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Abstract: The area of randomness extraction has seen interesting advances in recent years, with rapid
progress on many longstanding open problems, along with the introduction of many new notions
that played a key role in this development. We survey this progress and highlight new definitions
and notions that have been the subject of intense study in recent work.
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1. Introduction

Randomness is a powerful resource in computer science and is widely used in most
areas of computer science, such as algorithm design, cryptography, distributed computing,
sampling, etc. There are central computational problems, such as the factorization of
multivariate polynomials, for which we have efficient randomized algorithms but no
deterministic algorithm is known yet (for more examples of randomized algorithms, we
refer the reader to an excellent book on this topic [1]). Further, randomness is crucial in the
field of cryptography, and in fact it is known that the quality of randomness (formalized
below) is required to be very high for these applications to be secure [2].

This widespread use of randomness has lead to intense theoretical studies about the
use of randomness in computational applications. Central questions in this area are of the
following two flavors: (i) Is randomness fundamentally required for efficient algorithm
design? (ii) How do we generate high-quality randomness for applications (which is
crucially required in areas such as cryptography and distributed computing)?

While it seems that many fundamental problems in algorithm design are efficiently
solvable only if we allow the algorithm to use random bits, it is now widely believed
that randomness may not be intrinsically required for efficient computation. This stems
from evidence [3,4] from computational complexity theory that proves that every efficient
randomized algorithm can be derandomized to an efficient deterministic algorithm under
very plausible conjectures in complexity theory. This is a sharp contrast to other areas of
computer science such as cryptography, where, as we noted above, high-quality random
bits are necessary for even basic protocols.

The focus of this article is targeted towards the latter applications, where it is of vital
importance to ensure that the randomness used is of high quality. We will study these
questions through the lens of theoretical computer science, where the investigations are
theoretical in nature, and we will insist on mathematical guarantees about the quality of
randomness that is being used.

It is widely known that the sources of randomness used in practice are defective in
general, and only produce distributions that contain some amount of entropy (see [5]
for some discussion on various means of collecting randomness from physical phenom-
ena). This motivates the area of randomness extraction, where the central goal is to purify
defective sources of randomness to produce truly random bits. Informally, an extractor
Ext is simply a (deterministic) algorithm that takes as input a sample x from a distribu-
tion X, and outputs Ext(x). Thus, the output distribution of the extractor is given by
Y = Ext(X), and ideally one would like to guarantee that if X itself contained some amount
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of randomness (measured in terms of entropy), then the output distribution Y is (almost)
purely random.

The early work of von Neumann [6] in fact considered the problem of randomness
extraction in the simple setting wherein a stream of independent, biased bits are supplied
to the extractor and gave an elegant extractor for such sources. This extractor is used in the
design of Intel’s TRNG (true random number generator) [7]. Another recent example of
a practical randomness extractor was given in [8], where the authors presented efficient
means of prodcing true randomness from big data.

We now formalize the intuitions developed above, and introduce a very general
method of measuring the quality of a source and investigate the problem of randomness
extraction from a theoretical perspective. The most widely used model of a weak source
is based on the notion of min-entropy [9,10]. For a source (distribution) X, we define its
min-entropy as H∞(X) = minx∈support(X){log(1/ Pr[X = x])}. This can be considered a
worst-case analogue of the more popularly used notion of Shannon entropy. (In the setting
of extractors, it turns out that the notion of min-entropy is better suited.)

We use the notion of an (n, k)-source, which is a distribution on {0, 1}n with min-
entropy at least k. We note that the min-entropy parameter k can range from 0 to n.
Another means of viewing an (n, k)-source X is that we are given the guarantee that the
maximum weight placed by XX on any point in its support is bounded by 2−k. For example,
a distribution which is flat (i.e., uniform) on a subset A ⊂ {0, 1}n of cardinality 2k is an
(n, k)-source.

We are now ready to define randomness extractors more formally.
We first recall the definition of statistical distance that is used to measure the quality of

the output of the extractor. For distributions X, Y on some universe Ω, define the statistical
distance |X−Y| := 1

2 ·∑w∈Ω |Pr[X = w]− Pr[Y = w]|.

Definition 1 (Extractor). Let X be a family of distributions supported on {0, 1}n. We say that a
function Ext : {0, 1}n → {0, 1}m is an extractor for X with error ε if the following holds: for any
distribution X ∈ X , we have |Ext(X)−Um| ≤ ε, where Um denotes the uniform distribution on
m bits.

We note that the guarantee that the distribution Ext(X) being ε-close to the uniform
distribution (i.e., the statistical distance) is a very strong one in the following sense: it can
be shown that for any adversary A : {0, 1}m → {0, 1} trying to distinguish Ext(X) from
the uniform distribution Um, it has an advantage of, at most, ε; more formally, we have the
guarantee |Pr[A(Ext(X)) = 1]− Pr[A(Um) = 1]| ≤ ε. Note that this guarantee does not
assume the computational limitation of the adversary A.

Given the above definitions, it is a natural question to construct randomness extractors.
Unfortunately, a folklore observation rules out the existence of an extractor for the class of
(n, n− 1)-sources. This can be seen as follows: suppose, if possible, that Ext : {0, 1}n → {0, 1}
is such an extractor (with error < 1/2). Define the sets Sb = {x ∈ {0, 1}n : Ext(x) = b},
for b = 0, 1. Clearly, the cardinality of at least one of S0 and S1 is 2n−1. Say |S0| ≥ 2n−1. Thus,
one arrives at a contradiction by considering the distribution X0 that is uniform on S0, since
X0 has min-entropy at least n− 1 and Ext(x) = 0 for all x ∈ S0.

To circumvent this difficulty, Nisan and Zuckerman [11] introduced the notion of a
seeded extractor. Informally, a seeded extractor is supplied with an additional independent
short seed (which is independent of the defective source) to extract randomness from the
weak source. We now introduce this notion more formally.

Definition 2 (Seeded Extractor). An (n, k)-seeded extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m

with seed length d and error ε satisfies, for any (n, k)-source X, |Ext(X)−Um| ≤ ε. Further, we
say that Ext is a strong-seeded extractor if |(Ext(X, Ud)), Um − (Ud, Um)| ≤ ε.
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Alternatively, one can view a strong-seeded extractor as a family of functions, indexed
by the seed, such that, for any given source X, most functions in the family output nearly
uniform bits.

Using the probabilistic method, it is known that a random function is a strong-seeded
extractor for d = log(n− k) + 2 log(1/ε) + O(1) and m = k− 2 log(1/ε)−O(1). Further,
there are excellent explicit constructions of seeded extractors [12–14] that match the random
construction (up to constants).

Recently, there has been exciting progress in the area of randomness extraction in
two directions:

• Robust variants of seeded extractors. Motivated by applications in cryptography, a novel
strengthening of the seeded extractor, called a non-malleable extractor (defined for-
mally later), was introduced by Dodis and Wichs [15]. In particular, they proved
that such non-malleable extractors would lead to important progress on a central
problem in cryptography, known as privacy amplification [16–19]. Further variants of
non-malleable extractors [20] have been shown to have application to the theory of
error-correcting codes [21].
Very informally, a non-malleable extractor nmExt can be thought of as having the
guarantee that the output of nmExt looks uniform even if an adversary has access to
its output on a different seed. This ‘pairwise independence’ property of the output
of the extractor indeed turned out be a non-trivial challenge, as we discuss in later
sections of this article.

• Seedless extraction. Recall that merely having a guarantee on the min-entropy of X is
not sufficient for ensuring the possibility of producing truly random bits from X using
an extractor. An important direction of investigation has been to study randomness
extraction assuming further structure in the defective source X. This has seen a lot of
progress in recent times, and we briefly discuss three major classes of sources:

1. Independent sources: This is one of most well-studied models of weak sources,
and makes a natural assumption that the extractor has access to multiple indepen-
dent sources of randomness. There has been remarkable progress in constructing
randomness extractors for such sources, leading to efficient construction close to
the probabilistic bounds [22–28].

2. Affine sources and extensions: In this setting, one imposes an algebraic structure
on the support of the source and assumes that it is a vector space (on a finite field)
of dimension k. It turns out that constructing such affine extractors has a variety
of applications to cryptography [9,29,30] and complexity theory [31]. Starting
with the early work of Gabizon and Raz [32] and Bourgain [33], there has been a
lot of recent progress in constructing explicit affine sources that come very close to
the optimal (non-explicit) construction [34–38]. This model of affine sources has
been extended and studied in many different ways with important applications.

3. Samplable sources: Another natural means of restricting the class of sources is to
impose computational limitations on the algorithm that is producing the defec-
tive source. This direction of randomness extraction was initiated by Trevisan and
Vadhan [39], and has seen very interesting progress recently [38,40–43]. In par-
ticular, we will discuss the setting of small-space sources, where the sampling
algorithm is constrained to have limited space.

We conclude by noting that while the two directions seem unrelated superficially,
it turns out that progress on explicitly constructing robust variants of seeded extractors
played a key role in the advances in seedless extraction. In the sections below, we discuss
these directions (robust seeded extractors and seedless extraction) in more detail.

2. Non-Malleable Extractors

A robust variant of a seeded extractor, known as a non-malleable extractor, was intro-
duced by Dodis and Wichs [15], with applications to an important problem in cryptography
known as privacy amplification [16–19].
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Recall that an input x ∈ {0, 1}d is a fixed point of a function f : {0, 1}d → {0, 1}d if
f (x) = x). We are now ready to formally define non-malleable extractors.

Definition 3 (Non-Malleable Extractor). An (n, k)-(seeded) non-malleable extractor nmExt :
{0, 1}n × {0, 1}d → {0, 1}m with seed length d and error ε satisfies the following: for any
tampering function f: {0, 1}d → {0, 1}d with no fixed points, and any (n, k)-source X, and we have

|(nmExt(X, Ud), nmExt(X, f (Ud)), Ud)− (Um, nmExt(X, f (Ud)), Ud)| ≤ ε.

Dodis and Wichs [15] used a clever probabilistic argument to show the existence
of non-malleable extractors with d = log(n − k) + 2 log(1/ε) + O(1) and m = k/2 −
log(1/ε)− log d−O(1), and left it open to explicitly construct non-malleable extractors.

The first explicit construction of a non-malleable extractor was given by Dodis, Li,
Wooley and Zuckerman [44], and the extractor required min-entropy at least (1/2 + δ)n,
for any constant δ > 0. Cohen, Raz and Segev [45] improved the output length of the
non-malleable extractor, but still required the min-entropy rate to be more than half. Subse-
quently, Li [46] lowered the min-entropy requirement to (1/2− γ)n, for some tiny constant
γ > 0.

For a while, it appeared difficult to construct non-malleable extractors that work
for significantly smaller min-entropy. Chattopadhyay, Goyal and Li [47] obtained an
exponential improvement and constructed an explicit non-malleable extractor that worked
for min-entropy poly(log n). Subsequently, an impressive line of work [23,26–28] has led to
near-optimal constructions of non-malleable extractors. The best known construction is the
following result obtained by Li [28].

Theorem 1 ([28]). There exists a constant C > 0 and an explicit (k, ε)-non-malleable
extractor nmExt : {0, 1}n × {0, 1}d → {0, 1}m, with min-entropy requirement k ≥
C(log log n + log(1/ε) · (log log(1/ε))1−o(1)) and seed length d = O(log n + log(1/ε) ·
(log log(1/ε))1−o(1)).

A stronger variant of non-malleable extractors, called a t-non-malleable extractor,
has been studied in the literature. This notion was introduced in [45], and such a t-
non-malleable extractor nmExt satisfies the following property: let X be an (n, k)-source,
and f1, . . . , ft be arbitrary tampering functions acting on d bits, with the restriction that the
fis do not have fixed points. Then,

|nmExt(X, Ud), {nmExt(X, fi(Ud))}i∈[t], Ud −Um, {nmExt(X, fi(Ud))}i∈[t], Ud| ≤ ε.

The non-malleable extractor in [47], and follow-ups, in fact satisfy this stronger notion.
t-non-malleable extractors have played a key role in explicit constructions of extractors for
independent sources. We discuss this later.

2.1. Correlation Breakers

A key definition that led to this impressive progress in constructions of non-malleable
extractors is that of a correlation breaker with advice. To motivate this definition, consider
the following natural scenario: Suppose that Y1, Y2 are random variables that are arbitrarily
correlated with each other, with the guarantee that Y1 is uniformly distributed. Is it possible
to take some additional amount of randomness to break the ‘correlation’ between these
random variables? For example, one can consider the situation where we are given access
to an independent (n, k)-source X, and we would like to construct a function CB such that
CB(X, Y1) is close to uniform, even conditioned on the joint random variable CB(X, Y2).
Clearly this is impossible in this generality since it could be the case that Y1 = Y2. However,
it turns out that if we allow the correlation breaker with an additional ‘advice string’, then
one can define a meaningful notion. We define this notion formally below.
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Definition 4 (Advice Correlation Breaker). A function ACB : {0, 1}n × {0, 1}d × {0, 1}r →
{0, 1}m is called an (k, ε)-advice correlation breaker if it satisfies the following:

• Let Y1, Y2 be arbitrarily correlated random variables on {0, 1}d such that, for some i ∈ {1, 2},
we have Y1 as the uniform distribution on {0, 1}d

• Let α1, α2 ∈ {0, 1}r be advice strings, with the guarantee that they are distinct, then

|(ACB(X, Y1, α1), ACB(X, Y2, α2), Y1, Y2)− (Um, ACB(X, Y2, α2), Y1, Y2)| ≤ ε.

The notion of an advice correlation breaker, was implicitly used in the works of
Li [48], Cohen [49] and Chattopadhyay, Goyal and Li [47], and was explicitly defined by
Cohen [50]. In particular, [47] used explicit constructions of advice correlation breakers
to obtain an exponential improvement in terms of the min-entropy requirement of non-
malleable extractors. We note that in the literature, a more general definition is considered
where multiple tamperings are allowed, and further both X and Y are allowed to be
tampered independently. For simplicity, we focus on the simpler definition here.

A particularly elegant construction of an advice correlation breaker in the case of r = 1
(i.e., 1 bit of advice), called the flip-flop primitive, was given by Cohen [49] by employing
the method of alternating extraction [51].

Theorem 2 ([49]). There exists an explicit (k, ε)-advice correlation breaker FF : {0, 1}n ×
{0, 1}d × {0, 1} → {0, 1}m where k ≥ C(m + log(n/ε))), for some constant C > 0 and
d = O(log(n/ε)).

For larger advice lengths, [47] constructed advice correlation breakers by ‘chaining’
together a group of such flip-flop primitives in a sequential manner. In particular, they
obtained the following theorem.

Theorem 3 ([47]). There exists an explicit (k, ε)-advice correlation breaker ACB : {0, 1}n ×
{0, 1}d × {0, 1}r → {0, 1}m where k ≥ Cr(m + log(n/ε)), for some constant C > 0 and
d = O(r log(n/ε)).

We refer the reader to a recent survey [52] for a detailed demonstration of the construc-
tion of the flip-flop primitive and advice correlation breaker in the above theorem.

2.2. Advice Generators

A second key definition that has been crucial in constructing non-malleable extractors
is that of an advice generator. Informally, this is described as follows: Suppose that we
know that Y1 and Y2 are correlated random variables with the guarantee that Y1 6= Y2
(more formally, we assume that, for any y, Pr[Y2 = y|Y1 = y] = 0); given access to an
independent weak source X, can we generate advice strings αi = AdvGen(X, Yi) such that
α1 6= α2 with high probability? Clearly, if we do not restrict the lengths of the αis, one can
simply ignore X and define AdvGen(X, Yi) = Yi. To make advice generators useful for
constructing non-malleable extractors, it turns out that we must insist the advice generated
to be much shorter than the lengths of the Yis, which makes it more non-trivial to construct.

We now formally define advice generators.

Definition 5 (Advice Generators). An (k, ε)-advice generator AdvGen : {0, 1}n × {0, 1}d →
{0, 1}r satisfies the following guarantee: Let Y, Y′ be correlated random variables on {0, 1}r, such
that Y follows the uniform distribution on {0, 1}r. Further assume the property that, for any y in
the support of Y, Pr[Y′ = y|Y = y] = 0. Let X be an (n, k)-source that is independent of (Y1, Y2).
Then, with probability 1− ε over the fixing of Y1, Y2, AdvGen(X, Y2), we have

AdvGen(X, Y1) 6= AdvGen(X, Y2).

Optimal constructions are known for advice generators.
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Theorem 4 ([24,47]). There exist constants C, C′ and an explicit (k, ε)-advice generator AdvGen :
{0, 1}n × {0, 1}d → {0, 1}r with k ≥ C log(n/ε), d = C′ log(n/ε) and a = O(log(1/ε)).

The basic idea behind constructing such advice generators is quite simple: we know
that Y1 6= Y2, and hence they must differ at some coordinate. We first transfer this ‘worst-
case guarantee’ into an ‘average-case guarantee’ by encoding the Yis using an asymptoti-
cally good error correcting code. This ensures that the encoded strings differ on a constant
fraction of the coordinates. Now, one can use sampling techniques based on seeded extrac-
tors [53] to output a small pseudorandom set of coordinates with the guarantee that they
strongly differ (with high probability).

2.3. Combining Advice Correlation Breakers and Advice Generators

We now briefly sketch the high-level ideas of constructing non-malleable extractors
by combining the two definitions. Recall that our setting is the following: X is an (n, k)-
source, and Y is a uniform seed of length d, which is tampered by a function f that has
no fixed points. Let us define Y1 = Y, and Y2 = f (Y). A natural strategy to construct a
non-malleable extractor, given the above primitives, is the following:

• Define αi = AdvGen(X, Yi), where AdvGen is an (k, ε)-advice generator.
• Define Z1 = nmExt(X, Y1) = ACB(X, Y, α1), where ACB is an (k, ε)-advice correlation

breaker.

It turns out that the above construction actually works, but one needs to deal with a
few subtle issues: note that the advice string is correlated with the source X and the seed
Y, where, as in the definition of the advice correlation breaker, we assume that the advice
strings are fixed.

To deal with the above issue, one insists on a stronger property from the advice
generator that it is possible to fix the advice strings without losing independence of the
source X and the seeds Y1, Y2. Further, we must ensure that, on fixing the advice strings,
X and Y do not lose too much min-entropy. The latter issue is addressed by the fact that
the advice strings are much shorter than the seed (or the entropy in X). The former issue
requires one to carefully look into the construction of the advice generator and carefully
fix the random variables while ensuring that no dependencies are created between X and
(Y1, Y2).

3. Seedless Extraction

We now turn our attention to the setting of randomness extraction where the extractor
no longer has access to an independent seed. However, recall that it is impossible to extract
randomness from a general (n, k)-source, and hence one must assume more structure on
the source to enable randomness extraction. We now discuss various directions of research
that have been considered.

3.1. Extractors for Independent Sources

A particularly well-studied model of weak sources is the independent source setting.
Here, one assumes that the extractor has access to C independent (n, k)-sources X1, . . . , XC,
for some C ≥ 2. The most ambitious setting is that of C = 2, and it is conceivable that the
task of extraction becomes easier as C grows larger.

We formally define a C-source extractor.

Definition 6. A (C, k, ε)-source extractor Ext : ({0, 1}n)C → {0, 1}m satisfies the following
guarantee: let X1, . . . , XC be independent (n, k)-sources. Then, |Ext(X1, . . . , XC)−Um| ≤ ε.

A probabilistic argument shows that a random function is a 2-source extractor for
min-entropy log n + O(1) (for constant output length and constant error). The problem of
explicitly constructing a 2-source extractor was raised by Chor and Goldreich [9], where
they constructed an extractor for min-entropy (0.5 + δ)n, for any constant δ > 0. This
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was slightly improved by Bourgain [54] to achieve min-entropy (1/2− γ)n, for some tiny
constant γ > 0. It remained a challenging open problem to obtain further improvements
until the work of Chattopadhyay and Zuckerman [55], who gave an explicit 2-source error
construction for min-entropy poly(log n). A recent line of work [22–28] further lowered the
min-entropy to log n · (log log n)1−o(1), thus coming very close to optimal bounds.

Since the problem of constructing 2-source extractors appeared challenging for a
while, several researchers developed methods to construct extractors for C-independent
sources [30,48,56–58]. In particular, Li [58] obtained a near-optimal 3-source extractor that
works for poly(log n) min-entropy and has negligible error.

We now give a sketch of the 2-source extractor construction in [55], which set up a
framework that has been used and refined to obtain all the further improvements.

3.1.1. Explicit 2-Source Extractors

Consider the setting in which we have two independent (n, k)-sources X and Y. As a
first attempt, consider taking a (k, ε)-strong-seeded extractor Ext : {0, 1}n × {0, 1}d →
{0, 1}, and for any seed s ∈ {0, 1}d, define fs(X) = Ext(X, s). It follows from the definition
of a strong-seeded extractor that, for most (i.e., 1 −

√
ε fraction) of the seeds, fs(X) is

close to a uniform bit. Further note that d = O(log n) (for ε = 1/nO(1)), and hence one
could enumerate over all the seeds in polynomial time to produce a source Z of length
D = 2d = poly(n), where Zs = fs(X). However, it is not clear how to push forward with
this approach since the bits in Zs could be correlated in arbitrary ways (even though most
of the bits are uniform).

The strategy in [55] is to perform the above step using a t-non-malleable extractor
(discussed above in the section on non-malleable extractors), for some parameter t, which
is set to poly(log n). The key result that is shown in [55] is that the resulting source Z that
is obtained by enumerating over the seeds satisfies the following property: there is a large
fraction of coordinates, given by a set S, such that, for any subset T ⊂ S, |T| = t, the source
ZT obtained by projecting Z to the coordinates in T is close to the uniform distribution Ut.
In other words, ZS is an almost t-wise independent distribution, and the coordinates of Z
that are outside S depend arbitrarily on ZS. For technical reasons (related to the fact that
ZS follows an almost t-wise independent distribution rather than a t-wise independent),
it can be shown that it is impossible to extract from Z. This is exactly where the second
source Y comes in, and the main use of this source is to pseudorandomly sample a subset
of coordinates of Z. In particular, the following theorem is proven in [55].

Theorem 5. There exists a function, Reduce : {0, 1}n × {0, 1}n → {0, 1}m, m = poly(n), such
that, if X and Y are independent (n, poly(log n))-sources, then Z = Reduce(X, Y) is 1/nω(1)-
close to a source Z′ that satisfies the following: there exists a subset S ⊂ [m], |S| ≥ m(1−mδ),
for some δ > 0, such that Z′S is t-wise independent, for some t = poly(log n).

It turns out that extraction from such sources is related to collective coin flipping [59],
a problem that is well studied in distributed computing. We first define a class of sources
that captures the output of the reduce function.

Definition 7 (Non-Oblivious Bit-Fixing (NOBF) sources). A distribution Z on {0, 1}m is
called a (q, t)-NOBF source if there exists a set S ⊂ [m], such that |S| ≥ q, and ZS is t-wise
independent (i.e., projection of ZS to any t coordinates is the distribution Ut).

Bit-fixing sources have been studied intensely in randomness extraction, with the
simplest setting of oblivious bit-fixing sources corresponding to a source with an unknown
set of independent and uniform coordinates (and the rest are fixed to constants that do
not depend on the random values). The NOBF sources defined above correspond to a
much trickier setting because of two reasons: (i) the bad bits (outside S) can depend on the
values of the good bits (coordinates in S); (ii) the coordinates in S are not independent and
uniform, but only satisfy the weaker guarantee of t-wise independence.
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In fact, Viola [41] proved that the MAJORITY function is an extractor for such NOBF
sources in the setting of t = O(1) and q ≥ m−m1/2−γ, for any constant γ > 0. However,
the δ in Theorem 5 is a tiny constant, much smaller than 1/2 (in fact, one can provably show
that the method used in [55] cannot yield δ ≥ 1/2), and hence the MAJORITY function
cannot be used.

More generally, a natural question is to investigate the property of a Boolean function
f : {0, 1}n → {0, 1} that allows it to extract from NOBF sources. It turns out that this is
exactly captured by the notion of resilient functions. Informally, an (r, ε)-resilient function
f : {0, 1}n → {0, 1} satisfies the property that any subset T of variables of size at most
r cannot bias the function f by much. More formally, define the influence of a set T on
f as the probability that f is not fixed on sampling variables outside T. Usually, it is
assumed that the variables outside T are sampled from the uniform distribution. However,
in our application, it is useful to define influence assuming that the variables outside T are
sampled from a t-wise independent distribution. Then, we can define a (t, r, ε)-resilient
function as follows: for any subset T of variables of size at most q, the influence of T (when
variables outside T are sampled from an r-wise independent distribution) is bounded by ε.

Using the notion of resilient functions, one can state Viola’s result [41] as showing that
MAJORITY is a (O(1), n1/2−γ, ε)-resilient function, for any γ > 0 and ε = 1/t1/2−o(1).

An important contribution of [55] was to construct a (poly(log n), n1−δ, 1/nΩ(1))-
resilient function based on a derandomization of a probabilistic construction of Ajtai and
Linial [60], also relying on the fact that polylog-wise independent distributions fool constant
depth circuits [61]. Using such resilient functions, it is easy to extract from the NOBF source
produced by Theorem 5.

An improved reduction from two independent sources to an NOBF source was subse-
quently obtained by Ben-Aroya, Doron and Ta-Shma [22] that allowed the use of MAJORITY
as the extractor for the NOBF source. This played a key role in obtaining near-optimal
two-source extractors (in terms of min-entropy).

It still remains a challenging open problem to construct negligible error two-source
extractors for min-entropy that is significantly smaller than n/2. In particular, it is not
difficult to show that extractors for NOBF sources cannot have negligible error, and hence
one way of making progress in this direction will be to find methods of removing the use of
such extractors in two-source extractor constructions. One such approach, which is related
to constructing improved t-non-malleable extractors, is proposed in [62].

3.1.2. Beyond Independent Source Setting

Several recent works [63–66] have considered the models of weak sources that extend
beyond the independent source model. In [65], the authors explore the setting where
some of the independent sources are faulty and contain no min-entropy, and a stronger
variant where the faulty sources are allowed to depend on a few of the good sources.
In [63], the authors study an even stronger setting where a faulty source can depend on all
sources that have been sampled before it. In this model, they prove impossibility results on
randomness extraction and obtain somewhere extractors. In [64], among various settings
that are studied, they study the problem of randomness extraction between two-sources
by assuming a bound on the correlation (in various information theoretic measures such
as mutual information and cross-influence). In [66], the task of randomness extraction
is studied when there is joint leakage on a bounded number of the independent sources,
and applications of such extractors are shown in constructing leakage-resilient secret-
sharing schemes and in obtaining average-case lower bounds against bounded-collusion
communication protocols.

3.2. Extractors for Affine Sources

Another well-studied model of weak sources is affine sources, which are defined
as follows.
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Definition 8 (Affine source). Fix a finite field F. An (n, k)q affine source X is a distribution that
is uniform over some unknown subspace of dimension k in Fn.

Apart from being a natural question, affine extractors (over F2) have found applica-
tions in cryptography [9,29,30] and circuit lower bounds [31]. Further, it turns out that
affine extractors can be employed to extract from various other models of weak sources
(see [37] for more discussion).

Gabizon and Raz [32] considered the problem of extracting randomness from affine
sources over large fields, and in fact constructed an extractor that works for k ≥ 1, assuming
the field size q = poly(n). It turned to be much more challenging to extract randomness in
the small field setting, and in particular, q = 2 seemed to be the most difficult. Bourgain [33]
constructed an affine extractor for min-entropy Ω(n) and negligible error, and this was
slightly improved to Ω(n/

√
log log n) by Yehudayoff [34] and Li [35]. Finally, a major im-

provement was obtained by Li [36], where an affine extractor was obtained for poly(log n)
min-entropy (and polynomially small error). This was recently sharpened by Chattopad-
hyay, Goodman and Liao [37], where they obtained an affine extractor for min-entropy
(log n) · (log log n)1+o(1) (and constant error).

The extractor construction by Li [36] (and subsequently [37]) follows a strategy that
is similar to the [55] framework of extracting randomness from two independent sources.
In particular, Li [57] showed a means of transforming an affine source into an NOBF source
and using known extractors for NOBF sources. The reduction of an affine source into
an NOBF source relies on stronger variants of correlation breakers, and a key ingredient
in their construction is linear seeded extractors (i.e., seeded extractors that additionally
satisfy the guarantee that, for any fixing of the seed, the extractor is a linear function of the
source). The further improved affine extractor in [37] is obtained by adapting ideas used in
constructions of (standard) correlation breakers to the affine setting. A recent follow-up
work by Chattopadhyay and Liao [38] gives a black-box way of using standard correlation
breaker to construct correlation breakers in the affine setting.

3.3. Extractors for Sumset Sources

Chattopadhyay and Li [42] considered a general model of weak sources called sumset
sources, which are defined as follows.

Definition 9. An (n, k, C)-sumset source X is of the form X1 + X2 + . . . + XC, where the Xis are
independent (n, k)-sources.

Clearly, an extractor for (n, k, C)-sumset source can extract from the model of C inde-
pendent sources (by simply applying the extractor on the sum of the sources). In fact, such
a sumset source works for the more general model of an C-interleaved source defined as
an unknown interleaving of C independent sources. Further, note that an affine source X
(over F2) of min-entropy k can be expressed as the sum of C independent affine sources,
each of entropy k/C. Finally, in the next section, we will see that such sumset sources have
applications to extracting randomness from sources that are sampled by algorithms with
limited memory. Thus, the model of sumset sources captures many well-studied models of
weak sources and in fact extends them. In fact, unlike the other weak sources considered so
far, it is not even clear if a random function is an extractor for sumset sources (see [38] for
more on this).

Ref. [42] constructed an extractor for (n, k, C)-sumset source, with k = poly(log n)
and a large enough constant C. This result was recently improved by Chattopadhyay and
Liao [38] to obtain an extractor (with polynomially small error) in the setting of C = 2,
and k = poly(log n). Prior to the work of [38], the only known extractor for the sum of
two sources was the Paley graph extractor [9], which required one of the sources to have
min-entropy at least (1/2 + δ)n, for any constant δ > 0.
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Both of these constructions [38,42] use the framework of [55], and obtain reductions
from sumset sources to NOBF sources.

3.4. Extractors for Small-Space Sources

A line of work initiated by Trevisan and Vadhan [39] investigates the problem of ex-
tracting randomness from a weak source, assuming that it was sampled by a low-complexity
algorithm. In this direction, Kamp, Rao, Vadhan and Zuckerman [40] introduced the notion
of small-space sources, which are distributions sampled by an algorithm with limited mem-
ory. One can view such a source as being generated by taking a random walk on a (layered)
branching program of width 2s (where s corresponds to the space of the algorithm), where
each edge is labeled with a bit b ∈ {0, 1} and a transition probability. Such sources are
called small-space sources and are known to capture a variety of other well-studied models
of weak sources. We refer the reader to [40] for a formal definition and discussion on
applications to extracting from other models of defective sources.

Non-constructively, it was shown in [40] that a random function is an extractor for a
space-s source with entropy k ≥ 2s+O(log(n/ε)) and error ε. Further, [40] gave an explicit
extractor construction for min-entropy O(n1−γsγ) (and negligible error), thus leaving a
large gap between the existential and explicit constructions. Using improved extractors
for the robust variant of independent sources (called adversarial sources [65]), Ref. [43]
improved the min-entropy requirement to roughly n1/2+δs1/2−δ, for any constant δ > 0,
while obtaining negligible error.

In the setting of polynomially small error, [42] obtained a reduction from small-space
to sumset sources, and improved the min-entropy requirement to s1.1 · 2(log n)1/2+δ

, for any
δ > 0.

A new reduction from small-space sources to affine sources was given by Chattopad-
hyay and Goodman [43].

Theorem 6. Let X be an (n, k)-source sampled by a space-s algorithm. Then, X is 2−Ω(k)-close to
a convex combination of affines sources with min-entropy Ω(k/s log(n/k)).

Thus, when using explicit affine extractors, the min-entropy requirement of small-
space source extractors was further improved to s · poly(log n) in [43] by a new reduction
to affine sources.

Very recently, [38] obtained an extractor for space-s sources with min-entropy require-
ment k ≥ 2s + poly(log n). The result in [38] is based on the following reduction from
small-space sources to 2-sumset sources (i.e., the sum of two independent sources).

Theorem 7. Let X be an (n, k)-source sampled by a space-s algorithm. Then, X is ε-close to a
convex combination of (n, k′, 2)-sumset sources, where k′ ≥ k/2− s− log(n/ε)−O(1).

This gives an optimal dependence on s since it is shown in [40] that it is impossible to
extract from space-s sources when k < 2s.

4. Conclusions and Open Questions

There has been very interesting progress in explicit constructions of randomness
extraction in two major directions: (i) robust variants of seeded extractors known as non-
malleable extractors; (ii) seedless extraction for various models of weak sources such
as independent sources, affine sources, sumset sources and small-space sources. As we
saw, progress in (ii) was critically dependent on progress and techniques from (i), and, in
particular, on constructions of objects known as correlation breakers. Further, such robust
variants of seeded extractors are of independent interest and have found many applications
in cryptography, such as privacy amplification, robust secret-sharing schemes, etc.

Major questions that remain open are low-error constructions of extractors for various
models of seedless extraction (with a central problem being the two-independent-source
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setting). Further, a major idea in designing seedless extractors for various models of is to
find reductions to NOBF sources and use known extractors for NOBF sources. This presents
a bottleneck in obtaining low error, since it is known that extractors for NOBF sources
cannot have negligible error [67]. Thus, a natural direction of future investigation is to
identity simple classes of sources that permit low-error extraction, and find new reductions
from models such as two independent sources (or affine sources) to this simpler model.

Finally, another interesting direction is to find more applications in complexity theory
and cryptography of the recent advances made in explicit constructions of extractors.
For example, as mentioned above, the best known explicit circuit lower bounds are against
affine extractors [31]. Can sumset extractors be leveraged to achieve further progress?
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