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Abstract: Violence detection aims to locate violent content in video frames. Improving the accuracy
of violence detection is of great importance for security. However, the current methods do not make
full use of the multi-modal vision and audio information, which affects the accuracy of violence
detection. We found that the violence detection accuracy of different kinds of videos is related to
the change of optical flow. With this in mind, we propose an optical flow-aware-based multi-modal
fusion network (OAMFN) for violence detection. Specifically, we use three different fusion strategies
to fully integrate multi-modal features. First, the main branch concatenates RGB features and audio
features and the optical flow branch concatenates optical flow features with RGB features and audio
features, respectively. Then, the cross-modal information fusion module integrates the features of
different combinations and applies weights to them to capture cross-modal information in audio
and video. After that, the channel attention module extracts valuable information by weighting the
integration features. Furthermore, an optical flow-aware-based score fusion strategy is introduced to
fuse features of different modalities from two branches. Compared with methods on the XD-Violence
dataset, our multi-modal fusion network yields APs that are 83.09% and 1.4% higher than those
of the state-of-the-art methods in offline detection, and 78.09% and 4.42% higher than those of the
state-of-the-art methods in online detection.

Keywords: violence detection; multi-modal fusion; adaptive fusion; optical flow-aware

1. Introduction

Video surveillance systems are being installed all over the world. However, manual
detection has many problems, such as high costs and a low efficiency, which cannot meet
the needs of the public. With the development of computer vision, more and more re-
searchers have begun to pay attention to video surveillance systems. For example, traffic
videos are obtained by monitoring cameras at various locations on the road, and the current
monitoring of the videos is carried out to complete the tracking tasks of accident deter-
mination and specific behaviors [1]. Moreover, with the economy growing, the frequent
occurrence of public safety accidents has become increasingly serious. Violent events, such
as fights, robberies, and other unusual incidents occur frequently. As a result, violence
detection technology has been developed. Violence detection technology can be applied to
a variety of scenarios. For example, on the vehicle internet, through the detection of traffic
accidents, real-time alarms can be given to reduce damage.

Indeed, most of the previous violence detection networks were based on visual
information [2–14]. Hu et al. [10] used graph neural networks (GCNs) to correct noise
labels through feature similarity and time continuity. The corrected labels were used to
train an action classifier based on supervised learning to improve the accuracy of abnormal
event locations in the time dimension. In addition, the attention mechanism was also used
in previous violence detection algorithms. Zhu et al. [9] proposed the use of an attention
module to strengthen the network learning of motion features. These networks neglected
the important information contained in the audio, which made the accuracy of the anomaly
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detection networks in certain situations (such as a quarrel between two people) not ideal.
In addition, due to the diversity and the complexity of the violence, the current violence
detection algorithm has high accuracy in simple scenes, but the accuracy is not ideal in
scenes with dense objects, complex backgrounds, and mutual occlusion.

To address the above problems, some researchers have attempted to utilize multi-
modal information [15–22], such as audio and text information, to improve the performance
of violence detection.

Nam et al. [15] proposed, for the first time, that the algorithm of violent behavior
detection was based on the joint training of audio, color, and motion characteristics to
obtain a classifier, which was used to grade and classify the violence of movies in 1998.
Theodoros et al. [16] defined the classification of audio and visual features, used a Bayesian
network to classify the features, and then sent the audio and visual features to a KNN clas-
sifier for classification. Lin et al. [17] combined audio and visual classifiers in collaborative
training to detect video anomalies from the perspectives of video and audio. Giannakopou-
los et al. [18] fused audio, image and text modals and classified them on a KNN classifier
to form a two-dimensional classification problem in a nine-dimensional feature space.
Zou et al. [19] adopted a multistep method on the basis of predecessors. First, text informa-
tion was used to build a preclassifier to select potentially exceptional fragments. Second,
the SVM classifier combined visual and audio information to divide the potential abnormal
segments into “abnormal” or “non-abnormal”. Cristani et al. [20] extracted the features
of the two signals and used the two features to train the KNN classifier for classification
and recognition. Zajde et al. [21] proposed a dynamic Bayesian network (DBN) to extract
and integrate the underlying audio and visual features, and applied it to the intelligent
video surveillance system, CASSANDRA. Gong et al. [23] designed a semisupervised cross
feature learning algorithm to extract the underlying audio and visual information.

The above methods are based on handcrafted features, but complex behaviors cannot
be completely expressed by relatively single handcrafted features. Therefore, Wu et al. [22]
built a large-scale dataset named XD-Violence and used a neural network to extract depth
features to fill the gap in the violence detection dataset. Additionally, based on Hu et al. [10],
they improved the algorithm and proposed a neural network with three parallel branches
to capture the different relationships between video clips. They added audio information
as inputs to further improve the detection accuracy. Wu et al. [24] proposed a method com-
posed of causal temporal relation (CTR), classifier (CL), compactness (CP), and dispersion
(DP) modules to explore causal temporal relations and feature discrimination ability in a
local scope, so as to solve the problems caused by the lack of temporal relation modeling
and feature discrimination in previous methods. Li et al. [25] proposed a multi sequence
learning (MSL) method and a hinge-based MSL ranking loss method. By using a sequence
composed of multiple segments as an optimization unit, they reduced the probability of
selection errors during training. Pang et al. [26] further improved the algorithm on the
basis of Wu et al. [22], who focused on fusing audio and visual information. First, weighted
features are used to generate effective features under the guidance of audio and visual
information. Second, a fusion module is added. Visual and audio information are fused
into features based on a bilinear pool mechanism. Finally, a mutual learning module is
added to make the model learn visual information from another neural network with a
different structure.

Unlike Pang’s method [26], we found that the violence detection accuracy of different
kinds of videos is related to the change of optical flow. Therefore, our network added
the optical flow feature to extract the motion features of objects and effectively solve the
problems of short duration and weak action for the task of violence detection. In addition,
we designed the optical flow-aware-based score fusion strategy to fuse the branch with
optical flow features and the branch without optical flow features, which can control the
influence of optical flow features on violence detection. First, we concatenate different
kinds of modalities, such as RGB–optical flow, optical flow–audio, and audio–RGB, to form
three branches. After weighting each branch to capture the cross-modal information from
each modality, we concatenate the RGB–optical flow branch and the optical flow–audio
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branch to form the optical flow branch. At the same time, the audio–RGB branch is named
the main branch. Second, the channel attention module (CAM) captures the features in two
branches that are more helpful for classification. Then, the feature map is down-sampled
by the transition layer to reduce the complexity of the module. Finally, the prediction
module captures the distance relationship between two positions and predicts the scores of
online detection and offline detection in two branches. The optical flow-aware network
then weights the scores of the main branch and the optical flow branch via a gate function
defined over the optical flow value.

In summary, this work has the following four main contributions:

• We propose a novel two-branch optical flow-aware-based multi-modal fusion network
for violence detection, which integrates audio features, the optical flow features,
and the RGB features into a unified framework;

• We introduce three different fusion strategies for extracting important information
and suppressing unnecessary audio and visual information, which includes an input
fusion strategy, attention-based halfway fusion strategy, and optical flow-aware-based
score fusion strategy;

• We propose an optical flow-aware score weighting mechanism to control the contri-
butions of the main branch and the optical flow branch under different optical flow
conditions and to boost the AP performance of violence detection;

• A novel cross-modal information fusion module (CIFM) and novel channel attention
module are proposed to weight the combined feature, which can extract useful infor-
mation from features while eliminating useless information, such as redundancies
and noise.

2. Related Work
2.1. Multi-Modal Fusion Strategies

Li et al. [27] studied six different multi-modal fusion networks. The six fusion strategies
are input fusion, early fusion, halfway fusion, late fusion, and two kinds of score fusion
strategies. In the early fusion network, they concatenated color and thermal modalities
directly. In the early fusion network, they integrated color and thermal modalities after the
first convolution block. In the halfway fusion network, they connected the features of the
two modals through the feature map, and then used NiN to reduce the dimension, then
connecting the color and thermal modalities. In the late fusion network, they connected the
feature maps of the two modal sub-networks after the last convolution block. The score
fusion network can be seen as a cascade design of two sub-networks; the detection results
are obtained by combining the two-stage detection confidence scores with the same weight
of 0.5.

2.2. Multi-Modal Fusion Methods

Most of the existing fusion strategies (direct fusion, bilinear pooling-based fusion [28])
either cannot make full use of cross-modal information or the amount of calculation is
too large. An attention-based fusion strategy can effectively avoid the above problems.
The attention mechanism is a technology widely used in multi-modal fusion; in particular,
the attention mechanism is often used for mapping between modals.

2.2.1. Single Modal Attention

A number of studies [29–31] have shown that embedding an attention module into
image classification, object detection, and other tasks can result in a substantial performance
improvement. Li et al. [32] designed the fusion net to select the k most-representative
feature maps to realize the adaptive fusion of different modals, while avoiding redundant
noise. Gao et al. [33] weighted the modals to make the network focus on more favorable
fields to effectively integrate different modals. Zhang et al. [34] took the feature maps
from two-stream Siamese networks as inputs and weighted the features through the
weight generation sub-network to obtain the additional information between modals. Then,
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the enhanced features were obtained by using cross-modal residual connections, and finally,
these features were concatenated. Lu et al. [35] designed an instance adapter to use two
fully connected layers for each modal, and then predicted the modal weight to realize the
quality-aware fusion of different modals.

2.2.2. Cross-Modal Attention

Cross-modal mechanisms have increasingly become the focus of multi-modal fusion.
Dou et al. [36] used a cross-attention mechanism in their co-attention module to realize
cross-modal interaction. Liu et al. [37] compressed the features of the two modals through a
cross-modal encoder, and then used multi-head attention to transfer the expanded features
back to each modal. From the realization of modal interaction, the two-stage cross-modal
feature propagation can enhance the audio and visual features and eliminate the noise
information. Badamdorj et al. [38] fused the bimodal-attention module to extract the
interaction between the audio and visual features, so as to improve the accuracy of highlight
detection. Jiang et al. [39] designed a cross-modal fusion module, that is, a multi-level
cross-spatial attention module. Firstly, the features of each encoder are transmitted to the
cross-modal fusion module to calculate the cross-modal attention, and then these weighted
features are connected, respectively, spliced, and mapped back to the original dimension.
Hendricks et al. [40] proposed two kinds of fusion attention, namely, merged attention and
co-attention. Dou et al. [36] studied these two kinds of attention. In the merged attention
module, they concatenated text features and visual features, and then fed them into the
transformer block. In the co-attention module, text features and visual features were fed
into different transformer blocks separately; then, they used the cross-attention module to
conduct “cross talk”.

3. Proposed Work

In this section, we describe our proposed violence detection network based on an
optical flow-aware weighting mechanism and multi-modal fusion (OAMFN) in detail.
The overall framework is shown in Figure 1, which consists of three parts: the cross-modal
information fusion module, the channel attention module, and the prediction module.
Section 3.1 describes the details of the cross-modal information fusion module used to cap-
ture the cross-modal information and fuse the multi-modal features. Section 3.2 introduces
the details of the channel attention module and Section 3.3 describes the composition and
function of the prediction module.

3.1. The Cross-Modal Information Fusion Module

Both visual and audio features have noisy information and spatial temporal
redundancy [36], which interferes with violence detection. However, cross-modal fea-
ture propagation can enhance audio and visual features and suppress noise information.

The cross-modal information fusion module (CIFM) integrates the features of different
combinations and weights them to capture the cross-modal information in audio and video.
As shown in Figure 1, for the inputs of OAMFN, we denote xrgb ∈ RT×D as RGB features,
x f low ∈ RT×D as optical flow features, and xaudio ∈ RT×D1 as audio features, where T is the
length of the feature matrix, D is the dimensions of the RGB features and the optical flow
features, and D1 is the dimensions of the audio features.

3.1.1. Modal Combination

At this stage, the CIFM integrates information from three modals. To reduce the
amount of calculation at this stage, we adopt the concatenate operation to fuse two kinds
of features from three modals as follows:

xr f = cat
(

xrgb, x f low

)
(1)

xra = cat
(

xrgb, xaudio

)
(2)
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x f a = cat
(

x f low, xaudio

)
(3)

where cat is the concatenation operation.

Figure 1. Our proposed OAMFN. The cross-modal information fusion module for capturing the cross-
modal information and fusing multi-modal features, as well as the channel attention for meaningful
information selection and the prediction module for predicting score generation and fusing two
branches via the optical flow-aware-based score fusion strategy.

3.1.2. Adaptive Fusion

To capture the cross-modal information from each kind of multi-modal feature, we
adopt adaptive weights for these branches as follows:

wr f = σ(smu(bn(avg(conv(cat(xrgb, x f low)))))) (4)

wra = σ(smu(bn(avg(conv(cat(xrgb, xaudio)))))) (5)

w f a = σ(smu(bn(avg(conv(cat(x f low, xaudio)))))) (6)

where σ is the sigmoid layer used to compute the final weights of different branches,
conv denotes a convolutional layer with a kernel size of one, and avg and bn epresent the
average pooling and the batch normalization, respectively. Additionally, smu is the smooth
maximum unit [41], which is defined as follows:

d
dx

er f (x) =
2√
π

e−x2
(7)

where x is the input variable.
In this paper, we take the smooth maximum unit (SMU) [41] as the activation function of

the network. The function |x| is nondifferentiable at the origin. Therefore, Biswas et al. [41]
used the smooth function to approximate the |x| function. They found a general approxima-
tion formula of the maximum function from the smooth approximation of the |x| function,
which can smoothly approximate the general maxout [42] family, ReLU, leaky ReLU, or its
variants, such as Swish, etc. In addition, the author also proves that the GELU function is a
special case of the SMU. Experiments show that the SMU is effective in the fields of image
classification, object detection, and semantic segmentation.

With the weights wr f , wra and w f a, the enhanced multi-modal features are as follows:

Fr f = xr f ∗ wr f (8)
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Fra = xra ∗ wra (9)

Ff a = x f a ∗ w f a (10)

Finally, we divide the output of the CIFM into two branches, the main branch and the
optical flow branch. The output of the optical flow branch is defined as follows:

Fopt = cat(Fr f , Ff a) (11)

The output of the main branch is defined as follows:

Fmain = Fra (12)

3.2. Channel Attention Module

In this section, we describe the details of the channel attention module (CAM). Note
that the cross-modal information fusion module has extracted the cross-modal audio and
visual information. Generally, channel attention focuses on what is meaningful in input
features. As shown in Figure 2, to retain valuable information in Fopt and Fmain, we adopt a
weighting operation in CAM to make the network pay attention to information which is
more useful to improve the accuracy of the prediction.

Figure 2. Structures of the channel attention.

To realize the mapping of the feature map from “small resolution” to “large resolution”,
we take the up-sampling operation. There are three common methods of up-sampling:
bilinear interpolation, transposed convolution, and unpooling. In this paper, we adopt the
transposed convolution layer. Here, we use Ff use to represent Fopt and Fmain. First, the size of
the input feature Ff use is expanded by adding zero according to a certain proportion. Then,
the convolution kernel is rotated, and the forward convolution is carried out as follows:

F
′
f use = smu(deconv(Ff use)) (13)

where deconv denotes the transposed convolution, which can enrich the information of the
feature map. In the transposed convolution layer, the kernel size is nine, the stride is three
and the padding is four. To soften the input feature Ff use, we add an SMU layer after the
transposed convolution layer.

To effectively calculate the channel attention, it is necessary to compress the spatial
dimension of the input feature map. For the aggregation of spatial information, the common
method is global average pooling, as follows:

Fg = gap(F
′
f use) (14)
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where gap denotes the global average pooling layer, which can regularize the structure of
the whole network to prevent overfitting.

To convert features to a new feature space, we adopt conv4 and conv5 with a kernel size
of one after the global average pooling layer. Additionally, we add a batch normalization
layer to normalize the network output, which can make the gradient larger to avoid the
problem of gradient disappearance, as follows:

Fb = smu(bn(smu(conv5(smu(conv4Fg))))) (15)

where conv5 and conv4 denote a filter with a kernel size of one.
Finally, the sigmoid function is used to generate weights as follows:

wc = σ(Fb) (16)

In general, the outputs of the CAM are defined as follows:

Fc = Ff use ∗ wc (17)

where * denotes the element-wise multiplication, and the outputs of the CAM are defined
as Fc−opt and Fc−main.

3.3. Prediction Module

As shown in Figure 1, the proposed prediction module consists of a main branch and
an optical flow branch; each branch contains a backbone and two prediction branches,
namely, an offline prediction branch and an online prediction branch. The backbone
is mainly used to smooth the weighted features, and it uses the dropout mechanism to
enhance the generalizability of the network. In a violence detection system, online detection
and offline detection both play an important role. Offline systems are mostly used for
monitoring videos and videotapes. Online detection is mostly used to detect online video
violence in real time. We discuss each part in detail.

3.3.1. Transition Layer

To soften the fused features and introduce a pooling operation to change the size
of the feature map, we propose a transition layer, including a convolution layer and an
average pooling layer. The transition layer used in this paper is expressed mathematically
as follows:

Ft−main = smu(bn(avg(conv(Fc−main)))) (18)

Ft−opt = smu
(
bn
(
avg
(
conv

(
Fc−opt

))))
(19)

where conv denotes a convolutional layer with a kernel size of one, avg and bn represent the
average pooling and the batch normalization, respectively, and Ft−main and Ft−opt represent
the features in the main branch and the optical flow branch, respectively.

3.3.2. Backbone

To further smooth the weighted features, we add two transition layers to smooth them.
In addition, to improve the generalization of the model, we add double dropout layers
as follows:

F
′
b = Drop(T(Fc)) (20)

T(x) = smu(bn(avg(conv(x)))) (21)

where Drop denotes the dropout layer, and the dropout rate is 0.3. T(x) is the expression
of the transition layer. In general, the outputs of the backbone are defined as follows:

Fmain = Drop
(

T
(

F
′
main

))
(22)
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Fb−opt = Drop
(

T
(

F
′
b−opt

))
(23)

3.3.3. Optical Flow-Aware Weighting

To control the influence of optical flow features under different optical flow conditions,
an optical flow-aware-based score fusion strategy is introduced to fuse features of different
modalities from two branches. When the optical flow changes greatly, the weight of the
optical flow branch should be relatively high, while the weight of the main branch should be
relatively low, so as to improve the detection accuracy of the corresponding violence classes.

Hence, we present an optical flow gate which limits the weight of optical flow branches
as follows:

w =
x f low

1 + µ exp
(
− x f low−0.5

θ

) (24)

where µ and θ denote hyperparameters that can control the influence of the optical flow
on the weight.

Finally, we term wopt = w and wmain = 1−w as the weights for the optical flow-aware-
based score fusion, where wmain and wopt can control the contributions of the main branch
and the optical flow branch under different optical flow conditions.

3.3.4. Offline Detection

However, there is still a challenging problem to be solved. The CAM can only effec-
tively capture local information, but it cannot establish long-term dependence between
two positions. Therefore, we take the localized branch of the HL-Net [22] to capture the
distance relationship between two positions as follows:

Fo f f (i, j) = exp

(
−|i− j|β

α

)
(25)

where i, j denotes the ith and jth features, and α and β denote hyperparameters that can
control the influence of the distance relationship between two positions.

3.3.5. Online Detection

In addition to offline detection, online detection is also important. It can detect
the video in the network and detect the surveillance video in real time, which has great
application value.

First, we use a transition layer to smooth the features as follows:

T(x) = smu(bn(avg(conv(x)))) (26)

After the transition layer, there is a 1D convolution layer with the SMU for activation
as follows:

Fon = smu(conv(T(x))) (27)

where conv is the 1D convolution layer with a kernel size of one.
Finally, we use a 1D causal revolution layer with a kernel size of five as the classifier

for online detection.

3.3.6. Optical Flow-Aware Score Fusion

Each branch generates two outputs: an offline detection score So f f and an online
detection score Son. Then, given So f f−main and Son−main from the main branch and So f f−opt
and Son−opt, we obtain the final violence detection score:

So f f− f inal = wmain ∗ So f f−main + wopt ∗ So f f−opt (28)

Son− f inal = wmain ∗ Son−main + wopt ∗ Son−opt (29)
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where So f f− f inal and Son− f inal denote the offline violence detection score and the online
violence detection score.

3.4. Loss Function
3.4.1. Online Prediction Loss

To reduce the difference between online prediction and ground truth y, we use the
BCE loss to calculate the training loss as follows:

Lon = − 1
n

N

∑
i=1

(
yi ln

(
ŷi

on

)
+
(

1− yi
)

ln
(

1− ŷi
on

))
(30)

where N denotes the batch size, and yi and ŷi
on denote the ground truth y and the output of

online prediction, respectively.

3.4.2. Offline Prediction Loss

Similarly, the loss function of the offline prediction module is as follows:

Lo f f = −
1
n

N

∑
i=1

(
yi ln

(
ŷi

o f f

)
+
(

1− yi
)

ln
(

1− ŷi
o f f

))
(31)

where ŷi
off denotes the output of offline prediction.

3.4.3. Cross Prediction Loss

To reduce the difference between the online prediction and the offline prediction, we
use L2 loss to calculate the training loss as follows:

Lon−o f f =
N

∑
i=1

∥∥∥ŷi
o f f − ŷi

on

∥∥∥2
(32)

3.4.4. Total Loss

Finally, the total loss function is the weighted sum of the above items as follows:

L = Lo f f−main + Lon−main + εLon−o f f−main + Lo f f−opt + Lon−opt + δLon−o f f−opt (33)

where ε and δ denote the hyperparameter that controls the importance of the L2 loss,
and herein, we set ε = 5 and δ = 3. Fo f f−main denotes the loss function of the offline
prediction module in the main branch, and Fo f f−opt denotes the loss function of the offline
prediction module in the optical flow branch.

4. Experiments
4.1. Datasets

XD-Violence [22] is the only existing violence detection dataset including audio, optical
flow, and RGB modals, and it is the largest-scale public multi-modal dataset, having a
total of 217 h at present. Among them, the training dataset contains 3954 videos, and the
test dataset contains 800 videos. It is collected from CCTV cameras, hand-held cameras,
car driving recorders, etc. It provides more than eight scenarios and six types of violent
events, and each violent video includes multiple violent labels (1 ≤ labels ≤ 3). As shown
in Figure 3, the feature extraction module [22] includes two branches: visual and audio.
The visual branch extracts RGB features and optical flow features from the I3D [43] network,
and the audio branch extracts audio features from the VGGish [44,45] network.
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Figure 3. Schematic diagram of the feature extraction module.

4.2. Evaluation Criteria

Similar to the previous methods [22,26], we use frame-level average precision (AP)
as the evaluation criteria on the XD-Violence dataset. Average precision can evaluate
the quality of the proposed model in classification, and a larger AP value indicates
better performance.

4.3. Implementation Details

Our OAMFN method is implemented based on PyTorch 1.8.1, an NVIDIA Tesla T4
GPU with 16 GB of memory. During the training stage, our method uses the Adam
optimizer [46], a learning rate of 0.0001, a batch size of 64, and 30 epochs. The dropout
function in the prediction module has a dropout rate of 0.3. Parameters α and β in the
offline detection module are set to 1. Parameters µ and θ in the offline detection module
are set to 1.

4.4. Ablation Study: Comparison of Modules in Our Method

To explore the effects of each individual module on the AP performance in the OAMFN,
we employ the XD-Violence dataset as an example, and perform an ablation study to
evaluate their influence on violence detection. As shown in Table 1, when utilizing the
CIFM, the CAM, and the OASFM separately, the AP result achieves only 80.69%, 81.39%,
and 80.8% on the XD-Violence dataset, respectively. The combination of the CIFM and the
OASFM improves the AP performance to 81.87% and exceeds the utilization of one of them
alone. When using the combination of the CAM and the OASFM, the AP result increases to
82.43%. When both the CIFM and the CAM are added, the AP performance is boosted to
82.58%. These results indicate that the combination of these modules can further improve
the AP performance over using one of them alone, indicating that our modules motivate
each other. When combining all three modules, the AP result increases to 83.09%, which is
the best performance. This shows that these three modules are complementary, and that the
combination of all three modules is valid for increasing the difference between violence and
non-violence videos. In particular, in order to prove the effectiveness of the OASFM, we
compare it with another fusion strategy, namely “non-score fusion”. For non-score fusion,
we concatenate different kinds of modalities, such as RGB–optical flow, optical flow–audio,
and audio–RGB, to form three branches. These three branches are concatenated to be one
main branch before entering the channel attention module. Using the optical flow-aware
weighting mechanism, the AP performance is 0.51% higher than that with “non-score
fusion”. This shows that the proposed optical flow-aware score fusion mechanism can
effectively control the contributions of the main branch and the optical flow branch under
different optical flow conditions and boost the AP performance of violence detection.
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Table 1. Ablation study: a comparison of the modules in our method.

Cross-Attention Channel Attention Optical Flow-Aware
Fusion AP (%)

X 80.69
X 81.39

X 80.8
X X 82.58
X X 81.87

X X 82.43
X X X 83.09

4.5. A Comparison of the AP Performance with the Existing Methods on the XD-Violence Dataset

We compare the XD-Violence dataset with the current unsupervised and semi-supervised
methods. As shown in Table 2, our OAMFN method is superior to the current unsupervised
method in offline detection. In offline detection, compared with weakly supervised meth-
ods, our method is 9.89%, 4.45%, 5.28%, and 1.4% higher than Sultani et al. [8], Wu et al. [22],
Tian et al. [47], and Pang et al. [26], respectively. For the online detection task, our method is
4.42% higher than Wu et al. [22]. Hence, our experimental results indicate that the OAMFN
can increase the difference between violence and non-violence videos, and it is efficient for
integrating optical flow, RGB, and audio modals with the task of violence detection.

Table 2. A comparison of the AP performance with the existing methods on the XD-Violence dataset.
The best results are in red and the second-best results are in blue.

Supervision Method Feature Online AP(%) Offline AP(%)

SVM - - 50.78
Unsupervised OCSVM [48] - - 27.25

Hasan et al. [49] - - 30.77

Sultani et al. [8] RGB - 73.2
Wu et al. [22] RGB + Audio 73.67 78.64
Tian et al. [47] RGB - 77.81

CRFD [24] RGB - 75.90
Weakly

Supervised Pang et al. [26] RGB + Audio - 81.69

MSL [25] RGB - 78.59
Ours (without

OASFM)
RGB + Flow +

Audio 77.24 82.58

Ours (with
OASFM)

RGB + Flow +
Audio 78.09 83.09

4.6. A Comparison of the Offline AP Performance on the Different Violent Classes

To verify the AP performance of our method on all kinds of violence videos, we select
30 videos from each of the 6 violent classes (i.e., abuse, car accident, explosion, fighting, riot,
and shooting) on the XD-Violence dataset for testing. As shown in Figure 4, our OAMFN
method is superior to that of Wu et al. [22] in five violent classes, evidently lifting the AP
performance by 6.43% to 22.03% in violent classes with large changes in optical flow, such
as car accidents and explosions. Compared with the AP performance of our main branch
(RGB and audio features as input) and Wu et al. [22], the AP performance of our non-score
fusion framework shows that the addition of optical flow features has effectively improved
the detection accuracy, and our optical flow-aware-based score fusion strategy can further
improve the detection accuracy in five violent classes (i.e., abuse, car accident, explosion,
fighting, and riot). Our OAMFN method is slightly lower in the shooting class because,
in videos with weak action or short duration, the change in optical flow is very small.
Comparing our main branch with our non-score fusion framework, the AP result shows
that the addition of optical flow features reduces the detection accuracy. However, our
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optical flow-aware-based score fusion strategy improves the detection accuracy by 4% after
controlling the contributions of three modals. Hence, our experimental results indicate that
the addition of optical flow features can improve violent classes with poor AP performance,
such as car accidents and explosions. Additionally, the optical flow-aware-based score
fusion strategy can further improve the detection accuracy.

Figure 4. A comparison of the offline AP performance with Wu et al. [22] on the violent classes.

4.7. Qualitative Results

Figure 5 demonstrates the violence score curves produced by our OAMFN method
in different testing videos from the XD-Violence dataset. We select six violent classes (i.e.,
explosion, abuse, car accident, fighting, shooting, and riot) on the XD-Violence dataset for
testing. As shown in Figure 5, the rise in violence scores means the emergence of violence.
Our method can clearly separate violent fragments from non-violent fragments in five
violent classes (i.e., car accident, explosion, fighting, riot, and shooting). Our OAMFN
method is less effective in terms of the AP performance of the abuse class because this class
shows no obvious violence in the audio modal, the optical flow modal, and the RGB modal.
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Figure 5. Qualitative results in the testing videos from the XD-Violence dataset.

5. Conclusions

In this paper, we found that optical flow features play a certain role in identifying
specific violent behaviors, such as car accidents and explosions, which shows the lowest
performance of AP among the six violence categories; thus, we added optical flow features
and designed a score weighting mechanism based on optical flow awareness to control the
impact of optical flow features which makes this research innovative and evidently lifts
the AP performance by 6.43% to 22.03% in violent classes with large changes in optical
flow, such as car accidents and explosions. Moreover, adding optical flow information can
extract the motion features of objects and effectively solve the problems of short duration
and weak action in the task of violence detection. We propose a novel two-branch optical
flow-aware-based multi-modal fusion network for violence detection, which integrates
audio features, the optical flow features, and the RGB features into a unified framework.
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First, the main branch concatenates RGB features and audio features and the optical
flow branch concatenates optical flow features with RGB features and audio features,
respectively. Then, the cross-modal information fusion module integrates the features of
different combinations and applies weights to them to capture cross-modal information in
audio and video. After that, the channel attention module extracts valuable information by
weighting the integration features. Furthermore, an optical flow-aware-based score fusion
strategy is introduced to fuse features of different modalities from two branches. However,
there are still two challenging problems to be solved. First, as shown in Figure 5, our
method has difficulty with accurately determining the boundary of violence. Second, our
model is not an end-to-end model. An obvious disadvantage is that the training objectives
of each module are inconsistent, and thus, the trained system has difficulty achieving
optimal performance in the end. In contrast, the end-to-end model can avoid the above
problems and reduce the complexity of the project.
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