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Abstract: Solving linear systems of equations is one of the most common and basic problems in
classical identification systems. Given a coefficient matrix A and a vector b, the ultimate task is to find
the solution x such that Ax = b. Based on the technique of the singular value estimation, the paper
proposes a modified quantum scheme to obtain the quantum state |x〉 corresponding to the solution
of the linear system of equations in O(κ2√rpolylog(mn)/ε) time for a general m× n dimensional
A, which is superior to existing quantum algorithms, where κ is the condition number, r is the rank
of matrix A and ε is the precision parameter. Meanwhile, we also design a quantum circuit for the
homogeneous linear equations and achieve an exponential improvement. The coefficient matrix
A in our scheme is a sparsity-independent and non-square matrix, which can be applied in more
general situations. Our research provides a universal quantum linear system solver and can enrich
the research scope of quantum computation.

Keywords: system identification; linear systems of equations; quantum algorithm; time complexity

1. Introduction

System identification [1–3] is a common method to determine the mathematical model
describing the behavior of classical systems. Thus, the future evolution of the system can be
predicted through the identified system model, which is widely applied to common weather
forecast, flood forecast, market trend, etc. The traditional system identification method,
namely the classical identification method, mainly includes least squares method [4],
impulse response method and maximum likelihood method [5,6]. Existing studies [2,3]
found that solving linear systems of equations is the basis of system identification problems.
In fact, not only system identification problems, the application of linear equations involves
various fields of science and engineering, including machine learning [7], partial differential
equations [8], classic control system, and so on. Therefore, solving linear systems of
equations for general matrices is of great significance.

Due to the importance of linear systems of equations in various fields, the solution
of linear equations has become an enduring issue, and many algorithms derived there-
from. The classical solvers mainly include: matrix elimination method [9] and Kaczmarz
method [10]. The most famous one of the former is the Gaussian elimination method,
which is often used to solve small linear systems of equations and is suitable for a general
coefficient matrix. The Kaczmarz method is generally more practical in the field of large-
scale linear equations. The running time for these classical solvers scales as O(n3), where n
is the size of the matrix, which will cost a lot of computing resources in solving large-scale
linear systems. However, quantum computation [11–13] is capable of greatly reducing the
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time complexity for matrix operation and numerical calculation, which can be regarded as
a promising attempt as a computing tool to improve the identification efficiency.

Quantum computation is an emerging computing technology that regulates quantum
information units to perform high-efficiency calculations based on the laws of quantum
mechanics, including coherent superposition and entanglement [14]. In 1994, Shor proposed
the algorithm for prime factorization [15] with exponential acceleration over classical
algorithms, which shows the potential of quantum computation for the first time. Since then,
quantum computation has reached an era of rapid development. In recent years, scholars
have also made significant progress in quantum algorithm research, including Grover
algorithm [16], quantum simulation [17–19], duality algorithm [20–22], linear systems
of equations solver [23–25], matrix multiplication algorithm [26,27], and so on. For the
high-dimensional linear systems of equations, there have been breakthroughs in the field of
quantum computation. In 2009, Harrow, Hassidim and Lloyd [23] proposed the quantum
linear system algorithm (HHL) to obtain the quantum state |x〉 = |A−1b〉 corresponding
to the solution of Ax = b in time O(poly log(n)), where the sparse matrix A ∈ Rn×n and
x, b ∈ Rn, which can improve the computational efficiency with an exponential speed-
up over classical algorithms. The HHL algorithm is of great significance in the field of
quantum information processing and has a wide range of applications in big data, machine
learning, numerical computing and other scenarios. In 2018, Wossnig et al. [28] proposed
a sparsity-independent quantum linear system algorithm (QLSA) based on a quantum
singular value estimation algorithm (QSVE). After that, Shao and Xiang [29] modified
the QSVE algorithm to adapt to the non-Hermitian case. Current algorithms for linear
systems have been widely applied in the emerging research area of quantum information
processing. However, existing quantum algorithms have different restrictions on matrix A,
such as the most typical one of HHL algorithm, which requires A to be a sparse Hermitian
matrix so that the unitary transformation eiAt [30,31] can be realized in a constant time. At
present, the quantum algorithm suitable for arbitrary linear system of equations has not
been fully studied.

Without loss of generality, existing quantum algorithms assumed that the coefficient
matrix A is Hermitian as it is well known that the general case can be reduced to the
Hermitian case by embedding a general rectangular matrix M into a block antidiagonal
Hermitian matrix with the elements of M† and M in the lower and upper half, respec-
tively [28]. Different from previous algorithms, we proposed a modified quantum scheme
to solve the cases of general matrices directly, which can reduce the time complexity of
solving the linear system of equations. Moreover, it may not be easy to expand A into a
Hermitian matrix when A is given as quantum information. However, our scheme does not
need such expansion and works well on the original non-Hermitian matrix, and hence it
can be implemented more efficiently. Based on this idea, this paper considers three cases of
the solution of linear systems and proposes a quantum linear system algorithm for general
matrices, where A is not required to be sparse or square, which can effectively improve
the computational efficiency and expand the application range of quantum computation.
For the homogeneous linear equations, we design the corresponding quantum circuit to
ensure the completeness of the solution, which supplies exponential speed-up over clas-
sical algorithms. Meanwhile, we modify the quantum phase estimation (QPE) circuit to
determine the sign of the phase by setting a sign qubit, which can be widely applied to
various quantum algorithms.

The rest of our paper is organized as follows. Section 2 analyzes a general model of
classical identification system based on semi-tensor product and shows the detailed process
of our quantum algorithms. In Section 3, we make a time complexity comparison between
existing algorithms and our algorithms. Then, we perform a numerical simulation to clarify
the process of quantum algorithm in Section 4. Finally, we conclude in Section 5.
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2. Quantum Algorithms for System Identification
2.1. The Classical System Identification Problem

Consider a general discrete model of system identification as follows:

x(i + 1) = Ax(i) + Bu(i) (1)

where x(i) is an n dimensional system state of the i-th sampling, u(i) is the input with
dimension m, A is an n × n system matrix and B is an n × m matrix. The goal of sys-
tem identification is to estimate the matrices A and B from a set of inputs {u(i)} and
states {x(i)}.

System identification problems can be expressed in terms of the semi-tensor product
method [32]. As a kind of special matrix multiplication, the semi-tensor product generalizes
the ordinary matrix multiplication to the general case. T⊗ S denotes the Kronecker product
of matrices Tm×n and Sp×q, which is expressed as

T ⊗ S =


t1,1S t1,2S · · · t1,nS
t2,1S t2,2S · · · t2,nS

...
...

...
...

tm,1S tm,2S · · · tm,nS

 (2)

Just as a computational tool for solving the model, T n S denotes the semi-tensor
product of matrices T and S:

T n S = (T ⊗ Il/n)(S⊗ Il/p) (3)

where l =lcm(n, p) is the least common multiple of n and p. The semi-tensor product is the
generalization of matrix multiplication. When n = p, there are l = n = p and T n S = TS.

Define VC(S) =


s1
s2
...

sn

, where si is the ith column vector of the matrix S. Therefore,

we may estimate A and B from a set of u(i) and x(i).

x(i + 1) = Ax(i) + Bu(i)

=

 a11x1(i) + · · ·+ a1nxn(i)
...

an1x1(i) + · · ·+ annxn(i)

+

 b11u1(i) + · · ·+ b1mum(i)
...

bn1u1(i) + · · ·+ bnmum(i)


= x(i)T ⊗ In ·VC(A) + u(i)T ⊗ In ·VC(B)

= x(i)T n VC(A) + u(i)T n VC(B)

= (x(i)T , u(i)T)n
[

VC(A)
VC(B)

]
(4)

where x(i)T is a 1× n matrix and VC(A) is an n2 × 1 matrix. According to Equation (3), the
least common multiple lcm(n, n2) = n2, and x(i)T n VC(A) = (x(i)T ⊗ In)(VC(A)⊗ I1).

Suppose there are N + 1 observed samples, and

W =

 x(2)
...

x(N + 1)

, H =

 x(1)T , u(1)T

...
x(N)T , u(N)T

, Y =

[
VC(A)
VC(B)

]
. (5)
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Then we have
HnY = W

⇓
(H⊗In)Y = W

(6)

The Equation (6) is a linear system of equations, and the task is to find the solution Y. In the
Equation (6), H⊗ In is an Nn× (m + n)n matrix, where n is the dimension of system states,
m is the dimension of the input, and N is the number of samples. For the high-dimensional
identification system, the time complexity of classical algorithms is enormous and existing
quantum algorithms can not directly solve the non-square linear systems of equations.
In order to reduce the cost of computing resources, it is necessary to propose a quantum
algorithm for general linear equations.

2.2. The Quantum Linear System Algorithm for General Matrices

Inspired by the singular value estimation algorithm [23,28,29], we propose a quantum
algorithm for general linear systems of equations as follows.

Given a general linear equation Ax = b, the singular value decomposition is

A = ∑
i

σiµiν
T
i (7)

where A ∈ Rm×n, x ∈ Rn and b ∈ Rm, σi is the singular value of A, µi ∈ Rm and νi ∈ Rn

are the left and right singular vectors, and µT
i µi = νT

i νi = 1, µT
i µj = νT

i νj = 0(i 6= j).
Let the rank of A be r(r ≤ m, n) and the rank of [A b] be q; the relation between the

solution vector x of Ax = b and the r, q is:
approximate solution x̂, r = n and r < q
unique solution x, r = n = q
general solution x̄, r < n.

(8)

The linear system of equations Ax = b can be solved by a mathematical optimization
technique of minimizing the sum of squares of errors between the solution and the actual
data, which is the so-called least squares method

e = ‖Ax− b‖2 (9)

In the Equation (7), {µi} ∈ Rm and {νi} ∈ Rn are a set of basis in m and n dimensional
spaces. Therefore, x and b can be expressed as x = ∑n

i αiνi, b = ∑m
i βiµi, and

e = ‖Ax− b‖2

=

∥∥∥∥∥ r

∑
i=1

σiµiν
T
i

n

∑
i=1

αiνi −
m

∑
i=1

βiµi

∥∥∥∥∥
2

=

∥∥∥∥∥ r

∑
i=1

(σiαi − βi)µi −
m

∑
i=r+1

βiµi

∥∥∥∥∥
2

=
r

∑
i=1

(σiαi − βi)
2 +

m

∑
i=r+1

β2
i

(10)

When αi = βi/σi, em = min ‖Ax− b‖2 = ∑m
i=r+1 β2

i .
Note that when r < n, αi(i = r + 1, . . . , n) is not assigned, and the equation Ax = b

has infinitely many solutions. In engineering, we usually want to find out the lowest energy
solution state x with 〈x|x〉minimality, that is{

αi = βi/σi, i ∈ [1, r]
αi = 0, i ∈ [r + 1, n]

(11)
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The goal is to convert the state b = ∑m
i=1 βiµi to x = ∑r

i=1 βi/σiνi, whose detailed
quantum process of our scheme is described as follows.

The following mappings to access to the data structure can be performed in
O(polylog(mn)) time.

UP : |ξ〉|0〉 = ∑ ξi|i〉|0〉 →∑ ξi|i, Ai〉
UQ : |0〉|ξ〉 = ∑ ξ j|0〉|j〉 →∑ ξ j|AF, j〉

(12)

The data structure is based on an array of binary trees, each binary tree contains enough
leaves that store the squared amplitudes of the corresponding matrix entry, which can be
found in [28,33] with a detailed description of such a binary tree memory structure. In
order to facilitate mathematical operation, we define two degenerate operators P and Q that
operate only on valid input information |ξ〉, where the dimension of the input state |ξ〉|0〉
is reduced to the dimension of valid information |ξ〉, so P and Q are called degenerate
operators. The maps P and Q append an arbitrary input state |ξ〉 to a register that encodes:

P : |ξ〉 = ∑ ξi|i〉 →∑ ξi|i, Ai〉 = |Pξ〉
Q : |ξ〉 = ∑ ξ j|j〉 →∑ ξ j|AF, j〉 = |Qξ〉

(13)

where |i, Ai〉 = 1
‖Ai‖ ∑n

j=1 Aij|i, j〉 and |AF, j〉 = 1
‖A‖F

∑m
i=1 ‖Ai‖|i, j〉. Thatis, P = ∑m

i=1 |i〉|Ai〉〈i|
and Q = ∑n

j=1 |AF〉|j〉〈j|.

Based on the above definition, it is easy to obtain (P†Q)ij = 〈i, Ai|AF, j〉 = Aij
‖AF‖

.

Similarly, it follows that P and Q have orthonormal columns and thus P†P = Im and
Q†Q = In. Let S = (2PP† − I)(2QQ† − I), when m = n, we can obtain

SQ|νi〉 =
2σi
‖A‖F

P|µi〉 −Q|νi〉

SP|µi〉 = (
4σ2

i
‖A‖2

F
− 1)P|µi〉 −

2σi
‖A‖F

Q|νi〉
(14)

The eigenvalues of S are e±2πiϕi , and the corresponding eigenvectors are ω±i |w
±
i 〉 =

−P|µi〉+ e∓2πiϕi Q|νi〉, where ϕi is the phase of eigenvalues and ω±i is the norm of eigen-
vectors. Then, it can be obtained

Q|νi〉 =
1

2i sin(πϕi)
(ω+

i |w
+
i 〉 −ω−i |w

−
i 〉)

P|µi〉 =
1

2i sin(πϕi)
(eπiϕi ω+

i |w
+
i 〉 − e−πiϕi ω−i |w

−
i 〉)

(15)

Through phase rotation, the process of ∑n
i=1 βi|µi〉 7→ ∑n

i=1 βi|νi〉 is achievable [28,29]. It
is worth noting that the above step is avoidable for the case of the coefficient matrix A
being Hermitian. At this point, the singular value decomposition is A = ∑i σiµiµ

T
i , and

the task is to convert |b〉 = ∑i βi|µi〉 to the solution |x〉 = ∑i βi/σi|µi〉 such that Ax = b.
However, for the case of non-Hermitian, it is necessary to realize the transformation of
quantum states |µi〉 to |νi〉.

For a general linear system of equations with m 6= n, the above derivation will have some
changes. For i ∈ [1, r], Equations (14) and (15) are valid. While i > r, A|νi〉 = 0, A†|µi〉 = 0,
and we can obtain

SQ|νi〉 = (2PP† − I)(2QQ† − I)Q|νi〉
= (2PP† − I)Q|νi〉

=
2
‖A‖F

PA|νi〉 −Q|νi〉

= −Q|νi〉,

(16)



Entropy 2022, 24, 893 6 of 14

and
SP|µi〉 = (2PP† − I)(2QQ† − I)P|µi〉

= (2PP† − I)(
2
‖A‖F

QA†|µi〉 − P|µi〉)

= (2PP† − I)(−P|µi〉)
= −P|µi〉.

(17)

At this point, e2πiϕi = −1 is the eigenvalue of S, that is, ϕi = ±1/2, and the corresponding
eigenvectors are Q|νi〉 and P|µi〉. In order to achieve |b〉 = ∑m

i=1 βi|µi〉 = ∑r
i=1 βi|µi〉 +

∑m
i=r+1 βi|µi〉 7→ |x〉 = ∑r

i=1 βi/σi|νi〉, we first need to eliminate the formula ∑m
i=r+1 βi|µi〉.

Based on these definitions, we show the basic procedure of our algorithm:

1. Preparing the initial quantum state |b〉 = Σm
i=1bi|i〉, which can be represented as:

|b〉 =
m

∑
i=1

βi|µi〉 (18)

2. Apply P in the initial state |b〉

P|b〉 =
m

∑
i=1

βiP|µi〉

=
r

∑
i=1

βi
2i sin(πϕi)

(eπiϕi ω+
i |w

+
i 〉 − e−πiϕi ω−i |w

−
i 〉) +

m

∑
i=r+1

βiP|µi〉
(19)

3. Perform phase estimation on input P|b〉 for S = (2PP† − I)(2QQ† − I), as shown in
Figure 1, then we obtain the following state

r

∑
i=1

βi
2i sin(πϕi)

(eπiϕi ω+
i |w

+
i , ϕi〉 − e−πiϕi ω−i |w

−
i ,−ϕi〉) +

m

∑
i=r+1

βiP|µi〉| ±
1
2
〉, (20)

where e2πiϕi is the eigenvalue of S and | 12 〉 = |01000 . . .〉, | − 1
2 〉 = |11000 . . .〉.

, , ,

, ,

,

|

|

|

|

|0 > +e |1

|0 > +e |1

|0 > +e |1

|0 > +e |1

|0

|0

|0

|0

|

Figure 1. The modified quantum circuit for phase estimation. Set the |x1〉 to be the sign bit, |x1〉 = |0〉
means ϕi is a positive value, otherwise it is negative. The state |ϕi〉 = |x1〉1|x2〉2 . . . |xk〉k and the
phase value ϕi = ∑k

j=2 2−j+1xj − x1. The quantum circuit can estimate the phase value ϕi ∈ (−1, 1).
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4. Apply a phase shift operator controlled by the phase ϕi, then we obtain

r

∑
i=1

βi
2i sin(πϕi)

(ω+
i |w

+
i , ϕi〉 −ω−i |w

−
i ,−ϕi〉) +

m

∑
i=r+1

βiP|µi〉| ±
1
2
〉 (21)

5. Perform a controlled rotation on the ancillary qubit based on the register storing phase
value ϕi and will obtain

r

∑
i=1

βi
2i sin(πϕi)

(ω+
i |w

+
i , ϕi〉 −ω−i |w

−
i ,−ϕi〉)

(
t
σi
|0〉+

√
1− t2

σ2
i
|1〉
)
+

m

∑
i=r+1

βiP|µi〉| ±
1
2
〉|1〉, (22)

where σi = cos(πϕi)‖A‖F and t = mini|σi|, i ∈ [1, r].
6. Apply the inverse transformation of step 3 to obtain

r

∑
i=1

βi
2i sin(πϕi)

(ω+
i |w

+
i 〉 −ω−i |w

−
i 〉)
(

t
σi
|0〉+

√
1− t2

σ2
i
|1〉
)
+

m

∑
i=r+1

βiP|µi〉|〉|1〉

=
r

∑
i=1

βiQ|νi〉
(

t
σi
|0〉+

√
1− t2

σ2
i
|1〉
)
+

m

∑
i=r+1

βiP|µi〉|1〉

(23)

7. Measure the ancillary register. When the measurement result is |0〉, the quantum state
will collapse to

r

∑
i=1

βi/σiQ|νi〉 (24)

8. Apply the inverse of Q and we will obtain the desired state

r

∑
i=1

βi/σi|νi〉, (25)

which is the particular solution of the equation Ax = b, that is, the lowest energy
solution state.

The quantum gate circuit of our quantum algorithm is shown in Figure 2.

|0 

0 !

0 !

|" 

#!

$% &

'()

*+,-./

'(

&)

#!

$1)

|0 

0 !

0 !

|2 

|34 

& = 5677) 8 9:56;;) 8 9:" = <4>4|?4 2 = <4>4@A4|B4 

C DE
F5A4+G: E

F

3 = ±H
6others

Figure 2. The quantum gate circuit of the particular solution of the equation Ax = b. The operator
R is a quantum controlled rotation gate. When the phase ϕi = ± 1

2 , R is a NOT gate, otherwise

R = R(σ−1
i ) =

 1/σi

√
1− 1/σ2

i√
1− 1/σ2

i −1/σi

, where σi = cos(πϕi)‖A‖F.

Note that the actual phase value is ϕi ∈ (−1, 1), which serves as the control qubits
of the phase shift operation in the step 4, while the previous quantum phase estimation
algorithm outputs phase value ϕi ∈ (0, 1). Therefore, we design a modified quantum phase
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estimation circuit to determine the sign of the phase in Figure 1. In the modified QPE
circuit, we can estimate the phase value in the range ϕ ∈ (−1, 1).

For the case of ϕ ∈ [0, 1), ϕ = ∑k
j=1 2−j+1xj. Since 0 ≤ ϕ < 1, it is easy to obtain

x1 = 0.
While ϕ ∈ (−1, 0), we can obtain e2πi2j ϕ = e2πi2j(2+ϕ), where j = −1, . . . , k− 1. Let

φ = 2 + ϕ ∈ (1, 2), the modified QSV circuit outputs φ = ∑k
j=1 2−j+1xj. It is known that

φ ∈ (1, 2), thus we obtain x1 = 1 and ϕ = ∑k
j=1 2−j+1xj − 2 = ∑k

j=2 2−j+1xj − 1.
Therefore, we can obtain

ϕ =

{
∑k

j=1 2−j+1xj , x1 = 0

∑k
j=2 2−j+1xj − 1 , x1 = 1

(26)

that is, ϕ = ∑k
j=2 2−j+1xj − x1.

2.3. The Quantum Algorithm for Homogeneous Linear Equations

For the condition of r < n, the equation Ax = b has infinitely many solutions.
Therefore, in order to obtain general solutions of the equation Ax = b, we need to solve the
homogeneous linear equation Ax = 0.

Since A = ∑n
i=1 σiµiν

T
i and x = ∑n

i=1 αiνi, we can obtain Ax = ∑n
i=1 σiαiµi. Let

νi(i ∈ [r + 1, n]) be the right singular vector corresponding to σi = 0, when σi = 0 or αi = 0,
Ax = 0 is valid, that is, x = ∑n

i=r+1 αiνi. The description of solving homogeneous linear
equations is essentially just finding the projection of a state onto the ground state for an
operator [34]. Through the quantum circuit shown in Figure 3, we obtain the combination
of the eigenvectors corresponding to σi = 0 and make the solution of homogeneous linear
equations complete.

|0 

0 !

0 !

|" 

#!

$% &

'()

*+

'(

&)

#!

$,)
0 !

|- 

|./ 

& = 1233) 4 561277) 4 56" = 0 8 9 8� 8 : 4 9 - = ;
/<>?@

A
"/|B/ 

9
. = ±9

2

0 !

C 9 80 8 others
. = ±9

2

Figure 3. The quantum gate circuit of homogeneous linear equation Ax = 0. The input state is
|c〉 = ∑n

i=1 ci|νi〉 and the output state is |x〉 = ∑n
i=r+1 ci|νi〉, where |x〉 is the combination of right

singular vectors corresponding to the singular value 0 of A contained in |c〉. When the phase
ϕi = ±1/2, the output of the controlled-NOT gate RN is |1〉, otherwise it outputs |0〉. We can obtain
the solution of the Ax = 0 when an arbitrary input |c〉 contains right singular vectors of A. In order
to ensure that the output |x〉 is complete, we input n linearly independent |c〉 = |0〉, |1〉 . . . |n〉. In
addition, the arbitrary r linearly independent xi can form the solution vector basis of the homogeneous
linear equation.

Based on QSVE, our quantum algorithms are sparsity-independent and may be applied
to non-square dense matrices.

3. Algorithms Complexity Analysis

Then, we analyse the time complexity of our quantum algorithms.
The time complexity of our scheme includes the following two parts: quantum data

generation and the quantum algorithm process. On the one hand, relying on a binary
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tree memory structure detailed as described in [28,33], where the matrix entries associated
with matrix Am×n are stored as suitable data structure, the oracle from classical data to
quantum data can be implemented efficiently in time O(log2 mn) and the data structure size
is O(w log mn) where w is the number of non zero entries in A. On the other hand, based
on the quantum singular value estimation algorithm, our algorithm achieves a runtime
O(κ polylog(mn)/δ), where κ is the condition number of the coefficient matrix A, and δ
denotes the precision parameter.

Define that the additive error achieved in output state x̃ is ε, which means if x is
the exact result and x̃ is the result obtained from quantum algorithms, then ‖x− x̃‖ ≤ ε.
In order to achieve accuracy ε, the precision parameter of our algorithm needs to reach
δ = ε/(κ‖A‖F). Assuming the spectral norm ‖A‖∗ is bounded by a constant, since
‖A‖F ≤

√
r‖A‖∗, we have ‖A‖F = O(

√
r), where r is the rank of matrix A. Therefore,

our quantum algorithm has the time complexity of O(κ2√rpolylog(mn)/ε). Remarkably,
when A is sparse, exponential acceleration is achievable.

In the quantum algorithm of homogeneous linear equations, the time complexity of
QSVE is O( polylog(mn)/ε). In view of the success probability of the ancillary register
collapses to |1〉, we need to repeat the coherent computation n/(n− r) times on average.
Therefore, the runtime of the quantum homogeneous linear equation algorithm is given by
O(n polylog(mn)/((n− r)ε)).

After obtaining the quantum state |x〉 corresponding to the solution of Ax = b,
we need to simulate the subsequent system states through the identified system, where

x =

[
VC(A)
VC(B)

]
. According to Equations (4)–(6), we can obtain

x(i + 1) = 〈ζ(i)|x〉 (27)

where ζ(i) = [x(i)T , u(i)T ]⊗ In. The inner product between pairs of states can be imple-
mented in time O(ploylog(m + n)) by the swap text algorithm [35]. Therefore, we can
predict the system state at the next moment based on the known system state x(i) and
input u(i).

For the case of general matrix Am×n, previous quantum algorithms generally convert
A to a Hermitian matrix:

H =

[
0 A

A† 0

]
(28)

Based on QSVE, the quantum algorithm of H
[

0
x

]
=

[
b
0

]
has the time complexity

of O(κ2‖H‖F polylog (m + n)2/ε). In addition, the time complexity of our scheme is
O(κ2‖A‖F polylog(mn)/ε), where ‖H‖F =

√
2‖A‖F. Let the runtime of our scheme be

T, so the runtime of existing SVE-based quantum algorithms is T′ =
√

2 poly log (m+n)2

poly log(mn) T.

For the large-scale linear system of equations, there is T′ ≈
√

2T. Compared to existing
quantum algorithms, our scheme can reduce the time complexity of the linear system of
equations with a non-square dense matrix.

4. Numerical Simulation

To clarify the process of our algorithm and prove the feasibility of algorithms, we
perform simulation on an illustrative example.

For simplicity, we consider a first-order discrete model of classical system as follows:

x(i + 1) = ax(i) + du(i) (29)

where x(i) is the system state of the i-th sampling and u(i) is the input state. The goal of
system identification is to estimate coefficients a and d from a set of u(i) and x(i). Assuming
that the initial system state x(1) = 3, the input states u = {4, 3, 0} and the evolved system
states x(2) = −4, x(3) = x(4) = 0, the mathematical model can be transformed into a
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general linear systems of equations Ax = b, where A =

 3 4
−4 3
0 0

, b =

 −4
0
0

. The

maps UP and UQ append an arbitrary input state to a register that encodes the Equation (12),
which can be realized by quantum gate circuits in Figure 4, and matrix forms of these maps

are P = 1
5



3 0 0
4 0 0
0 −4 0
0 3 0
0 0 5

√
2

2

0 0 5
√

2
2


, Q =

√
2

2



1 0
0 1
1 0
0 1
0 0
0 0

.

 

|0! "#

|0!

"$

|0! %

"&

%

The circuit implementation of '( The circuit implementation of ')

*

|0!

|0! "+",

%

Figure 4. Quantum circuits implementation of UP and UQ. The maps UP and UQ consist of quantum

control gates, where R1 = 1
5

[
3 4
4 −3

]
, R2 = 1

5

[
−4 3
3 4

]
, R3 = R4 = R5 = H =

√
2

2

[
1 1
1 −1

]

and the X =

[
0 1
1 0

]
is the quantum inverse gate.

The following shows the detailed procedure of the numerical simulation:

1. Preparing the initial state |b〉 = |0〉.
2. Apply P in the initial state |b〉, P|b〉 = 3

5 |0〉+
4
5 |1〉.

3. Performphaseestimationon P|b〉 forS = (2PP†− I)(2QQ†− I) = 1
25



0 0 −7 24 0 0
0 0 24 7 0 0
7 −24 0 0 0 0
−24 −7 0 0 0 0

0 0 0 0 0 25
0 0 0 0 25 0

,

then we obtain the following state

− 3
√

2i
10

(
e

1
4 πiω1|w1,

1
4
〉 − e−

1
4 πiω2|w2,− 1

4
〉
)
− 2
√

2i
5

(
e

3
4 πiω3|w3,

3
4
〉 − e−

1
4 πiω4|w4,− 3

4
〉
)

, (30)

where the eigenvalues of S are λi = i, i,−i,−i, 1,−1, and ωi|wi〉 is the correspond-
ing eigenvector.

4. Change the phase, then we obtain

− 3
√

2i
10

(
ω1|w1,

1
4
〉 −ω2|w2,−1

4
〉
)
− 2
√

2i
5

(
ω3|w3,

3
4
〉 −ω4|w4,−3

4
〉
)

(31)

5. Perform a controlled rotation on the ancillary qubit based on the register storing
phase value:
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− 3
√

2i
10

(
ω1|w1,

1
4
〉 −ω2|w2,−1

4
〉
)(

1
5
|0〉+ 2

√
6

5
|1〉
)
− 2
√

2i
5

(
ω3|w3,

3
4
〉 −ω4|w4,−3

4
〉
)(
−1

5
|0〉+ 2

√
6

5
|1〉
)

(32)

where σ1 = cos(± 1
4 π)‖A‖F = 5, σ2 = cos(± 3

4 π)‖A‖F = −5.
6. Apply the inverse transformation of step 3 to obtain

− 3
√

2i
10

(ω1|w1〉 −ω2|w2〉)
(

1
5
|0〉+ 2

√
6

5
|1〉
)
− 2
√

2i
5

(ω3|w3〉 −ω4|w4〉)
(
− 1

5
|0〉+ 2

√
6

5
|1〉
)

(33)

7. Apply the inverse of Q and we will obtain the desired state

3
5
|0〉
(

1
5
|0〉+ 2

√
6

5
|1〉
)
− 4

5
|1〉
(
−1

5
|0〉+ 2

√
6

5
|1〉
)

(34)

8. Measure the ancillary register. When the result is |0〉, the quantum state will collapse to

3
5
|0〉+ 4

5
|1〉 (35)

that is proportional to the solution of the equation Ax = b, so we obtain a = 3
5 C

and d = 4
5 C. Substituting a and d into Equation (29), we obtain C = − 4

5 . So far, the
first-order discrete identification model is:

x(i + 1) = −12
25

x(i)− 16
25

u(i) (36)

We simulated a 6-qubit quantum circuit diagram on the Origin Cloud, as shown in
Figure 5.

Figure 5. The 6-qubit quantum circuit diagram on the Origin Cloud. The quantum circuit
is based on quantum phase estimation, where q[5] is the ancillary qubit and q[4] is the reg-
ister storing input and output information. From left to right, the controlled rotation gate is

RY1 = 1
5

[
3 −4
4 3

]
that generates the initial state P|b〉, RY2 = 1

σ1

 t −
√

σ2
1 − t2√

σ2
1 − t2 t


and RY3 = 1

σ2

 t −
√

σ2
2 − t2√

σ2
2 − t2 t

, where t = 5
√

2
2 . The controlled gates

s1 = 1
25

[
−7 24
24 7

]
, s2 = 1

25

[
7 −24
−24 −7

]
, z1 =

[
e−

1
4 πi 0
0 e−

1
4 πi

]
and rz =

[
e−

3
4 πi 0
0 e−

3
4 πi

]
are applied on the register q[4].

According to the simulation result in Figure 6, when the ancillary qubit q[5] = 0
and the register storing phase information is restored to q[0] = q[1] = q[2] = 0, the proba-
bilities of the output qubit q[4] are P{|0〉} = 0.086 and P{|1〉} = 0.16. Therefore, the
amplitudes of q[4] are A{|0〉} =

√
P{|0〉}/(P{|0〉}+ P{|1〉}) = 0.59 and A{|1〉} =√

P{|1〉}/(P{|0〉}+ P{|1〉}) = 0.81, and the solution quantum state is q[4] = 0.59|0〉+
0.81|1〉, which is consistent with the expected quantum state based on our algorithm.
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q 5 ~q[0]

Figure 6. The simulation result of the quantum circuit.

As a comparison, we simulated a second-order discrete system identification model
x(i + 1) = A′x(i) + B′u(i), where A′ is a 2× 2 matrix and B′ is a 2× 1 matrix. Assum-

ing that the initial system state x(1) =

[
1
0

]
, the input u = {1, 2, 3} and the evolved

system states x(2) =

[
1
1

]
, the mathematical model can be transformed into Ax = b,

where A =

[
1 0 0 0 1 0
0 1 0 0 0 1

]
and b =

[
1
1

]
. Due to insufficient samples, the linear

equation has infinite solutions. Consider the structural features of the coefficient matrix A,

which is reduced to
[

1 0 1 0
0 1 0 1

]
.

When the ancillary qubit q[6] = 0 and the register q[5] is restored to 0, the probabilities
of the output qubits q[4] and q[3] are shown in the Figure 7. Thus, the solution quantum
state is |x〉 = 0.493|00〉+ 0.5|01〉+ 0.516|10〉+ 0.485|11〉, which is the lowest energy solution
among infinitely many solutions. So far, according to the existing samples, the second-

order discrete identification model with the lowest energy is: x(i+ 1) =
[

0.493 0
0.5 0

]
x(i) +[

0.516
0.485

]
u(i).

Figure 7. Quantum circuit and simulation result of the two-dimensional discrete system identifica-
tion model.
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5. Conclusions

This paper develops a quantum algorithm of general linear equations for solving classical
system identification problems. Our scheme can be finished in time O(κ2√rpolylog(mn)/ε)
for an m× n dimensional linear systems of equations Ax = b, where κ is the condition number
of the linear equation, r is the rank of the matrix A and ε is the precision parameter, which
is superior to existing algorithms. For the linear equation with non-square coefficient matrix,
we discuss three cases of solutions, including the unique solution, approximate solution and
infinitely many solutions. Our algorithm can obtain the unique solution, the approximate solu-
tion with the minimum error and the lowest energy solution among infinitely many solutions,
which adapts to all cases of linear systems of equations. For the case of infinitely many solutions,
we design a quantum circuit to obtain general solutions in time O(n polylog(mn)/((n− r)ε)),
which can achieve an exponential improvement over classical algorithms. In addition, we
design a modified QPE circuit to obtain a wider range of phase values, which can expand the
application range of quantum phase estimation.

Based on QSVE, our algorithms is sparsity-independent compared with HHL algo-
rithm. Meanwhile, we have extended the existing quantum linear system algorithms to
general equations, which can effectively enrich the application area of linear systems of
equations. For large-scale linear systems, such as machine learning, numerical calculation
of partial differential equations, etc., our algorithms will have a wider range of applications
and is of research significance. In the future work, we will focus on how our algorithms are
implemented on quantum computers and how to apply on them to real practical problems.
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