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Abstract: It is well-known that the law of total probability does not generally hold in quantum theory.
However, recent arguments on some of the fundamental assumptions in quantum theory based on
the extended Wigner’s friend scenario show a need to clarify how the law of total probability should
be formulated in quantum theory and under what conditions it still holds. In this work, the definition
of conditional probability in quantum theory is extended to POVM measurements. A rule to assign
two-time conditional probability is proposed for incompatible POVM operators, which leads to a
more general and precise formulation of the law of total probability. Sufficient conditions under
which the law of total probability holds are identified. Applying the theory developed here to analyze
several quantum no-go theorems related to the extended Wigner’s friend scenario reveals logical
loopholes in these no-go theorems. The loopholes exist as a consequence of taking for granted the
validity of the law of total probability without verifying the sufficient conditions. Consequently, the
contradictions in these no-go theorems only reconfirm the invalidity of the law of total probability in
quantum theory rather than invalidating the physical statements that the no-go theorems attempt
to refute.

Keywords: the law of total probability; extended Wigner’s friend scenario; PVOM measurement

1. Introduction

In his seminal paper on the path integral formulation of quantum mechanics [1], Feyn-
man started the introduction of his new theory by pointing out that the law of total proba-
bility in classical probability theory must be replaced by a new form of rule. Specifically, in
a slightly different notation, the classical law of probability, p(c|a) = ∑b p(c|b)p(b|a) where
p(y|x) is the probability of obtaining measurement result y given measurement result x, is
no longer true in quantum theory and must be replaced by ϕ(c|a) = ∑b ϕ(c|b)ϕ(b|a), where
ϕ is a complex number called probability amplitude and related to classical probability
by Born’s rule p(y|x) = |ϕ(y|x)|2. From this key idea, Feynman continued to expand the
theory that led to the path integral formulation of quantum mechanics. He also discussed
when the new rule of summation over probability amplitude can fall back to the classical
law of probability. This is when one “attempts to perform” intermediate measurements that
obtain results of all b. In modern terms, what Feynman means by “attempting to perform
measurement” can be understood as the decoherence phenomenon [2].

The above example shows that it has been long known that the law of total probability
cannot be taken for granted in quantum theory. Indeed, many other classical probability
rules are only upheld in specific conditions. For instance, a joint probability can be definitely
assigned only when the two measurement operators are commutative [3–6]. There are
many variants of definitions of the conditional probability in quantum theory (for a review,
see [7]). However, a family of no-go theorems recently published [8–11] appears to rely on
the total law of probability one way or another without considering the sufficient conditions.
These no-go theorems are related to the extensively discussed Wigner’s friend experiments.
In quantum mechanics, the Wigner’s friend [12,13] thought experiment has been widely
discussed, as it tests the validity of many quantum interpretation theories. The significance
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of such experiments is that Wigner and his friend give two different descriptions of the
same physical process happening inside the lab. Deutsch further extended the thought
experiment to be applicable to macroscopic system such as the lab system [14] itself. Based
on that, a more sophisticated extended Wigner’s friend experiment is put forwarded by
Brukner [8,15]. Such an experimental setup involves two remotely separated labs. Each
lab contains half of an entangled pair of spins and a local observer. Outside each lab there
is a super-observer who can choose to perform different types of measurements on the
lab as a whole. The intention of such an experimental setup is to prove, through a no-go
theorem, that measured facts are observer-dependent in quantum theory. A subsequent
experiment [16] has been carried out to confirm the inequality developed in [8]. A stronger
version of the no-go theorem is further proposed for reaching a similar conclusion [9]. The
statement that measured facts are observer-dependent was considered important for the
quantum foundation and deserved rigorous theoretical proving and experimental testing.
However, proving the no-go theorems by taking the law of total probability for granted
casts doubt on their theoretical rigorousness.

The fact that there is still ambiguity in using the total law of probability in quantum
theory—though it has long been recognized as not being upheld in quantum mechanics—
shows the need to provide a rigorous formulation of the law of total probability in quantum
theory and to clarify under what conditions it holds true. This is indeed the motivation
behind the present work. Formulation of the law of total probability depends on a clear
definition of conditional probability in quantum theory. There is already extensive research
on how conditional probability is defined [7,17–25]. However, these formulations are
either based on projection measurements or only consider simultaneous measurements
with commutative operators. In this work, I extend a two-time conditional probability
formulation from projection measurement to more generic POVM measurements. Gener-
alization for POVM measurement is needed because some of the no-go theorems choose
POVM operators in their proofs. I then give several sufficient conditions for the law of
total probability to become true. The theory is applied to analyze several no-go theorems
related to the extended Wigner’s friend scenario. Logical loopholes are shown in these
no-go theorems because their proofs rely on the law of total probability one way or another,
but the conditions to validate the law are not met. Thus, these no-go theorems do not
really prove the results they expect, such as “measured facts are observer-dependent”.
Instead, they just indirectly confirm that the law of total probability does not not hold in
quantum theory.

It is worth mentioning that other concerns regarding these no-go theorems have
already been pointed out [26,27]. In particular, only when a measurement is completed
should a probability distribution be assigned. Assigning probability distribution for pre-
measurement without results leads to contradiction [26]. The analysis in this work will go
one step further by showing that even assigning a probability distribution for completed
measurements still leaves logical loopholes in the no-go theorem. This is because the law of
total probability that the proofs rely on does not hold true with the specific measurement
operators and initial quantum state being chosen. Lastly, it is important to emphasize that
I do not take a stand on the assertions of the no-go theorems themselves. For instance, it
could still be a valid statement that “measured facts are observer-dependent”. What I only
show here is that there are logical loopholes in the proof of the no-go theorems.

In summary, this paper extends the formulation of conditional probability to generic
POVM measurements and clarifies the conditions under which the law of total probability
can be valid in quantum theory. Applying the theory developed in this work to the
extended Wigner friend scenario reveals logical loopholes in several no-go theorems that
take for granted the validity of the law of total probability. The contradictions in these no-go
theorems only reconfirm the invalidity of the law of total probability in quantum theorem
rather than invalidating the physical statements that the no-go theorems are intended
to refute, such as “measured facts are independent of the observer”. I hope the results
presented here inspire further research to find more convincing proof and experimental
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testing. This is important because the implications of the extended Wigner’s friend scenario
are conceptually fundamental in quantum theory.

2. The Law of Total Probability in Quantum Theory

First, I briefly review classical probability theory. Suppose there are two random
variables X and Y. Without loss of generality, I assume X and Y are discrete random
variables. Measuring X (or Y) will obtain one of the values in {ai : i = 1, 2, 3 . . . } (or in
{bj : j = 1, 2, 3 . . . }), which is finite or countable infinite. Denote the joint probability
of measuring X with result X = ai, measuring Y with result Y = bj as p(ai, bj), and the
conditional probability of obtaining X = ai given that Y = bj as p(ai|bj). They are related
by the following axioms:

p(ai, bj) = p(bj|ai)p(ai) (1)

p(bj, ai) = p(ai|bj)p(bj) (2)

p(ai, bj) = p(bj, ai), (3)

where p(ai) is the marginal probability of measuring X with result X = ai, and similarly for
p(bj). Axiom (3) ensures the joint probability is defined uniquely regardless if it is defined
by (1) or (2). We explicitly call out (3) since it is not always true in quantum theory.

The law of total probability can be derived (Axioms (1)–(3) give p(bj|ai)p(ai) =
p(ai|bj)p(bj), which is Bayes’ law. Summing over i on both sides and using identity
∑i p(ai|bj)p(bj) = p(bj), one obtains (4)) from axioms (1)–(3), expressed as following,

p(bj) = ∑
i

p(bj|ai)p(ai). (4)

What I want to investigate here is how the equivalent version of (4) in quantum theory can
be formulated.

To start with, I need to examine how conditional probability is constructed in quantum
theory. The subtlety of constructing conditional probability in quantum theory has been
investigated long ago. G. Bobo gives an extensive review and discussion [7]. The generally
accepted formulation of conditional probability in quantum theory is provided by Lüders
rule [18], where the measurements are associated with projection operators. Lüders rule
is based on Gleason’s theorem, which mathematically justifies Born’s rule. Here I wish to
follow a similar approach to generalize the formulation for conditional probability when
the measurements are associated with POVM operators.

Mathematical proofs for generalizing Gleason’s theorem to POVM measurements are
given by [28,29], which is our starting point. Suppose a quantum system S is prepared such
that its state is described by density operator ρ. S could be a composite system, which I
will discuss later. Let A = {Ai} be a POVM for S. The probability of measurement with
element Ai resulting in value ai is [28,29].

p(ai|ρ) = Tr(ρAi), (5)

and the post-measurement density operators ρi are given by [4]

ρi =

√
Aiρ
√

Ai
p(ai|ρ)

. (6)

Let B = {Bj} be another POVM for S. Given post measurement state ρi, the probability
of measurement with element Bj resulting in value bj is, by recursively applying (5),
p(bj|ρi) = Tr(ρiBj). Substituting the expression for ρi in (6), I obtain the conditional probability

p(bj|ai, ρ) =
Tr(
√

Aiρ
√

AiBj)

Tr(ρAi)
. (7)
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There is an underlying assumption in this definition that the probability is assigned only
after the measurements are completed. In particular, the first POVM measurement Ai must
be completed in order to be qualified as a condition. We strictly follow this assumption
as opposed to assigning a probability with only “pre-measurement”. Pre-measurement
refers only to the unitary process that entangles the measured system and measuring
apparatus [30] but without the projection process to single out a particular outcome.

Given the same initial state ρ, if I swap the order of measurements such that Bj goes
first, followed by Ai, I obtain a conditional probability

p(ai|bj, ρ) =
Tr(

√
Bjρ

√
Bj Ai)

Tr(ρBj)
. (8)

Note p(ai|ρ) = Tr(ρAi) and p(bi|ρ) = Tr(ρBj); Equations (7) and (8) can be rewritten as

p(bj|ai, ρ)p(ai|ρ) = Tr(
√

Aiρ
√

AiBj) (9)

p(ai|bj, ρ)p(bj|ρ) = Tr(
√

Bjρ
√

Bj Ai). (10)

Equations (9) and (10) are not necessarily equal, which indicate that the quantum version
of Bayes’ theorem,

p(ai|bj, ρ)p(bj|ρ) = p(bj|ai, ρ)p(ai|ρ) (11)

does not hold in general in quantum theory. This posts a difficulty to define a joint
probability as either p(ai, bj) = p(ai|bj, ρ)p(bj|ρ) or p(ai, bj) = p(bj|ai, ρ)p(ai|ρ) because it
depends on the order of measurement events. Another consequence is that the laws of total
probability, i.e., the quantum version of (4)

∑
i

p(bj|ai, ρ)p(ai|ρ) = p(bj|ρ) (12)

does not hold in general either. This is because from (9), ∑i p(bj|ai, ρ)p(ai|ρ) = ∑i Tr
(
√

Aiρ
√

AiBj), while p(bj|ρ) = Tr(ρBj), and these are not equal in general (Note that on
the other hand, given (7) and the completeness of POVM elements, ∑i Ai = I, where I is
the identity operator, it is straightforward to verify that ∑j p(bj|ai, ρ)p(ai|ρ) = p(ai|ρ)). We
are interested in finding the conditions under which (12) becomes true.

It is well-known that when [Ai, Bj] = 0, i.e., Ai and Bj commute, from (7) and (8),
one gets p(bj|ai, ρ)p(ai|ρ) = p(ai|bj, ρ)p(bj|ρ) = Tr(ρAiBj). Consequently, the law of total
probability (12) becomes true and a joint probability can be well-defined. However, the
situation becomes much complicated when [Ai, Bj] 6= 0.

Strictly speaking, due to the uncertainty principle, when Ai and Bj are non-commutative,
the two measurements cannot be performed to obtain definite outcomes at the same
time. The conditional probability defined in (7) or (8) needs to be extended to a two-
time formulation of conditional probability in order to be applicable when [Ai, Bj] 6=
0. There is extensive research on how to construct two-time conditional probability in
quantum theory [7,17–25]. One noticeable approach is based on the Page–Wootters timeless
formulation [21–25]. However, this work will continue to be based on the generalized
Gleason theorem for POVM [28,29] to derive the two-time conditional probability, and will
leave discussion of the Page–Wootters mechanism for Section IV.

For conceptual clarity, I start the analysis by considering that there is finite nonzero
duration for each measurement. After I construct the conditional probability formula-
tion, for practical purpose of calculation, I can approximate the measurement duration
to zero. Suppose the first measurement starts at t−a and completes at t+a . Here t+a − t−a
covers the time duration for both the pre-measurement unitary phase that entangles the
measured system and the measuring apparatus, and the projection phase. The measure-
ment process (Theorem 5.2 of [4] gives a detailed account on how this POVM measure-
ment is physically realized through indirect measurement) is represented by a POVM
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element Ai associated with outcome ai. Similarly, the second measurement starts at
t−b and completes at t+b . Between t+a and t−b there is a free time evolution for the mea-
sured system S, described by operator U(∆t) = e−iH∆t/h̄, where ∆t = (t−b − t+a ). Since
it is only meaningful to assign a probability distribution after a measurement is com-
pleted, the two-time conditional probability I want to construct is “given the measurement
outcome of ai at t1 where t+a < t1 < t−b , what is the probability of measurement out-
come b at t2 > t+b ". Mathematically, this two-time conditional probability can be written
as p(bj at t2|ai at t1, ρ0), where ρ0 ≡ ρ(t−a ) is the initial density operator of S when the
first measurement starts. After the first measurement with POVM element Ai, the post-
measurement state is ρi(t+a ) =

√
Aiρ0
√

Ai/Tr(ρ0 Ai). The quantum system S then time
evolves from t+a to t−b to a new state ρi(t−b ) = U(∆t)ρi(t+a )U†(∆t). At t−b , the second
measurement occurs. This is represented by applying POVM element Bj on ρi(t−b ) and
obtaining outcome bj at t+b with probability Tr(Bjρi(t−b )). Substituting ρi(t−b ), the two-time
conditional probability is

p(bj at t2|ai at t1, ρ0) = Tr(Bjρi(t−b ))

=
Tr(BjU(∆t)

√
Aiρ0
√

AiU†(∆t))
Tr(ρ0 Ai)

.
(13)

For practical purposes of calculation, I can assume the measurement duration is very
small compared to the free evolution time, i.e., (t+a − t−a )� ∆t and (t+b − t−b )� ∆t. Then,
I can denote t−a ≈ t+a as ta, t−b ≈ t+b as tb, and ∆t = (tb − ta).

Suppose the two POVM elements Ai and Bj are projection measurements, Ai = |φi〉〈φi|
and Bj = |ϕj〉〈ϕj|; one can verify that the conditional probability defined in (13) gives the
correct transition probability in standard quantum mechanics:

p(bj at t2|ai at t1, ρ0) = |〈φi|U(∆t)|ϕj|2. (14)

However, Equation (13) is more generic as it is defined with general POVM operators. Note
that the denominator in (13) Tr(ρ0 Ai) = p(ai at t1|ρ0); Equation (13) can be rewritten as

p(bj at t2|ai at t1, ρ0)p(ai at t1|ρ0)

= Tr(BjU(∆t)
√

Aiρ0
√

AiU†(∆t)).
(15)

To analyze the two-time version of the total law of probability, which can be expressed as

p(bj at t2|ρ0) = ∑
i

p(bj at t2|ai at t1, ρ0)p(ai at t1|ρ0), (16)

I consider a series of two-time measurements {Ai at ta, B at tb, i = 1 . . . N} on N copies of
measured system S with the same initial state ρ0. Each two-time measurement consists a
first measurement from one possible POVM element from the complete set {Ai, i = 1 . . . N}
at time ta and the same second measurement Bj at time tb. For ta < t1 < tb < t2, from (15)
I have

∑
i

p(bj at t2|ai at t1, ρ0)p(ai at t1|ρ0)

= ∑
i

Tr(BjU(∆t)
√

Aiρ0
√

AiU†(∆t)).
(17)

However, by definition, p(bj at t2|ρ0) = Tr(BjUρ0U†). We can see (16) is not true in general.
The Theorem next attempts to address the question of under what conditions (16) is valid.

Theorem 1. Let ρ0 be the density operator for a quantum system S before the measurements. Let
Ai and Bj be two POVM elements to measure S at time ta and tb, respectively, and U(tb, ta) is the
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unitary time evolution operator from ta to tb. Select t1 and t2 such that ta < t1 < tb < t2. The law
of total probability (16) is true if one of the following conditions is met.

C1. [Ai, U†BjU] = 0, ∀ρ0,
C2. ρ0 = ∑i λi|φi〉〈φi| and Ai = |φi〉〈φi|,
C3. ρ0 is a pure state, given by |Ψ〉〈Ψ|, Ai is a projection operator and 〈Ψ|[Ai, U†BjU]Ai|Ψ〉 = 0.

The proof of Theorem 1 is in Appendix A, but a few comments are in order here. First,
Condition C1 implies U†BjUAi = AiU†BjU. The sequence of operations for U†BjUAi
means performing measurement Ai at ta, time evolving the post-measurement state from
ta to tb, performing measurement Bj at tb, and reversing time evolution of the post-
measurement state back to ta. The sequence of operations AiU†BjU means time evolving
the state from ta to tb, performing measurement Bj at tb, then reversing time evolution of
the state back to ta, and performing measurement Ai at ta. Condition C1 says that if these
two sequences of operations are equivalent, then the law of total probability (16) holds true.

Second, if the post-measurement state ρi(ta) after the first measurement does not
change during free time evolution, such as the case of a spin state in free space, one will
have ρi(tb) = ρi(ta) =

√
Aiρ0
√

Ai/Tr(ρ0 Ai). Then, Equation (13) can be written as

p(bj at t2|ai at t1, ρ) =
Tr(ρ0

√
AiBj
√

Ai)

Tr(ρ0 Ai)
. (18)

Equation (18) appears the same as (7), but the precise meaning is different in that the
two measurements Ai and Bj in (18) are taken at two different times. With such a special
post-measurement quantum state, the sufficient conditions in Theorem 1 become

C1′. [Ai, Bj] = 0, ∀ρ0,
C2′. ρ0 = ∑i λi|φi〉〈φi| and Ai = |φi〉〈φi|,
C3′. ρ0 = |Ψ〉〈Ψ|, Ai is a projection operator and 〈Ψ|[Ai, Bj]Ai|Ψ〉 = 0.

A couple of comments are in order before closing this section. First, when two
measurement operations are not commutative, the conditional probability needs to be
defined in the two-time formulation. Second, I can give an intuitive explanation of why (16)
does not hold in general in quantum theory. As shown in (17), the right-hand side of (16)
refers to the summation of traces of multiplication of operators from a series of experiments
where two measurements are carried out in a sequence. In the case of a special post-
measurement state where (18) holds, this is ∑i Tr(Bj

√
Aiρ0
√

Ai). Measurement of Ai
changes the initial quantum state such that it affects the probability of outcome for a
subsequent measurement Bj. However, the term on the left-hand side of (16) refers to the
probability of an experiment where only measurement Bj is carried out with the same
initial quantum state. There is no reason to assume both sides are equal. Equation (16)
holds only in special conditions such as those specified in Theorem 1.

The conclusion here is that one should not take for granted that the law of total
probability holds true in general. Instead, sufficient conditions, such as those provided in
Theorem 1, need to be clearly called out. Failing to do so may leave a loophole in logical
deduction when applying the law of total probability.

3. Application to Composite Systems

In this subsection, I will apply the conditional probability definition to composite
quantum systems and reexamine Theorem 1 when measuring composite systems. Suppose
the measured system S consists of two subsystems S1 and S2 that are space-like separated.
Define Ai = Pi ⊗ I2, where Pi = |φi〉〈φi| is a local POVM element on subsystem S1, and
I2 is an identity operator on subsystem S2. Similarly, define Bj = I1 ⊗ Qj, where Qj is a
local POVM element on subsystem S2. By the principle of locality, a local measurement on
a subsystem should not impact the other remote subsystem. Therefore, [Ai, Bj] = 0. For
measurement outcomes of two such local measurements, Equations (7) and (8) are correct
formulations for conditional probability; the joint probability is well-defined. Consequently,
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Equations (11) and (12) hold true. There is no need to use the two-time formulation of
conditional probability. This is the case for typical Bell tests and has been used to derive the
Bell–CHSH inequalities (On the other hand, in the derivation of Bell–CHSH inequalities,
identity (1) is further expressed as

p(ai, bj|λ) = p(ai|bj, λ)p(bj|λ) = p(ai|λ)p(bj|λ), (19)

where λ is a hidden variable. This is known as the outcome independence assumption [31,32]).
However, suppose Bj = Qj ⊗ I2, where Qj is another local POVM element on subsys-

tem S1, and [Pi, Qj] 6= 0. In this case, Equation (7) is incorrect for conditional probability.
The two-time conditional probability formulation is needed and can be calculated as

p(bj at t2|ai at t1, ρ0)

=
Tr((Qj ⊗ I2)U(∆t)

√
Pi ⊗ I2ρ0

√
Pi ⊗ I2U†(∆t))

Tr(ρ0Pi ⊗ I2)
,

(20)

where U(∆t) = US1(∆t)⊗US2(∆t).
Next, I wish to apply the two-time conditional probability to the extended Wigner’s

friend (EWF) scenario introduced in [8]. As shown in Figure 1, the EWF scenario consists
of two space-like separated laboratories L1 and L2. Each laboratory contains half of an
entangled pair of systems s1 and s2. L1 also contains a friend Charlie who can perform
measurements on s1. Outside L1 there is a super-observer Alice who can perform different
types of measurements on L1 as a whole. Similarly, there is a friend Debbie in L2 and a super-
observer Bob outside L2. Here, four POVM measurements are needed and represented by
POVM elements A, B, C, D, where operators A and C act on Hilbert spaceHL1 , and B and
D act on Hilbert space HL2 . I drop the subscripts of the operators and ρ0 for simplifying
notations. In a typical EWF experiment, the chosen operators are not all commutative
with one another. Specifically, [A, C] 6= 0 and [B, D] 6= 0, while [C⊗ IL2 , IL1 ⊗ D] = 0 and
[A⊗ IL2 , IL1 ⊗ B] = 0. The two-time probability formulation to compute the conditional
probability is needed because measurements C and D are taken before measurements A
and B. Since [C⊗ IL2 , IL1 ⊗ D] = 0 and [A⊗ IL2 , IL1 ⊗ B] = 0, I can assume measurements
C and D are taken at the same time, ta, as C⊗ D, while measurement A and B are taken
at the same, later time tb as A⊗ B. Without loss of clarity, I drop the symbol ⊗ hereafter.
Then, the conditional probability for ta < t1 < tb < t2 is given by

p(ab at t2|cd at t1, ρ, xy)

=
Tr(ρ
√

C
√

DU† ABU
√

C
√

D)

Tr(ρCD)
,

(21)

where U = UL1 ⊗ UL2 is the time evolution operator from ta to tb. The law of total
probability I am interested in is

p(ab at t2|ρ, xy) =

∑
cd

p(ab at t2|cd at t1, ρ, xy)p(cd at t1|ρ, xy). (22)

From (21), the R.H.S. of (22) becomes

∑
cd

p(ab at t2|cd at t1, ρ, xy)p(cd at t1|ρ, xy)

= ∑
CD

Tr(ρ
√

C
√

DU† ABU
√

C
√

D).
(23)

The summation is over POVM element sets for {C} and {D}. Since [A⊗ IL2 , IL1 ⊗ B] = 0,
the L.H.S. of (22) is p(ab at t2|ρ, xy) = Tr(ρU† ABU). Both sides are not equal in general.
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Figure 1. Sketch of the extended Wigner’s friend scenario described in [8]. Laboratory L1 consists
of spin s1 and Charlie, while Laboratory L2 consists of spin s2 and Debbie. The two laboratories are
remotely separated. The dotted line between s1 and s2 symbolizes they are entangled. Alice can
measure L1 as a whole, and Bob can measure L2.

In the case that the post-measurement state after the first measurement is unchanged
during free time evolution (this is indeed the assumption in the no-go theorems I will
analyze in the next section), Equation (21) becomes

p(ab at t2|cd at t1, ρ, xy) =
Tr(ρ
√

C
√

DAB
√

C
√

D)

Tr(ρCD)
. (24)

Equation (23) is simplified to

∑
cd

p(ab at t2|cd at t1, ρ, xy)p(cd at t1|ρ, xy)

= ∑
CD

Tr(ρ
√

C
√

DAB
√

C
√

D),
(25)

and p(ab at t2|ρ, xy) = Tr(ρAB). In this case, one can derive the following corollary based
on Theorem 1.

Corollary 1. In the Extended Wigner’s Friend scenario setup, suppose the post-measurement state
is unchanged during free time evolution from ta to tb. Select t1 and t2 such that ta < t1 < tb < t2.
The law of total probability (22) is true if one of the following conditions is met.

C4. [A, C] = 0 and [B, D] = 0, ∀ρ0,
C5. ρ0 = |Ψ〉〈Ψ|, C and D are projection operators, and

〈Ψ|[CD, AB]CD|Ψ〉 = 0. (26)

Condition C4 is quite obvious. Proof of condition (26) is given in Appendix B.

4. Logical Loopholes in No-Go Theorems Related to the Wigner’s Friend Scenario

A no-go theorem usually starts from the conventional probability theory, which is
widely regarded as the true representation of logical deduction, and assumes certain ad-
ditional plausible physical premises: realism, locality, no superdeterminism, observer
independence, etc. One then shows that such a model leads to prediction, which is contra-
dicted by quantum mechanics. Hence, one concludes that at least one of the assumptions
or the rules of conventional probability must be violated by quantum mechanics. Let us
denote the physical assumption that a no-go theorem tries to prove to be violated by quan-
tum theory asW . For instance,W could be “measured facts are observer independent”.
The no-go theorem may be constructed independent of the underlying physical theory. But
if the logical deduction in the proof of theorem utilizes the law of total probability in one of
the forms of (12), (16), or (22) without calling out the appropriate sufficient condition C,
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then I know the resulting statement (could be in the form of an inequality) will not hold in
quantum theory. This leaves a loophole in the logical deduction. Because the contradiction
shown in the no-go theorem could be just due to the fact that C is not met in the experiment
setup instead of the intended conclusion thatW is violated by quantum theory. Thus, the
no-go theorem does not reach the conclusion as desired. I will examine several such no-go
theorems in this section (I do not include the no-go theorem [33] widely discussed in the
literature since its proof does not invoke the law of total probability.)

4.1. A Strong No-Go Theorem on the Wigner’s Friend Paradox

Bong et al. introduce a no-go theorem that if one assumes that quantum mechanics
is applicable to the scale of an observer, then one of the three assumptions, ‘Locality’,
‘No-superdeterminism’, or ‘Absoluteness of Observed Events (AOE)’ must be false [9].
Here AOE means that “every observed event exists absolutely, not relative to anything or
anyone”. The no-go theorem is supposed to be independent of underlying physical theory
and is proved in the context of extended Wigner’s friend (EWF) scenario [8], as shown in
Figure 1. The measurement results from the friend in the lab can be correlated with the
super-observer’s subsequent measurement results. Suppose the measurement outcomes
from Alice, Bob, Charlie, and Debbie are a, b, c, d, respectively. Alice can have three different
measurement settings, labeled by parameter x ∈ {1, 2, 3}. When x = 1, Alice opens L1
and asks Charlie’s measurement outcome, while when x = 2, 3, Alice performs a different
measurement on L1. Similar measurement settings for Bob are labeled as y ∈ {1, 2, 3}.

Among the three assumptions, it is well accepted that ‘Locality’ and ‘No- superde-
terminism’ cannot be violated by any physical theory. The focus is on the assumption of
AOE, which is defined mathematically as following [9]. There exists a joint probability
distribution p(abcd|xy) such that

i p(ab|xy) = ∑cd p(abcd|xy)∀a, b, x, y
ii p(a|cd, x = 1, y) = δa,c∀a, c, d, y
iii p(b|cd, x, y = 1) = δb,d∀b, c, d, x.

With the three assumptions, [9] derives a number of inequalities and experimentally
confirms that quantum theory violates these inequalities when proper measurement settings
x and y and the initial quantum state are chosen. Therefore, the AOE assumption should
be refuted.

However, closer examination of the derivation shows that the no-go theorem assumes
the law of total probability. The definition of AOE states that p(ab|xy) = ∑cd p(abcd|xy).
Then, in Equation (3) of [9], it implicitly assumes p(abcd|xy) = p(ab|cdxy)p(cd|xy). To-
gether, they imply

p(ab|xy) = ∑
cd

p(ab|cdxy)p(cd|xy). (27)

However, as discussed in Section 2, the law of total probability does not hold true in
quantum theory unless a certain condition is met.

We can apply Corollary 1 to analyze the validity of (27). In Appendix C, I show that
the operators chosen in [9] are not all commutative with each other. Specifically, [A, C] 6= 0
and [B, D] 6= 0, while [C⊗ IL2 , IL1 ⊗ D] = 0 and [A⊗ IL2 , IL1 ⊗ B] = 0. With these choices
of operators, the corresponding two-time version of the law of total probability is given
by (22) and (25). However, I already see condition C4 is not satisfied. The choice of initial
quantum state, i.e., Equation (1) in [9] and the forms of operator A, B, C, D do not satisfy
conditions C5 in Corollary 1 either.

Therefore, in general, (27) does not hold with the conditions specified in [9]. Inequal-
ities derived based on (27) will be violated by quantum theory with the choice of initial
quantum state and measurement operators described in [9]. However, this raises the ques-
tion of exactly what the no-go theorem refutes. I agree with the authors that violation
of the inequalities by quantum theory points to the validity of AOE in quantum theory.
However, the definition of AOE and the derivation of the theorem implicitly assume the
validity of the law of total probability. The root cause of the violation of the inequalities
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is due to the fact that the experimental setup does not satisfy the conditions to make the
law of total probability hold true, not because of the AOE statement that “an observed
event is not relative to anything or anyone”. One may argue that the AOE statement is
equivalent to invalidity of the law of total probability. However, as discussed earlier, the
invalidity of the law of total probability is due to the fact that measurement C (or D) alters
the initial quantum state that impacts the probability of outcome for measurement A (or
B) since [A, C] 6= 0 (or [B, D] 6= 0). There is a logic gap to equate this reason with the
statement “an observed event is not relative to anything or anyone”. Therefore, it appears
that the violation of inequalities in [9] just reconfirms the consequence of non-commutative
measurements and, therefore, the invalidity of the law of total probability in quantum
theory, rather than confirming the invalidity of the AOE statement.

4.2. A No-Go Theorem for Observer-Independent Facts

The no-go theorem for observer-independent facts by Brukner [8] was actually intro-
duced earlier than [9] in a similar effort to prove that measured facts are observer-dependent.
The experimental setup is shown in Figure 1. In [8], there are only two different measure-
ment setups either Alice or Bob will perform, compared to three different measurement
setups in [9]. Furthermore, the way the no-go theorem is proven is different. The proof
in [8] leverages the well-known Bell–CHSH inequality, and thus inherits all the assump-
tions associated with the Bell–CHSH theorem, while the no-go theorem in [9] is proven
independent of the Bell–CHSH theorem. As I will explain next, the proof in [8] is more
subtle, as it carefully chooses a quantum state and a set of measurement operators such that
the law of total probability holds true if only considering Alice’s (or Bob’s) measurements.

The initial wave function is chosen such that after Charlie and Debbie each perform
a measurement of their respective half of entangled spin along the z axis, from Alice’s or
Bob’s perspective, it becomes (see Equations (5)–(9) in [8]):

|Ψ〉 = − 1√
2

sin
θ

2
(|00〉L1 |00〉L2 + |11〉L1 |11〉L2)

+
1√
2

cos
θ

2
(|00〉L1 |11〉L2 − |11〉L1 |00〉L2),

(28)

where |00〉L2 represents that s1 is in the spin up state and Charlie’s pointer variable is
associated with the up state, and |11〉L1 corresponds to the spin down state for s1 and
Charlie’s pointer variable. There are similar meanings for |00〉L2 and |11〉L2 for s2 and
Debbie’s pointer variable. The key point of [8] is to assume there exists a joint probability
p(a1a2b1b2), where a1, a2 ∈ {0, 1} are the measurement results corresponding to Alice’s
choice of two types of measurement operations, and b1, b2 ∈ {0, 1} are the measurement
results of Bob. Alice can choose to either measure L1 with projection operator A1 or with
projection operator A2. Here A1 is represented (in [8], the two types of operations for Alice
are defined as A1 = |00〉〈00|L1 − |11〉〈11|L1 , i ∈ {0, 1} and A2 = |00〉〈11|L1 − |00〉〈11|L1 .
Here I use the spectral decomposition theorem to decompose A1 into projection operators
and represent it by A1, with a similar approach for the definition of A2. There is an
important difference here compared to the setup in [9]. Here a1, a2 are results for Alice from
completed measurement A1, A2, respectively, whereas in [9], a, c are measurement results
for Alice and Charlie, respectively. The issue of c as a result of Charlie’s “pre-measurement”
in [9] does not exist here in [8]) by |φi〉〈φi|L1 , and |φ0〉 = |00〉 for a1 = 0 or |φ1〉 = |11〉 for
a1 = 1. A2 is chosen to be A2 = |χ0〉〈χ0| for a2 = 0 or A2 = |χ1〉〈χ1| for a2 = 1, where

|χi〉 =
1√
2
((−1)i|00〉L1 + |11〉L1). (29)

From these definitions of A1 and A2, one can verify that

[A1, A2] = (−1)a1+a2(|00〉〈11|L1 − |11〉〈00|L1), (30)
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with similar definitions for operators B1 and B2. The problem in [8] is that it assumes
the law of marginal probability holds true, for instance, p(a2b2) = ∑a1,b1={0,1} p(a1a2b1b2).
Ref. [8] does not provide details on how the joint probability is defined. As discussed
earlier, the joint probability cannot be well defined unless the measurement operators are
commutative. If I further assume the validity of the classical probability axiom in Eq. (1)
and apply it recursively, I have

p(a1a2b1b2) = p(a2b1b2|a1)p(a1)

= p(a2b2|a1b1)p(b1|a1)p(a1)

= p(a2b2|a1b1)p(a1b1).

(31)

Then, the law of marginal probability is equivalent to the law of total probability such that

p(a2b2) = ∑
a1,b1={0,1}

p(a2b2|a1b1, ρ)p(a1b1). (32)

Let us analyze if Equations (31) and (32) hold true with the chosen operators {A1, B1, A2, B2}
and the quantum state in (28). To do this, I apply Corollary 1 by replacing operators
{A, B, C, D} with operators {A2, B2, A1, B1}, respectively, and setting ρ0 = |Ψ〉〈Ψ|, where
|Ψ〉 is defined in (28). The conditional probability is similar to (24),

p(a2b2 at t2|a1b1 at t1, ρ, xy)

=
Tr(ρ
√

A1
√

B1 A2B2
√

A1
√

B1)

Tr(ρA1B1)
,

(33)

where I drop the subscript of ρ0. The desired law of total probability is

p(a2b2 at t2|ρ) =
∑

a1,b1

p(a2b2 at t2|a1b1 at t1, ρ)p(a1b1 at t1|ρ). (34)

In Appendix D, I show that for the choices of the set of operators {A1, A2, B1, B2} prescribed
earlier, [A1, A2] 6= 0 and [B1, B2] 6= 0. With the quantum state (28), Condition C3′ is satisfied
such that p(a2|ρ) = ∑a1

p(a2|a1, ρ)p(a1|ρ) and p(b2|ρ) = ∑b1
p(b2|b1, ρ)p(b1|ρ). Unfortu-

nately, I also show that (34) and the law of marginal probability p(a2b2) = ∑a1,b1={0,1}
p(a1a2b1b2) are still not valid.

Since proof of the no-go theorem in [8] depends on the law of marginal probability,
and the law of marginal probability does not hold true by the choice of quantum state and
measurement operators, there is a logical loophole in the no-go theorem. The violation
of the inequality in [8] in quantum theory does not necessarily imply that measured facts
are observer dependent. Instead, the violation just reconfirms that the law of marginal
probability does not hold for the choice of quantum state and the measurement operators.
The logical gap of equating the statement “measured facts are observer dependent” to
the invalidity of the law of marginal probability in quantum theory is similar to what I
discussed in the last paragraph in Section 4.1.

Note that besides depending on the law of marginal probability, the proof of no-go the-
orem in [8] also inherits the assumptions for the proof of the Bell–CHSH inequality [31,32],
particularly dependency on the outcome independence assumption (19). The no-go theorem
in [9], on the other hand, does not depend on the outcome independence assumption.

4.3. A No-Go Theorem for the Persistent Reality of Wigner’s Friend’s Perception

In [11], another no-go theorem is introduced to show that in the extended Wigner’s
friend scenario, Wigner’s friend cannot “treat her perceived measurement outcome as hav-
ing reality across multiple times” without contradicting one of the following assumptions
in quantum mechanics [11].
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P1 Let f1 and f2 be perceived measurement records of the friend at time t1 and t2,
respectively. A joint probability distribution p( f1, f2) can be assigned that also satisfies
the law of total probability p( f1) = ∑ f2

p( f1, f2) and p( f2) = ∑ f1
p( f1, f2);

P2 One time probability is assigned according to p( fi) = Tr(| fi〉〈 fi|ρ) using unitary
quantum theory where no state collapse is considered to have occurred;

P3 The joint probability of the friend’s perceived outcomes p( f1, f2) has a convex linear
dependence on the initial state ρ.

In traditional quantum measurement theory [30], the unitary process is considered to
entangle the measured system with the measuring apparatus before the projection process.
The projection process gives a definite final outcome. P2 essentially assumes the unitary
process itself can have a measurement result and can be assigned a (one-time) probability.
Zukowski and Markiewicz have already pointed out that such an assumption leads to a
contradiction. However, there is another problem with P2 [26]. The derivation in [11] as-
sumes that the joint probability p( f1, f2) is derived through the standard probability axiom
p( f1, f2) = p( f2| f1)p( f1), but it does not give details on how the conditional probability is
calculated in quantum theory. It is not clear how the unitary formulation presented in [11]
can be applied to derive the conditional probability p( f2| f1) because P2 assumes there is
no “collapse” after the first measurement. It is not a problem to compute the one-time
probability p( f1) and p( f2). However, in order to be able to calculate a two-time probability
such as p( f2| f1), one will have to apply the state update rule after the first measurement at
time t1, as shown in (13) for the two-time conditional probability.

More crucially, even if I am able to calculate the conditional probability, there is
still a problem with P1, as P1 assumes the law of total probability p( f1) = ∑ f2

p( f1, f2)
is always true. We have shown in Theorem 1 and subsequent corollaries that the law
of total probability is true in quantum theory only with certain conditions. The two
POVM elements chosen in [11] are non-commutative, as shown in Equation (17) in [11].
Thus, p( f1) = ∑ f2

p( f1, f2) does not necessarily hold. The proof in [11] assumes that
p( f1) = ∑ f2

p( f1, f2) always holds based on P1, then eventually deduces that the two
POVM elements should be commutative and claims there is a contradiction. However,
such a contradiction is due to the invalid assumption of p( f1) = ∑ f2

p( f1, f2) in P1, which
in turn is due to the fact that the two POVM elements are non-commutative. Since P1
is invalid, the contradiction does not lead to the desired conclusion that Wigner’s friend
cannot “treat her perceived measurement outcome as having reality across multiple times”.

4.4. Relative Facts, Stable Facts

In relational interpretation of quantum mechanics (RQM) [34–39], a measurement
result is considered meaningful only relative to the system that interacts with the measured
system. A definite measurement result is referred to as a fact. Quantum theory is about
conditional probability for facts, given other facts. Recently, Biagio and Rovelli introduced
the concept of a stable fact in the following sense [10]. If, given the probability p(ai) for
N mutual exclusive facts ai(i = 1 . . . N) and the conditional probability of another fact
b, p(b|ai), the probability p(b) (dropping index j for bj) is given by (4), then facts ai are
considered stable.

RQM states that fact is relative. Formally, if two systems S and F interact such that
variable LF of F depends on the value of variable LS of S, then the value of LS is said to be
relative to F [10]. However, not all relative facts are stable. The main thesis of [10] consists
two claims. First, the law of total probability (4) is satisfied only if b and ai are facts relative
to the same system, say relative to system F. If b is relative to another system W 6= F, (4) is
not true in general. Mathematically, these can be expressed as

p(b(F)) = ∑
i

p(b(F)|a(F)
i )p(a(F)

i ) (35)

p(b(W)) 6= ∑
i

p(b(W)|a(F)
i )p(a(F)

i ). (36)
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Here, it is important to label the reference system the fact is relative to. Second, if system F
goes through a decoherence process by interacting with an environmental system E, the
resulting density matrix for F is approximately given by ρ = ∑i λi|Fai〉〈Fai|, where Fai is
the eigenvalues of LF. Then, Equation (36) can be rewritten as

p(b(W)) = ∑
i

p(b(W)|Fa(E)
i )p(Fa(E)

i ). (37)

In such a case, facts Fai relative to E are stable for W.
Now let us examine the two claims more carefully. For the first claim, from Theorem 1,

Equation (35) is not necessarily true even if both b and ai are facts relative to a same system.
That facts b and ai are both relative to a same system means both facts are obtained through
interactions with the same system, and the interactions can be represented by measurement
operators B and Ai, respectively. If [B, Ai] = 0, Equation (35) is true. But there is no reason
that B and Ai have to be commutative. If [B, Ai] 6= 0, Equation (35) is not true in general,
unless other conditions such as condition C2′ or C3′ in Theorem 1 are satisfied. Indeed, the
second claim (37) is precisely the case where condition C2′ is met. Note that the reasoning
from (35) to (37) is also applicable when facts b and ai are relative to the same system but
the corresponding measurement operators are non-commutative, [B, Ai] 6= 0.

Therefore, it is not clear that one can use the validity of the law of total probability
(35) and (37) to distinguish stable facts from non-stable facts. Again, I am not opposed to
the idea that facts are relative. What I am questioning here is the validity of (35) without
specifying the conditions, and the rigorousness of reasoning from (36) to (37). It appears
that more careful investigation is needed in order to search for the criteria to define a
“stable” fact.

5. Discussion and Conclusions
5.1. The Page–Wootters Timeless Formulation

In the timeless formulation of quantum theory developed by Page and Wootters [21],
time evolution is naturally emerged from quantum correlation between a clock and a system
whose dynamics are tracked by the clock. Ref. [25] proposed several two-time formulations
of conditional probability based on the Page–Wootters timeless mechanism. The advantage
of such formulation is that from a timeless quantum state one can derive probability of a
measurement event conditional on another event regardless of the temporary order of the
two events.

Although the formulation in the present work is based on the regular time evolution
dynamics in the Schrodinger picture, the definition of two-time conditional probability (13)
is consistent with the definitions in [25]. For instance, for the case of two projection mea-
surements Ai and Bj at ta and tb, respectively, (13) gives the same transition probability (14)
as that in Equation (29) of [25].

However, the timeless formulations of conditional probability in [25] are applicable
only to projection measurements, while the theory developed here is more general in the
sense that it is applicable to POVM measurements. A two-time conditional probability
formulation for projection measurements is insufficient to analyze the no-go theorems in [9].
Moreover, my focus here is the validity of the law of total probability that is built on the
definition of two-time conditional probability, which is missing in [25], as the focus there is
only on the rules for two-time conditional probability.

It will be interesting to generalize the timeless Page–Wootters formulation of two-time
conditional probability in [25] to be able to handle POVM measurements, although I expect
such generalization should produce results similar to those presented in this work.

5.2. Limitations

One limitation of the present work is that in Theorem 1, I am only able to derive
three sufficient conditions for the law of total probability to hold true. In theory, there
can be many other sufficient conditions. It is desirable to find the sufficient and necessary
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condition for the law of total probability to hold true in quantum theory. This remains a
future investigation topic. Nevertheless, for the purpose of analyzing the EWF scenario
and identifying the loopholes of the relevant no-go theorems, the conditions specified in
Theorem 1 and subsequent corollaries are sufficient.

5.3. Conclusions

In this paper, the standard rule to assign conditional probability in quantum theory,
i.e., Lüders rule, is extended to include two-time POVM measurements. The extension is
strictly based on the recursive application of the POVM measurement theory as shown
in (5) and (6) and the assumption that probability distribution can be assigned only for
completed quantum measurement. The resulting definition (13) is consistent with other
works based on Page–Wootters formulation [25], but with advantage of being able to apply
to POVM measurements instead of just projection measurements.

More importantly, with the generalized two-time conditional probability formulation,
I analyze the validity of the law of total probability. It is shown that the quantum version
of the law of total probability does not hold true in general. Certain conditions related to
the choice of measurement operators and the initial quantum state must be met in order for
the law of total probability to hold. Specifically, such sufficient conditions are derived in
Theorem 1 and Corollary 1.

Application of the theory developed here to the extended Wigner’s friend scenario
reveals logical loopholes in several no-go theorems. These no-go theorems take for granted
the validity of the law of total probability (or the law of marginal probability) in quantum
theory. However, this is not the case, as shown in Theorem 1 and Corollary 1. Thus, the
no-go theorems do not lead to the desired conclusions. For instance, the violation of the
inequalities developed in [8,9] in quantum theory does not necessarily lead to the desired
statement that “measured facts are observer-dependent”. Instead, it just reconfirms the
invalidity of the law of total probability or the law of marginal probability in quantum
theory. I do not take a stand on the assertions themselves of the no-go theorems. It could
be still a valid statement that “measured facts are observer-dependent”. What I show
here is that there are logical loopholes to reach such a statement. It is desirable to find
more convincing proof and experimental testing because the implications of the extended
Wigner’s friend scenario are conceptually fundamental in quantum theory.
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Appendix A. Proof of Theorem 1

With Condition C1, [Ai, U†BjU] = 0. Thus, [
√

Ai, U†BjU] = 0. The right-hand side
of (15) becomes Tr(U†BjUAiρ). Given the completeness of POVM operators, ∑i Ai = I, I
have ∑i Tr(U†BjUAiρ) = Tr(U†BjUρ) = Tr(Bjρ(t2)) = p(bj at t2|ρ).

Given Condition C2, ρ = ∑k λk|φk〉〈φk| and Ai = |φi〉〈φi|, I get
√

Aiρ
√

Ai = λi|φi〉〈φi|.
Then, the right-hand side of (15) becomes Tr(U†BjUλi|φi〉〈φi|) = λi〈φi|U†BjU|φi〉. The
right-hand side of (16) becomes ∑i λi〈φi|U†BjU|φi〉. On the other hand, p(bj at t2|ρ) =

Tr(U†BjUρ) = ∑k Tr(U†BjUλk|φk〉〈φk|) = ∑i λi〈φi|U†BjU|φi〉, same as the right-hand
side of (16).

Given ρ = |Ψ〉〈Ψ| and Ai is a projection operator, in Condition C3, I have A2
i = Ai, and

the right-hand side of (16) becomes ∑i〈Ψ|AiU†BjUAi|Ψ〉. The left-hand side p(bj at t2|ρ) =
〈Ψ|U†BjU|Ψ〉. Again, by the completeness of POVM operators, ∑i Ai = I, and I get
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p(bj at t2|ρ) = ∑i〈Ψ|U†BjUAi Ai|Ψ〉. To have both sides of (16) equal, I need
∑i〈Ψ|AiU†BjUAi|Ψ〉 − ∑i〈Ψ|U†BjUAi Ai|Ψ〉 = 0. This can be rearranged to
∑i〈Ψ|[Ai, U†BjU]Ai|Ψ〉 = 0, and Condition C3 ensures this is the case.

Appendix B. Proof of (26)

To avoid confusion, I need to restore the subscripts of operators as Ci and Dj. Since Ci
and Dj are projection operators, and ρ = |Ψ〉〈Ψ|, the R.H.S. of (23) becomes
∑ij〈Ψ|CiDj ABCiDj|Ψ〉. Given the completeness of {Ci} and {Dj}, I have ∑ij CiDj = I.
Since C2

i = Ci and D2
j = Dj, I further obtain ∑ij C2

i D2
j = I. Then, p(ab at t2|ρ, xy) =

Tr(ρAB) = ∑ij〈Ψ|ABC2
i D2

j |Ψ〉. To make this equal to the R.H.S. of (23), one condition is

to have 〈Ψ|CiDj ABCiDj|Ψ〉 = 〈Ψ|ABC2
i D2

j |Ψ〉. This is equivalent to 〈Ψ|(CiDj ABCiDj −
ABC2

i D2
j )|Ψ〉 = 0. However, (CiDj ABCiDj − ABC2

i D2
j ) = [CiDj, AB]CiDj. Thus, I have

〈Ψ|[CiDj, AB]CiDj|Ψ〉 = 0. Omitting the subscripts of Ci and Dj again gives (26).

Appendix C. Non-Commutation of Operators in [9]

The key characteristic of the EWF experiment is that the super-observer Alice (or
Bob) performs measurements on the laboratory L1 (or L2) as a whole. Thus, the mea-
surement operator acts on both the observed system and the friend in the lab. Ref. [9]
carefully chooses the operators as following. When x = 1, Alice’s measurement is rep-
resented as A(x = 1) = |c〉〈c|F1 ⊗ Is1 , where c is the outcome Charlie obtains from his
measurement on s1, and F1 refers to Charlie himself. For x ∈ {2, 3}, Alice’s measurement
operator is A(x) = UL1(IF1 ⊗ Ex

s1
)U−1

L1
, where U−1

L1
is a unitary evolution that reverses

the entanglement between F1 and s1, and Ex
s1

is a positive operator on s1 associated with
outcome a for measurement setting x. The operator associated with Charlie’s measure-
ment on s1, according to [9], is described by a unitary operator C(x) = UL1 from Al-
ice’s perspective. UL1 acts on the same Hilbert space HF1 ⊗Hs1 and entangles s1 and F1.
For x = 1, [A(x), C(x)] = |c〉〈c|F1 ⊗ Is1UL1 − UL1 |c〉〈c|F1 ⊗ Is1 6= 0, and for x ∈ {2, 3},
[A(x), C(x)] = UL1(IF1 ⊗ Ex

s1
)−U2

L1
(IF1 ⊗ Ex

s1
)U−1

L1
6= 0.

As already pointed out [26], defining C(x) as UL1 implies pre-measurement only with
no measurement result and leads to contradictions. An alternative choice of operation
is that Charles performs a projection operation after the pre-measurement. This refines
the definition of C(x) to include both UL1 and a projection operation on s1, i.e., C(x) =
U†

L1
(IF1 ⊗ |c〉〈c|)UL1 . With this refined definition, one can verify that [A(x), C(x)] 6= 0 is

still true. Choosing C(x) = U†
L1
(IF1 ⊗ |c〉〈c|)UL1 implies operator C(x) is from Charlie’s

point of view. This may not be the original intention in [9]. However, the key point here
is that with either choice of C(x), [A(x), C(x)] 6= 0. The same analysis goes for operators
B(y) and D(y), and the conclusion is that [B(y), D(y)] 6= 0 for y ∈ {1, 2, 3}.

Appendix D. Proof That (34) Does Not Hold

First, I consider a simpler case that only Alice performs the two types of measurements
and Bob does nothing. The law of total probability in this case can take the form of
p(a2|ρ) = ∑a1={0,1} p(a2|a1, ρ)p(a1|ρ). This is true due to the fact that the selected operators
A1 and A2 and wave function (28) together meet condition C3′. To see this, substitute
A1 = |φi〉〈φi|L1 into condition C3′; C3′ becomes

〈ϕi|[A1, A2]|φi〉 = 0, where |ϕi〉 = 〈Ψ|φi〉|Ψ〉, (A1)

Now consider the case a1 = 0, where |φ0〉 = |00〉L1 . From (28), one can calculate
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〈φ0|Ψ〉 =
1√
2
(− sin

θ

2
|00〉L2 + cos

θ

2
|11〉L2) (A2)

|ϕ0〉 = 〈Ψ|φ0〉|Ψ〉 =
1
2
|00〉L1 . (A3)

Then, from (30) and dropping the unimportant factor of 1/2 for |ϕ0〉, I have for the case of
a1 = 0

〈ϕ0|[A1, A2]|φ0〉 = 〈00|(−1)a2(|00〉〈11| − |11〉〈00|)|00〉
= 0.

For the case of a2 = 1, I can verify that |ϕ1〉 = |11〉L1 and

〈ϕ1|[A1, A2]|φ1〉 = 〈11|(−1)1+a2(|00〉〈11| − |11〉〈11|)|00〉
= 0.

Therefore, condition C3′ is met with the choices of wavefunction and Alice’s measurement
operation. Similarly, if only Bob performs the two types of measurements and Alice does
not perform any measurement, and B1 = |φ′i〉〈φ′i |L2 , I can verify that

〈ϕ′i|[B1, B2]|φ′i〉 = 0, where |ϕ′i〉 = 〈Ψ|φ′i〉|Ψ〉. (A4)

Thus, p(b2|ρ) = ∑b1={0,1} p(b2|b1, ρ)p(b1|ρ) holds true per Theorem 1.
However, when I consider both Alice and Bob performing the measurements {A1, A2}

and {B1, B2}, respectively, the situation is different. By replacing operators A, B, C, D in (26)
with operators A2, B2, A1, B1, (26) reads

〈Ψ|[A1B1, A2B2]A1B1|Ψ〉 = 0. (A5)

(A1) and (A4) together are not sufficient to ensure (A5) is valid. Consequently, the law of
total probability such as p(a2b2|ρ) = ∑a1,b1={0,1} p(a2b2|a1b1, ρ)p(a2b2|ρ) is not valid. Let
us confirm this by direct calculation for the case a2 = 0 and b2 = 0, where the corresponding
projection operators are

A1 = |φi〉〈φi|L1 , B1 = |φi〉〈φi|L2

A2 =
1
2
(|00〉L1 + |11〉L1)(〈00|L1 + 〈11|L1)

B2 =
1
2
(|00〉L2 + |11〉L2)(〈00|L2 + 〈11|L2),

where |φ0〉 = |00〉 and |φ1〉 = |11〉. From (23), one can calculate that

∑
a1,b1={0,1}

p(a2b2|a1b1, ρ)p(a2b2|ρ) (A6)

= ∑
a1,b1={0,1}

〈Ψ|A1B1 A2B2 A1B1|Ψ〉 (A7)

= ∑
i,j={0,1}

|〈Ψ|φiφj〉|2〈φi|A2|φi〉〈φj|B2|φj〉 (A8)

=
1
4

. (A9)

Meanwhile, given [A2⊗ IL2 , IL1 ⊗ B2] = 0, the joint probability p(a2b2|ρ) is well-defined as
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p(a2 = 0, b2 = 0|ρ) = Tr(A2B2ρ) = 〈Ψ|A2B2|Ψ〉

=
1

16
|〈Ψ|(|00〉s1C + |11〉s1C)(|00〉s2D + |11〉s2D)|2

=
1
8

sin2 θ

2
.

Thus, p(a2b2|ρ) 6= ∑a1,b1={0,1} p(a2b2|a1b1, ρ)p(a2b2|ρ) for the case of a2 = 0 and b2 = 0.
For other values of a2, b2 ∈ {0, 1}, similar results can be calculated. Consequently, the law
of marginal probability p(a2b2|ρ) = ∑a1,b1={0,1} p(a1b1, a2b2|ρ) does not hold if I define the
joint probability p(a1b1, a2b2|ρ) = p(a2b2|a1b1, ρ)p(a2b2|ρ).

If I add another condition that the quantum state |Ψ〉 is chosen as a product state of
Hilbert space HL1 and HL2 , then together with (A1) and (A4), (34) becomes true. To see
this, let |Ψ′〉 = |ξ〉L1 ⊗ |ζ〉L2 ; (A8) becomes

∑
i,j={0,1}

|〈ξ|φi〉〈ζ|φj〉|2〈φi|A2|φi〉〈φj|B2|φj〉 (A10)

= ∑
i
|〈ξ|φi〉|2〈φi|A2|φi〉∑

j
|〈ζ|φj〉|2〈φj|B2|φj〉. (A11)

However, (A1) implies ∑i |〈ξ|φi〉|2〈φi|A2|φi〉 = 〈ξ|A2|ξ〉, and (A4) implies ∑j |〈ζ|φj〉|2
〈φj|B2|φj〉 = 〈ζ|B2|ζ〉. Thus, (A11) becomes 〈ξ|A2|ξ〉〈ζ|B2|ζ〉 = 〈Ψ′|A2B2|Ψ′〉 = p(a2b2|ρ).
This confirms (34) is valid.

However, |Ψ〉 in (28) is an entangled state between Hilbert space HL1 and HL2 , so
that (34) does not hold.
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