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Abstract: Non-Hermitian (NH) quantum theory has been attracting increased research interest due
to its featured properties, novel phenomena, and links to open and dissipative systems. Typical
NH systems include PT-symmetric systems, pseudo-Hermitian systems, and their anti-symmetric
counterparts. In this work, we generalize the pseudo-Hermitian systems to their complex counter-
parts, which we call pseudo-Hermitian-ϕ-symmetric systems. This complex extension adds an extra
degree of freedom to the original symmetry. On the one hand, it enlarges the non-Hermitian class
relevant to pseudo-Hermiticity. On the other hand, the conventional pseudo-Hermitian systems
can be understood better as a subgroup of this wider class. The well-defined inner product and
pseudo-inner product are still valid. Since quantum simulation provides a strong method to investi-
gate NH systems, we mainly investigate how to simulate this novel system in a Hermitian system
using the linear combination of unitaries in the scheme of duality quantum computing. We illustrate
in detail how to simulate a general P-pseudo-Hermitian-ϕ-symmetric two-level system. Duality
quantum algorithms have been recently successfully applied to similar types of simulations, so we
look forward to the implementation of available quantum devices.

Keywords: quantum simulation; linear combination of unitaries; non-Hermitian; pseudo-Hermitian

1. Introduction

Hermitian quantum systems are well known since closed quantum systems were
focused on at the birth of conventional quantum mechanics. However, open and dissipa-
tive quantum systems are more common than closed systems in the real physical world,
and cannot be described by Hermitian quantum theory. Therefore, non-Hermitian (NH)
quantum theory [1,2] is attracting increased research interest. On the one hand, it extends
conventional quantum theory and closely relates to open and dissipative systems [3–11].
On the other hand, NH systems have many novel properties and applications.

Typical NH systems include the parity-time-reversal (PT) symmetric systems, pseudo-
Hermitian (PH) systems, and their anti-symmetric counterparts. PT-symmetric NH quan-
tum systems have been focused on and investigated heavily since 1998 [12–15]. One
important reason for this is that, besides Hermitian systems, PT-symmetric systems also
keep the eigenvalues of H real in the exact PT phase. Due to its significance in both theory
and potential applications, PT-symmetric quantum physics is developing rapidly and
being investigated thoroughly from different aspects in a variety of systems [16–20]. In
recent years, quantum simulations of PT-symmetric systems have been carried out, for
example, fast and slow evolutions in the quantum brachistochrone problem [21–23], a
generalized PT two-level system [24–27], and a PT-arbitrary-phase-symmetric system [28].
P-pseudo-Hermiticitian Hamiltonians were found to have real spectra in some condi-
tions [29–34], while a necessary and sufficient condition is given for the reality of the
spectrum of NH Hamiltonians admitting a complete set of biorthonormal eigenvectors
in [31]. Properties of pseudo-Hermitian systems and their relationships with PT-symmetric
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systems are often investigated and discussed [35–41]. In this work, we extend pseudo-
Hermitian Hamiltonians to the complex domain for the first time by introducing a phase
factor eiϕ.

Inspired by Feynman, quantum simulation provides an efficient way to investigate
nature [42]. It has become a strong tool to simulate novel quantum systems and discover
featured properties. After a detailed quantum circuit is designed, an effective Hamiltonian
is constructed, and the time-evolution of a quantum system can be simulated. Plenty of
Hermitian systems and relevant phenomena have been investigated via quantum simu-
lation methods [43–53]. In addition, they can also be applied to investigate NH systems
in an effective way [23–28]. For example, quantum simulation of a P-pseudo Hermitian
two-level system and its anti-symmetric counterpart has been proposed [54–66], making it
possible to investigate these two NH systems in small quantum devices.

In this work, we investigate quantum simulation of the generalized pseudo-Hermitian-
ϕ-symmetric (PH-ϕ) system, using the linear combination of unitaries (LCU) in the scheme
of duality quantum computing [67] and the unitary-expansion (UE) techniques [8,9]. We
optimize the quantum circuit and calculate the success probability. Furthermore, we
discuss the implementations in NMR and quantum optics systems, expecting experimental
realizations in the near future.

2. Complex Generalization of Pseudo-Hermitian Symmetry

Pseudo-Hermitian (PH) Hamiltonians HPH satisfy η−1HPH
†η = HPH , where η is

a linear Hermitian automorphism (invertible transformation) on the Hilbert space [33].
For example, η can be the parity (P) operator. Since η is not unique for a given HPH [34],
it is called an η-pseudo-Hermitian for a fixed η. Notice that different η values define
different symmetries, though they are referred to as pseudo-Herimiticity in general. Simi-
lar to PT and anti-PT symmetry, an anti-symmetry of PH Hamiltonian has been intro-
duced [35], and we call this a pseudo-Hermitian anti-symmetric (PHA) Hamiltonian
HPHA, if η−1HPHA

†η = −HPHA. HPH and HPHA can be seen as the real and imaginary
counterparts of each other, since the latter can be obtained by the former Hamiltonian times
i, and vice versa.

Consider a non-Hermitian Hamiltonian Hϕ, which satisfies

η−1Hϕ
†η = eiϕHϕ. (1)

Hϕ can be obtained by a phase factor e−i ϕ
2 times a relevant HPH (i.e., Hϕ = e−i ϕ

2 HPH). There-
fore, Hϕ can be seen as a complex generalization of a conventional pseudo-Hermitian symmetry

Hϕ = e−i ϕ
2 HPH = cos

ϕ

2
HPH − sin

ϕ

2
(iHPH). (2)

Hϕ can also be seen as a combination of an HPH and a relevant HPHA = iHPH , which
should have properties intermediate between them.

Hϕ−PH = cos
ϕ

2
HPH − sin

ϕ

2
HPHA. (3)

Thus, we introduce one extra degree to the conventional pseudo-Hermitian symmetry,
called Hϕ, which is of η-pseudo-Hermitian-arbitrary-phase or η-pseudo-Hermitian-ϕ symmetry.
Both the inner product and pseudo-inner product [34] of HPH are still well defined for Hϕ.
The relationships between PH, PH-anti, and PH-ϕ symmetry can be analogous to that of
PT, anti-PT, and PT-arbitrary-phase symmetry, and can also be analogous to relationships
between boson, fermion, and anyon. In fact, the relation in Equation (1) unifies the PH and
PH-anti symmetries for ϕ = 2kπ and ϕ = (2k + 1)π (k is integral), respectively.
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3. Quantum Simulation Using LCU by Duality Quantum Computing

We now propose how to simulate the time-evolution of a pseudo-Hermitian-ϕ- sym-
metric (PH-ϕ) system in a conventional unitary quantum computer. The time-evolutionary
operator should be an implicit function of the PH-ϕ Hamiltonian Hϕ, say E(t) = E(Hϕ(t)).
Given that Hϕ is not Hermitian, E(t) is not unitary and cannot be simulated directly by
a quantum computer governed by conventional quantum mechanics, of which the time-
evolution is unitary. However, E(t) can be extended to a summation of unitary operators.
Therefore, we are able to simulate the non-unitary time-evolution of our PH-ϕ NH systems
using LCU based on the duality quantum algorithm [67].

LCU and duality quantum computing were proposed in 2002 [67], and they de-
veloped rapidly [67–73], becoming some of the strongest tools for designing quantum
algorithms [74]. Recently, we developed LCU to simulate NH systems [23–28,35,64,65],
other novel systems, and time-dependent non-unitary operators [8].

Assume that the time-evolutionary operator can be extended to m terms as

E(t) =
m−1

∑
k=0

ckUk, (4)

where each Uk is a unitary operator, and ck are complex UE parameters (k = 0, . . . , m− 1).
The unitary expansion of E(t) is not unique, and we only show the schematic strategy to
simulate the time-evolution of a general PH-ϕ non-Hermitian system in this section. We do
not discuss details of how to extend the general non-unitary operator by our UE techniques,
because this is a significant question and deserves to be investigated alone. However, it can
save qubits and reduce the complexity of quantum simulation if the non-unitary operators
can be expressed by fewer UE terms. We will illustrate in detail the quantum simulation of
a P-pseudo-Hermitian-ϕ-symmetric two-level system in the next section.

Quantum simulation of the time-evolution of a PH-ϕ system in Equation (4) can
be achieved using either qudits or qubits as the quantum circuit, as shown in Figure 1.
The whole system is composed of an ancillary subsystem a and an evolutionary subsystem
e. The simulation can be achieved in either a qudit system or a qubit system. The dimen-
sions of qudits or the total number of the qubits are decided by the dimensions d of the
PH-ϕ non-Hermitian system and the number m of the UE terms in Equation (4). In detail,
an m-dimensional qudit and a d-dimensional qudit are able to be the ancillary and evolu-
tionary subsystems, respectively. If we simulate using qubits, the qubit numbers of the
ancillary and evolutionary subsystems should not be less than n1 = log2m and n2 = log2d,
respectively. In general cases, for different dimensional NH systems, m has a maximum
value of four [8,9]. In detail, the maximum of m is three in general and two in special cases
for d = 2 [8], while the maximum of m is four for higher dimensions [9]. At the beginning,
the ancillary subsystem is initialized to a logic state |0〉a, and the PH-ϕ non-Hermitian
subsystem is initialized to an arbitrary state |ψ〉e. In the middle part, the operator UE1 is
applied on the ancillary subsystem to assign the UE parameters, and the k-controlled gates
(k = 0, 1, . . . , m− 1) together with the operator UE2 achieve the UE terms’ generation [8],
constructing the PH-ϕ system. At the end of the circuit, quantum measurements will be
performed on the ancillary system to complete the time-evolution governed by the PH-ϕ
Hamiltonian in an indeterministic way when the ancillary qubits collapse into the logic
state |0〉a. In this case, the evolutionary subsystem will evolve as the PH-ϕ system requires.
Otherwise, this simulation will be terminated and started over until success.
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Figure 1. Schematic circuit for the quantum simulation of a PH-ϕ system based on LCU. The whole
system consists of n1 ancillary qubits and n2 evolutionary qubits, and it will pass the quantum circuit
from the left to the right. The system is initialized in |0〉a|0〉e at first, and then the evolutionary qubits
are prepared in arbitrary state |ψ〉e as demanded. After being operated by a unitary rotation UE1,
m-controlled operations (i.e., 0-controlled U0, 1-controlled U1, . . . , and (m− 1)-controlled Um−1), and
a single-qudit rotation UE2, the evolutionary subsystem will evolve as per Equation (4) if the ancillary
subsystem is measured in state |0〉a.

4. Quantum Simulation of P-Pseudo-Hermitian-ϕ-Symmetric Two-Level Systems

We take a P-pseudo-Hermitian-ϕ-symmetric system as an example to illustrate how
to simulate it using LCU and duality quantum algorithms. P-pseudo-Hermitian systems
are one class of typical NH systems, and a series of theoretical investigations have been
conducted on them. Recently, pseudo-Hermiticity was found to be able to protect uni-
tary scattering [41]. P-PH systems have close relationships with PT-symmetric systems,
though they are different. We have generalized the PT symmetry to PT-arbitrary-phase
symmetry [28], which also has close relationships with P-PH-ϕ symmetry. We show the sets
of the P-PH-ϕ, PT-ϕ-symmetric, P-PH, PT-symmetric, and Hermitian systems in Figure 2.
They have intersections in the P-PH-related sets, PT-symmetry-related sets, and Hermi-
tian set.

	
	
	
	

 

	

P-pseudo-Hermitian 

𝝋-symmetric Systems 

	

Other non-Hermitian systems  

Quantum systems with Typical symmetries  

P-pseudo-
Hermitian systems 

Hermitian 
systems 

PT-𝝋-symmetric Systems 

PT-symmetric 
systems 

Figure 2. Sets of the P-pseudo-Hermitian-ϕ-symmetric, PT-ϕ-symmetric, P-pseudo-Hermitian, and
Hermitian systems. The green ellipse of the P-PH set is in the blue ellipse of the general P-PH-ϕ

set because the former can be seen as a special case where ϕ = 2kπ (k is integral) of the latter.
The P-PH anti-symmetric set is also a subset of the P-PH-ϕ set when ϕ = (2k + 1)π (k is integral).
The sets relevant to the P-pseudo-Hermiticity and the PT symmetry are different, though they have
intersections with each other. Notice that the Hermitian sets are not in the P-PH-ϕ set only. Other
NH sets may include various η-PH-ϕ sets (η is other than P), sets relevant to unknown symmetries,
and so on.
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4.1. P-PH-ϕ Two-Level Systems

In the two-dimensional case, the most general form of a P-PH-ϕ Hamiltonian can be
obtained by the relevant P-pseudo-Hermitian Hamiltonian [14,24] times e−i ϕ

2 , as follows:

Hϕ = e−i ϕ
2

(
reiθ u
v re−iθ

)
, (5)

where ϕ, r, u, v, and θ are real parameters, the parity operator P =

(
0 1
1 0

)
, and ϕ is a

fixed parameter that links to the symmetry.
The eigenvalues of Hϕ are ε± = e−i ϕ

2
(
r cos θ ± ω0

2
)

with respect to the two eigenvec-

tors |ε±〉, respectively, where ω0 = ei ϕ
2 (ε+ − ε−) = 2

√
uv− r2 sin2 θ is the energy differ-

ence of HPH := ei ϕ
2 Hϕ. The exceptional points (EPs) of Hϕ in the parametric space [75] are

composed of the points leading ω0 to be zero. The EPs of Hϕ, forming the boundary of real
(ω2

0 > 0) and imaginary (ω2
0 < 0) phases of HPH , are also EPs of Hϕ.

Investigations into novel phenomena using a controllable, currently available quantum
device is one of the main tasks of quantum simulation. Because of the Hermiticity, the time-
evolution of a Hermitian system is unitary and can be simulated by a conventional quantum
system directly in the Hilbert space of the same dimensions.

We will simulate the two-dimensional time-evolutionary operator

e−i t
h̄ Hϕ , (6)

which is not unitary. Therefore, instead of the Hermitian case using one qubit, we will
construct a general P-PH-ϕ subsystem in a larger Hilbert space and simulate the time-
evolution in the scheme of duality quantum computing using the LCU method.

Our quantum simulation method is applicable to the whole parametric space (except
the EPs), including the neighborhoods of EPs. We still use the Hilbert–Schmidt inner
product of the conventional quantum mechanics because this NH system will be simulated
in a Hermitian system, while the pseudo-inner product introduced by A. Mostafazadeh [34]
is well defined in this system.

4.2. UE of the Time-Evolutionary Operator

First of all, the UE techniques [8] will be applied to the non-unitary time-evolutionary
operator in Equation (4). We calculate the UE terms of e−i t

h̄ Hϕ in detail, which can be
expanded by four or three UE terms in general, as follows:

e−i t
h̄ Hϕ = f0σ0 + f1σ1 + f2(iσ2) + f3σ3, (7)

where the Pauli matrices σ0 =

[
1 0
0 1

]
, σ1 =

[
0 1
1 0

]
, σ2 =

[
0 −i
i 0

]
, and

σ3 =

[
1 0
0 −1

]
, and fk = | fk|eiθk (k = 0, 1, 2, 3) are the UE parameters, being time-

dependent complex-functions of Hϕ in Equation (5), with no limitations on their norms.
The explicit forms of fk’s (k = 0, 1, 2, 3) are shown in Appendix A (i). To simplify the
simulation, the number of UE terms should be further reduced. Thus, we merge the four
UE terms in Equation (7) to three, as

e−i t
h̄ Hϕ = eiθ0 | f0|σ0 + eiθ3 |g1|V1 + eiθ3 |g2|V2. (8)

where the UE parameters g1 and g2 are complex functions of fk’s (k = 0, 1, 2, 3) in
Equation (7). The explicit forms of gk and Vk (k = 1, 2) are presented in Appendix A
(ii) and (iii), respectively.
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The above UEs are valid for a general P-PH-ϕ Hamiltonian. If fk’s (k = 0, 1, 2, 3) in
Equation (7) satisfy one of the phase-matching conditions, which have been introduced and
investigated in detail in [8] to judge the minimum numbers of terms in LCU for an arbitrary
two-dimensional nonunitary operator, the UE terms in Equation (8) can be merged to fewer
terms, as follows:

e−i t
h̄ H = h0W0 + h1W1. (9)

The explicit forms of h0, h1, W0, and W1 vary in different phase-matching conditions [8],
and they are complex functions with respect to time t.

For convenience, we set a normalizing factor f as

f = | f | =
3

∑
k=0

√
| fk|2 =

√
| f0|2 + |g1|2 + |g2|2 =

√
|h0|2 + |h1|2. (10)

Now, we are able to simulate the non-unitary evolution in Equation (6) using LCU
in the scheme of duality quantum computing. A qudit- or a qudit–qubit-hybrid device is
able to achieve the simulation, and qudits take advantage over qubits in some quantum
algorithms [76] (e.g., they reach a higher accuracy when solving the eigenvalue problem
using quantum phase estimation algorithms with qudits than with qubits [77]). However,
we focus on quantum simulations using qubits here, since qubit-quantum computers are
currently available technologies.

4.3. Qubit Simulation

Three qubits or fewer are able to simulate the time-evolution of a P-PH-ϕ system by
our theory. In a general case, the three qubits are divided into an evolutionary qubit e and
an ancillary subsystem a of the remaining two qubits. The evolutionary qubit will evolve as
per Equation (6) with the assistance of the ancillary subsystem in a probabilistic way. Only
a six-dimensional Hilbert subspace, extended by |00〉a|k〉e, |01〉ak〉e, and |10〉ak〉e (k = 0, 1),
is needed, while the remaining two dimensions are spared. The success probability using
six dimensions is larger than that using the full eight dimensions [8].

The quantum circuit used to achieve the quantum simulation is shown in Figure 3. At
the beginning, the whole system is initialized to a pure state |00〉a|0〉e, and the evolutionary
qubit e will be prepared in an arbitrary state |ψ〉e, as needed by a single-qubit rotation
Rψ. The two ancillary qubits will assist the evolutionary qubit to evolve, governed by the
P-PH-ϕ Hamiltonian. The first block aims at, on the one hand, deleting the basis |11〉a of
the ancillary subsystem, so that the rest of the bases |00〉a, |01〉a and |10〉a together with the
two bases |0〉e and |1〉e of the evolutionary qubit are used to construct a six-dimensional
subspace; on the other hand, it aims at assigning the three UE parameters in Equation (8) to
|00〉a|ψ〉e, |01〉a|ψ〉e, and |10〉a|ψ〉e. This is the first key step to simulating the time-evolution.
In detail, the first and second ancillary qubits are swapped, and two single-qubit rotations
S1 and −σ3 are applied to them. Then, a controlled-NOT gate is applied, in which the first
and the second qubits take roles as the target and control qubit, respectively. After the first
qubit is rotated by S2, the two ancillary qubits are swapped again. The explicit forms of
two single-qubit operators are

S1 =
1
f

 g1 −
√
| f |2 − |g1|2√

| f |2 − |g1|2 g∗1

 (11)

and

S2 =
1√

| f |2 − |g1|2

[
g∗2 f0
− f ∗0 g2

]
, (12)

where f0, g1, g2, and f are as in Equations (8) and (10).
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Figure 3. Three-qubit quantum circuit. The system is initialized to |00〉a|0〉e, and the evolution-
ary qubit e can be rotated to |ψ〉e by Rψ as needed. In the first block, operations prepare the
six-dimensional subspace, and assign the three UE parameters. In the second block, three controlled-
controlled operators (the first dashed one can be removed) generate the UE terms. In the third block,
operations are applied on the ancillary system to superpose the three UE terms in Equation (8).
Finally, quantum measurements are performed on the ancillary system to evolve the qubit e as the
P-PH-ϕ system in an indeterministic way if |00〉a is output.

In the second block of Figure 3, the three UE terms in Equation (8) will be generated.
Notice that the unit matrix C00−σ0 is a trivial operation that can be removed in practice.
The other two jointly controlled gates are necessary, and their matrix forms are

C01−V1 =


σ0 0 0 0
0 V1 0 0
0 0 σ0 0
0 0 0 σ0

 (13)

and

C10−V2 =


σ0 0 0 0
0 σ0 0 0
0 0 V2 0
0 0 0 σ0

, (14)

respectively. For the explicit expressions of V1 and V2, refer to Equation (8) and Appendix A
(iii). Now, the three UE terms are generated and entangled with the three bases of the
ancillary subspace.

The third block aims at superposing the three UE terms by swapping the two ancillary
qubits three times and applying H2 and S3 in between them, as shown in Figure 3, where

S3 =
1√
3

[ √
2 1

1 −
√

2

]
. (15)

Now, the whole system evolves to a superposition state

1√
3 f

[
|00〉ae−i t

h̄ Hϕ |ψ〉e + f ∑
k=01,10

|k〉a|sk〉e

]
, (16)

where values for |sk〉e are not given explicitly because the relevant terms will be discarded
after quantum measurements. Notice that the three UE terms are superposed as the
time-evolution in the first term relevant to |00〉a.

Finally, quantum measurements are performed on the ancillary subsystem. If it outputs
the state |00〉a, the evolutionary qubit will evolve to e−i t

h̄ Hϕ |ψ〉e, which is governed by the
NH Hamiltonian in Equation (5), with a success probability of

1
3 f 2 e〈ψ|ei t

h̄ H†
ϕ e−i t

h̄ Hϕ |ψ〉e. (17)
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If one of the remaining two results of |01〉a or |01〉a is measured, the simulation will be
terminated. The whole process will then be started over until |00〉a is obtained. Therefore, it
is an indeterministic protocol to simulate the time-evolution of P-PH-ϕ two-level systems.

The number of qubits can be reduced to two if the time-evolutionary operator in
Equation (8) can be united into two UE terms, as in Equation (9), and the quantum circuit
is shown in Figure 4.

	

P-PH-𝜑-symmetric 
system evolution 

 

W H2 

W0 W1 

|0⟩!	

|0⟩"	  R𝝍	

|0⟩!	

𝑒#$%!&/ℏ|𝜓⟩"	|𝜓⟩! 

Phase matching conditions: Construction of the P-PH-𝝋-symmetric two-level system using 

two qubits 

 
Superpose the 

UE-terms 
Quantum 

Measurement 

Figure 4. Two-qubit quantum circuit. The system includes an ancillary qubit a and an evolutionary
qubit e, and is initialized to |0〉a|0〉e at first. Then, the qubit e is rotated to |ψ〉e as needed by Rψ. In the
main part, operators are applied in series (i.e., a single-qubit rotation W, two controlled operators,
and a Hadamard). Finally, the evolutionary qubit e will evolve as e−i t

h̄ Hϕ |ψ〉e, if the ancillary qubit is
measured in state |0〉a.

The two-qubit system is initialized to |0〉a|0〉e, and then qubit e is rotated to |ψ〉e as
needed. A single-qubit unitary

W =
1
f

[
h0 −h∗1
h1 h∗0

]
, (18)

is applied on the ancillary qubit to assign the UE parameters. Notice that h0 and h1 always
satisfy Equation (10), while their explicit forms change with different phase-matching
conditions, as seen in [8].

Then, two controlled gates follow, which are

C0−W0 =

[
W0 0
0 σ0

]
(19)

and

C1−W1 =

[
σ0 0
0 W1

]
, (20)

where the explicit forms of W0 and W1 are decided by the specific phase-matching condi-
tions [8]. After a Hadamard H2 is performed on the ancillary qubit, the two-qubit system
evolves to

1√
2 f

[
|0〉ae−i t

h̄ Hϕ |ψ〉e + |1〉a(h0W0 − h1W1)|ψ〉e
]
. (21)

Similarly, the first term links to the time-evolution governed by the P-PH-ϕ Hamiltonian,
while the second term will be discarded after quantum measurements.

Finally, a quantum measurement is performed on the ancillary qubit. If |0〉a is output,
the evolutionary qubit e will evolve as e−i t

h̄ Hϕ |ψ〉e with a success probability of

1
2 f 2 e〈ψ|ei t

h̄ H†
ϕ e−i t

h̄ Hϕ |ψ〉e. (22)

This is decided by not only by the initial state but also Hϕ. If the ancillary qubit is observed
in state |1〉a, the process will be terminated and the result will be discarded. We start the
quantum simulation again, and it continues until |0〉a is measured. From Equations (17)
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and (22), it can be seen that the success probability using two qubits is increased further
than that using three qubits. Therefore, it is valuable to merge the UE terms before quan-
tum simulation to increase efficiency. On one hand, this will save qubits, decreasing the
complexities of the quantum circuit. On the other hand, it will enlarge the probability of
simulating the P-PH-ϕ NH system successfully.

5. Experimental Proposals

Given that LCU and duality quantum algorithms have recently been successfully
applied to similar types of quantum simulations in different experimental
systems [23,25–27], we look forward to the implementation of available quantum de-
vices. Since qubit-quantum devices have become available technologies, it is appropriate
to simulate the pseudo-Hermitian-ϕ-symmetric systems using qubits for experimental
implementations. Candidate qubit-systems include nuclear-magnetic-resonance (NMR)
quantum simulators, quantum optics systems, superconductor quantum systems, two
energy levels of ultracold atoms, and ion-trap systems. The operations in the quantum
circuit can be realized by the related controlling methods and techniques.

Take an NMR quantum simulator as an example. The evolutionary and ancillary
qubits are realized by the nuclei of spin-1/2. To initialize the pseudo-pure state, the spatial-
averaging method [78] can be applied at the beginning of the experiment, and then a series
of magnetic pulse sequences will be applied to realize the quantum gates in the quantum
circuit. In detail, hard pulses are used to realize single-qubit rotations directly, while free
evolutions of the two nuclei of spin- 1

2 in a period [23] are necessary to realize controlled
two-qubit gates.

By quantum optics, two orthogonal polarized directions of a photon take the role
of a qubit. Single-qubit gates can be realized by a series of quarter-wave and half-wave
plates [79]. The efficiency is too low in practice to realize a two-polarization-qubit gate,
though the task can be achieved using measurement-induced nonlinearity [80]. A more
practical method is to improve efficiency with the assistance of the degrees of freedom of
photon locations utilized as the qubit basis (i.e., the location qubit), which can be prepared
and operated by beam-splitters and Mach–Zehnder interferometers [81].

In addition, quantum processors (such as the IBM QE 5-qubit [82]) can be used to
realize the quantum simulation in this work.

6. Conclusions

We complexly generalize the conventional pseudo-Hermitian system to a pseudo-
Hermitian-ϕ-symmetric system by adding an extra freedom of symmetry to the original.
Therefore, the pseudo-Hermitian system and its anti-symmetric counterpart can be seen as
two special cases when the phase-angles ϕ are set to be 2kπ and (2k + 1)π (k is integral),
respectively. This can be analogous to the case of the PT, anti-PT, and PT-arbitrary-phase
symmetries, or that of bosons, fermions, and anyons. We believe that more novel prop-
erties can be found in the generalized systems, and the conventional PH systems can
be better investigated through extended freedom of symmetry (as we can understand a
two-dimensional plane better when we are in a three-dimensional space). The well-defined
inner product and pseudo-inner product are still valid for the PH-ϕ systems.

We mainly investigate quantum simulation of the PH-ϕ system. We show a schematic
proposal for a general system using LCU in the scheme of duality quantum computing,
and we propose in detail a general P-PH-ϕ two-level system. A minimum six-dimensional
Hilbert space is necessary to simulate the time-evolution of an arbitrary P-PH-ϕ two-level
system by our unitary expansion techniques, while four-dimensional Hilbert space is
enough in some special cases. The simulation is achieved in an indeterministic way, and the
success probability is decided by the initial state, the Hamiltonian, and the dimensions of
the used Hilbert space. The fewer dimensions there are, the higher the success probability
is. Therefore, it is meaningful to merge the UE terms based on our UE techniques and
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phase-matching conditions to reduce the dimensions required before quantum simulation.
With this, the qubit source will be saved, and the success probability will be increased.

Finally, we discuss experimental implementations of available quantum devices, such
as NMR, quantum optics systems, and IBM QE. Given that LCU and duality quantum
algorithms have been recently successfully applied to similar types of quantum simulations
experimentally, quantum simulation of a general P-PH-ϕ two-level system can soon be
implemented on small quantum devices.
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PT parity-time-reversal
PH pseudo-Hermitian
PHA pseudo-Hermitian anti-symmetric
PH-ϕ pseudo-Hermitian-ϕ-symmetric
P parity
EP exceptional point
LCU linear combination of unitaries
NMR nuclear magnetic resonance

Appendix A

(i) Explicit forms of fk’s (k = 0, 1, 2, 3):

f0 = m[a0b0 − a2b2 + i(−a1b1 + a3b3)], (A1)

f1 = m[(a0b1 − a2b3 + a3b2)− ia1b0], (A2)

f2 = m[(a0b2 + a3b1 − a1b3)− ia2b0] (A3)

and
f3 = m[a3b0 + i(a1b2 − a2b1 + a0b3)], where (A4)

m = e−i t
h̄ re(−ϕ/2) cos θ , (A5)

a0 = cos α = cos(ωat/2h̄), (A6)

a1 = (u + v) cos(ϕ/2) sin α/ωa, (A7)

a2 = (u− v) cos(ϕ/2) sin α/ωa, (A8)

a3 = 2r cos(ϕ/2) sin θ sin α/ωa, (A9)

ωa = 2|cos(ϕ/2)|
√

uv− r2 sin2 θ; (A10)

and
b0 = cos β = cos(ωbt/2h̄), (A11)

b1 = −(u + v) sin(ϕ/2) sin β/ωb, (A12)

b2 = −(u− v) sin(ϕ/2) sin β/ωb, (A13)

b3 = −2r sin(ϕ/2) sin θ sin β/ωb, (A14)
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ωb = 2|sin(ϕ/2)|
√

r2 sin2 θ − uv. (A15)

(ii) Explicit forms of g1 and g2:
g1 and g2 are obtained from fk = | fk|eiθk (k = 0, 1, 2, 3), that is,

g1 = eiθ3

√
| f3|2 + | f1|2 cos2 ϕ1 + | f2|2 sin2 ϕ2 (A16)

and
g2 = eiθ3

√
| f1|2 sin2 ϕ1 + | f2|2 cos2 ϕ2, (A17)

where
ϕ1 = θ1 − θ3 and ϕ2 = θ2 − θ3. (A18)

(iii) Explicit forms of V1 and V2:[
cos ζ1 eiφ1 sin ζ1

e−iφ1 sin ζ1 − cos ζ1

]
and

[
0 eiφ2

−e−iφ2 0

]
, (A19)

where φ1 is decided by

cos φ1 =
| f1| cos ϕ1√

| f1|2 cos2 ϕ1 + | f2|2 sin2 ϕ2

(A20)

and

sin φ1 =
| f2| sin ϕ2√

| f1|2 cos2 ϕ1 + | f2|2 sin2 ϕ2

; (A21)

and φ2 is decided by

cos φ2 =
| f2| cos ϕ2

|g2|
and sin φ2 =

| f1| sin ϕ1

|g2|
; (A22)

ζ1 is decided by

cos ζ1 =
| f3|
|g1|

and sin ζ1 =

√
| f1|2 cos2 ϕ1 + | f2|2 sin2 ϕ2

|g1|
. (A23)
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