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Abstract: Image encryption based on a chaos system can effectively protect the privacy of digital
images. It is said that a 3D chaotic system has a larger parameter range, better unpredictability and
more complex behavior compared to low-dimension chaotic systems. Motivated by this fact, we
propose a new image cryptosystem that makes use of a 3D chaotic system. There are three main
steps in our scheme. In the first step, the chaotic system uses the hash value of the plaintext image to
generate three sequences. In step two, one of the sequences is used to dynamically select confusion
and diffusion methods, where confusion and diffusion have three algorithms, respectively, and will
produce 32n (n > 100) combinations for encryption. In step three, the image is divided into hundreds
of overlapping subblocks, along with the other two sequences, and each block is encrypted in the
confusion and diffusion process. Information entropy, NPCR, UACI results and various security
analysis results show that the algorithm has a better security performance than existing, similar
algorithms, and can better resist clipping, noise, statistical analysis and other attacks.

Keywords: chaotic system; image encryption; random dynamic selection

1. Introduction

Digital imagery is a vital medium for the presentation of information. Digital images
break down language barriers and promote ideological exchange. They have been widely
used in medical, military, financial, judicial and other fields. They also face the problem of
information leakage, and some even involve national security, such as pictures taken by
military satellites, military facility maps, building maps of financial institutions, etc.

Generally, there are two ways to protect the privacy of digital images: image water-
marking and image encryption. The former mainly refers to the method of hiding digital
watermarking in plaintext images to protect the copyright of the plaintext images and
prevent illegal transmission. The latter refers to the operation of the pixel position and
value of the image through specific reversible mathematical transformation, so that the
plaintext images and the corresponding ciphertext images are as uncorrelated as possible,
to prevent unauthorized third parties from learning the specific content information of the
plaintext image.

Unfortunately, traditional encryption algorithms such as DES, AES [1,2] are not ideal
for real-time image encryption, as they do not fully consider image data’s large capacity,
strong pixel correlation and high redundancy. For example, in electronic code books
(EBCs), the ciphertext image generated by AES encryption still has an obvious plaintext
image outline. In 1997, researchers found that chaotic systems have initial sensitivity,
pseudo randomness, ergodicity, parameter sensitivity and unpredictability, which could be
combined with the characteristics of images. Chaotic systems are widely used in image
encryption [3–20]. Frequently used chaotic systems include Logistic [21], Sine [22] and
Tent [23].

Compared with classic chaotic systems, which are one-dimensional, hyperchaotic
systems have better randomness, ergodicity and a wider parameter range, resulting in the
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generation of more chaotic sequences. Therefore, Zheng et al. [17] presented a novel form of
image encryption by combining dynamic DNA sequence encryption and the improved 2D
logistic sine map, which improves the small parameter space problem of one-dimensional
chaotic systems. Gao et al. [24] designed a 2D chaotic system by combining two one-
dimensional chaotic systems. The experimental results showed that the two-dimensional
hyperchaotic map had more complex dynamic characteristics and randomness. Hua
et al. [25] proposed an image scheme with 2D logistic-adjusted-Sine chaotic systems. The
performance evaluation showed that it had better ergodicity and unpredictability than
many existing chaotic systems. However, the trajectory of these chaotic systems does not
distribute in the entire phase space, which means that they lack complex dynamic behavior
and are vulnerable to interruption [26,27]. Research shows that the existing encryption
algorithms for chaotic systems with a small binding range, simple random behavior and
low ergodicity may be attacked [18,28,29].

Pseudo-random numbers generated by chaotic systems are used to scramble and
diffuse links in the encryption process to obtain cryptographic images with a good encryp-
tion performance. The variation in pixel positions or values may be deduced based on a
single permutation or diffusion method. Wang et al. [30] proposed a hybrid encryption
algorithm of pixel values, pixel bits and binary bits. This introduced both linear and non-
linear diffusion operations and mixed the permutation and diffusion procedures in one
step, which may prevent attackers from knowing which encryption method is being used.
Wang et al. [31] utilized multiple one-dimensional chaotic systems for block encryption
to mix the characteristics of multiple chaotic systems, making them more difficult for
attackers to crack. Xian et al. [32] proposed a form of image encryption based on chaotic
sub-block permutation and digital selection diffusion. One of several methods is selected
to execute the diffusion, forcing a cracker to crack each algorithm to successfully obtain a
clear text image. Khan et al. [33] introduced an efficient block image encryption, relying
on the dynamic selection expansion of the correlation coefficient of each block. Each block
image is encrypted with block-related parameters, which expands the variables and makes
cracking more difficult. Yavuz et al. [5] introduced a switching chaotic image encryption
algorithm based on the content-sensitive dynamic function. The continuous switching
of functions during encryption gives the final image different characteristics of function
encryption. Generally, these algorithms dynamically choose encryption methods. The
method used in the above paper selects one of various encryption methods or constantly
changes parameters during encryption to hide the change laws of pixel value and position.
However, due to the limitations regarding the number of encryption methods and the small
parameter range, the correct encryption methods and parameters can be found through
exhaustive methods.

In this paper, an image encryption scheme named 3D-PHSL, combining a hyperchaotic
system and random dynamic encryption, is proposed. If the same chaotic sequence is used
for three shuffling and three diffusion operations, the effects of shuffling and diffusion may
be offset. Therefore, we designed a three-dimensional, chaotic system to ensure that the
chaotic sequences are not repeated. To expand the range of parameters and generate more
chaotic sequences, a 3D chaotic system is designed by combining polynomial, Logistic,
Sine and Hermon chaotic systems. This makes up for the shortcomings of their chaotic
behaviors, such as their not being complex enough, being insensitive to initial conditions,
and not having a large enough parameter interval [17,24,25]. The image is divided into
hundreds of subblocks; each is encrypted by one of three confusion methods and one of
three diffusion methods. Meanwhile, three random sequences are generated by the chaos
system. One is used to select permutation and diffusion methods; the other two are used
for block encryption.

The contributions of this paper are as follows:

1. A three-dimensional hyperchaotic system with wide parameter range and good
randomness is designed.
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2. The block-divided methods make the image blocks overlap, which enables the algo-
rithm to become more sensitive to plaintext. The pixel values in each image block are
encrypted by different permutation and diffusion methods.

3. The single permutation-diffusion process of the traditional methods is optimized.
It uses 9n (n > 100) combinations of encryption algorithms to obtain the final en-
crypted timage.

As a result, the security of the system proposed in this paper is more dependent on the
key. Even if individual permutation and diffusion algorithms are cracked by an attacker, it
is difficult to recover the ordinary image from the encrypted image. Experimental results
show that the proposed algorithm can effectively resist differential attacks, cropping attacks,
noise attacks, etc. The performance evaluations, including ergodic graph, bifurcation
diagram, Lyapunov exponent spectrum, initial value sensitivity, information entropy and
adjacent pixel correlation, show that 3D-PHSL produces more chaotic sequences than the
existing chaotic ones. Furthermore, it has better ergodicity, more parameters and a wider
parameter range, which guarantees that it has better unpredictability and stability.

The rest of this paper is organized as follows: Section 2 introduces the state-of-the-art
of chaotic systems and proposes the novel chaotic system 3D-PHSL, as well as introducing
the advantages of the new system. Section 3 further presents a random dynamic encryption
based on 3D-PHSL and its corresponding decryption scheme. Section 4 analyzes the
security performance, including a statistical attack analysis, differential attack analysis,
detailed attack analysis, anti-noise attack and computational complexity. Section 5 analyses
the experiment results of the proposed algorithm in color images. Section 6 discusses some
future research based on the conclusions of the paper.

2. Chaotic System
2.1. Definitions

The definition of the Logistic chaotic system is shown in Equation (1):

xn+1 = µxn(1− xn) (1)

when the value of µ ε [3.57, 4], the system is in a chaotic state.
The definition of Sine chaotic system is shown in Equation (2):

xn+1 = µ sin(πxn) (2)

where µ is the parameter of the chaotic system. When µ ε [0.87, 1], the system is in a
chaotic state.

The definition of the Hénon chaotic system is shown in Equation (3):{
xn+1 = 1− ax2

n + yn
yn+1 = bxn

(3)

where a and b are the control parameters of the chaotic system. When b = 0.3 and
a ε [1.06, 1.22]∪[1.27, 1.29]∪[1.31, 1.42], the system is chaotic. The bifurcation diagrams of
Logistic, Sine and Hénon are shown in Figure 1a–c. The trajectory is simple, the parameter
range is small, and the low-dimensional chaotic system cannot meet the needs of encryp-
tion. Therefore, a hybrid and unpredict 3D chaotic system is proposed. Figure 1d is a
bifurcation of a 3D chaotic system. Compared to Figure 1a–c, Figure 1d is nearly distributed
throughout the space. The definition is as shown in Equation (4)

xn+1 = ayn
(
1− x2

n + zn
)
mod 1

yn+1 = bsin(πzn(1− yn))mod 1
zn+1 = x3

n + y2
n + zn + c mod 1

(4)
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where a, b and c are the control parameters of the chaotic system. When a, b, c ε (−∞, 0) ∪
(0, +∞), the system is chaotic.
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Figure 1. Bifurcation of different chaotic system: (a) bifurcation diagram of Logistic map; (b) bi-
furcation diagram of Hénon map; (c) bifurcation diagram of Sine map; (d) bifurcation diagram of
proposed map.

2.2. Performance Analysis of PHSL Chaotic System

A good chaotic system produces sequences with good randomness and maintains the
sensitivity of the initial values. It can be evaluated by Lyapunov exponent and permutation
entropy, etc.

2.2.1. Initial Value Sensitivity Analysis

The initial sensitivity test aims to evaluate the sensitivity of the chaotic system. If there
is a small change in the initial value, the generated sequence will change greatly. The initial
values of the first group are x = 78.66666, y = 56, z = 67, respectively. The initial values of
the second group are x = 78.66667, y = 56, z = 67. Two groups of initial values with little
difference are input into the chaotic system and iterated 50 times to generate x1 and x2
chaotic sequences. The difference between the two groups is 0.00001. It can be seen from
Figure 2 that the chaotic sequences greatly differ when the initial value difference is tiny.
Therefore, the chaotic system is extremely sensitive to the initial values.
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2.2.2. Bifurcation Diagram Analysis

The bifurcation diagram shows the randomness of the chaotic system. The more
complex the trajectory, the better the randomness. From Figure 1a–d, we can see that the
bifurcation diagrams of Logistic, Sine and Hénon are simpler and have a smaller range than
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our proposed chaotic system. This shows that the proposed system has better randomness
and complexity than the classical chaotic system.

2.2.3. Lyapunov Exponent Analysis

The Lyaponuv exponent represents the numerical characteristics of the average expo-
nential divergence of adjacent tracks in phase space, and is one of the characteristics used
to identify numerical values of chaotic motion. The convergence or divergence velocity of
a system trajectory can be denoted by λ, the Lyapunov exponent (LE) [34]. A positive LE
indicates that even small changes in the initial state will result in a completely different
output. Therefore, the dynamic mapping is chaotic when λ > 0. From Figure 3d, it can be
seen that the maximum LE of the proposed chaotic system is greater than 0. Compared
with the Lyapunov exponent values of the three chaotic systems in Figure 3a–c, 3D-PHSL
has a wider chaotic range and a larger LE. A 3D stereogram of LE is shown in Figure 3e–g.
The values of the two surfaces are greater than 0. The value in another surface is less than 0
only when it is close to 0, and the rest of the cases are also greater than 0. Therefore, the
3D-PHSL system has better randomness and ergocity.
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Figure 3. Lyapunov exponent: (a) Lyapunov exponent diagram of Logistic map; (b) Lyapunov
exponent diagram of Hénon map; (c) Lyapunov exponent diagram of Sine map; (d) Lyapunov
exponent diagram of Hénon map; (e) Lyapunov exponent diagram when a,b ∈ [0, 8], c = 0.23;
(f) Lyapunov exponent diagram when b,c ∈ [0, 8], a = 56; (g) Lyapunov exponent diagram when
a,c ∈ [0, 8], b = 78.

2.2.4. Permutation Entropy

Permutation Entropy (PE) [35] is an index used to measure the complexity of a se-
quence. It is used to evaluate the complexity of time series. The more regular the sequence,
the smaller the permutation entropy; the more complex the sequence, the greater the
corresponding permutation entropy. It detects the dynamic changes in a time series by
comparing the values of adjacent time series. The higher the PE of the sequence produced
by the chaotic system, the better the pseudo-randomness of the sequence.

The following is the calculation process of PE:
Sequence: X = { x(1), x(2) . . . . . . x(n)}
Step 1: reconstruct the X sequence.
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Reconstruction matrix:

x(1) x(1 + t) · · · x(1 + (m− 1)t)
...
...
...

x(j) x(j + t) · · · x(j + (m− 1)t)
...
...

...
x(K) x(K + j) · · · x(K + (m− 1)t)


t is the delay time and m is the embedding dimension. j = 1,2,3... K.
Step 2: Calculate the sequence(Si(i = 1..k) corresponding to each line component of the

reconstruction matrix and the corresponding probability(Pi(i = 1...k)).
Calculation method of sequence: each row of the reconstructed matrix is sorted in ascending

order according to the value, and their corresponding index values will form a sequence Si(1 ×m).
From this, we can calculate that there are m! permutations in this sequence.

Calculate probability of Si: Count the number of occurrences of Si in all permutations, and
calculate the probability Pi.

Step 3: Calculate the Permutation Entropy.

PE = −
K

∑
i=1

PilnPi

Normalization processing:
PE = PE/ln m!

Figure 4 shows that the entropy of the arrangement of chaotic sequences produced
under different parameters is greater than 0.98, so the sequences produced by the proposed
systems tend to be more random. As shown in Table 1, the PE of multidimensional chaotic
systems is represented by the average of multiple chaotic sequences. It can be seen that
the PE value proposed in this paper is the largest, and therefore has the best randomness
compared with [21,22,36–39].
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Figure 4. Permutation entropy controlled by a, b, c parameters: (a) permutation entropy when
a ∈ [0, 5], b = 56, c = 0.23; (b) permutation entropy when b ∈ [0, 5], a = 56, c = 0.23; (c) permutation
entropy when c ∈ [0, 1], a = 56, b = 78.

Table 1. PE values of the different chaotic systems.

System Parameter PE

PHSL a = 4.99 b = 57 c = 0.23 0.995
Logistic [21] µ = 4 0.679

Sine [22] µ = 1 0.669
LT [36] µ = 4 a = 2 0.943

ICMIC [37] c = 3 0.942
3D Logistic [38] Γ = 3.8 β = 0.021 α = 0.014 0.987
3D Hénon [39] m = 1.7 p = 1.0 q = 0.4 0.989
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2.2.5. NIST Test

The potential of the proposed is investigated using the test developed by the National
Institute of Standards and Technology (NIST), since it is the authoritative statistical test
essential in quantifying the randomness level that exists in the stream sequence generated
through 3D PHSL. This NIST-based test suite comprises 15 tests in which a collection of
p values is generated during the enforcement of each of the tests corresponding to the set
of stream sequences. When p ≥ 0.01 in a test, we consider that the sequence has passed the
test. We divided the random sequence generated by 3D PHSL into 200 groups for testing.
The success rate of each NIST test is shown in Table 2. Finally, the rate of random sequence
passing the test is close to 100%.

Table 2. Success rate of NIST test results.

The Items Used
for Testing Success Rate The Items Used

for Testing Success Rate The Items Used
for Testing Success Rate

Approximate
Entropy 100% Linear

Complexity 95% Random
Excursions Variant 99.5%

Block Frequency 98.5% Longest Run 96.5% Rank 99%

CumulativeSums 96.5% NonOverlapping
Template 98.5% Runs 99%

FFT 99.5% Overlapping
Template 98.5% Serial 98%

Frequency 95.5% Random
Excursions 99% Universal 100%

3. Encryption Procedure

An image is divided into hundreds of subblocks, then three sequences are generated
according to the proposed chaotic system. One of the sequences involves the selection of
the permutation and diffusion methods, and other two are used for encryption. Encrypted
images with good security can be obtained after only one round of encryption. The
encryption process can be described as follows:

Step 1:

The plaintext image of size of m×n is converted into 512-bit hash value h by SHA-512,
and then, h is divided into 16 parts to obtain Ki (i = 1, 2, 3... 16). The initial value and
parameters (r1, r2, r3, a, b, c) are obtained according to Equation (5). The length of each
initial value and parameter is 32 bits. Thus, the key consisting of r1, r2, r3, a, b and c is
generated. Input the initial values and parameters into the chaotic system, iterate 1000 times
and then iterate m × n times to obtain the chaotic sequences H, I and O (m × n), and
quantify the O sequence to the range of [0, 2].

r1 = K1 ⊕ K16 ⊕ K12
r2 = K3 ⊕ K14 ⊕ K10
r3 = K5 ⊕ K8 ⊕ K15
a = K7 ⊕ K13 ⊕ K6
b = K9 ⊕ K4 ⊕ K1
c = K11 ⊕ K5 ⊕ K2

(5)

Step 2:

The image block formed by every two rows of the image is scrambled according to the
value of H and I. Sequence O is used to randomly select which permutation and diffusion
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algorithm will be used to process image blocks. The selection of the permutation algorithm
is achieved by Equation (6). After the permutation of each image block, P1 is obtained.

Permutation algorithm 1, O(i) = 0
Permutation algorithm 2, O(i) = 1
Permutation algorithm 3, O(i) = 2

(6)

Step 3:

The image block formed by every two columns of the image (P1) is scrambled accord-
ing to the value of H and I. The selection process is shown in Equation (6). After the above
operations, the pixels in one position can be replaced anywhere in the image. Two chaotic
sequences (H and I) need to be used in the algorithm. P2 is obtained after scrambling each
image block.

The three permutation algorithms (Algorithms 1–3) used in this research are as follows:
The S and M sequences used by the three permutation algorithms are intercepted

from sequences H and I. K is the representation of the output image block in the following
specific encryption algorithm.

Algorithm 1 Permutation

Input:
Plain image blocks P, sequences S (S is half the size of P)
Output: Scrambled Image Block K
1: K← [];
2: K← [S P]; %Combine S and P into one matrix
3: K← sortrows(K,1); %Move rows in ascending order according to the first column
4: K← K(:, 2:3);
5: Output Scrambled Image Block K

Algorithm 2 Permutation

Input:
Plain image blocks P, sequences S, M (S and M are half the size of P)
Output: Scrambled Image Block K
1: Q, X← sort (S), sort (M); %Ascending order
2: f = length(S);
3: for i = 1 to f do %Quantify the elements in S to [1,f]
4: for j = 1 to f do
5: if Q(i) = = S(j) then
6: S(j)←i;
7: end
8: end
9: end
10: for i = 1 to f do Quantify the elements in M to [1,f]
11: for j = 1 to f do
12: if X(i) = = M(j) then
13: M(j)←i;
14: end
15: end
16: end
17: for i = 1 to f do %Scramble two columns of P according to the quantized elements in S and
M
18: K(i, 1)←P(S(i), 1);
19: K(i, 2)←P(M(i), 2);
20: end
21: Output Scrambled Image Block K
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Algorithm 3 Permutation

Input:
Plain image blocks P, sequences S, M (The size of S is f and the size of M is N.)
Output: Scrambled Image Block K
1: [F, N]←size(P); % Image Block Size
2: for i = 1 to F do %The distance to shift each row is determined by the value of the S
sequence.
3: K(i, :)←circshift(P(i, :), S(i), 2);
4: end
5: for i = 1 to N do %The distance to shift each column is determined by the value of the M
sequence.
6: K(:, i)←circshift(P(:, i), M(i), 1);
7: end
8: Output Scrambled Image Block K

Step 4:

Partition and diffuse P2. Firstly, the image block composed of every two rows of the
image is diffused, and the diffusion algorithm is selected according to O. The selection
process is achieved by Equation (7). Two chaotic sequences, H and I, are used in the
diffusion process. C1 is obtained after diffusion operations on each image block.

Diffusion algorithm 1, O(i) = 0
Diffusion algorithm 2, O(i) = 1
Diffusion algorithm 3, O(i) = 2

(7)

Step 5:

Take every two columns of C1 as image blocks, select the diffusion algorithm based
on the corresponding value of the O and perform the diffusion operation on each image
block again. The selection process is shown in Equation (7). C2 is obtained from each image
block. The encryption process is shown in Figure 5.
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Figure 5. Encryption process.

The image encryption algorithm we proposed is symmetric, so the decryption algo-
rithm is the inverse process of the encryption algorithm. When decrypting, we need to
obtain the same key as when encrypting. The key is split into r1, r2, r3, a, b and c, and these
are input into 3D-PHSL to generate the same chaotic sequence as the encryption. After
decryption, the plaintext image can be obtained according to the operation opposite the
above encryption steps.
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The three diffusion algorithms used in this paper are as follows:

Diffusion Algorithm 1:

Intercept the sequences (S, M) from H and I. The Equation is shown in Equation (8),

C(i) = S(i)⊕M(i)⊕ P(i) (8)

Diffusion Algorithm 2:



f = length(S)
T(1) =

(
S(1)× 106) mod 256

T(2) =
(

M(1)× 106) mod 256
u = 3.99 + 90.00001×M(1)

x1(1) = 0.001× S(1)
x1(i + 1) = u× x1(i)× (1− x1(i))(i = 1, 2... f − 1)

T(i + 1) = ( f loor
(
T(i− 1) + (T(i)/255) + x1(i− 1)× 105 + K(i− 1)

)
mod 256 (i = 2, 3... f + 1)

where S and M are the generated random sequence, and K is the previous diffused image.

Diffusion Algorithm 3:



f = length(S0)
P1(i, 1) = (P(i, 1) + S(i, 1))mod 256 (i = 1, 2)

P1(i, t) = (P(i, t) + P1(i, t− 1) + S(i, t))mod 256 (i = 1, 2; t = 2, 3... f /2)
P1 = f liplr(P1)

T(i, 1) = (P1(i, 1) + S(i, 1))mod 256 (i = 1, 2)
T(i, t) = (P1(i, t) + T(i, t− 1) + M(i, t))mod 256 (i = 1, 2; t = 2, 3... f /2)

where S0 is the random sequence, S and M are the random matrix obtained by changing the
size of the original random sequence from one row to two rows and halving the number
of columns, and K is the image before diffusion. Figure 6 is an example of permutation
and diffusion.
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Figure 6. Permutation and diffusion example. (a) is a plaintext image; (b) is the result of row permuta-
tion with three permutation schemes from top to bottom; (c) is the result of column permutation with
three permutation schemes from left to right; (d) is the result of row diffusion with three diffusion
schemes from top to bottom; (e) is the result of column diffusion with three diffusion schemes from
left to right; (f–k) is the adopted chaotic sequence.
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4. Experimental Results and Performance Analysis

In the experiments, a computer with the Mac OS operating system, 8 GB of memory, a
2.4 GHz central processing unit, and Matlab r2019b was used as the simulation system. The
plain text images selected in this paper were Lena, plane, pepper, baboon, black and white.
Experiments were carried out on images with sizes of 256× 256 and 512× 512, respectively.

4.1. Encryption and Decryption Results

Figure 7 shows the original plaintext image and the encryption and decryption results.
The decrypted image is completely consistent with the original one.
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(g–l) are corresponding encrypted images, (m–r) are corresponding decrypted images.

4.2. Security Analysis

In this section, the key sensitivity, histogram, correlation, NPCR, UACI, information
entropy and time-complexity of the proposed algorithm are analyzed by their ability to
protect against various attacks.

4.2.1. Key Security Analysis

Take the 512 × 512 Lake as an example. The initial values x, y and z of chaotic system
were set as 0.68, 0.83 and 0.61, respectively. The three initial values were changed slightly
for decryption. Figure 8c–e show the decryption results after the minor changes in x, y or z.
As is shown, the image cannot be recovered, which indicates that the proposed algorithm
has good key sensitivity.
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Figure 8. Secret key sensitivity: (a) plaintext Airplane; (b) ciphertext of Airplane; (c) decryption result
when x = 0.69, y = 0.83, z = 0.31; (d) decryption result when x = 0.68, y = 0.84, z = 0.31; (e) decryption
result when x = 0.68, y = 0.83, z = 0.32; (f) original initial value decryption result when x = 0.68,
y = 0.83, z = 0.31.
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4.2.2. Histogram Analysis

A histogram is used to describe the distribution of pixels in an image. Even if a pixel
position is changed, the attacker can easily obtain the image information by analyzing
the histogram. Therefore, whether the pixels in the histogram are evenly distributed is
also an important factor when measuring the encryption performance. Figure 9 shows
the histogram of the image before and after encryption. The histogram pixels of the
ciphertext image are evenly distributed, and no information related to the plaintext image
can be obtained from the pixel distribution. This proves that the encryption algorithm has
strong security.
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4.2.3. Adjacent Pixel Correlation

An encryption algorithm needs to reduce the correlation of adjacent pixels to prevent
attackers from obtaining useful information. Figure 10 shows the distribution of un-
encrypted and encrypted Lena in horizontal, vertical and diagonal directions. As can be
seen from Figure 10, the correlation in the three directions of the encrypted image is evenly
distributed throughout the whole image, indicating that the proposed algorithm effectively
reduces the correlation between adjacent pixels. The relevant calculation formula can be
found in Equation (9).

rxy = cov(x,y)√
D(x)
√

D(y)
;

cov(x, y) = 1
N

N
∑

i=1
(xi − E(x))(yi − E(y));

D(x) = 1
N

N
∑

i+1
(xi − E(x))2;

E(x) = 1
x

N
∑

i=1
xi.

(9)
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Figure 10. Correlation coefficients of Lena: (a) plaintext horizontal direction; (b) plaintext vertical
direction; (c) plaintext diagonal direction; (d) cipher text horizontal direction; (e) cipher text vertical
direction; (f) cipher text diagonal direction.

Table 3 lists the correlation coefficients in the three directions of the encrypted image,
and compares the correlation coefficients with those in [8,30,38,40,41]. Table 3 shows that
the correlation coefficients of the proposed algorithm are lower. The optimal value of the
proposed algorithm accounts for 41.7% in 12 tests, while those in the literature [42] account
for 25%. Regarding the mean value of each test value, the literature [42] presents a value of
0.003333333, while our value was 0.002766667, which is 5.6% lower than that of [42]. This
further shows that the correlation between pixels is eliminated with our proposed scheme.

Table 3. Correlation coefficients of images.

Image Plain Proposed Ref. [8] Ref. [30] Ref. [38] Ref. [40] Ref. [41] Ref. [42]

Lena Horizontal 0.93853 −0.0018 0.0061 0.0083 0.0054 0.0023 — 0.0056

Vertical 0.9702 −0.0017 0.0116 −0.0021 0.0063 0.0019 — 0.0037

Diagonal 0.91697 0.0001 0.0018 −0.0025 0.0023 0.0011 — 0.0032

Plane Horizontal 0.94437 0.0003 0.0054 −0.0209 — 0.0062 0.0012 0.0028

Vertical 0.93332 −0.0064 0.0089 0.0083 — 0.0074 −0.0063 0.0041

Diagonal 0.89198 −0.0033 0.0021 −0.0070 — 0.0009 0.0058 0.0010

Pepper Horizontal 0.96038 0.0039 0.0049 0.0067 — 0.0037 0.0001 0.0016

Vertical 0.97153 −0.0026 0.0031 −0.0050 — 0.0258 −0.0008 0.0059

Diagonal 0.93645 −0.0034 0.0079 −0.0059 — 0.0079 0.0002 0.0034

Baboon Horizontal 0.86456 −0.0066 0.0060 — — 0.0059 — 0.0026

Vertical 0.82162 0.0007 0.0058 — — 0.0041 — 0.0009

Diagonal 0.77757 −0.0024 0.0016 — — 0.0028 — 0.0052

4.2.4. Anti-Differential Attack

The pixel change rate (NPCR) and unified average changing intensity (UACI) are two
indicators that can be used to evaluate differential attacks. They can be used to describe the
differences between two images. NPCR and UACI are defined as Equation (10):

NPCR(C1, C2) =
i=N
∑

j=1

i=M
∑

i=1

D(i,j)
M×N × 100%;

UACI = (C1, C2) =
i=N
∑

j=1

i=M
∑

i=1

|c1(i,j)−c2(i,j)|
M×N×255 × 100%,

(10)
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where C1 and C2, respectively, represent different encrypted images. M × N indicates the
size of the image. If Ci(i,j) 6= C2(i,j), then D(i, j) = 1; otherwise, D(i, j) = 0.

In this experiment, the UACI and NPCR of various images are calculated and com-
pared with the other schemes. Table 4 shows that the NPCR of the proposed scheme is
closer to the ideal values when compared with [8,40]. The optimal rate is 50%, while [42]
only reached 33.3%. In Table 5, the optimal UACI value of the proposed scheme reached
66.7%, while [8.40] have a value of only 16.7%. The average values of NPCR and UACI
of the proposed algorithm are also closer to the theoretical values than those in the other
literature. For a highly sensitive encryption method, NPCR should be close to 99.6094%
and UACI should be close to 33.4635% [43]. In conclusion, the UACI and NPCR of the
proposed scheme are closer to the theoretical values.

Table 4. NPCR of different images encrypted by different schemes.

Image Proposed Ref. [8] Ref. [38] Ref. [40] Ref. [41] Ref. [42]

Lena 0.996048 0.996152 0.9961 0.996304 — 0.996002
Plane 0.996025 0.994350 — 0.994883 0.9967 0.996261

Pepper 0.996071 0.996202 — 0.993017 0.9970 0.996112
Cameraman 0.996084 0.996405 — 0.992052 — 0.996082

Baboon 0.996155 0.995966 — 0.992394 — 0.995903
Average

value 0.996077 0.995815 — 0.99373 0.9969 0.996072

Table 5. UACI of different images encrypted by different schemes.

Image Proposed Ref. [8] Ref. [38] Ref. [40] Ref. [41] Ref. [42]

Lena 0.334389 0.335024 0.3343 0.335989 — 0.335079

Plane 0.334199 0.334109 — 0.333562 0.3361 0.335782

Pepper 0.335157 0.335323 — 0.330026 0.3358 0.335265

Cameraman 0.333959 0.334109 — 0.334390 — 0.335574

Baboon 0.335558 0.335016 — 0.333144 — 0.335281

Average
value 0.3346524 0.3347162 — 0.3334222 0.3360 0.3353962

4.2.5. Information Entropy

Information entropy is important to measure the degree of information order, and its
value is positively correlated with the degree of chaos in the system. Information entropy
is defined as in Equation (11).

H(s) =
2L−1

∑
i=0

p(si) log2
1

p(si)
(11)

where p(si) represents the probability of the occurrence of the symbol si. The closer the
information entropy is to 8, the more disordered the image. Table 6 lists the information
entropy of different test images and corresponding ciphertext images. The information
entropy of different test images in the proposed algorithm is generally better than that
of [8,23,38,40–42]. The optimal rate of the proposed method is 80%, while the optimal rate
of [42] is only 60%. The probability of each value in the ciphertext image is almost the same,
and the ciphertext information entropy obtained by the proposed algorithm is close to the
ideal value of 8. This indicates that our scheme better resists differential attacks.
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Table 6. Information entropy of images.

Image Plain Proposed Ref. [8] Ref. [23] Ref. [38] Ref. [40] Ref. [41] Ref. [42]

512 × 512

Cameraman 7.0480 7.9993 7.9993 7.9923 - 7.9972 - 7.9993

Lena 7.4451 7.9992 7.9995 7.9924 7.9974 7.9994 - 7.9994

Plane 6.7135 7.9993 7.9991 7.9925 - 7.9991 7.9990 7.9992

Pepper 6.7624 7.9993 7.9990 7.9921 - 7.9983 - 7.9993

Baboon 7.2925 7.9992 7.9990 7.9922 - 7.9981 7.9989 7.9992

4.2.6. Robustness Analysis

Figure 11 shows the results of the cropping attack and the recovery for the encrypted
Lena at different positions and levels. Figure 12 shows the results of different degrees of
noise interference and the restoration of encrypted Lena. The restored image can still be
distinguished after the encrypted image is cropped by 70%, which proves that the proposed
algorithm has a certain ability to resist attacks.
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4.2.7. Test Analysis

χ2 can be used to quantitatively describe the degree to which the image deviates from
the absolute uniform distribution. This can be defined in Equation (12).

χ2 = ∑255
i=0(pi − p)2/p (12)

where p is the average frequency of all pixels and pi is the frequency of pixels. When
χ2 < 290, the pixel distribution is uniform. Table 7 shows that the χ2 value of the encrypted
image is much lower than that of the plaintext image. The above results show that the
proposed algorithm successfully unify the frequency of occurrence for pixel values in the
encrypted image.

Table 7. χ2 test.

Image Lena Plane Pepper Baboon Black White

Plain 158,345 17,446 31,989 42,256 16,711,680 16,711,680

Proposed 255.8 265.1 250.32 252.3 261.7 264.9

4.2.8. Encryption Speed

In this section, we used a Mac OS with 8GB memory and 2.4GHz CPU and MATLAB
r2019b to test the encryption and decryption time. If the image size is 256 × 256, the
encryption time is 0.176182 s and the decryption time is 0.189482 s. If the size is 512 × 512,
the encryption time is 0.526771 s and the decryption time is 0.514788 s. Some papers, such
as [44–46], only list the execution time of their own algorithm; However, other papers
such as [9,47,48] make comparisons with other algorithms in execution time, ignoring the
different hardware facilities. For this reason, we refer to paper [44–46] and only list the
execution time of our own algorithm.

The experimental results show that the encryption and decryption times of the algo-
rithm proposed in this paper are short, as shown in Table 8.

Table 8. Encryption and decryption time.

Encryption Time (s) Decryption Time (s)

Ours (256 × 256) 0.176182 0.189482

Ours (512 × 512) 0.526771 0.514788

4.2.9. Key Space

The key in this paper is used to generate chaotic sequences. The process of key
generation is described in step 1. The key space is determined according to the range of
the initial value and parameters. Key space is (232)6 = 2192, far greater than 2100, which can
resist brute force attacks. The key generation process is in step 1.

4.2.10. Time Complexity

m × n-size images were selected for the experiments. The time complexity of encryption
algorithm mainly focuses on the random selection of the three confusion methods and the
three diffusion methods. The average time complexity of the three permutation algorithms is
O(m2) or O(n2), while that of the three diffusion algorithms is O(m) or O(n). Therefore, the
time complexity of the whole image encryption algorithm is O(m2 + n2 + m + n). Table 9
shows that the time complexity of our algorithm is lower than that of other papers [49–51].

Table 9. Time complexity.

Proposed Ref. [51] Ref. [49] Ref. [50]

O(m2 + n2 + m + n) O(108MN + 72L4) O(MNlog(MN) + 4MNlog(4MN)) + 3O(4MN) O(Mˆ2*Nˆ2)
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5. Application of Color Image

The experimental results for color image encryption and analysis prove that the
algorithm is also suitable for color images, so it has wide application prospects.

5.1. Color Image Encryption and Decryption Results

The R, G and B Lena channels of 256 × 256 color are encrypted and decrypted by the
proposed algorithms. The results are shown in Figure 13.
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cipher tests of R, G, B component; (g) colored Lena; (h) cipher test of (g); (i) decryption result of (g).

5.2. Test and Analysis of Color Encrypted Image
5.2.1. Histogram Analysis

Histograms can directly reflect the distribution of pixels in the image. The pixels with
different ciphertext image values need to be as evenly distributed as possible. When the
histogram is unevenly distributed, the attacker can perform statistical attacks to obtain
the information from the histogram. Figure 14 is a histogram of the R, G and B plaintext
channels and the corresponding ciphertext. It can be seen that the histogram of ciphertext
image is evenly distributed, which shows that the proposed algorithm is resistant to known
cryptographic attacks such as statistical attacks.
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Figure 14. Histogram of each component before and after color image encryption: (a) horizontal
of R component; (b) horizontal of G component; (c) horizontal of B component; (d) horizontal of R
component; (e) horizontal of G component; (f) horizontal of B component.

5.2.2. Correlation Analysis

Table 10 shows the horizontal correlation, vertical correlation and diagonal correlation
values of R, G and B channels before and after encryption. After encryption, the image
correlation is significantly decreased. Figure 15 shows the horizontal correlation of R, G and
B channels before and after encryption. The image correlation is significantly decreased
after encryption.

Table 10. R, G, B correlation coefficients of Lena color image.

Plain Image Horizontal Vertical Diagonal

R 0.9411 0.9705 0.9164

G 0.9434 0.9719 0.9204

B 0.88989 0.9433 0.8493

Cipher image

R −0.0035 0.0010 0.0008

G 0.0006 −0.0062 0.0033

B 0.0006 −0.0068 0.0023
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5.2.3. Cropping and Decryption Results of Color Image

Encryption algorithms need to be able to resist a certain degree of cropping attacks.
Figure 16 shows the ciphertext image corresponding to the plaintext image under the R,
G, and B channels of the same image, and the decrypted image after different levels of
cropping. The experimental results show that when the ciphertext image is cropped by 80%,
the general outline of the plaintext image can still be seen from the decrypted image, which
indicates that the proposed algorithm has sufficient security against cropping attacks.
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Figure 16. Cropping and the corresponding decryption images: (a–e) are crop attacks at different
clipping scales; (f–j) are decryption results of (a–e).

6. Conclusions

In this paper, an image encryption scheme combining a hyperchaotic system and
random dynamic encryption is proposed. To expand the range of parameters and generate
more chaotic sequences, a 3D chaotic system is designed by combining polynomial, Logistic,
Sine and Hermon chaotic systems. Lyapunov exponent, bifurcation diagram and initial
value sensitivity tests prove that the parameter range of the chaotic system is wider, and the
generated chaotic sequence is unpredictable and available. Random dynamic encryption is
used to protect the security of the plaintext image. The final encrypted image will have
a combination of 9n (n > 100) algorithms, which is greatly improved compared with the
existing schemes.

Through simulation and comparison, the security is verified from the aspects of
statistical analysis attack, differential attack and noise attack. Analysis shows that the
scheme has a large key space and can resist brute force attacks. The histogram of different
images encrypted by the proposed scheme is almost the same, and the correlation coefficient
is close to 0. The values of information entropy, NPCR and UACI are close to the ideal
value, which proves that the scheme has a good encryption performance and high level
of security.

However, there is still room for us to improve the efficiency. For example, confusion
and diffusion are used in parallel or in combination to improve efficiency and reduce the
time complexity of confusion and diffusion algorithms, to avoid attackers estimating the
algorithms through the encryption time.
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