The impacts of the
parameters on the charging performance are discussed in Section 5. Conclusions and future
work are given in Section 5.

2. System Model and Problem Formulation

In this section, we present the network structure, energy consumption model of
sensors, energy analysis of MC, and the formulation of the charging scheduling problem
in WRSNs.

2.1. Network Structure

In Figure 1, a WRSN with n heterogeneous isomorphic sensors SN =
{

sn1, sn2, . . . , snn},
an MC, a base station (BS), and a depot are adopted. It is assumed that due to different
information transmission tasks, all sensors have the same energy capacity Esn and sensing
ability but different energy consumption rates. They are deployed in a 2D area without
obstacles; the positions of all sensors are fixed and can be determined accurately, and they
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are recorded as (xi, yi), i ∈ [1, n], and the position of BS is set as (x0, y0). Therefore, a
weighted undirected graph G =

(
{BS, SN}, Dsn, E0, Ec) is used to describe the network

model of WRSN, where Dsn is the set of distances between sensors, which is expressed as

Dsn =
{

dij
∣∣dij = d

(
sni, snj)}, i, j ∈ [1, n] with d

(
sni, snj) = √(

xi − xj
)2

+
(
yi − yj

)2. The
set of initial residual energy and the energy consumption rate of each sensor are represented
by E0 and Ec, respectively. (xD, yD) is defined as the position of the depot.
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Figure 1. An example WRSN with a mobile charger.

It is assumed that each sensor in WRSN collects data and communicates with BS via
ad hoc communication. The BS could estimate their residual energy according to data
sampling frequency and transmission flow. MC can obtain the state information of the
sensor but will not interfere with the working state of the sensor. Meanwhile, the total
moving distance of MC during the charging tour is defined as Dis.

Although, in theory, the lifetime of the network can be extended indefinitely with
single or multiple MC. The network will shut down, since the energy modules of sensors
will age. Therefore, inspired by [28,31], we define the lifetime in this article as below.

Definition 1 (Lifetime). The lifetime of WRSNs is defined as the period from the beginning of the
network to the number of dead sensors reaching a threshold.

The lifetime and the threshold are described with Tli f e and ω%, respectively. Further-
more, the abbreviations used in this paper are summarized in Table 2.

Table 2. Abbreviations used in this paper.

Abbreviation Description

WRSN Wireless rechargeable sensor network
MC Mobile charger
BS Base station
Dis Total moving distance of MC during the charging tour

JSSRC Joint mobile charging sequence scheduling and charging ratio control problem
AMADRL Attention-shared multi-agent actor–critic-based deep reinforcement learning

Smc State information of MC
Snet State information of network

ACRL Actor–critic reinforcement learning
DP Dynamic programming

NJNP Nearest-job-next with preemption
TSCA Temporal–spatial real-time charging scheduling algorithm
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2.2. Energy Consumption Model of Sensors

The energy of the sensor is mainly consumed in data transmission and reception. There-
fore, based on [32,33], the energy consumption model at time slot t is adopted as below:

ei
c(t) = ρ ∑n

k=1,k 6=i f r
k,i(t) + ∑n

j=1,j 6=i[ς
t
i,j · f t

i,j(t) + ςt
i,B · f t

i,B(t)] (1)

where ρ is the energy consumption for receiving or transmitting 1 kb data from sensor sni

to sensor snj (or BS). ςt
i,j = ξ1 + ξ2 · dr

i,j represents the energy consumption for transmitting

1 kb data between each sensor, where di,j is the distance between sni and snj. ξ1 and ξ2
represent the distance-free and distance-related energy consumption index, respectively.
r is the signal attenuation coefficient. f r

k,i means the data flow of receiving, f t
i,j(1 ≤ j ≤ n)

and f t
i,B are the data flow of transmitting from sni to snj and BS. Hence, ρ ∑n

k=1,k 6=i f r
k,i(t)

represents the energy consumption of sni receiving information from all sensor nodes.
∑n

j=1,j 6=i[ς
t
i,j · f t

i,j(t) + ςt
i,B · f t

i,B(t)] is the energy consumption of sni by sending information
to other sensors and BS.

2.3. Charging Model of MC

In this paper, the sensors in WRSN are charged by MC wirelessly, and the empirical
wireless charging model is defined as [34]

Pc =
GsGrη

Lp

(
λ

4π(dms + β)

)2
P0 (2)

where dms represents the distance between the sensor and the mobile charger, P0 is the
output power, Gs is the gain of the source antenna which is equipped on the mobile charger,
Gr is the gain of the receiver antenna, dms is the distance between the mobile charger and
the sensor, Lp, and λ denote the rectifier efficiency and the parameter to adjust the Friis’
free space equation for short-distance transmission, respectively.

Since the MC moves to the position near the sensors, the distance can be regarded as a
constant. Therefore, (2) can be simplified to (3)

Pc =
∆
µ
· P0, (3)

in which ∆ = GsGrηλ2/16π2Lp, µ = (dms + β)2.
The moving speed of the MC is set as vms, and the energy consumed per meter is em J.

The capacity of MC is Emc, and the target sensor will be charged with one-to-one charging
mode only when the MC reaches it.

2.4. Problem Formulation

We define three labels to describe the working states of the visited point at time slot t,
i ∈ [0, n], i = visit, i 6= visit and i = dead. They represent that sni is selected to charge, not
be selected and dead, respectively, while i = 0 represents that the visited point is a depot.
The residual energy of the sensor is defined as ei

r(t), the charging demand of sensor sni is
defined as ei

d(t) and the residual energy of MC is defined as er
mc(t).

At time slot t, the residual energy of the sensor is described as (4), and the charging
demand will also be updated with (5)

ei
r(t) =


ei

r(t− 1)− ei
c(t) i 6= visit, i ∈ [1, n]

ei
r(t− 1) + Pc i = visit, i ∈ [1, n]

0 i = dead, i ∈ [1, n]
(4)

ei
d(t) = εEsn − ei

r(t) (5)
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where ε is the charging ratio, it could decide the upper threshold of charging energy, and
its value range in (0, 1].

To effectively charge the sensors, more energy in the MC should be used on charging
sensors, while the energy wasted on moving between the sensors and the depot should be
minimized. Hence, within the network lifetime Tli f e, the JSSRC problem under WRSNs
with the dynamic energy changing is defined as below.

Definition 2 (JSSRC). The joint mobile charging sequence scheduling and the charging ratio
control problem, which aims to prolong the lifetime of the network and minimize the number of dead
sensors in WRSNs with dynamic energy changing, is defined as the JSSRC problem.

The relevant notations are defined as follows: at time slot t, the current state of sensor
i is defined as (6) according to its residual energy, if τi(t) = 1, it indicates that the sensor is
alive, and τi(t) = 0 represents that the sensor has died.

τi(t) =
{

1, ei
r(t) > 0

0, ei
r(t) ≤ 0

(6)

Furthermore, the number of dead sensors is defined as Nd(t), which is obtained with (7)

Nd(t) = n−∑n
i=1 τi(t). (7)

There are three termination conditions of the JSSRC scheme, and they are described
with (8):

(1) The number of dead sensors reaches ω% of the total number, ω ∈ (0, 100].
(2) The remaining energy of MC is insufficient to return to the depot.
(3) The target lifetime or the base time is reached.

Nd(t) = ω · n
er

mc(t) < d′ · em
t = Ttarget

(8)

where d′ represent the distance from the MC’s current location to the depot, t is the
running time of the test, and Ttarget is a given base time. Specifically, when any of the
termination conditions in (8) are met, the charging process will end.

Then, within the network lifetime, the JSSRC problem can be formulated as

min Dis
min Nd
s.t. (4), (5), (6), (7), (8)

(9)

3. Details of the Attention-Shared Multi-Agent Actor-Critic Based Deep
Reinforcement Learning Approach for JSSRC (AMADRL-JSSRC)

JSSRC is a joint scheduling problem with sequence scheduling and charging ratio
control; it is difficult to schedule them simultaneously with the traditional single-agent rein-
forcement learning algorithm. Therefore, the multi-agent reinforcement learning algorithm
is introduced to solve this problem. In this section, we first briefly introduce multi-agent
reinforcement learning algorithms. Then, we model the provided problem and propose the
AMADRL-JSSRC.

3.1. Basis of Multi-Agent Reinforcement Learning

Multi-agent reinforcement learning is developed on the basis of the reinforcement
learning algorithm, which is often described as the Markov game (or stochastic game) [35].
Multi-agent reinforcement learning is also an important branch of machine learning and
deep learning, which aims to improve the shortcomings of multi-objective control that
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cannot be achieved by a single agent. Each agent can be a cooperative, competitive or
mixed relationship, and they learn how to make decisions in an environment by observing
the rewards obtained after the environment performs some actions. Specifically, there
are m agents; each agent first receives their own observations oϑ(ϑ ∈ [1, m]). Then, we
select an operation aϑ from action spaces, which are subsequently sent to the environment.
After that, the environment state transits from S to S′, and each agent receives a reward rϑ

associated with these transitions. The purpose of training agents is to collect accumulated
rewards from multiple agents as much as possible.

3.2. Learning Model Construction for JSSRC

The tuple {S, A1, A2, R, S′} is used to define the JSSRC scheme, where S is the state
space of two agents, A1 and A2 are the action spaces, R is the sum of rewards obtained by
two agents after performing actions, and S′ is the state of the environment after executive
action [36]. A state transition function is defined as T with T : S× A1 × A2 → P(S) , which
is the probability distribution over the possible next states. Furthermore, there are two
agents in JSSRC with their own set of observations, O1 and O2. The environment state is
defined as S = (O1, O2), and the new environment state is defined as S′ = (O′1, O′2). The
reward for each agent also depends on the global state and actions of all agents; thus, we
have the reward function, Rϑ : S× A1 × A2 → R , where ϑ is the number of the agent, and
R is the set of all possible rewards.

The time step is defined as the time slot when the scheduling decision is made. Hence,
at the k-th time step, the MC visits position i and completes the charging decision, where
i ∈ [0, n]. K is defined as the maximum time step when any of the termination conditions
are met. The time slot corresponding to the k-th time step is defined as t(k); when the action
of the k-th time step is completed, the corresponding time slot is recorded as t(k).

A scheduling example of JSSRC is shown in Figure 2. To express clearly, we omit the
information communication process between sensors, leaving only the scheduling decision
and the charging path. The relationship between the time slot and the time step is described
in the upper part of the figure. Within the network lifetime Tli f e, two agents determine two
actions a1(k) and a2(k) according to their observations o1(k) and o2(k) in state S(k) at time
step k. a1 represents the decision decided by agent 1 to choose the next sensor to be charged,
and a2 represents the decision decided by agent 2 to control the charging ratio. Agents
obtain their policy according to the continuous exploration and calculate the rewards R
through the obtained strategies at the end of the Tli f e. Then, the states, actions, policies,
and rewards of the environment are defined as follows.
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States of the environment: The state space of the environment in JSAAC includes
the state information of the MC and sensors, which are defined as Smc and Snet, re-
spectively. An example of the information at time step k, Smc is (pmc(k), er

mc(k)), Snet
is
(

pi
sn(k), ei

d(k), ei
c(k)

)
, where pmc(k) and er

mc(k) are the position and the residual energy
of MC, pi

sn(k) is the position of sni to be visited, ei
d(k) and ei

c(k) are the charging demand
and the energy consumption rate of sni, where k ∈ [0, K] and i ∈ [0, n]. sn0 represents the
depot, and the value of e0

d is 0 because the depot does not need to be charged. The state
embedding is a 5× K dimensional vector at time step k with S(k) = (Smc(k), Snet(k)); only
the position of the sensor is a static element, the others are dynamic.

Actions of the environment: The actions in JSSRC represent the decision of the target
sensor and the charging ratio, which are determined by two agents.

Policies of the environment: The policy for a single agent is described with a = π(o),
where a is an action, o is the observation of the agent, and π is the policy. In JSSRC, there
are two agents; we define two agents with policies parameterized by θ = {θ1, θ2} and let
π = {π1, π2}with πϑ : Oϑ 7→ P(Aϑ) where P(ϑ) ∈ [0, 1], ϑ = 1, 2. The main goal of JSSRC
is to learn a set of optimal policies to maximize two agents’ expected discounted rewards.

Rewards of the environment: Reward is used to evaluate the action; its value is
obtained by the agent after executing an action. In this paper, our goal is to improve
the charging performance of WRSN, which includes minimizing the moving distance of
MC and reducing the number of dead sensors. Since the total number of dead sensors is
inversely proportional to the reward, if the performed actions lead to more sensors being
dead, we will give a penalty for this behavior. Therefore, the expected discounted rewards
for two agents are defined with (10), and the immediate reward obtained after performing
the actions at the k-th time step is defined with (11).

The expected discounted rewards for two agents can be defined as

Rϑ(πϑ) = Ea1∼π1,a2∼π2,S∼T

[
∑K

k=0 γkrϑ(S(k), a1(k), a2(k))
]
, ϑ ∈ [1, 2]. (10)

rϑ(S(k), a1(k), a2(k)) = vd(k−1,k) + (−ε)Nd(k). (11)

Disa1∼π1,a2∼π2 = ∑K
k=1 d(k− 1, k) (12)

where the action space of a1 is A1 = {a1|a1 ∈ {0, 1, . . . , n}}, and the action space of a2
is A2 = {a2|a2 ∈ {0.5, 0.6, . . . , 1}}. v is a reward coefficient between 0 and 1, which can
ensure the shorter the moving distance is, the greater the reward that will be obtained.
The Nd(k) indicates the number of new dead sensors after the actions at the k-th time step
are performed, and ε is the penalty coefficient. In (12), Disa1∼π1,a2∼π2 represents the total
moving distance obtained after performing the actions when the termination conditions
are met. Obviously, the decision of the charging sequence and the charging ratio have
different contributions to the reward function, which brings difficulties to the design of
the algorithm.

State Space Update of the environment: One episode of the JSSRC can be formed
as a finite sequence of decisions, observations, actions, and immediate rewards, which is
described in Table 3.

Table 3. State Space Update.

Time Step Observation
Agent 1 Agent 2

Immediate
RewardsAction Space (A1) Individual

Reward (r1) Action Space (A2) Individual Reward (r2)

1 O(1) = (o1(1), o2(1)) a1(1) r1(1) a2(1) r2(1)
R(1) = R(o1(1), o2(1),

a1(1), a2(1))
. . . . . . . . . . . . . . . . . . . . .

k O(k) = (o1(k), o2(k)) a1(k) r1(k) a2(k) r2(k)
R(k) = R(o1(k), o2(k),

a1(k), a2(k))
. . . . . . . . . . . . . . . . . . . . .

K O(K) = (o1(K), o2(K)) a1(K) r1(K) a2(K) r2(K)
R(K) = R(o1(K), o2(K),

a1(K), a2(K))
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To display the specific update process of states, we assume that the MC is located
at the depot at time step 0. At each time step, MC decides the next charged sensor from
SN and determines the corresponding charging ratio for it. It is defined that the residual
energy of sensor sni before charging and after charging are ei

r(k) and ei
r(k), respectively.

The charging demand of each sensor and the residual energy of MC will be updated after
performing the charging operation at time step k. They are shown as follows:

ei(i=visit)
r (k) = max

{
0, ei

r(k− 1)− tm(k) · ei
c(k)

}
(13)

ei(i=visit)
r (k) = εi(k) · Esn (14)

ei(i 6=visit)
r (k) = max

{
0, ei

r(k− 1)− tm(k) · ei
c(k)

}
. (15)

ei(i 6=visit)
r (k) = ei(i 6=visit)

r (k)− tc(k) · ei
c(k). (16)

where tm(k) is the moving duration of the MC between the k-1-th and k-th time step.
It is assumed that at the k-1-th time step, the MC is located at snj, at the k-th step, MC

is located at sni. Therefore, we have d(k, k− 1) = dij, and tm(k) can be obtained by (17)

tm(k) =
d(k, k− 1)

vm
(17)

If sni is alive at the k-th time step, the charging time is

ti(i=visit)
c (k) =

εi(k) · Esn − ei(i=visit)
r (k)

Pc − ei
c(k)

(18)

where εi(k) is the unique charging ratio of sni at the k-th time step.
Therefore, the charging demands of three types of working states about sni are

ei(i=visit)
d (k) = εi(k) · Esn − ei(i=visit)

r (k) (19)

ei(i 6=visit)
d (k) = εi(k) · Esn − ei(i 6=visit)

r (k). (20)

ei(i=dead)
d (k) = 0 (21)

The residual energy of the MC before and after performing the charging operation is
defined as emc

r (k) and emc
r (k), respectively; they will update with (22) and (23)

emc
r (k) = max{0, emc

r (k− 1)− d(k− 1, k) · em}. (22)

emc
r (k) = max

{
0, emc

r (k)− ei(i=visit)
d (k)

}
(23)

To speed up the training and obtain feasible solutions, we give the following constraints:

(1) The MC could visit any position in the network as long as its residual energy could
satisfy the charging demand of the next selected sensor or is enough to move back to
the depot.

(2) All sensors with a charging demand greater than 0 have a certain probability of being
selected as the next one to be charged.

(3) The MC does not charge the sensors whose charging demands are zero.
(4) If the residual energy of MC does not satisfy the charging demand of the next selected

sensor, but it is enough to return to the depot, the MC is allowed to return to the depot
to charge itself, and the charging time of the MC is ignored.

(5) The charging decision of two adjacent time steps cannot be the same sensor or depot.
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(6) If the residual energy of the MC does not meet the charging demand for the next
sensor, is not enough to return to the depot, or the preset network lifetime is reached,
the charging plan will be ended no matter whether the sensors are still alive or not.

3.3. AMADRL-JSSRC Algorithm

As depicted in Figure 3, AMADRL-JSSRC’s implementation consists of the environ-
ment, the experience replay buffer (D), the mini-batch (B), the obtained rewards, and the
different neural networks. The environment can be partially observed by each agent, where
the actor and critic networks estimate the optimal control policies for the charging sequence
scheduler and the charging ratio controller. The detail of training AMADRL-JSSRC is
described in Algorithm 1.
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Unlike the traditional methods such as MADDPG [36] and MAPPO [37], each agent
receives information from other agents without discrimination and calculates the corre-
sponding Q-value. In JSSRC, the contribution of the charging sequence scheduler and the
charging ratio controller to the Q-value are different. Compared with the charging ratio,
the decision of the charging sequence has a greater impact on the reward. To calculate
the Q-value function Qϕ

ϑ (s, a) for agent ϑ, we introduce the attention mechanism with a
differentiable key-value memory model [38,39]. This kind of mechanism does not need
to make any assumptions about the temporal or spatial locality of the inputs, which is
more suitable to overcome the difficulty that each agent has a different action space and
contributes a different reward in this article.

At each time step, the critic network in each agent will receive the observation infor-
mation s = (o1, o2) and action information a = (a1, a2), for all ϑ ∈ [1, 2]. We define the set
of all agents except for ϑ as \ϑ, and we use ϑ̂ as the pointer to index the set. Qϕ

ϑ (s, a) is
defined as the function of agent ϑ which is obtained by combining with the observation
information, action information, and contribution from other agents:

Qϕ
ϑ (s, a) = fϑ(gϑ(oϑ, aϑ), cϑ) (24)

where fϑ is a two-layer multi-layer perceptron (MLP) [40], and gϑ is a one-layer MLP
embedding function. cϑ is the contribution from other agents, which is a weighted sum of
the value of each agent with (25)

cϑ = ∑ϑ̂ 6=ϑ
κϑ̂vϑ̂ = ∑ϑ̂ 6=ϑ

κϑ̂h
(
Vgϑ̂

(
oϑ̂, aϑ̂

))
(25)

In (25), vϑ̂ is the embedding function of agent ϑ̂ encoded with an embedding function.
Then, the shared matrix V is used for linear transformation. h is an element-wise nonlinear-
ity activation function named leaky ReLu, which could retain some negative axis values to
prevent all negative axis information from being lost. h is realized by (26)

h(x) =
{

x x > 0
φ · x otherwise

(26)

where φ is a very small constant.
The attention weight κϑ̂ uses bilinear mapping (i.e., query-key system) to compare the

embedded eϑ̂ with eϑ = gϑ(oϑ, aϑ), and it passes the similarity value between these two
embedding into a SoftMax function:

κϑ̂ ∝ exp
(

eT
ϑ̂

WT
k Wqeϑ

)
(27)

where the eϑ is transformed to a “query” with Wq, and the eϑ̂ is transformed to a “key” with
Wk [41].

To prevent vanishing gradients, the matching is scaled by the dimensionality of
these two matrices. The multiple attention heads mechanism is introduced in AMADRL-
JSSRC, each head with a separate set of parameters (Wk, Wq, V), which could give rise to an
aggregated contribution from another agent to the agent i. We concatenate the contributions
of all heads into a vector. The most important point is that each head could focus on a
different weighted mixture of agents.

In AMADRL-JSSRC, the weights for extracting selectors, keys, and values are shared
between two agents, because the multi-agent value function is essentially a multi-task
regression problem. This parameter sharing in the critic network enables our method to
learn effectively in an environment where the action space and reward for individual agents
are different but share common observation features. The structure of the critic network
and the structure of the multiple head attention mechanism are clearly shown in the left
part of Figure 3.
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3.4. Parameters Update in AMADRL-JSSRC

The parameters ϕ and θ used in the critic networks and policies gradient will be
updated, respectively, according to line 17 to line 24 and line 28 to line 32 in Algorithm 1.

Since the parameters are shared among critic networks in AMADRL-JSSRC, all critic
networks are updated together to minimize a joint regression loss function:

LQ(ϕ) = ∑2
ϑ=1 E(s,a,r,s′)∼D

[
Qϕ

ϑ (s, a)− yϑ

]2
(28)

In (28), yϑ is obtained by (29)

yϑ = rϑ + γEa′∼πθ(s
′)[Q

ϕ
ϑ

(
s′, a′

)
− α log(πθϑ

(a′ϑ|o′ϑ))] (29)

It is worth noting that Qϕ
ϑ is used to estimate the action value for agent ϑ by receiving

the observation information and action information from all agents. D is a replay buffer to
store past experiences. In (29), α is a parameter that could trade off maximizing entropy
and rewards.

Since the charging sequence decision has a greater impact on the expected reward
than the charging ratio decision, in order to give the optimal policies objectively, we need
to compare the value of a specific action to the value of the average action of the agent,
with another agent fixed. We could determine whether said action will lead to an increase
in expected return or whether any increase in reward is attributed to the actions of another
agent. This problem is called multi-agent credit assignment. An effective solution is to
introduce an advantage function [42] with a baseline that only marginalized the actions of
the given agent from Qϕ

ϑ (s, a), and the form of this advantage function is shown below:

Aϑ(s, a) = Qϕ
ϑ (s, a)− b

(
s, aϑ̂

)
, (30)

where
b
(
s, aϑ̂

)
= Eaϑ∼πϑ(oϑ)

[
Qϕ

ϑ

(
s,
(
aϑ, aϑ̂

))]
(31)

In (31), b
(
s, aϑ̂

)
is the multi-agent baseline used to calculate the advantage function.

We calculate our baseline with the AMADRL-JSSRC algorithm in a single forward
pass by outputting the expected return Qϕ

ϑ

(
s,
(
aϑ, aϑ̂

))
for every possible action, aϑ ∈ Aϑ.

The expectation could be calculated exactly with (32)

Eaϑ∼πϑ(oϑ)

[
Qϕ

ϑ

(
s,
(
aϑ, aϑ̂

))]
= ∑a′ϑ∈Aϑ

π(a′ϑ|oϑ)Qϑ

(
s,
(
a′ϑ, aϑ̂

))
(32)

To achieve this goal, we make the following four adjustments:

(1) We must remove ai from the input of Qi and output a value for every action.
(2) We need add an observation encoder, eϑ = gs

ϑ(oϑ), to replace the eϑ = gϑ(oϑ, aϑ) in
(24) described above.

(3) We also modify fϑ to output the Q-value of all possible actions rather than the single
input action.

(4) To avoid overgeneralization [43], we sample all actions from the current strategies
of all agents to calculate the gradient estimation of agent ϑ rather than sampling the
actions of other agents from the experience replay buffer such as [36,39].
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Algorithm 1 AMADRL-JSSRC

1: Initialize the number of parallel environments for two agents as Np , initialize the update time of parallel operation as
Tupdate , initialize the experience replay buffer with D and the minibatch with B, initialize the number of episodes as Ne , the
number of steps per episode as Npe the number of critic updates as Ncu , the number of policy updates as Npu , and the
number of multiple attention head as Nm , initialize the critic network Qϕ , and actor network πθ with random parameters ϕ,
θ, initialize the target network, ϕ← ϕ and θ ← θ , Tupdate ← 0
2: for iep = 1, . . . , Ne do
3: Reset environments, and obtain the initial oenv

ϑ for each agent, ϑ
4: for k = 1, . . . , Npe do
5: Randomly select actions aenv

ϑ ∼ πϑ(·|oenv
ϑ ) for each agent ϑ, in each environment (env)

with greedy search strategy
6: Send actions to all parallel environments, then obtain o′ϑ

env and renv
ϑ for all agents

7: Store transitions for all environments in D
8: Tupdate = Tupdate + Np
9: if Tupdate ≥ min steps per update then
10: for j = 1, .., Ncu do
11: Sample B
12: function Update Critic (B):
13: Unpack the mini-batch (B)
14:

(
oB

1,2, aB
1,2, rB

1,2, o′B1,2

)
← B

15: Calculate Qϕ
i

(
oB

1,2, aB
1,2

)
for two agents in parallel

16: Calculate a′B1 ∼ πθ
1

(
o′B1
)

and a′B2 ∼ πθ
2

(
o′B2
)

with target policies
17: Calculate Qϕ

ϑ

(
o′B1,2, a′B1,2

)
for two agents in parallel with the target critic

18: Update critic with ∇LQ(ϕ) shown in (28) and Adam optimizer [44]
19: end function Update Critic
20: end for
21: for j = 1, .., Npu do
22: Sample Nm × (o1,2) ∼ D
23: function Update Policies (oB

1,2)

24: Calculate aB
1,2 ∼ πθ

ϑ

(
o′Bi
)
, ϑ = 1, 2

25: Calculate Qϕ
ϑ

(
oB

1,2, aB
1,2

)
for two agents in parallel

26: Update policies with ∇θϑ
J (πθ) shown in (33) and Adam optimizer [44]

27: end function Update Policies
28: end for
29: Update target parameters:

ϕ = τϕ + (1− τ)ϕ, θ = τθ + (1− τ)θ
30: Tupdate ← 0
31: end if
32: end for
33: end for
34: Output: The parameters of target actor

Therefore, the policies of each agent will be updated by:

∇θϑ
J (πθ) = Es∼D,a∼π [∇θϑ

log(πθϑ
(aϑ|oϑ))

(
−α log

(
πθϑ

(aϑ|oϑ)
)
+ Qϕ

ϑ (s, a)− b
(
s, aϑ̂

))
] (33)

4. Experimental Setup and Results

In this section, we will conduct experiments to evaluate the performance of AMADRL-
JSSRC. The simulations are divided into two phases: (1) the training phase of AMADRL-
JSSRC and (2) the testing phase for a comparative study with baseline algorithms. The
experiment setting and training details are described in Section 4.1. The testing details of
the comparison with the baseline algorithms are described in Section 4.2.

4.1. Experimental Environment and Details

We conduct the AMADRL-JSSRC using Python 3.9.7 and TensorFlow 2.7.0 over
10,000 episodes, and each episode is divided into 100 time slots. Then, AMADRL-JSSRC has
tested over ten episodes, where the average values of the important metrics are calculated.

We use the same simulation settings as described in [31], and some details are supple-
mented here. We assume that the locations of sensors are assigned uniformly at random in
the unit square [0, 1]× [0, 1], and the residual energy of each sensor is randomly generated
between 10 and 20 J. The moving speed of MC is 0.1 m/s, and the energy consumption
rate of moving unit distance is 0.1 J/s. The rate at which MC charges the sensor is 1 J/s,
and the time that the MC returns to the depot to charge itself is ignored here. The main
simulation settings are provided in Table 4. In addition, the relevant data of the real-time
energy consumption rate of the sensor are shown in Table 5.
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Table 4. The Parameters of the Simulation Settings.

Parameter Description Value

Network size [0, 1]× [0, 1]
Number of sensors 50–200

Emc MC initial energy 100 J
vms Moving speed of MC 0.1 m/s
em The speed of energy consumed on moving of MC 0.1 J/m
Pc Charging speed of MC 1 J/s
ε Charging ratio

Esn Energy capacity of sensor 50 J
ω The threshold of the number of dead sensors 0.5
E0 The set of initial residual energy 10~20 J

Table 5. Energy parameters of sensor.

Parameter Description Value

ξ1 Distance-free energy consumption index 5× 10−12 J/bit
ξ2 Distance-related energy consumption index 1.3× 10−4 J/bit
ρ Energy consumption for receiving or transmitting 5× 10−8 J/bit

Number of bits 2× 104

r Signal attenuation coefficient 4
Per second packet generation probability 0.2~0.5

After the network environment is initialized, we will conduct simulation training on
the environment. Our implementation uses an experience replay buffer of 105. The size of
the minibatch is 1024. As for the neural networks, all networks (separate policies and those
contained within the centralized critic networks) use a hidden dimension of 128, and the
Leaky Rectified Linear units are used as the nonlinear activation. We train our models with
the Adam optimizer [44] and set different initial learning rates when the network size is
different. The key parameters used in the training stage are described in Table 6.

Table 6. Key Parameters of the Training Stage.

Parameter Description Value

D Size of experience replay buffer 105

B Size of mini-batch 1024

πlr Actor learning rate 5 × 10−4 (JSSRC50,100)
5 × 10−5 (JSSRC200)

Qlr Critic learning rate 5 × 10−4 (JSSRC50,100)
5 × 10−5 (JSSRC200)

Np Number of parallel environments 4
Ne Number of episodes 104

Npe Number of steps per episode 100
Ncu Number of critic updates 4
Npu Number of policy updates 4

Nm
Number of multiple attention

heads 4

Nut Number of target updates 103

Adam Optimizer method
γ Reward discount 0.9
v Reward coefficient 0.5
ε Penalty coefficient. 10
τ Update rate of target parameters 0.005
α Temperature parameter 0.01

We have trained our model for three different environment settings on four NVIDIA
GeForce GTX 2080ti for 10 h, after which the observed qualitative differences between the
results of consecutive training iterations were ignored. We present one set of experimental
results to describe the relationship between episodes and reward, which is shown in
Figure 4. We can see that obtained rewards increase slowly through episodes to reach
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peak values after 240 training episodes. This is mainly caused by the efficient learning of
AMADRL-JSSRC to the WRSN with dynamic energy changes so that agents could make
reasonable decisions to obtain a greater reward.
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Figure 4. Reward per episode.

Since the reward discount factor and penalty coefficient have a great impact on the
performance of the algorithm in the training and testing process, we have made two sets of
experiments, and the results are shown in Tables 7 and 8, respectively. These experimental
results prove that AMADRL-JSSRC will strive for a long-term reward rather than a short-
sight reward when the reward discount factor approaches 1. Furthermore, with the increase
in the penalty coefficient, the number of dead sensors gradually decreases. The reason
is that in order to obtain a high global charging reward, AMADRL-JSSRC preferentially
charges the sensors with low residual energy to avoid sensor death when a large value is
assigned to ε. Therefore, in this paper, the penalty coefficient is set as 10, and the reward
discount factor is set as 0.9.

Table 7. Impact of the reward discount (ε = 10).

γ 0.5 0.6 0.7 0.8 0.9

Reward −60.72 −18.05 0.19 20.89 52.45
Number of dead sensors 25 18 13 8 5

Moving distance (m) 11.37 13.15 14.85 15.55 16.77

Table 8. Impact of the penalty coefficient (γ = 0.9).

ε 0 1 5 8 10

Reward 60.33 38.29 37.64 40.12 52.45
Number of dead sensors 20 15 11 7 5

Moving distance (m) 14.54 15.09 15.88 16.23 16.77

4.2. Comparison Results against the Baselines

In this section, we compare the performance of the AMADRL-JSSRC with that of the
ACRL algorithm, the GREEDY algorithm, the dynamic programming algorithm, and two
typical online charging schemes algorithms NJNP and TSCA [16]. The detailed execution
process of the above algorithms is shown in [31]. It is noted that some details of the baseline
algorithms need to be adjusted. For example, we have replaced the reward calculation
equation in line 13 of Algorithm 1, line 6 of Algorithm 2, and the line 10 of Algorithm 3
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described in [31] with r(S(k), a(k)) = vd(k−1,k) + (−ε)Nd(k), and we change their seeking
rule from the minimum global reward to the maximum global reward.

We consider three networks with different scales, including 50, 100, and 200 sensors;
these environments are denoted as JSSRC50, JSSRC100, and JSSRC200. We have run our
tests on WRSNs based on these environments, and the corresponding MC capacity is set
as 50, 80, and 150 J. In addition, the base time of these three tests is set as 100 s, 200 s, and
300 s, respectively. Unless otherwise specified, these parameters are fixed during the test.

The tour length, the extra time, and the number of dead sensors obtained via different
algorithms based on different JSSRC environments are shown in Table 9. It is observed that
when the network size is small, such as the network with 50 sensors, the exact heuristic
algorithm is better than AMADRL-JSSRC and ACRL algorithms in terms of average tour
length and the average number of dead sensors. Meanwhile, the ACRL performance is
slightly better than that of AMADRL-JSSRC at JSSRC 50. However, with the increase in
network scale, the results of AMADRL-JSSRC and ACRL outperform the GREEDY, DP, JNJP,
and TSCA significantly; the AMADRL-JSSRC and ACRL algorithms begin to show their
superiority. The AMADRL-JSSRC algorithm is better than the ACRL algorithm, especially
in the terms of the number of dead sensors. The reason for this phenomenon is that the
charging ratio of the ACRL algorithm is fixed and cannot adjust adaptively according to
the real-time charging demand, which will lead to some sensors becoming dead during
the MC charging the selected sensors. The extra time comparisons are also presented in
this table, where all the times are reported on one NVIDIA GeForce GTX 2080ti. We find
that our proposed approach significantly improves the solution while only adding a small
computational cost in runtime. Moreover, the extra time of AMADRL-JSSRC is longer than
that of ACRL, verifying that multi-agent collaborative decision making consumes more
computational cost.

Table 9. The Results Based on Different Algorithms Over Test Set.

Environment Algorithm Mean
Length Std Mean Nd Base Time Extra Time

JSSRC50

AMADRL-JSSRC 13.918 0.802 3 100 0.905
ACRL 13.878 0.798 4 100 0.788

GREEDY 13.902 0.834 2 100 0.647
DP 14.068 0.856 6 100 0.743

NJNP 13.834 0.815 5 100 0.516
TSCA 14.028 0.755 4 100 0.498

JSSRC100

AMADRL-JSSRC 17.454 1.228 5 200 1.463
ACRL 16.768 1.266 8 200 1.32

GREEDY 18.233 1.445 13 200 1.38
DP 18.088 1.328 13 200 1.12

NJNP 16.891 1.306 12 200 0.995
TSCA 17.718 1.205 11 200 0.936

JSSRC200

AMADRL-JSSRC 36.769 1.813 8 300 1.828
ACRL 36.126 1.998 12 300 1.482

GREEDY 37.856 3.162 19 300 1.635
DP 37.532 2.376 18 300 1.864

NJNP 35.513 2.265 17 300 1.465
TSCA 35.921 2.169 16 300 1.416

5. Discussions

The impacts of the parameters on the charging performance, including the capacity of
the sensor and the capacity of MC, and the performance comparison in terms of lifetime
are discussed in this section. The test environment is set as 100 sensors, the baseline time
is 300 s, the initial capacity of the sensor is 50 J, and the initial capacity of MC is 100 J.
Meanwhile, the initial residual energy of sensors will change with the capacity of sensors.
Since the baseline algorithms do not have the ability to adaptively control the charging
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ratio for each sensor, for a fair comparison, we introduce the optimal charging ratio from
Table 4, which is named the charging coefficient in [31]. Therefore, the charging ratio of the
baseline algorithms are ACRL ε = 0.7, GREEDY ε = 0.8, DP ε = 0.9, NJNP ε = 0.8, and
TSCA ε = 0.8, respectively.

5.1. The Impacts of the Capacity of the Sensor

As depicted in Figure 5, NJNP has the lowest tour length, and the average tour length
gradually decreases with the increase in the capacity of sensors. The reason is that with
the increase in the capacity of the sensor, the number of sensors’ charging requests will
decrease on the premise of sufficient residual energy. Moreover, the charging for each
sensor is also prolonged due to the increase in sensor capacity. Based on the fixed baseline
time, the more time the MC spends on charging sensors, the less time it will spend on
moving. Therefore, the average tour length decreases gradually. The fluctuation in Figure 5
is caused by the random distribution of sensor positions and the dynamic change of their
energy consumption rate in each test experiment. Furthermore, the NJNP algorithm has
the lowest tour length is because it preferentially charges the sensors close to MC. It is
noted that the moving distance of AMADRL-JSSRC is slightly longer than that of ACRL.
This is because AMADRL-JSSRC can determine different charging ratios for the selected
sensors according to the real-time charging demand to avoid the punishment caused by
the dead sensors. Therefore, AMADRL-JSSRC spends slightly less time on charging than
ACRL. When the base time is fixed, more time will be spent on moving, resulting in a
longer moving distance.
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Figure 5. The impact of the capacity of the sensor on the average tour length.

Figure 6 shows that with the increase in the capacity of the sensor, the average number
of dead sensors shows an opposite change to the average tour length. Obviously, the aver-
age number of dead sensors of AMADRL-JSSRC is always the smallest. This is because the
optimal charging ratios of the baseline algorithms are fixed, while the baseline algorithms
are fixed. With the increase in the capacity of the sensor, the charging ratio for each selected
sensor will be prolonged, increasing the risk of subsequent low residual energy sensor
death. This result proves that the adaptive control of the charging ratio for each sensor
could improve the charging performance effectively for the network.
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5.2. The Impacts of the Capacity of MC

Figures 7 and 8 show the impacts of the capacity of MC change on the average tour
length and the average number of dead sensors, respectively. With the increase in MC
capacity, when the baseline time is fixed, the MC could reduce the time of returning to
the depot to charge itself. This change could shorten the moving distance of the MC and
decrease the risk of subsequent low residual energy sensor death when it returns to or
leaves the depot. Meanwhile, figures verify that compared with the ACRL algorithm,
AMADRL-JSSRC gains a smaller number of dead sensors at the cost of increasing a certain
moving distance.
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5.3. Performance Comparison in Terms of Lifetime

We have analyzed the test results of six schemes under the fixed baseline lifetime. In
this section, we explore the lifetime of the six schemes under different JSSRCs, which are
JSSRC50, JSSRC100, and JSSRC200, until the termination condition is satisfied. These six
algorithms have run 50 times independently, and the test results are shown in Figures 9–11.
It can be seen from the figure that although the fluctuation range of network lifetime
obtained by the AMADRL-JSSRC algorithm is large, the lower and the upper bounds of
network lifetime are still higher than the other five algorithms significantly. Moreover, with
the increase in the number of sensors, this performance is outstanding significantly. It is
noted that the network lifetime obtained by the AMADRL-JSSRC is better than the ACRL,
which further proves that adjusting the charging ratio adaptively for each sensor could
prolong the network lifetime effectively.
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Entropy 2022, 24, 965 21 of 23
Entropy 2022, 24, x FOR PEER REVIEW 22 of 24 
 

 

 
Figure 10. The lifetime of different algorithms on JSSRC100. 

 
Figure 11. The lifetime of different algorithms on JSSRC200. 

6. Conclusions 
In this paper, a novel joint charging sequence scheduling and charging ratio control 

problem is studied, and an attention-shared multi-agent actor–critic-based deep reinforce-
ment learning approach (AMADRL-JSSRC) is proposed, where a charging sequence 
scheduler and a charging ratio controller are employed to determine the target sensor and 
charging ratio by interacting with the environment. AMADRL-JSSRC trains decentralized 
policies in multi-agent environments, using a centralized computing critic network to 
share an attention mechanism, and it selects relevant policy information for each agent. 
Meanwhile, the AMADRL-JSSRC performance significantly prolongs the lifetime of the 
WRSN and minimizes the number of dead sensors, and the performance is more signifi-
cant when dealing with large-scale WRSNs. In future work, the multi-agent reinforcement 
learning approach for multiple MCs to complete the charging tasks jointly is the key point 
for further study. 

AMADRL-JSSRC ACRL GREEDY DP NJNP TSCA

5.6

5.8

6

6.2

6.4

6.6

6.8

7

7.2

7.4

7.6

Li
fe

tim
e 

of
 W

R
SN

 (s
)

104

AMADRL-JSSRC ACRL GREEDY DP NJNP TSCA

5

5.2

5.4

5.6

5.8

6

6.2

6.4

6.6

6.8

Li
fe

tim
e 

of
 W

R
SN

 (s
)

104

Figure 10. The lifetime of different algorithms on JSSRC100.

Entropy 2022, 24, x FOR PEER REVIEW 22 of 24 
 

 

 
Figure 10. The lifetime of different algorithms on JSSRC100. 

 
Figure 11. The lifetime of different algorithms on JSSRC200. 

6. Conclusions 
In this paper, a novel joint charging sequence scheduling and charging ratio control 

problem is studied, and an attention-shared multi-agent actor–critic-based deep reinforce-
ment learning approach (AMADRL-JSSRC) is proposed, where a charging sequence 
scheduler and a charging ratio controller are employed to determine the target sensor and 
charging ratio by interacting with the environment. AMADRL-JSSRC trains decentralized 
policies in multi-agent environments, using a centralized computing critic network to 
share an attention mechanism, and it selects relevant policy information for each agent. 
Meanwhile, the AMADRL-JSSRC performance significantly prolongs the lifetime of the 
WRSN and minimizes the number of dead sensors, and the performance is more signifi-
cant when dealing with large-scale WRSNs. In future work, the multi-agent reinforcement 
learning approach for multiple MCs to complete the charging tasks jointly is the key point 
for further study. 

AMADRL-JSSRC ACRL GREEDY DP NJNP TSCA

5.6

5.8

6

6.2

6.4

6.6

6.8

7

7.2

7.4

7.6

Li
fe

tim
e 

of
 W

R
SN

 (s
)

104

AMADRL-JSSRC ACRL GREEDY DP NJNP TSCA

5

5.2

5.4

5.6

5.8

6

6.2

6.4

6.6

6.8

Li
fe

tim
e 

of
 W

R
SN

 (s
)

104

Figure 11. The lifetime of different algorithms on JSSRC200.

6. Conclusions

In this paper, a novel joint charging sequence scheduling and charging ratio con-
trol problem is studied, and an attention-shared multi-agent actor–critic-based deep rein-
forcement learning approach (AMADRL-JSSRC) is proposed, where a charging sequence
scheduler and a charging ratio controller are employed to determine the target sensor and
charging ratio by interacting with the environment. AMADRL-JSSRC trains decentralized
policies in multi-agent environments, using a centralized computing critic network to
share an attention mechanism, and it selects relevant policy information for each agent.
Meanwhile, the AMADRL-JSSRC performance significantly prolongs the lifetime of the
WRSN and minimizes the number of dead sensors, and the performance is more significant
when dealing with large-scale WRSNs. In future work, the multi-agent reinforcement
learning approach for multiple MCs to complete the charging tasks jointly is the key point
for further study.
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