
Citation: Liu, Y.; Zhao, Y. Spiking

Neural P Systems with Membrane

Potentials, Inhibitory Rules, and

Anti-Spikes. Entropy 2022, 24, 834.

https://doi.org/10.3390/e24060834

Academic Editor: Fernando

Morgado-Dias

Received: 30 April 2022

Accepted: 14 June 2022

Published: 16 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Spiking Neural P Systems with Membrane Potentials,
Inhibitory Rules, and Anti-Spikes
Yuping Liu and Yuzhen Zhao *

Academy of Management Science, Business School, Shandong Normal University, Jinan 250014, China;
2021021027@stu.sdnu.edu.cn
* Correspondence: zhaoyuzhen@sdnu.edu.cn

Abstract: Spiking neural P systems (SN P systems for short) realize the high abstraction and simu-
lation of the working mechanism of the human brain, and adopts spikes for information encoding
and processing, which are regarded as one of the third-generation neural network models. In the
nervous system, the conduction of excitation depends on the presence of membrane potential (also
known as the transmembrane potential difference), and the conduction of excitation on neurons is
the conduction of action potentials. On the basis of the SN P systems with polarizations, in which the
neuron-associated polarization is the trigger condition of the rule, the concept of neuronal membrane
potential is introduced into systems. The obtained variant of the SN P system features charge accu-
mulation and computation within neurons in quantity, as well as transmission between neurons. In
addition, there are inhibitory synapses between neurons that inhibit excitatory transmission, and as
such, synapses cause postsynaptic neurons to generate inhibitory postsynaptic potentials. Therefore,
to make the model better fit the biological facts, inhibitory rules and anti-spikes are also adopted
to obtain the spiking neural P systems with membrane potentials, inhibitory rules, and anti-spikes
(referred to as the MPAIRSN P systems). The Turing universality of the MPAIRSN P systems as
number generating and accepting devices is demonstrated. On the basis of the above working
mechanism of the system, a small universal MPAIRSN P system with 95 neurons for computing
functions is designed. The comparisons with other SN P models conclude that fewer neurons are
required by the MPAIRSN P systems to realize universality.

Keywords: spiking neural P systems; universality; membrane potential; inhibitory rules; anti-spikes

1. Introduction

Artificial neural networks (ANNs) aim to empower artificial systems with information
processing functions consistent with the complex yet efficient human brain system. They
are progressively building models with greater functionality and a better fit with biological
facts. The third-generation neural network models, spiking neural networks [1], adopt
spikes for information encoding and transmission, which provides models with biological
features consistent with realistic rationality. Spiking neural P systems (SN P systems) in the
field of membrane computing has become a hotspot as one of the third-generation ANNs.

Membrane computing is a branch of natural computing [2]. The distributed parallel
computing models obtained from the development of membrane computing are membrane
systems, also known as P systems, and the study of P systems has been divided into three
types according to the cell membrane structure or cell distribution: cell-like P systems,
tissue-like P systems, and neural-like P systems. For the theoretical research of membrane
computing, three types of P systems have been extended to obtain several universal
computational models [3–7], and the computational complexity of extended P systems has
been explored [8–20]. For the application research of membrane computing, existing studies
have realized the integration of membrane computing with algorithms for applications in

Entropy 2022, 24, 834. https://doi.org/10.3390/e24060834 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e24060834
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0001-8053-0826
https://orcid.org/0000-0003-4902-1120
https://doi.org/10.3390/e24060834
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e24060834?type=check_update&version=1

Entropy 2022, 24, 834 2 of 24

robot control [21,22], data modeling, and optimization [23–26], algorithms for solving NP
problems [27–29], clustering algorithms [30–37], and image processing [38–40].

The spiking neural P system is an important component of the neural-like P system,
an abstract simulation of the nervous system in which neurons communicate by sending
spikes. Research on SN P systems has been highly dynamic in recent years, and existing
research falls into two main areas: theoretical research and application research.

Regarding the theoretical research of SN P systems, there are two main parts including
the proposal of variants and the evaluation of computational performance. Several variants
of SN P systems have been obtained, mainly via the introduction of various biological
mechanisms or features. The purpose is to bring the system more in line with biological
principles and facts, as well as to improve computational performance, such as reducing
resources without losing computational power. Existing studies abstract biological phe-
nomena and facts, and they extend the systems via the continuous introduction of various
biological mechanisms. The extension of the system objects has been achieved via the
introduction of calcium-producing astrocytes [41] and the use of five types of spikes [42].
The extension of the system rules has been realized through the control of neuronal fir-
ing using a threshold mechanism [43,44], introducing spikes distribution mechanism in
rules [45], applying white rules [46], and applying evolutionary rules and communication
rules [47]. By introducing the structural plasticity mechanism [48,49], the original SN P
systems have achieved a larger degree of extension. The extension of the system operation
was achieved via the introduction of the extended channel rule [50], synaptic delay [51],
dendritic and axonal computation [52], a generalized use of rules [53] and the application
of four sequential working strategies in the system [54,55]. The various variants of the SN
P systems obtained still possess computational generality.

Furthermore, theoretical research has focused on evaluating the computational perfor-
mance of variants of SN P systems, mainly including the computational generality and the
computational complexity of the system. The evaluation of the computational generality
of the proposed system focuses on proving the Turing universality, also called generality,
via the simulation of the computation of the universal register machines with different
functions. The extended SN P systems obtained from existing studies have all been proved
to be Turing universal as number generation and accepting devices [41,42,44,45,50–52]. The
studies addressing the computational complexity of systems include temporal complexity
and spatial complexity. The temporal complexity of the system computation is assessed
using the ability of the proposed variant to solve the NP-hard problems in polynomial
time [56,57]. The spatial complexity is assessed via the construction of a universal system
with fewer computational resources, i.e., the neurons. For example, 109 neurons are re-
quired to construct a universal dynamic threshold SN P system [44], while a SN P system
with target indications requires only 15 neurons to achieve generality [45].

Regarding the application research of SN P systems, studies have focused on com-
bining SN P systems with algorithms to solve real-world problems, and then they have
evaluated the performance of the proposed algorithm with the help of experimental re-
sults on data sets and comparisons with other algorithms. SN P systems and numerous
universal variants have been realized for applications in different real-world domains,
such as performing basic arithmetic operations [58], simulating Boolean circuits [59], solv-
ing classification problems [60], fault diagnosis [61,62], recognizing English letters [63],
image processing [64–66], modeling [67], and time series prediction [68–70]. As one of
the third-generation of ANNs, SN P systems are considered to have significant develop-
ment potential.

Recently, Wu et al. [71] introduced the concept of polarization into SN P systems and
obtained the spiking neural P systems with polarization (PSN P systems), which changed
the previous control mechanism of neuronal firing in SN P systems. Instead of using regular
expressions for the trigger conditions of rules, the neuron firing was controlled by judging
the neuron-associated polarizations (+, 0, −) as the rule trigger conditions. The application
of polarizations made the information exchange of neurons in the system more consistent

Entropy 2022, 24, 834 3 of 24

with biological facts, and the systems were shown to still be Turing universal. Wu et al. [72]
then introduced a new coding object, the anti-spikes, into the PSN P systems (PASN P
systems), in order to provide better computational performance and further simplification.
In addition, the computational universality of the PSN P system in asynchronous mode [73]
and sequential mode [74,75] is demonstrated. Subsequently, Yang et al. [76] added the
feature of multiple channels to the PSN P systems (SNP–MCP systems). By introducing
the spiking rules on synapses, Jiang et al. [77] obtained a new variant (PSNRS P systems)
requiring less computational resources to realize computational generality.

The new variant of the SN P systems constructed in this paper is motivated by the
following two biological mechanisms.

• Neurons of the nervous system contain ions that carry a certain amount of charge
(either positive or negative), and the presence of charge forms the transmembrane
potential difference (also called potential) of the nerve cell. When a neuron receives a
stimulus flow directionally, it forms an electric current, changes the transmembrane
potential difference, generates an action potential, and counts to conduct this electrical
signal along the cell membrane [78]. Thus, as shown in Figure 1, the conduction of
excitation in the nervous system is the process of action potential conduction, and
the phenomena of charge aggregation, flow, and transport exist in the cell membrane
of neurons. Based on the PSN P systems, we introduce the concept of membrane
potential according to the above biological phenomena, as a way to update the num-
ber of charges and polarization states of a neuron by considering the aggregation
within the neuron and the charge transmission between neurons. Together with the
polarization state and the number of charges, the membrane potential of a neuron is
composed, and the membrane potential is used as the triggering condition of rules,
which provides more powerful control over the systematic computation. The resulting
model is constructed to better simulate the characteristics of neurons and the working
mechanism of the nervous system.

• There are two main types of synapses between neurons according to their synaptic
effects on neuronal activity: excitatory synapses and inhibitory synapses. The presence
of excitatory synapses enables the transmission of information between neurons, and
the operation mechanism of this synapse can be well modeled by the application of
rules of consumption or transmission of spikes by systemic neurons. For inhibitory
synapses, such synapses can cause postsynaptic neurons to generate inhibitory postsy-
naptic potentials, which in turn have an inhibitory effect on the excitation of neurons.
Peng et al. [79] formalized the effect mechanism of inhibitory synapses as inhibitory
rules within systematic neurons. The extension of the rule-triggering conditions not
only made the firing behavior of neurons limited by the contained rules, but also
controlled by the state of neurons connected to the current neuron through inhibitory
synapses, effectively modeling the mechanism of action of inhibitory synapses in the
nervous system.

Based on the above motivation, we also introduced the application of anti-spikes in the
new systems to make the systems have better computational performance, and the obtained
spiking neural P systems with membrane potentials, inhibitory rules, and anti-spikes
(MPAIRSN P systems for short) are more in line with the biological mechanisms. In addition,
the new inhibitory rules introduced in the systems consider the neuronal membrane
potential as the rule triggering condition, and we update the form of the inhibitory rules
as (Aen, Ain(i,j))/bc → b′; β; the firing of the current neuron σi needs to satisfy that the
membrane potential Ai is consistent with the membrane potential Aen required by the
rule, and that the membrane potential Aj of the inhibitory neuron σj, which is connected
to the current neuron σi by inhibitory synapses, cannot belong to the set of membrane
potential Ain(i,j) required by the rule. That is, the condition Ai = Aen ∧ Aj /∈ Ain(i,j) needs
to be satisfied for the current neuron to fire. The introduction of inhibitory rules achieves
a more powerful control over the neurons in the system and it can further reduce the
computational resources required by the universal MAIRSN P systems.

Entropy 2022, 24, 834 4 of 24

(a)

Na+

K+

+++++++++++++++++++ ------------

+++++++++------------ ---------------

++++++++------------ --------------

++++++++++ ------------ ++++++++++

Na+

Neuron-Axon a b c

V/mV

t/ms
0

-20

-40

-60

-80

20

40

1 32 4

a

b

c

Nerve impulse

(b)

Figure 1. Conduction of the nerve impulse. (a) Schematic diagram of the basic structure of a neuron.
(By Figdraw, www.figdraw.com accessed on 10 June 2022); (b) Schematic diagram of the spike
voltage variation of the action potential with time.

The research contribution of this paper is mainly focused on the following two points.

• We introduce the concept of membrane potential in the SN P systems and propose
a new rule-triggering mechanism: using the membrane potential of a neuron as
the condition. In addition, the inhibitory rule with membrane potential as the rule
triggering condition is updated and applied, which in turn leads to the proposed
MPAIRSN P systems.

• The proposed MPAIRSN P systems are shown as Turing universal operating in gen-
erating and accepting modes. A small universal MPAIRSN P system is constructed,
using 95 neurons and allowing for the computation of functions. Compared with other
variants of SN P systems adopting polarizations, the general MPAIRSN P systems
require fewer computation resources and have faster computation speed.

For the remainder of this paper, Section 2 proposes the definition of the MPAIRSN P
system and displays a small system as an introductory example of how the MPAIRSN P
system operates, which has the capability of generating arbitrary nonzero natural numbers.
Section 3 proves the Turing universality of the MPAIRSN P systems, mainly operating
in generating and accepting modes, respectively. Section 4 constructs a small universal

www.figdraw.com

Entropy 2022, 24, 834 5 of 24

MPAIRSN P system containing 95 neurons for computing functions. Section 5 gives
conclusions and the future research outlook.

2. SN P Systems with Membrane Potentials, Inhibitory Rules, and Anti-Spikes

In this section, a formal definition of the MPAIRSN P system is given to introduce
the related concepts. Moreover, we design a small MPAIRSN P system as an example
for illustrating the working mechanism. This small system implements the function of
generating arbitrary nonzero natural numbers.

2.1. Definition

An MPAIRSN P system consisting of m ≥ 1 neurons is represented as a tuple:

Π = (O, σ1, · · · , σm, syn, syn′, in, out),

where:
(1) O = {a, ā} is an alphabet consisting of two characters, where a and ā denote a

spike and an anti-spike, respectively.
(2) σ1,σ2,. . . ,σm are the m neurons contained in the system, and each neuron can be

expressed as a tuple σi = (Ai, ni, Ri), 1 ≤ i ≤ m, where:
(a) Ai = (PARi, Xi) is the initial membrane potential of neuron σi, which contains two

main components, the polarization of the membrane potential PARi ∈ {+, 0,−}, and the
number of charges Xi ∈ N contained in the neuron; N is the set of natural numbers.

(b) ni is the initial number of spikes/anti-spikes contained in the neuron. If ni ≥ 0,
then the neuron σi contains ni spikes; if ni < 0, then the neuron σi contains −ni anti-spikes.

(c) Ri is the set of rules contained in the neuron. The rules are mainly of the follow-
ing types.

i. Standard rules: A/bc → b′; β,
where A is the firing condition, β ∈ {+, 0,−}, b, b′ ∈ O, c ≥ 1.
ii. Inhibitory rules: (Aen, IAin(i,j))/bc → b′; β,
where Aen and IAin(i,j) together constitute the firing condition, β ∈ {+, 0,−}, b, b′ ∈ O,

c ≥ 1.
iii. aā→ λ is called the annihilating rule. This rule enforces a higher priority than the

standard rules and inhibitory rules above.
(3) syn = { (i, j)|1 ≤ i 6= j ≤ m} is the set of standard synapses between neurons.

syn′ = { (i, j)|1 ≤ i 6= j ≤ m} is the set of inhibitory synapses between neurons, where j is
the label of the inhibitory neuron and i is the label of the inhibited neuron.

(4) in, out ∈ {1, 2, · · · , m} are used to distinguish the input and output neurons in the
system, respectively. If the system does not contain the input neuron or output neuron, it
is omitted.

For the operation of the MPAIRSN P system, since it is a requirement to ascertain
neuronal polarization by calculating the number of contained charges, we give the following
conventions of charge calculation.

(1) Multiple positive (or negative) charges are allowed to accumulate within a neuron.
(2) A positive charge and a negative can cancel each other out and disappear.
(3) Receiving any number of neutral charges does not change neuronal polarization state.

There are three main types of rules in the MPAIRSN P system: standard rules, in-
hibitory rules, and annihilating rules.

The standard rule takes the form of A/bc → b′; β. The triggering condition of this rule
restricts the membrane potential of the neuron, i.e., both the polarization and the charge
number are required to satisfy the condition. The firing rule is available to be applied when
the membrane potential state of neuron σi is such that Ai = A, and the number of spikes or
anti-spikes contained in σi is at least c so that sufficient spikes are available to achieve firing.

In particular, if the firing condition of the rule restricts only the polarization of the
neuron, then the standard firing rule is simplified to the form PAR/bc → b′; β. The rule is

Entropy 2022, 24, 834 6 of 24

applicable if the polarization state of neuron σi satisfies PARi = PAR and the number of
spikes contained in σi is at least c.

Moreover, if the standard rule is triggered without generating spikes or anti-spikes,
i.e., b′ = λ, this rule is called the standard forgetting rule. In this case, only one charge β is
produced and then transmitted.

In summary, if a neuron σi satisfies the trigger condition of its standard firing rule,
c spikes or anti-spikes are consumed, the neuron generates one spike or anti-spike and a
charge β that are simultaneously sent to the successive neuron connected to σi via synapse,
updating the number of spikes and the membrane potential state of the successive neuron.
If the rule triggered is a forgetting rule, only charge β is produced and then transmitted
between neurons.

Similarly, standard forgetting rules of the form A′/bs → λ; β′ and PAR′/bs → λ; β′

consume s spikes or anti-spikes in the neuron, and generate no spikes or anti-spikes but
only produce one charge, which is sent to subsequent neurons σj connected to σi via
synapses. This type of rules can be applied as soon as the membrane potential state of
neuron σi coincides with the membrane potential requirement of the rule, i.e., Ai = A′, or
the polarization of neuron σi satisfies PARi = PAR′ . Moreover, the number of spikes or
anti-spikes in σi must be greater than s.

The inhibitory rules take the form shown in Figure 2. For the formal representation
of the rule, Aen indicates the membrane potential condition that needs to be satisfied for
the current neuron σi to fire, and the subscript (i, j) of IAin(i,j) indicates the presence of a
directed inhibitory synapse between the current neuron σi and its inhibitory neuron σj.

j i

…… 1j

i

……

…
…

js

(a) (b)

Figure 2. Rules. (a) Inhibitory rules: (Aen, IAin(i,j))/bc → b′; β. (b) Extend inhibitory rules:
(Aen, IAin(i,js), · · · , IAin(i,js))/bc → b′; β.

The application of each inhibitory rule is controlled by the membrane potential Ai
or the polarization PARi of the current neuron σi, and the membrane potential Aj or the
polarization PARj of the inhibitory neuron σj connected to neuron σi via the inhibitory
synapse. Taking the form of (Aen, Ain(i,j))/bc → b′; β,the inhibitory rule is applicable to
neuron σi if its membrane potential Ai coincides with the membrane potential condition
of the rule Aen, i.e., Ai = Aen, with its inhibitory neuron σj containing the membrane
potential Aj that does not belong to the set IAin(i,j), i.e., Aj /∈ IAin(i,j). In other words, the
triggering of the inhibitory rule requires that the expression Ai = Aen ∧ Aj /∈ IAin(i,j) holds.
Additionally, the number of spikes or anti-spikes contained in neuron σi is at least c.

Similarly, the simplified inhibitory rule takes the form of (PARen, IPARin(i,j))/bc → b′; β,
which is available to neuron σi if the polarization states of current neuron σi and its
inhibitory neuron σj enable the expression PARi = PARen ∧ PARj /∈ IPARin(i,j) , and the
number of spikes or anti-spikes contained in neuron σi is at least c. Analogously, this type
of rules only restricts the polarizations of the current neuron σi and its inhibitory neuron σj.

If triggered, the inhibitory firing rule consumes c spikes or anti-spikes in the neuron
σi, generating one spike or anti-spikes and one charge β, which are sent to the successive
neuron connected to σi via synapse. For the inhibitory rule, if b′ = λ, it is an inhibitory
forgetting rule. Similarly, the triggering of this rule does not generate spikes or anti-spikes,
but only a charge.

Entropy 2022, 24, 834 7 of 24

It is worth noting that, unlike the standard form of synaptic connection, the inhibitory
neuron is connected to the current neuron via the inhibitory synapse, also called the
inhibitory arc. The inhibitory arc is represented in the directed graph as a directed arc with
a solid circle, whereas the standard synapse is represented by a directed arc with an arrow.
For the directed inhibitory arc in a graph, there are the following conventions.

(1) If there is an inhibitory arc between neurons σi and σj , then there is no standard
arc between them, i.e., there is no longer a standard synaptic connection between
two neurons.

(2) If neuron σj is an inhibitory neuron to neuron σi, there is no transmission of spikes,
and charges between two neurons. Moreover, the application of the inhibitory rules
in σi performs no effect on its inhibitory neuron σj in terms of changing the number
of spikes and the membrane potential of neuron σj. The transmission of spikes, anti-
spikes and charges does not take place in the inhibitory arc. Thus, inhibitory neuron
σj only functions as a control of neuron σi in terms of its firing.

If a neuron is controlled by more than one inhibitory neuron, there are extended inhibitory
rules that are applicable. As shown in Figure 2b, neuron σi has multiple inhibitory neurons
σj1, · · · , σjs. Then, for the extended inhibitory firing rule (Aen, IAin(i,js), · · · ,
IAin(i,js))/bc →b′; β, the firing of the neuron σi requires that the neuron σi and its inhibitory neu-
rons σj1, · · · , σjs satisfy the condition that Ai = Aen ∧ Aj1 /∈ IAin(i,j1) ∧ · · · ∧ Ajs /∈ IAin(i,js).

The annihilation rule takes the form of aā→ λ , i.e., one spike and one anti-spike cancel
each other out when they meet in the same neuron. The execution of this rule is time inde-
pendent and uncontrolled by the neuronal membrane potential or polarization. Therefore,
the two types of spikes are unable to be present in the same neuron simultaneously.

Generally, any MPARISN P system containing m neurons can be represented by a
tuple Π = (O, σ1, · · · , σm, syn, syn′, in, out), or by a topological directed graph. The directed
graph representation can help us to visualize the structure and the operation process of
the system. Then, in order to facilitate the explanation of the operation process, the
MPAIRSN P systems in the latter part of this paper are mainly introduced with the help of
directed graphs.

Topologically, an MPAIRSN P system Π can be expressed as a directed graph with
inhibitory arcs, where m neurons are shown as m nodes containing initial spikes and rules,
represented by rounded rectangles, and the synaptic connections between neurons are
denoted as directed arcs, including the standard directed arcs and the newly introduced
inhibitory arcs. For each neuron σi in the system, we assign a label i, an initial number
of spikes, and an initial membrane potential. The neuron label and its initial membrane
potential are represented by the tuple (i, (PARi, Xi)) placed next to the rounded rectangle
representing the neuron, where PARi represents its polarization and Xi is the corresponding
number of charges. The initial spikes are then located in the first row inside the rounded
rectangle, and if the neuron contains no initial spikes, only the rule is included.

As the state of neuron σi in a system at a given instance is formulated by the number of
spikes jointly with the membrane potential, it follows that the overall computational config-
uration of the system Π at the particular instance t is denoted as
Ct =< A1/n1, A2/n2, · · · , Am/nm >, ni ∈ Z, where Ai is the membrane potential, ni
is the number of spikes, and Z is the set of integers. The computation performed in the
system is presented as a transformation of the systematic configuration, starting from the
initial configuration C0. The systematic neurons apply three types of rules to perform the
computation, and the process is represented as C0 ⇒ C1 ⇒ · · · ⇒ Ch, where Ch is the
terminate configuration. The computational process ends when no more rule is available
to be applied in the system. Additionally, for any calculation, there is a corresponding
spikes sequence encoded by 01 that reflects the behavior of the output neuron, where 0
signifies silence of the output neuron, while 1 indicates that the output neuron fires and
transmits spikes.

The MPAIRSN P system Π is operable in both the generating mode and the accept-
ing mode. When the system operates in the generation mode, it can serve as a number

Entropy 2022, 24, 834 8 of 24

generation device and export computation results by the output neuron σout. The com-
putation result can be defined as either the time interval between the first two spikes, or
the total number of spikes sent by σout. We denote the computation results generated by
the MPAIRSN P system Π as N(Π), or N2(Π) in case the computation result is defined
in the former manner. When the system performs in accepting mode, an input neuron is
introduced into the system, and the output neuron is removed. The number n is encoded
as a spikes sequence consisting of 01, and then it is read by the input neuron σin. If the
computation terminates, it indicates that the number n is accepted by the system, and the
set of numbers accepted by the system Π is noted as Nacc(Π).

2.2. An Example

An example is given in Figure 3 to explain the working mechanism of MPAIRSN
P systems, which is a small system Πe capable of generating arbitrary positive natural
numbers n(n > 0). The MPAIRSN P system Πe containing five neurons is represented as
a tuple:

Πe = (O, σ1, σ2, · · · , σ5, syn, syn′, in, out),

where:
O = {a, ā},
σ1 = ((0, 0), 2, {0/a→ a;− }),
σ2 = ((+, 1), 0, {0/a→ ā;− ,−/a→ λ; 0 }),
σ3 = ((0, 0), 2, {(0, {+})/a→ a; 0 , (−, {+}/ā→ λ; 0 }),
σ4 = ((0, 0), 0, {(0, {+, 0})/a→ a; 0 , (0, {+, 0})/a→ ā;− }),
σ5 = ((0, 0), 0, {−/ā→ a; 0 ,−/a→ λ; 0 }),
syn = {(1, 2), (3, 4), (4, 3), (2, 5), (4, 5)},
syn′ = {(3, 2), (4, 2)}, and
out = σ5.

For ease of understanding and interpretation, we also represent the system Πe as a
directed graph (Figure 3), where both neuron σ1 and neuron σ3 contain two initial spikes,
and neuron σ2 carries the initial membrane potential (+, 1). There are, in total, five neurons
in the system, where neuron σ5 is the output neuron. Each neuron is assigned a tuple
(i, (PARi, Xi)). For example, for the tuple (2, (+, 1)) assigned to neuron σ2, 2 is the label of
the neuron, and the initial membrane potential is (+, 1), i.e., representing that the neuron
σ2 carries the positive polarization and contains one positive charge. Moreover, the neuron
σ2 is connected to neuron σ3 and neuron σ4 via two inhibitory synapses, meaning that the
firing of neuron σ3 and neuron σ4 is controlled by their neuron σ2.

The initial configuration of the system in this example is C0 =< (0, 0)/2, (+, 1)/0,
(0, 0)/2, (0, 0)/0, (0, 0)/0 >. The calculation result of this system is defined as the interval
between the first two spikes received in the environment.

At the initial step, since neuron σ1 with neutral polarization contains two spikes, the
rule 0/a→ a;− is applied to send one spike and one negative charge to neuron σ2. Mean-
while, neuron σ3 which remains of neutral polarization and contains two spikes, is unable
to apply the inhibitory firing rule as PAR2 ∈ {+} without satisfying the firing condition.
Thereby, the system configuration of step 1 can be obtained as
C1 =< (0, 0)/1, (0, 0)/1, (0, 0)/2, (0, 0)/0, (0, 0)/0 >. At step 1, as the neuron σ1 con-
tains one spike and remains neutral in polarization, rule 0/a→ a;− continues to be
applied to send another spike and one negative charge to neuron σ2. Additionally, neu-
ron σ2 with neutral polarization contains one spike, where its rule 0/a→ ā;− can be
triggered to send one spike and one negative charge to neuron σ5. Neuron σ3 satisfies
the trigger condition PAR3 = 0∧ PAR2 /∈ {+} of the rule (0, {+})/a→ a; 0, and it sends
one spike to neuron σ4 by the application of this inhibitory firing rule. We then have
C2 =< (0, 0)/0, (−, 1)/1, (0, 0)/1, (0, 0)/1, (−, 1)/(−1) > at step 2. At this step, it be-
comes empty after neuron σ2 fires without producing spikes and charges, since the neuron
σ2 satisfies the trigger condition of the forgetting rule −/a→ λ; 0. Neuron σ5 with negative
polarization contains an anti-spike, allowing the application of the rule to send the first

Entropy 2022, 24, 834 9 of 24

spike to the environment. Additionally, the application of the rule (0, {+})/a→ a; 0
continues in neuron σ3, sending one spike to neuron σ4. The polarization of neuron σ4 and
the polarization of its inhibitory neuron σ2 fulfill PAR4 = 0∧ PAR2 /∈ {+, 0}, and then both
rule (0, {+, 0})/a→ a; 0 and rule (0, {+, 0})/a→ ā;− are applicable. The uncertainty
selection of rules applied in neuron σ4 can be performed, and then the following two
cases exist.

(1, (0,0)) (2, (,1))+

(3, (0,0))

(4, (0,0))
(5, (0,0))

2a

2a

0 ;a a→ −

0 ;a a→ −

;0a − →

(0,{ }) ;0a a+ →

(,{ }) ;0a − + →

(0,{ ,0}) ;0a a+ →

(0,{ ,0}) ;a a+ → −

;0a a− →

;0a − →

Figure 3. A small MPAIRSN P system Πe as an illustrative example.

Case 1: Assume that the rule (0, {+, 0})/a→ ā;− is applied in neuron σ4 at step 2,
and an anti-spike and a negative charge are sent to neuron σ3 and neuron σ5, consuming one
spike while still receiving a spike from neuron σ3, then neuron σ4 contains one spike and
has neutral polarization. Therefore, both neuron σ3 and neuron σ5 contain an anti-spike and
have negative polarization. Then, there is C3 =< (0, 0)/0, (−, 1)/0, (−, 1)/(−1), (0, 0)/1,
(−, 2)/(−1) > at step 3. Subsequently, the second spike is sent to the environment from
neuron σ5 by applying rule −/ā→ a; 0 at step 4. Once no rule can be applied in the
system, i.e., the computation halts, the time interval between the first spike received in the
environment is 1, i.e., the natural number 1 computed by the system is obtained.

Case 2: Suppose that by applying the rule (0, {+, 0})/a→ a; 0 at step 2, neuron
σ4 sends one spike to neuron σ3 and neuron σ5. After consuming one spike while re-
ceiving one spike from neuron σ3, there is one spike contained in neuron σ4 with posi-
tive polarization. Then, there is C3 =< (0, 0)/0, (−, 1)/0, (0, 0)/1, (0, 0)/1, (−, 1)/1 >.
The application of rule (0, {+})/a→ a; 0 continues in neuron σ3 at step 3, sending
one spike to neuron σ4, and neuron σ5 applies the forgetting rule −/a→ λ; 0 without
producing spikes. Since neuron σ4 contains one spike and carries neutral polarization,
the uncertain selection of rule (0, {+, 0})/a→ a; 0 or (0, {+, 0})/a→ ā;− for appli-
cation can be performed again. In this case, we assume that neuron σ4 consistently
applies rule (0, {+, 0})/a→ a; 0 selectively at each step until step k(k > 4). Then,
we have Ci =< (0, 0)/0, (−, 1)/0, (0, 0)/1, (0, 0)/1, (−, 1)/1 >, (4 ≤ i ≤ k). The rule
(0, {+, 0})/a→ ā;− is selected to be applied in neuron σ4 at step k, and then an anti-spike
and a negative charge are generated and sent to neuron σ3 and neuron σ5. At moment k + 2,
neuron σ5 contains one spike for consumption of the rule −/ā→ a; 0 to send the second
spike to the environment. Then, the time interval between the first two spikes received
in the environment until the calculation stops is k− 3(k > 4), giving an arbitrary natural
number that is greater than 1.

As mentioned above, the small MPAIRSN P system in this example allows for the
generation of arbitrary nonzero natural numbers. The set of positive natural numbers
generated by this system is denoted as N2(Πe) = {n|n ≥ 1}.

Entropy 2022, 24, 834 10 of 24

3. The Computational Universality of MPAIRSN P Systems

Through the design of the MPAIRSN P systems to simulate the register machine in
accepting and generating modes, respectively, this section explores the computational
universality of the MPAIRSN P system to demonstrate that all recursive enumerated sets of
numbers can be generated or accepted by the system.

A register machine is represented as a tuple: M = (m, H, l0, lh, I), where m is the
number of registers, H is the set of labels corresponding to instructions, while l0, lh ∈ H
are the starting and halting instruction labels, respectively. I is the set of instructions
distinguished by labels in H, and two types of instructions are included: li : (ADD(r), lj, lk)
and li : (SUB(r), lj, lk). Typically, the family NRE is used to characterize the set of numbers
that can be generated or accepted by the register machine. The computational results of
the MPAIRSN P system containing m neurons are denoted by NαPAIRSNPn

m, α ∈ {2, acc},
with at most n rules within each neuron.

3.1. The MPAIRSN P System as a Number Generating Device

The register machine M working in generating mode is available to serve as a number
generator. As for its configuration, at the initial state, each register in M is empty, and the
machine starts working by executing the instruction l0. Then, the machine calculates by
executing a series of ADD and SUB instructions. Eventually, the machine’s computation is
terminated by executing the instruction lh, at which point the number n stored in register 1
is the number generated by M.

Theorem 1. N2SNP2
∗ (ch3) = NRE.

Proof. According to the Turing–Church thesis, the relation N2SNP2
∗ (ch3) ⊆ NRE holds [80].

It remains only to prove that NRE ⊆ N2SNP2
∗ (ch3). Therefore, we mainly consider the

proof using the MPAIRSN P system Π1 to simulate the computation of the register machine
M working in the generative mode. We assume that for the configuration of the machine at
a given step, all its registers are empty and that the value stored in register 1 of them does
not decrease during the computation.

In the following contents, an MPAIRSN P system Π1 is designed to simulate the register
machine M1 working in generation mode, which can act as a number generation device (or
a number generator). The system Π1 is designed with three types of modules containing the
ADD module, the SUB module, and the FIN module, as shown in Figures 4–6, respectively.

In order to associate with the register machine M1, we set the neuron σr in system
Π1 to correspond to a register r in machine M1, and the number of spikes contained in
the neuron σr is equal to the value stored in the corresponding register r. The neuron
σli in system Π1 corresponds to instruction li in the machine. In addition, the auxiliary
neurons σci (i = 1, 2, · · ·) of the module associated with a neuron σli are added, and they
are uniquely related.

In the initial state, each neuron in the system has an initial membrane potential; the
neuron σl0 receives a spike for triggering the system computation, and the rest of the
neurons are empty. During the computation steps, neuron σli with a neutral polariza-
tion fires as soon as it receives a spike, i.e., the system begins to simulate instruction
li : (OP(r), lj, lk)(OP = ADD, SUB), which triggers the work of the relevant module. Fol-
lowing that, neuron σlj

or neuron σlk receives one spike and starts to simulate instruction lj
or lk, which triggers the calculation of the corresponding module. If neuron σlh receives
one spike and fires, then system Π1 successfully simulates the computation of the register
machine M1 in generative mode, and the computation result is output by the FIN module
where neuron σlh is located. We define the time interval t2 − t1 between the first two spikes
output by the neuron σout to the environment as the computation result, and the value
corresponds to the number stored in register 1.

The procedure and the details of the proofs for the simulations of the ADD, SUB, and
FIN modules of the system Π1 are given below.

Entropy 2022, 24, 834 11 of 24

(, (0,0))il (, (0,0))r

1(, (,1))c +

2(, (,1))c +

4(, (,1))c + 5(, (,1))c +

3(, (,1))c −

(, (0,0))jl (, (0,0))kl

0 ;0a a→

;0a a+ → ;0a + →

;a a+ → −
;a − → +

0 ;0a a→
(,{ , }) ;0a + + − →

(,{0, }) ;0a a+ − →

Figure 4. The ADD module of system Π1.

(, (0,0))il

(, (0,0))r

(, (0,0))kl (, (0,0))jl

1(, (0,0))c

2(, (,1))c +
3(, (0,0))c 4(, (0,0))c

0 ;0a a→

0 ;0a a→0 ;a a→ +

;a a+ → −

2 ;0a a+ →

0 ;0a →

(0,{ , }) ;0a a+ − →

(0,{0, }) ;0a − →

Figure 5. The SUB module of system Π1.

(, (0,0))il

0 ;0a a→ 0 ;0a a→

1(, (0,0))c

(, (0,0))out

2(, (0,0))c

(1, (0,0))

3(, (0,0))c

4(, (0,0))c

5(, (,1))c +

0 ;0a a→

0 ;0a a→

;0a a+ →
2 ;0a a+ →

0 ;0a a→
(0,{0, }) ;0a a− →

(0,{ }) ;0a + →

Figure 6. The FIN module of system Π1.

Entropy 2022, 24, 834 12 of 24

(1) The ADD module (Figure 4) simulates an ADD instruction li : (ADD(r), lj, lk).
Suppose that at step t, an ADD instruction li is triggered and neuron σli picks up

one spike available for firing. Then, at step t + 1, σc1 , σc2 and σr all contain one spike
derived from the firing of neuron σli . Following this, neuron σc1 fires by applying the rule
+/a→ a; 0, while one of rules +/a→ λ; 0 and +/a→ ā;− can be applied indeterministi-
cally in neuron σc2 . The following two cases are possible.

• If the forgetting rule +/a→ λ; 0 is applied, then there is one spike in neuron σc4 with
positive polarization, as well as its inhibitory neuron σc5 also carries positive polariza-
tion. Then, the triggering condition of the inhibitory spiking rule (+, {0,−})/a→ a; 0
is satisfied, i.e., PAR4 = + ∧ PAR2 /∈ {0,−}. As soon as neuron σlj

receives one spike
from neuron σc4 , this simulated computational procedure activates the module associ-
ated with instruction lj.

• If the rule applied in neuron σc2 is +/a→ ā;−, then at step t + 2, there is an anti-
spike contained in neuron σc5 with neutral polarization. That is, rule 0/ā→ a; 0
is applied inside neuron σc5 and one spike generated is sent to neuron σlk . Under
such a case, neuron σc4 is reset to empty by applying the inhibitory forgetting rule
(+, {+,−})/a→ a; 0. The neuron σc5 then receives one positive charge generated by
the application of the forgetting rule −/ā→ λ;+ in neuron σc3 to restore its initial
polarized state. Thus, this simulation computation activated the module associated
with instruction lk.

In summary, the ADD module successfully simulates the execution of the ADD instruc-
tion li : (ADD(r), lj, lk). The acceptance of one spike by neuron σli starts the computation
of the ADD module, followed by the implementation of adding one to the number of spikes
contained in the neuron σr, corresponding to adding one to the value in the register r in
the machine. Sending one spike to neuron σlj

or σlk by indeterminacy corresponds to the
indeterminate execution of instruction lj or lk.

(2) The SUB module (Figure 5) simulates a SUB instruction li : (SUB(r), lj, lk).
Suppose that at step t, neuron σli receives one spike and fires. Following that, as

neuron σc1 fires, both neurons σc3 and σc4 contain one anti-spike from neuron at step t + 2.
Again, depending on the value stored in register r, corresponding to changes occurring in
neuron σr and the operation of the module, the following two cases exist.

• If the value in register r is 0, and accordingly, the neuron σr is empty, then at step
t + 1, neuron σr consumes one anti-spike using the rule 0/ā→ ā;+ to transmit
one positive charge and one anti-spike to neurons σc2 and σc3 . At moment t + 2,
neuron σc3 has two unconsumed anti-spikes with positive polarization, satisfying the
firing condition of rule +/ā2 → a; 0, enabling one spike to be sent to neuron σlk . In
addition, the neuron σc4 , which contains one anti-spike with neutral polarization, has
the triggering condition of its inhibitory forgetting rule (0, {0,−})/ā→ λ; 0 satisfied,
i.e., PARc4 = 0 ∧ PARc3 /∈ {0,−}, and then it becomes empty without generating
spikes or charges upon the application of the rule. At this point, neuron σc2 also fires
with the application of the rule +/ā→ ā;−. At the next step, neuron σc3 receives one
negative charge from neuron σc2 and becomes neutral, which means that it reverts to
its initial polarization. The received anti-spike is then consumed by the application of
the forgetting rule 0/ā→ λ; 0, and neuron σc3 eventually becomes empty. In general,
this process activates the computational module associated with the instruction lk.

• If the value in register r is n ≥ 1 and correspondingly neuron σr contains n spikes,
then at step t + 1, after receiving an anti-spike from neuron σli , neuron σr consumes
one spike by the application of the annihilation rule aā → λ, and the number of
spikes it contains becomes n− 1. At step t + 2, neuron σc3 only receives one anti-spike
from neuron σc3 and maintains neutral polarization, and then it becomes empty after
applying the forgetting rule 0/ā→ λ; 0. In contrast, the neuron σc4 , which contains one
anti-spike and carries neutral polarization, satisfies simultaneously with its inhibitory
neuron the trigger condition PARc4 = 0 ∧ PARc3 /∈ {+,−} of the inhibitory spiking

Entropy 2022, 24, 834 13 of 24

rule (0, {+,−})/ā→ a; 0, so that one spike can be sent to neuron σlj
. Then, the process

activates the computational module associated with the instruction lj.

In summary, the SUB module successfully simulates the SUB instruction li : (SUB(r), lj, lk).
Similarly, starting from the acceptance of one spike by neuron σli , the instruction lj or lk
successively is simulated depending on the number of spikes (n = 0 or n ≥ 1) contained in
neuron σr, respectively.

Remarkably, during the simulated computation of systematic instructions li : (SUB(r), lj, lk)
by system Π1, there is an unavoidable situation that multiple instructions act on the same register
according to the different instruction labels, so that mutual interference exists in the computation
between the SUB modules. Specifically, for the simulated instruction li : (SUB(r), lj, lk) of the
SUB module shown in Figure 4, there may be another instruction ls acting on the register r as
well. Then, during the simulation of instruction li, for the case where the value stored in register r
is 0, the corresponding neuron σr sends both an anti-spike and a positive charge to auxiliary
neurons σc2 and σc3 in the SUB module associated with instruction ls. Thus neuron σc3

contains one anti-spike and carries positive polarization, which is not enough to apply
the spiking rule +/ā2 → a; 0. As for neuron σc2 , it can apply rule +/ā→ ā;− to send
an anti-spike and a negative charge to neuron σc3 . Subsequently, neuron σc3 contains two
anti-spikes with neutral polarization, turning empty after applying the standard forgetting
rule 0/ā→ λ; 0. As a result, the auxiliary neurons σc2 and σc3 in the SUB module associated
with instruction ls affected by the firing of neuron σr can be restored to their initial state. In
summary, the interference between the SUB modules does not affect the correctness of the
computation process.

(3) The FIN module (Figure 6) outputs the computation result.
If the computation process operates up to the instruction lh, the computation is finished,

and the result is output by the FIN module. At step t, neuron σlh receives one spike, and
the FIN module is activated. At step t + 1, neuron σc3 receives the anti-spikes from neuron
σlh , and the execution of the rule 0/ā→ a; 0 generates one spike. Neurons σc4 , σc5 , and
the output neuron σout fire in the subsequent step. At step t + 4, the output neuron σout
sends its first generating spike into the environment. In addition, starting from step t + 1,
neuron σc1 consumes one anti-spike for firing, neuron σc2 and its inhibitory neuron σc5

also satisfy the triggering condition of the inhibitory spiking rule (0, {0,−})/ā→ ā; 0, i.e.,
PARc2 = 0 ∧ PARc5 /∈ {0,−}. Then neurons σc1 and σc2 begin the process of exchanging
one anti-spike with each other, and they continuously fire. Additionally, at each subsequent
step, neuron σc2 sends one anti-spike to neuron σ1, gradually annihilating the n spikes
contained inside it.

Until step t + n, neuron σ1 becomes empty, but continues to receive anti-spikes from
neuron σc2 . Then, at step t + n + 1, the neuron σ1 is able to trigger the rule 0/ā→ ā; 0, and
sends one anti-spike to neuron σc5 . The excitation condition of the inhibitory spiking rule in
neuron σc2 is then not satisfied at step t + n + 2, as the polarization of neuron σc5 changes to
neutral. However, the inhibitory forgetting rule (0, {+})/ā→ λ; 0 is eventually triggered,
leaving the neuron σc2 empty. At step t + n + 3, the neuron σc5 contains a total of two
anti-spikes and carries negative polarization, allowing the rule −/ā2 → a; 0 to be applied.
Thus, the second spike is sent to the environment by the neuron σout at step t + n + 4. The
calculation result output by this module is (t + n + 4)− (t + 4) = n, which corresponds to
the value in register 1.

In summary, the MPAIRSN P system Π1 correctly simulates the register machine M1
working in the generating mode, which applies three types of polarizations, with, at most,
two rules per neuron in the system. Therefore, Theorem 1 holds. �

The proposal of the MPAIRSN P system is an improvement of the spiking neural P
system with polarization, by introducing membrane potentials to complete the application
of polarization in the SN P system, which makes the model more consistent with biological
facts. Therefore, we compare the required resources (Table 1) of the four SN P systems,
using polarizations as number generating devices. The comparison data are taken from

Entropy 2022, 24, 834 14 of 24

the references. For the computation resources, the comparisons are the maximum number
of rules contained in each neuron, and the number of auxiliary neurons required for each
instruction module.

Table 1. Comparison of the extended SN P systems, with polarizations as number generating devices.

Computing Models
Configuration

Maximum Number of
Rules per Neuron

Auxiliary Neurons
(ADD)

Auxiliary Neurons
(SUB)

Auxiliary Neurons
(FIN)

MPAIRSN P systems 2 5 4 5

PSN P systems [71] 2 5 5 7

PASN P systems [72] 2 4 6 6

SNP–MCP systems [76] 2 4 6 1

PSNRS P systems [77] 2 7 8 5

In terms of the number of neurons needed in each module, the MPAIRSN P system
and the SNP–MCP system use a fewer number of neurons compared to the remaining three
SN P systems with polarizations. The FIN module, which is used to output the result, is
applied only once at the end of the computation process. Then, it is mainly the number of
neurons in the ADD and SUB modules that affect the size of the computation resources.
From the average value of the auxiliary neurons in the two modules, the MPAIRSN P
systems require fewer computational resources.

3.2. The MPAIRSN P System as a Number Accepting Device

The register machine M, operating in accepting mode, serves to receive the natural
number n, with all registers contained being empty in the initial state. The machine
introduces the number n to be analyzed from the environment, stores the value n in the first
register, and then starts the computational work from the execution instruction l0. If the
computation processing of the machine reaches the termination instruction lh, the number
n is considered to be received by the machine M2. The set of numbers that can be received
by the machine M is recorded as Nacc(M).

Theorem 2. N2SNP2
∗ (ch3) = NRE.

Proof. As is similar to the proof of Theorem 1, we only need to prove that the expression
NaccSNP2

∗ ⊆ NRE holds. To simulate the register machine M2 = (m, H, l0, lh, I) operating
in accepting mode, we design the MPAIRSN P system Π2, which serves as a number
accepting device. The system Π2 mainly consists of three types of computing modules: the
deterministic ADD module, the SUB module, and the INPUT module.

(1) The INPUT module (Figure 7) introduces the number n into the system.
Suppose that at step t, the spikes sequence 10n−11 is introduced into the INPUT

module of system Π2. Then, the neuron σin receives the first spike from the environment
and applies the rule 0/a→ a;− to fire. After receiving a negative charge from neuron σin,
neuron σc1 takes the neutral polarization. The membrane potentials of neurons σc2 and σc3

both become −2, where one spike is contained in every neuron. Then, during step t + 2
and subsequent computation steps, since the formula PARc2 = −∧ PARc1 /∈ {−} always
holds, neuron σc2 can continuously apply the inhibitory spiking rule (−, {−})/a→ a; 0
to fire and transmit one spike to the neurons σc2 and σ1. At the same time, neuron σc3 also
applies the rule −/a→ a; 0 to continuously supply spikes to neuron σc2 . Thus, there is a
constant exchange of spikes between neurons σc2 and σc3 , and each step adds one to the
number of spikes contained in neuron σ1.

Entropy 2022, 24, 834 15 of 24

(, (0,0))in

1(, (,1))c + 2(, (,1))c −
3(, (,1))c −

0(, (0,0))l (1, (0,0))

0 ;a a→ −

;0a a− →

a
;0a a− →

(,{ }) ;0a a− − →

(,{ ,0}) ;0a − + →

Figure 7. The INPUT module of system Π2.

At step t + n, neuron σin receives the second spike from the spikes sequence, and
the rule 0/a→ a;− is applied again to generate one negative charge and one spike.
Then at step t + n + 1, neuron σc1 contains one spike and carries the negative polariza-
tion. The rule −/a→ a; 0 is triggered, which sends a generated spike to neuron σl0 .
However, neuron σc2 is no longer able to apply the inhibitory spiking rule, but satisfies
PARc2 = − ∧ PARc1 /∈ {+, 0}. The inhibitory forgetting rule (−, {+, 0})/a→ λ; 0 is
triggered and leaves the neuron σc2 eventually empty. At this point, there are, in total,
n spikes stored in neuron σ1. At the step t + n + 2, neuron σl0 receives one spike, which
excites the module associated with instruction l0 and thus starts the analog computation,
while the number n is introduced into the neuron σ1 in the system.

(2) The deterministic ADD module (Figure 8) to simulate a deterministic ADD in-
struction li : (ADD(r), lj).

The computation process of the register machine M2 in the accepting mode is determin-
istic and uses deterministic ADD instructions. Therefore, to achieve system simplification,
the ADD module no longer applies inhibitory rules. Suppose that at step t neuron σli re-
ceives one spike, and the system starts to simulate instruction li : (ADD(r), lj). by applying
rule 0/a→ a; 0 to send one spike to neurons σlj

and σr. Then, at step t + 1, neuron σlj

is activated, and the system starts to simulate instruction lj while the number of spikes
contained in neuron σr is added by one.

(, (0,0))il

(, (0,0))jl (, (0,0))r

Figure 8. The deterministic ADD module of system Π2.

The SUB module, as shown in Figure 5, remains available for system Π2. Meanwhile,
in system Π2, the FIN module is omitted, but the neuron σlh corresponding to the halt

Entropy 2022, 24, 834 16 of 24

instruction is still retained to determine the acceptance result. The simulation of the system
is terminated when one spike is received by neuron σlh .

In summary, system Π2 successfully simulates the register machine M2 operating in
the accepting mode. In total, three types of polarizations are applied in the system, and
there are, at most, two rules contained in each neuron. Therefore, Theorem 2 is proven.
�

Similarly, we present Table 2 to compare the resources of the MPAIRSN P systems
with three SN P systems containing polarizations as number accepting devices. As can be
seen, the MPAIRSN P system and the PASN P system use the least number of neurons.

Table 2. Comparison of the extended SN P systems with polarizations as number accepting devices.

Computing Models
Computation Resources

Maximum Number of Rules
per Neuron Auxiliary Neurons (ADD) Auxiliary Neurons (INPUT)

MPAIRSN P systems 2 0 3

PASN P systems [72] 2 0 3

SNP–MCP systems [76] 2 2 5

PSNRS P systems [77] 2 2 7

4. A Small General MPAIRSN P System for Function Computation

This section constructs a small general MPAIRSN P system that performs function
calculations.

Theorem 3. There is a Turing universal MPAIRSN P system using three types of polarizations
with 95 neurons for computing functions.

Proof. Similarly, we prove the theorem by designing the MPAIRSN P system to simulate
the register machine Mc = (m, H, l0, lh, I). The machine serves to compute a function
f : Nk → N, in which, in the initial state, k specified registers are used to store k parameters
(usually, the first k registers r1, r2, · · · rk are selected), and the rest of the registers are empty.
The machine operates from the start instruction l0, followed by the execution of different
instructions for processing, and the computation stops when it reaches the halt instruction
lh. At this point, the value of function f is stored in the specified register rt, denoted by
Mc(n1, n2, · · · , nk), where n1, n2, · · · , nk is k parameters. In addition, the machine used for
the functions calculation works in a deterministic manner, so the ADD instruction form
used is li : (ADD(r), lj). If it is assumed that (ϕ0, ϕ1, · · ·) a fixed enumeration of unary
partial recursive functions, for the machine Mc to be universal as a function computing
device, it is necessary that there exists a recursive function g, such that the equation
ϕx(y) = Mc(g(x), y) holds for all natural numbers x, y.

According to the small universal register machine Mu = (8, H, l0, lh, I) proposed
by Korec [81], it contains eight registers (marked from 0 to 7) and 23 instructions. The
machine firstly stores the parameters g(x) and y in registers 1 and 2, respectively, and the
computation result ϕx(y) is stored in register 0. Similarly, an MPAIRSN P system Π3 is
constructed to simulate the register machine Mu. To facilitate the system construction,
the machine Mu is modified by adding a new register 8 and replacing the original halt
instruction with the instructions l22 : (SUB(0), l23, lh), l23 : (ADD(8), l22), lh : HALT. The
modified register machine M′u is shown in Figure 9, containing 24 ADD instructions and
SUB instructions, 9 registers, and 25 labels.

Entropy 2022, 24, 834 17 of 24

0 1 2
: ((1), ,)l SUB l l

1 0
: ((7),)l ADD l

2 3
: ((6),)l ADD l 3 2 4

: ((5), ,)l SUB l l

4 5 3
: ((6), ,)l SUB l l

5 6
: ((5),)l ADD l

6 7 8
: ((7), ,)l SUB l l

7 4
: ((1),)l ADD l

8 9 0
: ((6), ,)l SUB l l

9 10
: ((6),)l ADD l

10 0 11
: ((4), ,)l SUB l l

11 12 13
: ((5), ,)l SUB l l

12 14 15
: ((5), ,)l SUB l l 13 18 19

: ((2), ,)l SUB l l

14 16 17
: ((5), ,)l SUB l l

15 18 20
: ((3), ,)l SUB l l

16 11
: ((4),)l ADD l

17 21
: ((2),)l ADD l

18 0 22
: ((4), ,)l SUB l l

19 0 18
: ((0), ,)l SUB l l

20 0
: ((0),)l ADD l

21 18
: ((3),)l ADD l

22 23
: ((0), ,)

h
l SUB l l

23 22
: ((8),)l ADD l

:
h

l HALT

Figure 9. The universal register machine M′u.

The overall composition of the small general MPAIRSN P system Π3 (Figure 10)
contains three main parts: the first is the INPUT module for reading the parameters
encoded as spike sequences from the environment, the second is the simulation part of the
register machine, which contains several deterministic ADD modules and SUB modules,
and the third is the OUTPUT module for outputting the calculation results. The operation
of the system begins with the parameters introduction phase, in which the neuron σin in
the INPUT module reads the spikes sequence. The spikes of amount g(x) and the spikes
of amount y are introduced into neurons σ1 and σ2, respectively, as well as activating
neuron σl0 . The system then proceeds to the register machine simulation phase. In this
phase, a series of calculations are performed on the introduced parameters by simulating
various instructions, and the final result is stored in neuron σ8. Until neuron σlh is activated,
the system calculation enters the result output phase. The neuron σout outputs spikes to
the environment in the OUTPUT module. We record the entire spikes received in the
environment as the output result, corresponding to the value of the calculation result stored
in register 8.

() 1 110 10 1g x y− −

(, (0,0))in

Module INPUT

a ()g xa ya

Register machine simulator

0(, (0,0))l (1, (0,0)) (2, (0,0))

(8, (0,0))(0, (0,0))

(, (0,0))out

Module OUTPUT

1 0n

Figure 10. The overall construction of the MPAIRSN P system Π3.

Entropy 2022, 24, 834 18 of 24

(1) The INPUT module (Figure 11) for reading the spikes sequence 10g(x)10y1 of
encoded parameters from the environment.

Suppose that at step t, neuron σin receives the first spike in the sequence from the
environment and fires. Then at step t + 1, influenced by the firing of neuron σin, neurons
σc2 , σc3 , and σc4 all change to carry the neutral polarization. Thus, neurons σc3 and σc4

are available to trigger rules 0/a→ ā; 0 and 0/ā→ a; 0, respectively, and the process of
exchanging a spike and an anti-spike is continuously implemented in the subsequent steps.
At the same time, one spike is continuously transmitted to neuron σ1 at each step. However,
for neuron σc2 , although it continuously receives spikes from neuron σc3 , all these spikes
are deleted by the application of its internal forgetting rule 0/ā→ λ; 0.

(, (0,0))in

0(, (0,0))l

1(, (,1))c +5(, (0,0))c

2(, (,1))c +
3(, (,1))c + 4(, (,1))c +

(1, (0,0))(2, (0,0))

0 ;a a→ −3 ;a a− → −;0a a− →

0 ;0a a→

;0a a− →
;0a − →

0 ;0a a→

2a0 ;0a →

(,{ , }) ;0a a− + − →

(,{ ,0}) ;0a − + →

3a

Figure 11. The INPUT module of system Π3.

The above process proceeds until step t + g(x), neuron σin receives the second spike
in the spikes sequence and fires, and its firing produces one spike and a negative charge
sent to neurons σc1 , σc2 , σc3 , and σc4 . Subsequently, the polarization states of neurons σc2 ,
σc3 , and σc4 all turn negative. Then, the rule capable of triggering in neuron σc4 is the
forgetting rule −/ā→ λ; 0, and it is no longer sending spikes to neuron σ1. At this point,
the number of stored spikes in neuron σ1 is exactly g(x). Additionally, the neuron σc2

satisfies the triggering condition of its internal inhibitory rule (−, {+,−})/ā→ a; 0, i.e.,
the formula PARc2 = −∧ PARc5 /∈ {+,−} holds. Meanwhile, the rule applied by neuron
σc3 with negative polarization is −/a→ ā; 0. Then, in the subsequent steps, the mutual
replenishment of spikes and ani-spikes between neurons σc2 and σc3 is achieved, and one
spike is sent from neuron σc2 to neuron σ2 at each step.

At step t + g(x) + y, the neuron σin receives the last spike in the spikes sequence and
fires. Then, the polarization state of neuron σc1 and the number of spikes contained are
sufficient for triggering the rule−/a3 → a;−. At step t+ g(x)+ y+ 2, the polarization state
of neuron σc5 becomes negatively influenced by the firing of the neuron σc1 . Additionally,
the received spike in neuron σc1 is subsequently consumed by the application of rule
−/a→ a; 0. In the subsequent computation steps, the spikes or anti-spikes contained in
neurons σc2 , σc3 , and σc4 are cleared by the application annihilation rule, the forgetting
rule, and the inhibitory forgetting rule, respectively. The neuron σl0 is activated at step
t + g(x) + y + 3, while the numbers of spikes stored in neurons σ1 and σ2 at this step are
g(x) and y, respectively. The above procedure successfully simulates the introduction of
parameters g(x) and y into registers 1 and 2, respectively, and starts the simulation of the
system Π3.

Similarly, the ADD module, as shown in Figure 7, is applied in system Π3 to simulate
the deterministic ADD instruction of the machine M′u. The SUB module, as shown in
Figure 4, remains available for system Π3 to simulate the SUB instruction. The proof
process has been illustrated in detail in the previous section.

(2) The OUTPUT module (Figure 12) outputs the result of the system calculation.
Assuming that the neuron σlh is triggered and fires at step t, then at step t + 1, after

receiving an anti-spike from neuron σlh , the neuron σ8 consumes one spike by annihilation,

Entropy 2022, 24, 834 19 of 24

where the number of spikes contained turns to n− 1. Neurons σc1 and σc2 are allowed to
trigger the spiking rule 0/ā→ ā; 0 and the inhibitory spiking rule (0, {0,−})/ā→ ā; 0,
respectively, thus enabling the two neurons to replenish spikes to each other and to fire
at each step. One spike is sent by neuron σc2 to neuron σ8 at each step to successively
annihilate its internal spikes. In addition, neuron σc3 also receives an anti-spike from
neuron σc1 at each step, continuously applying rule +/ā→ a; 0 to fire. Consequently, the
neuron σc3 feeds one spike to neuron σout at each step, which subsequently triggers the rule
0/a→ a; 0 in neuron σout. The spikes generated by neuron σout at each step are received in
the environment, starting at step t + 4.

(, (0,0))hl

(, (0,0))out

(8, (0,0))

3(, (,1))c +

1(, (0,0))c 2(, (0,0))c

0 ;0a a→

0 ;0a a→ 0 ;a → −
(0,{0, }) ;0a a− →

(0,{ }) ;0a + →

;0a − →

;0a a+ →
0 ;0a a→

Figure 12. The OUTPUT module of system Π3.

The above process continues until step t + n, when the spikes contained in neuron
σ8 are completely annihilated and left empty, but one anti-spike from neuron σc2 is still
received. Subsequently, the neuron σ8 applies rule 0/ā→ λ;− to fire, and delivers a
negative charge to neuron σc3 to change its polarization. The neuron σc3 only applies the
forgetting rule −/ā→ λ; 0 after its polarization changes to negative without sending any
spikes to the neuron σout. In addition, influenced by the changed polarization state of
neuron σc3 , i.e., the formula αc2 = 0∧ αc3 /∈ {+} holds, only the inhibitory forgetting rule
(0, {+})/ā→ λ; 0 is triggered in neuron σc2 , ensuring subsequent steps to clear neurons
σc1 and σc2 . At step t + n + 3, the environment receives the last spike from neuron σout. The
cumulative number of spikes received is (t + n + 3)− (t + 4) + 1 = n, which is exactly
the number of spikes contained in neuron σ8. That is, the module successfully outputs the
computation result stored in register 8.

To summarize, the small universal proposed MPAIRSN P system Π3 is capable of
correctly simulating the universal register machine M′u used for function computation. The
required computational resources for this system are 98 neurons, which can be subdivided
as shown in Table 3.

Table 3. Computing resources required for the PAWSN P system Π3.

Components of the PAWSN P System Π3 Number of Neurons

Registers 9

Instruction labels 25

Auxiliary neurons required for SUB modules 56

Neurons required for INPUT modules 5

Neurons required for OUTPUT modules 3

Moreover, observing the characteristics of the instructions of the universal register
machine M′u applied in Figure 9, the number of neurons needed for system Π3 is re-
duced by integrating the SUB and ADD modules, which correspond to consecutive pairs
of instructions.

Entropy 2022, 24, 834 20 of 24

(1) As for a pair of consecutive ADD instructions: l17 : (ADD(2), l21) and l21 :
(ADD(3), l18), the ADD-ADD module, as shown in Figure 13, is constructed for simu-
lation. In this way, the neuron σl21 in the system is omitted.

17(, (0,0))l

0 ;0a a→

(2, (0,0))
18(, (0,0))l (3, (0,0))

Figure 13. The ADD-ADD module of system Π3.

(2) For two consecutive pairs of ADD-SUB instructions in M′u: l5 : (ADD(5), l6) and
l6 : (SUB(7), l7, l8), l9 : (ADD(6), l10) and l10 : (SUB(4), l0, l11), both having the same
form: li : (ADD(r1), lj) and lj : (SUB(r2), lg, lk). For this purpose, the ADD-SUB module,
as shown in Figure 14, allows the for merging of two modules. In this way, neurons σl6 and
σl10 are omitted.

(, (0,0))il

(, (0,0))kl

1(, (0,0))c

2(, (,1))c +
3(, (0,0))c 4(, (0,0))c

0 ;0a a→

0 ;0a a→0 ;a a→ +

;a a+ → −

2 ;0a a+ →

0 ;0a →

(0,{ , }) ;0a a+ − →

(0,{0, }) ;0a − →

2(, (0,0))r

(, (0,0))gl1(, (0,0))r

Figure 14. The ADD-SUB module of system Π3.

Thus, with the construction of the corresponding composite modules for consecutive
pairs of instructions, the total number of neurons used by the system can be reduced by
3: one neuron is saved by the application of the ADD-ADD module, and two neurons
are saved by the application of the ADD-SUB module. Thus, the system for function
computation achieves universality by applying three types of polarizations and 95 neurons.
In summary, Theorem 3 is proven. �

For the required computation resources and the computation speed, Table 4 shows
the result of the proposed MPAIRSN P systems with four extended SN P systems, with
polarizations for function computing. It should be noted that the computation resources
here are the total number of neurons required for the systems to implement the function
computation. The computation speed is the number of steps required by completing the

Entropy 2022, 24, 834 21 of 24

computation. As is seen, compared to the remaining four SN P systems, the number
of neurons used in the proposed MPAIRSN P system is still minimal. Moreover, the
MPAIRSN P systems require the least number of steps to perform the computation, i.e., the
computation is relatively faster.

Table 4. Comparison of the extended SN P systems with polarizations for computing functions.

Computing Models Number of Neurons Computation Speed

MPAIRSN P systems 95 g(x) + y + n + 58

PSN P systems [71] 164 g(x) + y + n + 128

PASN P systems [72] 121 g(x) + y + n + 72

SNP–MCP systems [76] 150 g(x) + y + n + 66

PSNRS P systems [77] 151 g(x) + y + n + 93

5. Conclusions

In this paper, the concept of the membrane potential of nerve cells is introduced into
the spiking neural P system, and the biological phenomena of charge accumulation and
transmission between neurons are considered based on the spiking neural P systems with
polarizations. Combining these ideas, a new variant called spiking neural P systems with
membrane potential, inhibitory rules, and anti-spikes (MPAIRSN P systems for short) is
proposed. The system adopts membrane potential as the rule-triggering condition and
uses inhibitory rules to simulate the role of inhibitory synapses in the nervous system,
which makes the construction and operation of the system more consistent with biological
facts. The application of anti-spikes makes the system available with another information-
encoding object, which simplifies the system construction and enhances the information
representation capability of the system. The introduction of membrane potentials and the
application of inhibitory rules provide the MPAIRSN P systems with more powerful control
in computation.

We first give a formal definition of the MPAIRSN P system, and we update the novel
inhibitory rule with membrane potential as the trigger condition. The conventions for
neuronal charge calculation are given for determining neuron-associated polarization. By
simplifying rules with polarization as the trigger condition, we design a small MPAIRSN P
system as an illustrative example to detail its operation, which is equipped with the ability
to generate arbitrary non-zero natural numbers. We demonstrate that MPAIRSN P systems
are Turing-universal, as both a number generating and accepting device. A small universal
MPAIRSN P system using 95 neurons is obtained, which saves 69 neurons compared to the
initial spiking neural P systems with polarizations. By comparing the MPAIRSN P systems
with other variants of the SN P systems with polarizations, it is shown that the MPAIRSN
P systems have better performance, both in space efficiency and computation speed.

The MPAIRSN P system constructed in this paper mainly applies the standard spiking
rules, and it is worth considering the use of extended rules in the system. It is also
worthwhile to further investigate the computational power of the MPAIRSN P systems
operating in other modes, such as sequential mode, asynchronous mode, etc. To reduce the
number of polarizations and neurons needed, further research could consider introducing
more biological features into the system without losing computational power, which
allows the system to better approximate the biological facts. The spiking neural P systems
with membrane potential, as a new variant, introduce a novel systematic rule-triggering
mechanism, which is of novelty and development potential. It is worth considering the
application of the spiking neural P systems with membrane potential to solve NP problems.
Moreover, given that the MPAIRSN P systems provide powerful control over computation,
it is practicable to apply them to real-world problems such as supervisory control and
fault diagnosis.

Entropy 2022, 24, 834 22 of 24

Author Contributions: Conceptualization, Y.L. and Y.Z.; methodology, Y.L. and Y.Z.; software, Y.L.;
validation, Y.L.; formal analysis, Y.L.; writing—original draft preparation, Y.L.; writing—review and
editing, Y.L. and Y.Z.; supervision, Y.L.; project administration, Y.Z.; funding acquisition, Y.Z. All
authors have read and agreed to the published version of the manuscript.

Funding: This work was supported in part by the National Natural Science Foundation of China (No.
61806114, 61472231, 61876101, 61602282, 61402187, 61502283, 61802234, and 61703251), and the China
Postdoctoral Science Foundation (No. 2018M642695 and 2019T120607).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: No datasets were used in this article.

Conflicts of Interest: The authors declare no conflict to interest.

References
1. Maass, W. Networks of spiking neurons: The third generation of neural network models. Neural Netw. 1997, 10, 1659–1671.

[CrossRef]
2. Păun, G. Computing with membranes. J. Comput. Syst. Sci. 2000, 61, 108–143. [CrossRef]
3. Liu, L.; Yi, W.; Yang, Q.; Peng, H.; Wang, J. Small Universal Numerical P Systems with Thresholds for Computing Functions.

Fundam. Inform. 2020, 176, 43–59. [CrossRef]
4. Zhang, Z.; Su, Y.; Pan, L. The computational power of enzymatic numerical P systems working in the sequential mode. Theor.

Comput. Sci. 2018, 724, 3–12. [CrossRef]
5. Liu, L.; Yi, W.; Yang, Q.; Peng, H.; Wang, J. Numerical P systems with Boolean condition. Theor. Comput. Sci. 2019, 785, 140–149.

[CrossRef]
6. Jiang, S.; Wang, Y.; Xu, F.; Deng, J. Communication P Systems with Channel States Working in Flat Maximally Parallel Manner.

Fundam. Inform. 2019, 168, 1–24. [CrossRef]
7. Zeng, X.; Pan, L.; Perez-Jimenez, M.J. Small universal simple spiking neural P systems with weights. Sci. China-Inf. Sci. 2014, 57,

1–11. [CrossRef]
8. Zhang, Z.; Wu, T.; Păun, A.; Pan, L. Universal enzymatic numerical P systems with small number of enzymatic variables. Sci.

China-Inf. Sci. 2018, 61, 1–12. [CrossRef]
9. Song, B.; Kong, Y. Solution to PSPACE-Complete Problem Using P Systems with Active Membranes with Time-Freeness. Math.

Probl. Eng. 2019, 2019, 5793234. [CrossRef]
10. Pan, L.; Song, B. P Systems with Rule Production and Removal. Fundam. Inform. 2020, 171, 313–329. [CrossRef]
11. Orellana-Martín, D.; Valencia-Cabrera, L.; Riscos-Núñez, A.; Pérez-Jiménez, M.J. Membrane Creation in Polarizationless P

Systems with Active Membranes. Fundam. Inform. 2020, 171, 297–311. [CrossRef]
12. Orellana-Martín, D.; Valencia-Cabrera, L.; Riscos-Núñez, A.; Pérez-Jiménez, M.J. The Unique Satisfiability Problem from a

Membrane Computing Perspective. Rom. J. Inf. Sci. Technol. 2018, 21, 288–297.
13. Orellana-Martín, D.; Martínez-del Amor, M.A.; Pérez-Hurtado, I.; Riscos-Núñez, A.; Valencia-Cabrera, L.; Pérez-Jiménez, M.J.

When object production tunes the efficiency of membrane systems. Theor. Comput. Sci. 2020, 805, 218–231. [CrossRef]
14. Buño, K.C.; Cabarle, F.G.C.; Calabia, M.D.; Adorna, H.N. Solving the N-Queens problem using dP systems with active membranes.

Theor. Comput. Sci. 2018, 736, 1–14. [CrossRef]
15. Luo, Y.; Tan, H.; Zhang, Y.; Jiang, Y. The computational power of timed P systems with active membranes using promoters. Math.

Struct. Comput. Sci. 2019, 29, 663–680. [CrossRef]
16. Guo, P.; Zhu, J.; Chen, H.; Yang, R. A Linear-Time Solution for All-SAT Problem Based on P System. Chin. J. Electron. 2018,

27, 367–373. [CrossRef]
17. Díaz-Pernil, D.; Christinal, H.A.; Gutiérrez-Naranjo, M.A. Solving the 3-COL problem by using tissue P systems without

environment and proteins on cells. Inf. Sci. 2018, 430–431, 240–246. [CrossRef]
18. Ye, L.; Zheng, J.; Guo, P.; Pérez-Jiménez, M.J. Solving the 0–1 Knapsack Problem by Using Tissue P System with Cell Division.

IEEE Access 2019, 7, 66055–66067. [CrossRef]
19. Song, B.; Zeng, X.; Rodríguez-Patón, A. Monodirectional tissue P systems with channel states. Inf. Sci. 2021, 546, 206–219.

[CrossRef]
20. Song, B.; Zeng, X. Solving a PSPACE-complete problem by symport/antiport P systems with promoters and membrane division.

J. Membr. Comput. 2021, 3, 296–302. [CrossRef]
21. Wang, X.; Zhang, G.; Gou, X.; Paul, P.; Neri, F.; Rong, H.; Yang, Q.; Zhang, H. Multi-behaviors coordination controller design with

enzymatic numerical P systems for robots. Integr.-Comput.-Aided Eng. 2021, 28, 119–140. [CrossRef]
22. Xu, J.; Huang, Y.; Liu, Y. Attitude Optimization Control of Unmanned Helicopter in Coal Mine Using Membrane Computing.

Math. Probl. Eng. 2020, 2020, 3820896. [CrossRef]

http://doi.org/10.1016/S0893-6080(97)00011-7
http://dx.doi.org/10.1006/jcss.1999.1693
http://dx.doi.org/10.3233/FI-2020-1962
http://dx.doi.org/10.1016/j.tcs.2017.12.016
http://dx.doi.org/10.1016/j.tcs.2019.03.021
http://dx.doi.org/10.3233/FI-2019-1821
http://dx.doi.org/10.1007/s11432-013-4848-z
http://dx.doi.org/10.1007/s11431-017-9187-y
http://dx.doi.org/10.1155/2019/5793234
http://dx.doi.org/10.3233/FI-2020-1885
http://dx.doi.org/10.3233/FI-2020-1884
http://dx.doi.org/10.1016/j.tcs.2018.04.013
http://dx.doi.org/10.1016/j.tcs.2017.12.013
http://dx.doi.org/10.1017/S0960129518000282
http://dx.doi.org/10.1049/cje.2018.01.008
http://dx.doi.org/10.1016/j.ins.2017.11.022
http://dx.doi.org/10.1109/ACCESS.2019.2917889
http://dx.doi.org/10.1016/j.ins.2020.08.030
http://dx.doi.org/10.1007/s41965-021-00084-0
http://dx.doi.org/10.3233/ICA-200627
http://dx.doi.org/10.1155/2020/3820896

Entropy 2022, 24, 834 23 of 24

23. Niu, Y.; Zhang, Y.; Zhang, J.; Xiao, J. Running Cells with Decision-Making Mechanism: Intelligence Decision P System for
Evacuation Simulation. Int. J. Comput. Commun. Control 2018, 13, 865–880. [CrossRef]

24. Sapp, K.; Sodt, A.J.; Maibaum, L. Modeling Relaxation Timescales of Coupled Membrane/Protein Systems. Biophys. J. 2019,
116, 363a. [CrossRef]

25. Liu, W.; Wang, T.; Zang, T.; Huang, Z.; Wang, J.; Huang, T.; Wei, X.; Li, C. A Fault Diagnosis Method for Power Transmission
Networks Based on Spiking Neural P Systems with Self-Updating Rules considering Biological Apoptosis Mechanism. Complexity
2020, 2020, 2462647. [CrossRef]

26. Gheorghe, M.; Ceterchi, R.; Ipate, F.; Konur, S.; Lefticaru, R. Kernel P systems: From modelling to verification and testing. Theor.
Comput. Sci. 2018, 724, 45–60. [CrossRef]

27. Hao, L.; Liu, J. Enhanced Membrane Computing Algorithm for SAT Problems Based on the Splitting Rule. Symmetry 2019, 11,
1412. [CrossRef]

28. Zhu, M.; Yang, Q.; Dong, J.; Zhang, G.; Gou, X.; Rong, H.; Paul, P.; Neri, F. An Adaptive Optimization Spiking Neural P System
for Binary Problems. Int. J. Neural Syst. 2021, 31, 20500549. [CrossRef]

29. Ramachandranpillai, R.; Arock, M. Spiking neural firefly optimization scheme for the capacitated dynamic vehicle routing
problem with time windows. Neural Comput. Appl. 2021, 33, 409–432. [CrossRef]

30. Zhao, Y.; Liu, X.; Li, X. An improved DBSCAN algorithm based on cell-like P systems with promoters and inhibitors. PLoS ONE
2018, 13, e0200751. [CrossRef]

31. Yang, J.; Peng, H.; Luo, X.; Wang, J. Stochastic Numerical P Systems With Application in Data Clustering Problems. IEEE Access
2020, 8, 31507–31518. [CrossRef]

32. Luo, Y.; Guo, P.; Zhang, M. A Framework of Ant Colony P System. IEEE Access 2019, 7, 157655–157666. [CrossRef]
33. Liu, X.; Wang, L.; Qu, J.; Wang, N. A Complex Chained P System Based on Evolutionary Mechanism for Image Segmentation.

Comput. Intell. Neurosci. 2020, 2020, 6524919. [CrossRef] [PubMed]
34. Jiang, Z.; Liu, X.; Sun, M. A Density Peak Clustering Algorithm Based on the K-Nearest Shannon Entropy and Tissue-Like P

System. Math. Probl. Eng. 2019, 2019, 1713801. [CrossRef]
35. Jiang, Z.; Liu, X. A Novel Consensus Fuzzy K-Modes Clustering Using Coupling DNA-Chain-Hypergraph P System for

Categorical Data. Processes 2020, 8, 1326. [CrossRef]
36. Guo, P.; Jiang, W.; Liu, Y. A P system for hierarchical clustering. Int. J. Mod. Phys. C 2019, 30, 1950062. [CrossRef]
37. Chen, G.; Hu, J.; Peng, H.; Wang, J.; Huang, X. A Spectral Clustering Algorithm Improved by P Systems. Int. J. Comput. Commun.

Control 2018, 13, 759–771. [CrossRef]
38. Gou, X.; Liu, Q.; Rong, H.; Hu, M.; Paul, P.; Deng, F.; Zhang, X.; Yu, Z. A Novel Spiking Neural P System for Image Recognition.

Int. J. Unconv. Comput. 2021, 16, 121–139.
39. Yuan, J.; Guo, D.; Zhang, G.; Paul, P.; Zhu, M.; Yang, Q. A Resolution-Free Parallel Algorithm for Image Edge Detection within

the Framework of Enzymatic Numerical P Systems. Molecules 2019, 24, 1235. [CrossRef]
40. Li, B.; Peng, H.; Luo, X.; Wang, J.; Song, X.; Pérez-Jiménez, M.J.; Riscos-Núñez, A. Medical Image Fusion Method Based on

Coupled Neural P Systems in Nonsubsampled Shearlet Transform Domain. Int. J. Neural Syst. 2021, 31, 2050050. [CrossRef]
41. Aman, B.; Ciobanu, G. Spiking Neural P Systems with Astrocytes Producing Calcium. Int. J. Neural Syst. 2020, 30, 2050066.

[CrossRef] [PubMed]
42. Bîlbîe, F.D.; Păun, A. Small SNQ P Systems with multiple types of spikes. Theor. Comput. Sci. 2021, 862, 14–23. [CrossRef]
43. Zeng, X.; Zhang, X.; Song, T.; Pan, L. Spiking Neural P Systems with Thresholds. Neural Comput. 2014, 26, 1340–1361. [CrossRef]

[PubMed]
44. Peng, H.; Wang, J.; Pérez-Jiménez, M.J.; Riscos-Núñez, A. Dynamic threshold neural P systems. Knowl.-Based Syst. 2019,

163, 875–884. [CrossRef]
45. Wu, T.; Zhang, L.; Pan, L. Spiking neural P systems with target indications. Theor. Comput. Sci. 2021, 862, 250–261. [CrossRef]
46. Song, T.; Gong, F.; Liu, X.; Zhao, Y.; Zhang, X. Spiking Neural P Systems with White Hole Neurons. IEEE Trans. Nanobiosci. 2016,

15, 666–673. [CrossRef]
47. Wu, T.; Lyu, Q.; Pan, L. Evolution-Communication Spiking Neural P Systems. Int. J. Neural Syst. 2021, 31, 20500641. [CrossRef]
48. Yang, Q.; Li, B.; Huang, Y.; Peng, H.; Wang, J. Spiking neural P systems with structural plasticity and anti-spikes. Theor. Comput.

Sci. 2020, 801, 143–156. [CrossRef]
49. Cabarle, F.G.C.; Adorna, H.N.; Pérez-Jiménez, M.J.; Song, T. Spiking neural P systems with structural plasticity. Neural Comput.

Appl. 2015, 26, 1905–1917. [CrossRef]
50. Lv, Z.; Bao, T.; Zhou, N.; Peng, H.; Huang, X.; Riscos-Núñez, A.; Pérez-Jiménez, M.J. Spiking Neural P Systems with Extended

Channel Rules. Int. J. Neural Syst. 2021, 31, 20500495. [CrossRef]
51. Song, X.; Valencia-Cabrera, L.; Peng, H.; Wang, J.; Pérez-Jiménez, M.J. Spiking Neural P Systems with Delay on Synapses. Int. J.

Neural Syst. 2021, 31, 2050042. [CrossRef] [PubMed]
52. Garcia, L.; Sanchez, G.; Vazquez, E.; Avalos, G.; Anides, E.; Nakano, M.; Sanchez, G.; Perez, H. Small universal spiking neural

P systems with dendritic/axonal delays and dendritic trunk/feedback. Neural Netw. Off. J. Int. Netw. Soc. 2021, 138, 126–139.
[CrossRef] [PubMed]

53. Zhang, X.; Wang, B.; Pan, L. Spiking Neural P Systems with a Generalized Use of Rules. Neural Comput. 2014, 26, 2925–2943.
[CrossRef] [PubMed]

http://dx.doi.org/10.15837/ijccc.2018.5.3223
http://dx.doi.org/10.1016/j.bpj.2018.11.1975
http://dx.doi.org/10.1155/2020/2462647
http://dx.doi.org/10.1016/j.tcs.2017.12.010
http://dx.doi.org/10.3390/sym11111412
http://dx.doi.org/10.1142/S0129065720500549
http://dx.doi.org/10.1007/s00521-020-04983-8
http://dx.doi.org/10.1371/journal.pone.0200751
http://dx.doi.org/10.1109/ACCESS.2020.2973613
http://dx.doi.org/10.1109/ACCESS.2019.2949952
http://dx.doi.org/10.1155/2020/6524919
http://www.ncbi.nlm.nih.gov/pubmed/32831818
http://dx.doi.org/10.1155/2019/1713801
http://dx.doi.org/10.3390/pr8101326
http://dx.doi.org/10.1142/S0129183119500621
http://dx.doi.org/10.15837/ijccc.2018.5.3238
http://dx.doi.org/10.3390/molecules24071235
http://dx.doi.org/10.1142/S0129065720500501
http://dx.doi.org/10.1142/S0129065720500665
http://www.ncbi.nlm.nih.gov/pubmed/33213234
http://dx.doi.org/10.1016/j.tcs.2020.10.014
http://dx.doi.org/10.1162/NECO_a_00605
http://www.ncbi.nlm.nih.gov/pubmed/24708366
http://dx.doi.org/10.1016/j.knosys.2018.10.016
http://dx.doi.org/10.1016/j.tcs.2020.07.016
http://dx.doi.org/10.1109/TNB.2016.2598879
http://dx.doi.org/10.1142/S0129065720500641
http://dx.doi.org/10.1016/j.tcs.2019.08.034
http://dx.doi.org/10.1007/s00521-015-1857-4
http://dx.doi.org/10.1142/S0129065720500495
http://dx.doi.org/10.1142/S0129065720500422
http://www.ncbi.nlm.nih.gov/pubmed/32701003
http://dx.doi.org/10.1016/j.neunet.2021.02.010
http://www.ncbi.nlm.nih.gov/pubmed/33639581
http://dx.doi.org/10.1162/NECO_a_00665
http://www.ncbi.nlm.nih.gov/pubmed/25149700

Entropy 2022, 24, 834 24 of 24

54. Lv, Z.; Kou, J.; Yi, W.; Peng, H.; Song, X.; Wang, J. Sequential Coupled Neural P Systems. Int. J. Unconv. Comput. 2020, 15, 157–191.
55. Zhang, X.; Luo, B.; Fang, X.; Pan, L. Sequential spiking neural P systems with exhaustive use of rules. Biosystems 2012, 108, 52–62.

[CrossRef]
56. Wang, L.; Liu, X.; Zhao, Y. Universal Nonlinear Spiking Neural P Systems with Delays and Weights on Synapses. Comput. Intell.

Neurosci. 2021, 2021, 3285719. [CrossRef]
57. Song, T.; Luo, L.; He, J.; Chen, Z.; Zhang, K. Solving Subset Sum Problems by Time-free Spiking Neural P Systems. Appl. Math.

Inf. Sci. 2014, 8, 327–332. [CrossRef]
58. Zeng, X.; Song, T.; Zhang, X.; Pan, L. Performing Four Basic Arithmetic Operations with Spiking Neural P Systems. IEEE Trans.

Nanobiosci. 2012, 11, 366–374. [CrossRef]
59. Zhang, X.; Zeng, X.; Luo, B.; Xu, J. Several Applications of Spiking Neural P Systems with Weights. J. Comput. Theor. Nanosci.

2012, 9, 769–777. [CrossRef]
60. Zhang, G.; Zhang, X.; Rong, H.; Paul, P.; Zhu, M.; Neri, F.; Ong, Y.S. A Layered Spiking Neural System for Classification Problems.

Int. J. Neural Syst. 2022, 2022, 2250023. [CrossRef]
61. Huang, Z.; Wang, T.; Liu, W.; Valencia-Cabrera, L.; Perez-Jimenez, M.J.; Li, P. A Fault Analysis Method for Three-Phase Induction

Motors Based on Spiking Neural P Systems. Complexity 2021, 2021, 2087027. [CrossRef]
62. Rong, H.; Yi, K.; Zhang, G.; Dong, J.; Paul, P.; Huang, Z. Automatic Implementation of Fuzzy Reasoning Spiking Neural P

Systems for Diagnosing Faults in Complex Power Systems. Complexity 2019, 2019, 2635714. [CrossRef]
63. Song, T.; Pan, L.; Wu, T.; Zheng, P.; Wong, M.L.D.; Rodriguez-Paton, A. Spiking Neural P Systems with Learning Functions. IEEE

Trans. Nanobiosci. 2019, 18, 176–190. [CrossRef] [PubMed]
64. Xue, J.; Wang, Z.; Kong, D.; Wang, Y.; Liu, X.; Fan, W.; Yuan, S.; Niu, S.; Li, D. Deep ensemble neural-like P systems for

segmentation of central serous chorioretinopathy lesion. Inf. Fusion 2021, 65, 84–94. [CrossRef]
65. Cai, Y.; Mi, S.; Yan, J.; Peng, H.; Luo, X.; Yang, Q.; Wang, J. An unsupervised segmentation method based on dynamic threshold

neural P systems for color images. Inf. Sci. 2022, 587, 473–484. [CrossRef]
66. Song, T.; Pang, S.; Hao, S.; Rodriguez-Paton, A.; Zheng, P. A Parallel Image Skeletonizing Method Using Spiking Neural P

Systems with Weights. Neural Process. Lett. 2019, 50, 1485–1502. [CrossRef]
67. Song, T.; Zeng, X.; Zhang, P.; Jiang, M.; Rodríguez-Patón, A. A Parallel Workflow Pattern Modeling Using Spiking Neural P

Systems With Colored Spikes. IEEE Trans. Nanobiosci. 2018, 17, 474–484. [CrossRef]
68. Liu, Q.; Long, L.; Yang, Q.; Peng, H.; Wang, J.; Luo, X. LSTM-SNP: A long short-term memory model inspired from spiking

neural P systems. Knowl.-Based Syst. 2022, 235, 107656. [CrossRef]
69. Long, L.; Liu, Q.; Peng, H.; Yang, Q.; Luo, X.; Wang, J.; Song, X. A Time Series Forecasting Approach Based on Nonlinear Spiking

Neural Systems. Int. J. Neural Syst. 2022, 2022, 2250020. [CrossRef]
70. Liu, Q.; Long, L.; Peng, H.; Wang, J.; Yang, Q.; Song, X.; Riscos-Nunez, A.; Perez-Jimenez, M.J. Gated Spiking Neural P Systems

for Time Series Forecasting. IEEE Trans. Neural Netw. Learn. Syst. 2021. [CrossRef]
71. Wu, T.; Paun, A.; Zhang, Z.; Pan, L. Spiking Neural P Systems with Polarizations. IEEE Trans. Neural Netw. Learn. Syst. 2018,

29, 3349–3360. [CrossRef] [PubMed]
72. Wu, T.; Zhang, T.; Xu, F. Simplified and yet Turing universal spiking neural P systems with polarizations optimized by anti-spikes.

Neurocomputing 2020, 414, 255–266. [CrossRef]
73. Wu, T.; Pan, L.; Alhazov, A. Computation power of asynchronous spiking neural P systems with polarizations. Theor. Comput.

Sci. 2019, 777, 474–489. [CrossRef]
74. Wu, T.; Pan, L. The computation power of spiking neural P systems with polarizations adopting sequential mode induced by

minimum spike number. Neurocomputing 2020, 401, 392–404. [CrossRef]
75. Liu, L.; Jiang, K. Universality of spiking neural P systems with polarizations working in sequential mode induced by maximum

spike number. J. Membr. Comput. 2021, 4, 56–67. [CrossRef]
76. Yang, Q.; Lv, Z.; Liu, L.; Peng, H.; Song, X.; Wang, J. Spiking neural P systems with multiple channels and polarizations. Biosystems

2019, 185, 104020. [CrossRef]
77. Jiang, S.; Fan, J.; Liu, Y.; Wang, Y.; Xu, F. Spiking Neural P Systems with Polarizations and Rules on Synapses. Complexity 2020,

2020, 8742308. [CrossRef]
78. Gutkin, B.; Ermentrout, G.B. Neuroscience - Spikes too kinky in the cortex? Nature 2006, 440, 999–1000. [CrossRef]
79. Peng, H.; Li, B.; Wang, J.; Song, X.; Wang, T.; Valencia-Cabrera, L.; Pérez-Hurtado, I.; Riscos-Núñez, A.; Pérez-Jiménez, M.J.

Spiking neural P systems with inhibitory rules. Knowl.-Based Syst. 2020, 188, 105064. [CrossRef]
80. Ionescu, M.; Păun, G.; Yokomori, T. Spiking Neural P Systems. Fundam. Inform. 2006, 71, 279–308.
81. Korec, I. Small universal register machines. Theor. Comput. Sci. 1996, 168, 267–301. [CrossRef]

http://dx.doi.org/10.1016/j.biosystems.2012.01.007
http://dx.doi.org/10.1155/2021/3285719
http://dx.doi.org/10.12785/amis/080140
http://dx.doi.org/10.1109/TNB.2012.2211034
http://dx.doi.org/10.1166/jctn.2012.2094
http://dx.doi.org/10.1142/S012906572250023X
http://dx.doi.org/10.1155/2021/2087027
http://dx.doi.org/10.1155/2019/2635714
http://dx.doi.org/10.1109/TNB.2019.2896981
http://www.ncbi.nlm.nih.gov/pubmed/30716044
http://dx.doi.org/10.1016/j.inffus.2020.08.016
http://dx.doi.org/10.1016/j.ins.2021.12.058
http://dx.doi.org/10.1007/s11063-018-9947-9
http://dx.doi.org/10.1109/TNB.2018.2873221
http://dx.doi.org/10.1016/j.knosys.2021.107656
http://dx.doi.org/10.1142/S0129065722500204
http://dx.doi.org/10.1109/TNNLS.2021.3134792
http://dx.doi.org/10.1109/tnnls.2017.2726119
http://www.ncbi.nlm.nih.gov/pubmed/28783641
http://dx.doi.org/10.1016/j.neucom.2020.07.051
http://dx.doi.org/10.1016/j.tcs.2018.10.024
http://dx.doi.org/10.1016/j.neucom.2020.03.095
http://dx.doi.org/10.1007/s41965-021-00088-w
http://dx.doi.org/10.1016/j.biosystems.2019.104020
http://dx.doi.org/10.1155/2020/8742308
http://dx.doi.org/10.1038/440999a
http://dx.doi.org/10.1016/j.knosys.2019.105064
http://dx.doi.org/10.1016/S0304-3975(96)00080-1

	Introduction
	SN P Systems with Membrane Potentials, Inhibitory Rules, and Anti-Spikes
	Definition
	An Example

	The Computational Universality of MPAIRSN P Systems
	The MPAIRSN P System as a Number Generating Device
	The MPAIRSN P System as a Number Accepting Device

	A Small General MPAIRSN P System for Function Computation
	Conclusions
	References

