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Abstract: Supernovae are explosions of stars and are a central problem in astrophysics. Rayleigh–
Taylor (RT) and Richtmyer–Meshkov (RM) instabilities develop during the star’s explosion and lead
to intense interfacial RT/RM mixing of the star materials. We handle the mathematical challenges of
the RT/RM problem based on the group theory approach. We directly link the conservation laws
governing RT/RM dynamics to the symmetry-based momentum model, derive the model parameters,
and find the analytical solutions and characteristics of RT/RM dynamics with variable accelerations in
the linear, nonlinear and mixing regimes. The theory outcomes explain the astrophysical observations
and yield the design of laboratory experiments. They suggest that supernova evolution is a non-
equilibrium process directed by the arrow of time.

Keywords: fluid instabilities; interfacial mixing; blast waves; nuclear synthesis; supernovae; arrow
of time

1. Introduction

Rayleigh–Taylor (RT) and Richtmyer–Meshkov (RM) instabilities and RT/RM inter-
facial mixing are fluid dynamic phenomena that govern stellar evolution processes and
couple astrophysical to atomic scales [1–16]. Examples include the birth of a star within
molecular hydrogen clouds, intense material mixing in stellar interiors, and the death of a
star in a supernova (SN) [1–10]. Supernovae are explosions of stars and are also hypoth-
esized as an astrophysical initial value problem because they may contain information
on the entire process of nucleosynthesis and stellar evolution [2–9]. The information is
believed to be contained in supernova remnants and in observational data on abundances
of chemical elements. Particularly, while light mass elements are produced in a star before
its explosion, it is thought that this is the RT/RM mixing of the layers of the exploding
star that influences the energy transport, enabling the synthesis of heavy and intermediate
mass elements [2–9].

Figure 1 provides a detailed look at the Cassiopeia A (Cas A) supernova remnants
produced by the explosion of a massive star [8]. The remnants are seen as broken shells of
filamentary structures. The colors mark regions with various chemical compositions. Blue
regions contain mostly hydrogen and nitrogen, which exist in the star before the explosion.
Bright green regions are rich in oxygen, which is produced primarily during the star’s
explosion. Red and purple regions consist mostly of sulfur formed by the oxygen nuclear
burning [2–9]. The filamentary structures are generated by the passage of a shock wave
from the supernova blast [1,2,5,6]. They are non-uniform, have less mass and move faster
than at a speed produced by the star’s free explosion [8]. These filamentary structures are
interpreted as due to RT/RM instabilities and RT/RM interfacial mixing developing at the
supernova’s blast [1,2,5–7].

Stellar environments are associated with large length scales, large velocity magni-
tudes and small effects of dissipation [1,2,5–7]. This suggests high values of Reynolds
numbers and may lead to the development of turbulence [1,17]. Canonical turbulence is an
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essentially isotropic, homogeneous and stochastic process that is free from any memory of
deterministic conditions [18,19]. A question thus arises: Do we have, from hydrodynamic
perspectives, a direction of time and a principal opportunity to work backward from the
observational data in supernova remnants toward the supernova blast and to gain insights
beyond the traditional stellar evolution theory [1]?

Figure 1. Cassiopeia A supernova remnants with filaments caused by fluid instabilities and inter-
facial mixing developing at the supernova blast. The colors in the filaments represent chemical
compositions.

The asymmetry of time is traditionally associated with the increasing trend for entropy
and is explained by the asymmetry of temporal boundary conditions imposed on the
Universe at the time of the Big Bang [20]. Active discussions still pertained to whether
the direct influence of these initial conditions suffices to explain the broad range of obser-
vations with time-directional phenomena at the quantum, classical and relativistic scales.
For details see [20–25]. We appreciate the importance of the fundamental studies of the
arrow of time [20–25]. We also acknowledge that stellar evolution and supernovae blasts
are multi-scale and multi-physics phenomena with complex interplays of processes and
scales, including electro-dynamic, relativistic, quantum, thermodynamic and mechanical
aspects [2].

In this work, we consider the fluid dynamics aspects of the titanic problem of su-
pernovae blasts [1]. We focus on the fundamental properties of RT/RM instabilities and
RT/RM interfacial mixing with variable accelerations common in supernovae and in high
energy density environments [1,12–15,17,26–35]. We analyze whether the scale-dependent
and scale-invariant RT/RM dynamics depend on the deterministic (the initial and the flow)
conditions [1,36]. We intend to gain an understanding from the fluid dynamics perspec-
tives [1]: Can we consider a supernova evolution as a non-equilibrium process directed by
the arrow of time?

RT/RM instabilities develop when fluids of different densities are accelerated against
their density gradients and exhibit similar features of evolution in vastly different physical
regimes [12–15,37]. In RT/RM dynamics, the growth of small initial perturbations is
followed by the interface transforming to the composition of a large-scale coherent structure
with the length-scale set by the initial conditions and small-scale shear-driven irregular
vortical structures, and then by a transition from the scale-dependent to scale-invariant
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dynamics with a self-similarly growing length scale in the acceleration direction [37,38].
Accelerations with power-law time dependence characterize supernova environments
and yield special scaling properties; they can also be applied for data adjustment in
practice [1,31–34].

While RT/RM instabilities and RT/RM interfacial mixing are challenging to study,
significant success was achieved in the understanding of RT/RM dynamics in theory, ex-
periments and simulations [10–17,26–30,35–57]. Particularly, the group theory approach
found the order in self-similar RT mixing and explained the high Reynolds number ex-
periments [1,26,27,29,38,40–42]. There is a need for a lucid and rigorous theory to treat
the problem in its complexity, rationalize the design of experiments, and yield results
applicable in a broad astrophysical context, including filaments’ dynamics and energy
transport in supernovae [1,17,26–30,37–44].

Here, we directly link the conservation laws governing RT/RM dynamics to the
symmetry-based momentum model by applying the group theory approach. We precisely
derive the model parameters—buoyancy and drag parameters—in the linear and nonlinear
regimes and reveal the mechanisms of transition to self-similar mixing [1,26,27,37,45,51–57].
We find that while for RT/RM mixing with variable accelerations, the self-similar dynamics
can vary from super-ballistics to sub-diffusion, the RT/RM mixing retains memory of
deterministic conditions for any acceleration [19]. The sensitivity of the scale-dependent
and self-similar RT/RM dynamics to the deterministic and initial conditions suggests that
supernova evolution is deterministic in nature and is a non-equilibrium process that follows
the arrow of time. We briefly compare our results with astrophysical observations and with
laboratory experiments, achieving good agreement. We discuss the experimental design
required for accurate implementation, diagnostics and quantification of RT/RM dynamics
in supernovae relevant conditions [1,17,26–30,38–44].

2. Fluid Instabilities and Interfacial Mixing

Equations governing RT/RM dynamics involve the equations in the bulk, the bound-
ary value problem and the initial value problem [1,18,37,45,50–54]. In this section, for
the reader’s convenience and for the systematicity and rigor, we formulate the governing
equations and outline the methods of their solution.

RT/RM dynamics of ideal fluids is governed in the bulk of each fluid by the conserva-
tion of mass, momentum and energy

∂ρ

∂t
+

∂ρvi
∂xi

= 0,
∂ρvi
∂t

+
∂ρvivj

∂xj
+

∂P
∂xi

= 0,
∂E
∂t

+
∂(E + P)vi

∂xi
= 0 (1)

with spatial coordinates (x1, x2, x3) = (x, y, z), time t, and the fields of density, velocity,
pressure and energy density (ρ, v, P, E), with E = ρ

(
e + v2/2

)
, internal energy e and

specific enthalpy W = e + P/ρ [1,37]. The closure equation of state relates the pressure
and the internal energy; for ideal fluids P = s ρ e with some constant s. These equations
are augmented with the boundary conditions at the interface and the boundaries of the
outside domain[

ρ
(

1
|∇θ|

∂θ
∂t + v · n

)]
= 0, [v · n] = 0, [v · τ] = arbitrary, [P] = 0, [W] = arbitrary,

v| z→+∞ = 0, v| z→−∞ = 0
(2)

where [. . .] denotes the quantity jump across the interface, n (τ) is the normal (tangen-
tial) unit vector of the interface defined as n = ∇θ/|∇θ|, (n · τ) = 0, with the function
θ(x, y, z, t) = 0 at the interface and with θ > 0 (< 0) in the bulk of the heavy (light)
fluid marked with sub-script h(l). The initial conditions are the initial perturbations of
the interface and the flow fields. They define the flow symmetry and the characteristic
scales. We consider the dynamics of a spatially extended flow periodic in the (x, y) plane,
as set by the initial conditions. RTI/RMI is driven by acceleration g directed from the
heavy to the light fluid along the z axis, g = (0, 0,−g), g = |g| [1,12–15,26]. The acceler-



Entropy 2022, 24, 829 4 of 15

ation modifies the pressure P→ P− ρgz , and is a power-law function of time, g = Gta,
t > t0 > 0, with exponent a ∈ (−∞,+∞) and strength G > 0. The Atwood number
A = (ρh − ρl)/(ρh + ρl) parameterizes the fluids’ density ratio [1,37,52]. For non-ideal
fluids, the governing equations are further modified; in particular, the presence of the kine-
matic viscosity ν augments the momentum equation with the term

(
−ρν∂2vi/∂x2

j

)
[18].

Under conditions of high energy density relevant to supernovae, RT/RM dynam-
ics are usually driven by strong variable shocks [1,17,26–29]. The post-shock dynamics
is a superposition of two motions—the background motion of the fluid bulk and the
growth of the interface perturbations. In the background motion, both fluids (in bulk
between the reflected and transmitted shock) and their interface move as a whole unit
in the direction of the transmitted shock. This motion occurs even for an ideally planar
interface; it is supersonic and even hypersonic for strong shocks. The RT/RM growth of
the interface perturbations is due to shock-induced acceleration. It develops only for a
perturbed interface or flow field. The rate of this growth is sub-sonic and the associated
RT/RM motion is nearly incompressible [1,26,29,30,49]. Besides, RT/RM dynamics is
essentially interfacial—with intense fluid motion near the interface, with effectively no
fluid motion away from the interface, and with shear-driven vortical structures at the
interface [1,12–15,26,37,38,40,45,49–54].

The RT/RM unstable interface is composed of a large-scale coherent structure and a
small-scale—usually irregular—structures [1,37,38]. For the large-scale structure of bubbles
and spikes, where the bubble (spike) is the portion of the light (heavy) fluid moving up
(down) into the heavy (light) fluid, the velocity field is potential in the bulk [37,45,52]. Small-
scale vortical structures appear at the interface due to shear and Kelvin–Helmholtz instabil-
ity caused by disjointed tangential velocity components and enthalpy at the
interface [17,18,26–30,37–40,45]. The RT/RM coherent structure can be viewed as a standing
wave with a growing amplitude [1,37,52]. As time evolves, the interaction of scales enhances,
and the dynamics transit from the scale-dependent to the scale-invariant regime [1,37].

The mathematical problem of RTI/RMI requires one to solve the system of non-
linear partial differential equations in four-dimensional space-time, solve the boundary
value problem at the unstable nonlinear interface and the outside boundaries, and also
solve the ill-posed initial value problem with an account for non-locality and singularities
Equation (2) [1,37,52]. Despite this extreme complexity, RT/RM dynamics are observed to
have certain features of universality and order, and can be treated from the first principles
by applying group theory [17,26–30,37–45]. For scale-dependent dynamics, group theory
can employ space groups to derive the dynamical system from the governing equations
and find its asymptotic solutions. For scale-dependent and self-similar dynamics, group
theory can be realized in the momentum model having the same symmetries and scaling
transformation as the governing equations [1,26,37,38,40–45,51–55].

Can we directly link the two group theory realizations in a lucid yet rigorous theory
to efficiently handle the mathematical challenges of the RT/RM problem? What can the
unified framework tell us about the scale-dependent and self-similar RT/RM dynamics?
What are the theory outcomes for supernova evolution and the arrow of time, for the
characteristics of filamentary structures in supernova remnants, and for the design of
laboratory experiments? These questions motivate and frame our study.

3. Results
3.1. Group Theory

For spatially periodic flows, the scale-dependent RT/RM dynamics is invariant with
respect to a space group whose generators are translations in the plane, rotations and
reflections, and which also has anisotropy in the acceleration direction and inversion in
the normal plane, such as the hexagonal or square groups in a three-dimensional (3D)
flow [1,37,45]. By considering incompressible large-scale coherent dynamics with potential
velocity field(s) vh(l) = ∇Φh(l), and by applying irreducible representations of the relevant
group, we expand the flow fields as Fourier series and make the spatial expansion in the
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vicinity of a regular point of the interface—the tip of the bubble or spike with coordinate
(0, 0, Z(t)) and velocity (0, 0, v(t)) with v(t) =

.
Z (dot marks partial time-derivative). This

reduces the governing equations in Equations (1) and (2) to a dynamic system for moments
(which are infinite sums of Fourier amplitudes) and surface variables [1,37,42,45,51,52]. For
the hexagonal group, to the first order, N = 1, the interface is z∗ − Z(t) = ζ

(
x2 + y2), and

the dynamical system is [1,37,51,52]:

ρh

( .
ζ − 2ζM1 − M2

4

)
= 0, ρl

( .
ζ − 2ζM̃1 +

M̃2
4

)
= 0, M1 − M̃1 = arbitrary,

ρh

( .
M1
4 + ζ

.
M0 −

M2
1

8 + ζg
)
= ρl

( .
M̃1
4 − ζ

.
M̃0 −

M̃2
1

8 + ζg
)

, M0 = −M̃0 = −v
(3)

Here M
(

M̃
)

are the moments of the heavy (light) fluid, and v ≥ 0 (≤ 0), ζ ≤ 0 (≥ 0)
are the velocity and the curvature of the interface at the tip of the bubble (spike). The
system length-scale is k−1, where the wavevector is k ∼ λ−1 and the wavelength is λ. The
time-scale is τ = τG = (kG)−1/(a+2) for acceleration driven RT type dynamics with a > −2;
it is τ = τ0 = (kv0)

−1 for initial growth-rate driven RM type dynamics with a < −2,
where v0 = |v(t0)| is the initial growth rate of the interface initial perturbation with
|ζ0k| << 1, ζ0 = ζ(t0). Group theory is further applied to solve the closure problem and to
find linear and nonlinear solutions for scale-dependent RT/RM dynamics [1,37,42,45,51,52].

Alternatively, by analyzing symmetries and scaling transformations of the governing
equations, we can theorize that in RT/RM flow the dynamics of a parcel of fluid (in the
bubble or spike region) is governed by a balance per unit mass of the rates of momentum
gain, µ̃, and momentum loss, µ, as

.
h = v,

.
v = µ̃− µ (4)

where h is the length scale along the acceleration g, v is the corresponding velocity, µ̃(µ) is
the magnitude of the rate of gain (loss) of specific momentum in the acceleration direction.
The rate of gain (loss) of a specific momentum is µ̃ = ε̃/v (µ = ε/v), with ε̃(ε) being the rate
of gain (dissipation) of specific energy. The rates of energy gain and dissipation are ε̃ = Bgv
and ε = Cv3/L, with B and C being the buoyancy and drag parameters, respectively. The
length scale L for energy dissipation can be the horizontal scale (wavelength) L ∼ λ ∼ k−1,
or the vertical scale (amplitude) L ∼ |h|. The case L ∼ λ corresponds to scale-dependent
linear and nonlinear dynamics, whereas the case L ∼ h correspond to scale-invariant
mixing dynamics [1,26,37,53,54]. This summarizes to:

µ̃ =
ε̃

v
, µ =

ε

v
, ε̃ = Bgv, ε = C

v3

L
, L ∼ { λ , λ , |h| } (5)

One can find solutions for the momentum model in the linear, nonlinear and mix-
ing regimes. The asymptotic solutions reveal that the dynamics is RT (RM) type for
a > −2 (< −2) in the scale-dependent linear and nonlinear regimes and for a > acr (< acr)

in the scale-invariant regime, acr = −2 + (1 + C)−1 [1,19].
An idea to describe RT/RM dynamics through buoyancy and drag balance has been

discussed in the RT/RM research field for a long time [48,56–59]. The group theory-based
momentum model reconciles with these studies and provides a number of important advan-
tages [1,36,54,58]. (1) The momentum model represents RT/RM dynamics by considering
balances per unit mass (rather than per unit volume). This specific, per unit mass, dynamics
of RT/RM mixing is due to the independence of the boundary condition [v · n] = 0 on
the fluid density ρh(l). (2) The momentum model has the same symmetries and scaling
transformations as the governing equations. (3) The momentum model captures the physics
of RT/RM dynamics by linking the specific rates of change of momentum and the specific
rates of change of energy as ε̃ = µ̃ v and ε = µ v. See Equations (1)–(4) [1,36,54,58]. A
comparative study of the momentum model, the interpolation models, turbulence models
and other approaches in RT/RM mixing is given in [58].
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In the present work, we directly link the dynamical system, the momentum model
and the governing equations in Equations (1)–(5), derive the model parameters and solve
the model equations in RT/RM linear, nonlinear and mixing regimes. This elaborates
the rigorous theoretical framework for studying RT/RM dynamics in a broad range of
conditions, identifies the sensitivity of non-equilibrium RT/RM dynamics to deterministic
conditions, and illustrates that supernovae are indeed an astrophysical initial value problem
with the directed arrow of time.

3.2. Scale-Dependent Linear Dynamics

In the dynamical system, we associate the curvature ζ with the amplitude Z, kZ = −4ζ/k,
and retain only first-order harmonics in the expressions for the moments. In the momen-
tum model, we relate the vertical scale with the amplitude, h = Z, and the length scale
with the wavevector, L = k−1 [1,37,52,54]. This transforms the governing equations in
Equations (3)–(5) to

.
Z = v,

.
v = Bl g− Clkv2, ζ = − k2Z

4
, ζ = ξk, v = −M0 = M̃0 (6)

where the buoyancy and the drag parameters are:

Bl = AkZ = −4A
ζ

k
, Cl =

A
2

(7)

The sub-script l stands for linear. In the linear regime, the buoyancy parameter is time-
dependent, with Bl > 0 (< 0) for the bubble (spike), the drag parameter is constant Cl > 0,
and they both depend on A. Table 1 summarizes these results.

Table 1. The buoyancy and the drag parameters in the linear regime.

Buoyancy Bl = −4Aξ

Drag Cl = A/2

Quantities h(t) = Z(t), v(t) =
.
Z, L = k−1,

ζ(t) = Z(t)k2/4, ξ(t) = ζ(t)/k, |ξ(t)| << 1

Range Bubbles : Bl ≥ 0, Cl ≥ 0, ξ(t) ≤ 0, v(t) ≥ 0, Z(t) ≥ 0.
Spikes : Bl ≤ 0, Cl ≥ 0, ξ(t) ≥ 0, v(t) ≤ 0, Z(t) ≤ 0.

By integrating these equations in Equation (6) for g = Gta, we obtain solutions
for the early-time RT dynamics with a > −2 and for the early-time RM dynamics with
a < −2 for bubbles (spikes), which move up (down) and are concave down (up) with
Z > 0, v > 0, ζ < 0 (< 0, < 0, > 0):

a > −2 : Z = c± 1
k

(
t
τG

)1/2
I±1/2s

(√
A

s

(
t
τG

)a)
, v =

.
Z, ζ = − Zk2

4 ;

a < −2 : Z = 1
2A k ln

(
c+
(

t
τ0

)
+ c−

)
, v =

.
Z, ζ = − Zk2

4

(8)

Here s = (a + 2)/2, Ip is the modified Bessel function of the p th order and c± are the
integration constants. The formation of bubbles and spikes is defined by the initial con-
ditions, with an RT bubble (spike) developing for ζ(t0) < 0 (> 0) and with RM bubble
(spike) developing for v(t0) > 0 (< 0). For RT/RM bubble/spike the curvature magnitude
increases with time, whereas the velocity magnitude increases (decreases) in the RT (RM)
case. In the linear regime, the RT-RM transition occurs at a = −2 upon the by varying the
acceleration strength Gk [1,52]. In the early-time linear regime, the effect of deterministic
conditions is revealed in the dependence on the initial conditions of the RT/RM growth
and growth rates.

As time progresses, the bubble/spike amplitude increases, its curvature approaches a
constant value, and RT/RM dynamics become nonlinear [1].
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3.3. Scale-Dependent Nonlinear Dynamics

In the dynamical system, we impose the constant curvature condition and retain higher-
order harmonics in the moments. In the momentum model, we relate the vertical scale with
the amplitude, h = z0, and the length scale with the wavevector, L = k−1 [1,37,52,54]. This
transforms the governing equations in Equations (3)–(5) to

.
z0 = v,

.
v = Bng− Cnkv2, ζ = ξk, v = −M0 = M̃0 (9)

In the nonlinear regime, the buoyancy and the drag parameters are:

Bn(A, ξ) = −2Aξ

(
9− 64ξ2)

(3 + 10Aξ − 128Aξ3)
, Cn(A, ξ) =

(
9A− 48ξ + 64Aξ2)

(9− 64ξ2)(3 + 10Aξ − 128Aξ3)
(10)

in the domain ξ ∈
[
_
ξ cr, 0

]
∪
[

ξA,
^
ξ cr

]
with

^
ξ cr = −

_
ξ cr = 3/8. The sub-script n stands

for nonlinear, and _. . .(.̂ . .) are used to mark bubbles (spikes). For nonlinear RT/RM bubbles,
the values of the buoyancy and drag parameters are Bn ≥ 0, Cn ≥ 0 for ξ ∈ (−ξcr, 0) with

Bn ∈
[

0,
_
B
∗]

, Cn ∈
[
_
C
∗
, ∞
)

. For nonlinear RT/RM spikes, the values are Bn ≤ 0 with

range
[
^
B
∗
, 0
]

for ξ ∈ (0, ξcr), and Cn ≤ 0 with range (−∞, 0] for ξ ∈
(
^
ξ A,

^
ξ cr

)
. Here

^
ξ A =

^
ξ A(A) is the curvature of the fastest spike with

^
ξ A = 3

(
1−
√

1− A2
)

/8A and

with
^
ξ A ∈

(
0,

^
ξ cr

)
. We call it the Atwood spike.

Table 2 summarizes the results. Figure 2a,b present the magnitudes of the buoyancy
and drag parameters for bubbles and spikes as functions on the interface morphology—the
dimensionless curvature ξ = ζ/k for some Atwood numbers in the nonlinear regime.
Overall, the buoyancy and drag magnitudes are greater for bubbles than for spikes and are
also greater for greater A.

Table 2. The buoyancy and the drag parameters in the nonlinear regime.

Buoyancy Bn(A, ξ) =
−2Aξ(9−64ξ2)

(3+10Aξ−128Aξ3)

Drag Cn(A, ξ) =
(9A−48ξ+64Aξ2)

(9−64ξ2)(3+10Aξ−128Aξ3)

Quantities
h(t) = Z(t), v(t) =

.
Z, L = k−1,

ξ = ζ/k, ξ ∈ [−|ξcr |, 0] ∪ [ξA, ξcr ]

Range
Bubbles : Bn ≥ 0, Cn ≥ 0, ξ ∈ [−|ξcr |, 0], ξ ≤ 0, v(t) ≥ 0, Z(t) ≥ 0.
Spikes : Bn ≤ 0, Cn ≥ 0, ξ ∈ [ξA, ξcr ], ξ(t) ≥ 0, v(t) ≤ 0, Z(t) ≤ 0.

Figure 2. Cont.
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Figure 2. Dependence of the buoyancy parameter (a) and the drag parameter (b) on the interface
morphology (curvature) for bubbles (left) and spikes (right) in the nonlinear regime for the Atwood
numbers equal 0.9 (solid), 0.6 (dashed) and 0.3 (dotted) in 3D flow with hexagonal symmetry.

Hence, we find that for given A in nonlinear RT/RM dynamics there is a family of
buoyancy and drag values parameterized by the interface morphology, i.e., the curvature
of the bubble/spike ζ. In the family, for given (A, ζ) the values (Bn, Cn) are constant.
Non-uniqueness is due to the presence of shear at the interface [1].

We integrate the system of equations in Equations (9) and (10) for g = Gta to obtain so-
lutions describing the RT/RM dynamics of nonlinear bubbles/spikes. The second equation
is a Riccati nonlinear differential equation. For g = Gta it is transformed to a linear equation
UTT −Q2TaU = 0. For RT dynamics with a > −2 these quantities are Q2 = Q2

RT = BnCn
with V = UT/UCn(τG/τ0), V = v/v0 and T = t/τG. For RM dynamics with a < −2 these
quantities are Q2 = Q2

RM = (τ0/τG)
2sBnCn with V = UT/UCn, V = v/v0, T = t/τ0 and

s = (a + 2)/2. The solution is presented in terms of modified Bessel functions as

U = c± T1/2 I±1/2s

(
QTs

s

)
(11)

By further applying to this explicit solution in Equation (11) the Taylor series expansions,
we find nonlinear asymptotic solutions for a > −2 with Ts → ∞ for T → ∞ , and for
a < −2 with Ts → 0 for T → ∞ as:

a > −2 : t
τG
→ ∞,

(
t
τG

)(a+2)/2
→ ∞, v→ vRT , vRT = ±

√
Gta

k

√
Bn
Cn

;

a < −2 : t
τ0
→ ∞,

(
t
τ0

)(a+2)/2
→ 0, v→ vRM, vRM = 1

kCnt .
(12)

We emphasize, see Equations (11) and (12) that nonlinear RT dynamics are achieved for
(t/τG)→ ∞ and (t/τG)

(a+2)/2 → ∞ , whereas nonlinear RM dynamics are achieved for
(t/τ0)→ ∞ and (t/τ0)

(a+2)/2 → 0 akin to climbing up descending stairs. In the nonlinear
linear regime, the RT-RM transition occurs at a = −2 upon varying of the acceleration
strength Gk [1,52]. In the nonlinear regime, the effect of deterministic conditions is revealed
in the dependence of RT/RM bubble/spike dynamics on the initial conditions, including
symmetry and length scale. Figure 3a,b presents solutions for RT/RM bubbles and spikes
for some Atwood numbers in the nonlinear regime.
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Figure 3. Dependence of Rayleigh–Taylor (a) and Richtmyer–Meshkov (b) solutions for bubbles (left)
and spikes (right) on the interface morphology (curvature) in the nonlinear regime for the Atwood
numbers equal 0.9 (solid), 0.6 (dashed) and 0.3 (dotted) in 3D flow with hexagonal symmetry.

Note the presence of special solutions in RT/RM families (to be discussed in detail

in the future). These include the flat bubble/spike with zero curvature
^
ξ f =

_
ξ f = 0;

the critical bubble/spike having the largest curvature magnitude
^
ξ cr = −

_
ξ cr = 3/8;

the Taylor bubble/spike having the curvature magnitudes
^
ξ T = −

_
ξ T = 3/8 similarly

to the bubble observed by Davies & Taylor [13]; the Layzer-drag bubble and spike with
the velocity dependent on the Atwood number A as

_
v LD/

√
g/k =

√
2A/(1 + A) and

^
v LD/

√
g/k =

√
2A/(1− A) [52,56]; the fastest Atwood bubble with

(
_
ζ A,

_
v A

)
RT/RM

and the fastest Atwood spike with
(
^
ζ A,

^
v A

)
RT/RM

[1,52].

RT dynamics are set by the interplay of buoyancy and drag depending on the interface
morphology and shear. The dynamics of RT bubbles is regular and is influenced by
the following competing factors: more curved bubbles have larger buoyancy and move
faster than flattened bubbles; yet, bubbles with larger curvature have larger shear and
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larger drag reducing their velocities; for curved bubbles, the shear alone can maintain the
pressure at the interface leading to zero buoyancy and infinite drag. The fastest Atwood

bubble has the invariance

[
_
v Aτk (t/τG)

−a/2
(

8
∣∣∣∣_ζ A

∣∣∣∣/k
)−3/2

]
RT

= 1. The dynamics of RT

spikes are singular. While the magnitude of the spike’s buoyancy is qualitatively similar

to that of the bubble, the spike’s drag vanishes Cn → 0 for ξ →
^
ξ A . This leads to a

singularity, indicating that the RT Atwood spike has velocity growing quickly with time,[∣∣∣^v A

∣∣∣/√Gta/k
]

RT
→ ∞ . See Figure 3a.

RM dynamics are set only by the drag depending on the interface morphology and
shear. For regular RM bubbles, the drag is minimal for ξ → 0 and approaches infinity for
ξ → ξcr , indicating that in nonlinear RMI, the fastest Atwood bubble is the flat bubble
_
ξ A =

_
ξ f = 0; it has the quasi-invariance

[
(4/3)tv2

A/ |dv/dζ |ζ=ζA

∣∣∣]
RM
≈ 1. The dynamics

of RM spikes is singular, because the spike’s drag vanishes Cn → 0 for ξ →
^
ξ A , which is

the same as in the RT case. This leads to a singularity, suggesting that the RM Atwood spike
has the velocity and shear growing quickly with time,

[∣∣∣^v A

∣∣∣kt
]

RM
→ ∞ . See Figure 3b.

3.4. Transition to Self-Similar Mixing

Linear RT/RM dynamics depend on the horizontal length scale—the wavelength λ.
Linear RT/RM dynamics develop faster for smaller wavelengths λ ∼ k−1 as is set by
times-scales, τG ∼ (λ/G)(a+2) and τ0 ∼ λ/v0. Nonlinear RT/RM dynamics depend on
the vertical and horizontal length scales—the wavelength λ and the amplitude h. Nonlin-
ear RT/RM dynamics are faster for larger wavelengths, as dictated by the bubble/spike
velocities, |vRT | ∼

√
λGta and |vRM| ∼ λ/t. With time, RT/RM dynamics transit from

the scale-dependent nonlinear regime to the self-similar mixing. The transition can occur
due to the bubbles merging and the spikes merging and the multi-pole interactions caused
by the growth of the horizontal scale [55–57]. Discussions of the importance of the merger
mechanism and the classification of the ‘merger’ transitions in RT/RM structures that excel-
lently agree with experiments are given in [35,46–48,55–57]. Besides, RT/RM dynamics can
become self-similar when the amplitude is the dominant scale for energy dissipation [53,54].
The first result on the amplitude dominance mechanism is reported in [54].

Indeed, near the tip of the bubble/spike, in the laboratory frame of reference, the
interface is described as z∗ = Z + ζ

(
x2 + y2), with the velocity v =

.
Z and the ampli-

tude Z, with |ζ| ∼ λ−1 and |x|, |y| ∼ λ. In nonlinear RT dynamics their values are
|v| ∼

√
λGta and |z0| ∼ t

√
λGta. In nonlinear RM dynamics their values are |v| ∼ λ/t

and |z0| ∼ λln(v0t/λ). For the fastest Atwood bubble, the dominance of the amplitude,
with |z∗| ∼ |Z| for |z0| > λ, may reduce the drag force from ∼

∣∣v2/λ
∣∣ to ∼

∣∣v2/Z
∣∣ and

accelerate RT/RM bubbles. For the fastest Atwood spike, the drag is zero Cn → 0 , thus
leading to the acceleration of RT/RM spikes.

The traditional merge mechanism and the amplitude dominance mechanism both
can lead to the acceleration of RT/RM bubbles/spikes to due to the drag reduction, and
can transfer the scale-dependent dynamics with L ∼ λ to the scale-invariant mixing with
L ∼ |Z|, in agreement with high Reynolds number experiments [28,29,38].

3.5. Self-Similar Mixing

In the dynamical system, we generalize the equations in Equations (1)–(5) as

.
Z = v,

.
v = Bmg − Cm

v2

|Z| (13)

The sub-script m stands for mixing. Here, the buoyancy and the drag parameters are
Bm, Cm > 0 (< 0) for RT/RM bubble (spike) with Z, v > 0 (< 0). The buoyancy and drag
are now free parameters due to the many scales contributing; they can also be stochastic
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processes due to the randomness of mixing [1]. Table 3 summarizes the results. In the
momentum model, we relate the length-scale for energy dissipation with the amplitude
L = |h| = |Z|; consider for definiteness Bm, Cm > 0; and we re-scale the values as
BmGta → Gta, Cm → C with C ∈ (0, ∞). We find solutions in the domain h, v, t > t̃0 with
some initial instance of time t̃0 >> t0 > 0 for the equation in Equation (13) representing
the dynamics of a fluid parcel undergoing RT/RM mixing [1]:

..
h + C

.
h

2

h
− Gta = 0 (14)

Table 3. The buoyancy and the drag parameters in the mixing regime.

Buoyancy Bm ∈ (−∞, 0] ∪ [0,+∞)

Drag Cm ∈ (−∞, 0] ∪ [0,+∞)

Quantities h(t) = Z(t), v(t) =
.
Z, L = |h|

Range Bubbles : Bm ≥ 0, Cm ≥ 0, v(t) ≥ 0, Z(t) ≥ 0.
Spikes : Bm ≤ 0, Cm ≥ 0, v(t) ≤ 0, Z(t) ≤ 0.

The non-homogeneous equation in Equation (14) has particular solution h = hRT ,
which we find by applying the Lie groups to be hRT = BRTtbRT . It describes self-similar RT
type mixing. The associated homogeneous equation has general solution hC+1 = HC+1

0 +
HC

0 (1 + C)V0
(
t− t̃0

)
with integration constants V0, H0, and with h→ hRM for t/t̃0 → ∞ .

This asymptotic solution describes self-similar RM type mixing. The momentum model
couples general and particular solutions. In asymptotic limits, the solutions hRT/RM are
effectively decoupled due to their distinct symmetries, which are the scaling symmetry and
the point group, respectively. This leads to:

a > acr : h→ hRT , hRT = BRTtbRT , bRT = a + 2, BRT = G
(a+2)((a+1)+C(a+2)) ;

a < acr : h→ hRM, hRM = BRMtbRM , bRM = acr + 2, BRM = H0

(
(1 + C)

(
V0
H0

))1/(1+C)
.

(15)

In the self-similar mixing regime, the RT-RM transition occurs for a ∼ acr, where the critical
exponent is acr = −2 + (1 + C)−1 with acr ∈ (−2,−1) for C ∈ (0, +∞) [1,29,36].

For the solution hRT describing self-similar RT mixing, the power-law exponent is
set by the acceleration exponent, the pre-factor is set by the acceleration parameters and
drag, and the rates of change of momentum relate as |µ̃| ∼ |µ| ∼ ta. For the solution hRM
describing self-similar RM-type mixing, the power-law exponent is set by the drag, the
pre-factor is set by deterministic conditions, and the rates of change of momentum relate as
|µ| ∼

∣∣ .
v
∣∣ ∼ tacr . RM mixing is faster than the acceleration prescribes.

3.6. Properties of Self-Similar Mixing

In RT mixing with a > acr, the length and velocity scale with time as L ∼ ta+2 and
v ∼ ta+1 the velocity scales with length as v ∼ L(a+1)/(a+2). While the length scale L
increases with time for with a > acr, the velocity scale increases (decreases) with time
for a > −1 (< −1) with larger velocities corresponding to larger (smaller) length scales
for a > −1 (< −1); it is constant at a = −1. In RM mixing with a < acr, the length and
velocity scale with time as L ∼ tacr+2 and as v ∼ tacr+1 and the velocity scales with length
as v ∼ L(acr+1)/(acr+2). Since acr ∈ (−2,−1), the length scale L increases with time, the
velocity scale decreases with time, and larger velocities correspond to smaller length scales.
This yields a special self-similar class for RT/RM mixing [1,18,19,36,37,43].

For RT mixing with a > acr the dynamics is super-ballistic (i.e., faster than ballistics)
for a > 0 with v ∼ L(a+1)/(a+2); it is ballistic at a = 0 with L ∼ v2. The dynamics is
quasi-Kolmogorov at a = −1/2 with L ∼ v3. The dynamics is ‘steady flex’ at a = −1
separating the sub-regimes with larger (smaller) velocities associated with larger (smaller)
length scales. The dynamics is super-diffusive (i.e., faster than diffusion) for a > −3/2;
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quasi-diffusive at a = −3/2 with L ∼ v−1; and sub-diffusive (i.e., slower than diffusion)
for a ∈ (−3/2, acr). RM mixing for a < acr has larger velocities at smaller length scales,
v ∼ L(acr+1)/(acr+2); its dynamics are sub-diffusive for C > 1 [36].

To evaluate the sensitivity of RT/RM mixing to deterministic conditions, we consider
two parcels of fluids involved in the RT (RM) mixing flow with a time-delay τ̃. The relative
velocity of the parcels is ∼ τ̃(a+1)

(
τ̃(acr+1)

)
, the parcel’s velocity is ∼ t(a+1)

(
t(acr+1)

)
,

and their ratio is ∼ (τ̃/t)(a+1)
(
(τ̃/t)(acr+1)

)
. This suggests that the effect of deterministic

conditions decreases (increases) with time for a > −1 (< −1) in RT mixing a > acr,
and increases with time in RM mixing a < acr. Hence, for RT/RM mixing with variable
acceleration, g = Gta, the self-similar dynamics can vary with the acceleration exponent
a from super-ballistics to sub-diffusion, with deterministic conditions having stronger
influence for smaller a.

4. Outcome of the Theory
4.1. Fundamental Aspects

The direct link between the dynamical system and the momentum model demonstrates
that these implementations of group theory are fully consistent with one another and with
the governing equations, and that the group theory approach provides a rigorous theoretical
framework for studying the RT/RM dynamics in a broad range of conditions.

We reveal the fundamental features of RT/RM dynamics. (i) The parameters of the
momentum model are derived and the solutions for RT/RM dynamics are found in the
linear, nonlinear and mixing regimes. (ii) In the linear regime, the buoyancy magnitude
grows with amplitude and time, and the drag is set by the density ratio. (iii) In the nonlinear
regime, the buoyancy and the drag parameters depend on the interface morphology and
interfacial shear, as well as the density ratio. (iv) In the mixing regime, the buoyancy and
the drag are independent free parameters. They can also be stochastic processes. (v) In
any regime, RT/RM dynamics are interfacial, with intense fluid motion near the interface,
with no motion away from the interface, and with shear-driven vortical structures at the
interface [1].

Our results identify important physics properties of RT/RM dynamics. (i) RT/RM
dynamics are specific and are driven by balance per unit mass (rather than per unit volume).
The specificity is due to the boundary conditions at the interface. (ii) In each regime, the
buoyancy and the drag parameters have the same values in the RT and RM cases. The type
of the dynamics—RT or RM—and the RT—RM transition is defined by the acceleration.
(iii) The buoyancy and the drag parameters are different for bubbles and spikes. For
instance, nonlinear bubbles have overall greater buoyancy and drag magnitudes when
compared to nonlinear spikes. (iv) The buoyancy and the drag parameters are distinct in
different regimes. (v) Non-equilibrium RT/RM dynamics sense deterministic conditions in
any—linear, nonlinear, mixing—regime.

4.2. Astrophysical Aspects

In supernova blasts, RT/RM instabilities and RT/RM interfacial mixing are induced by
the accelerations g = Gta, and the exponents are a ∈ (−2,−1) for the first and second-kind
self-similarities [1–10,18,31–34]. For these exponent values: The dynamics is RT type—
acceleration driven—in the linear regime, with the structure of bubbles and spikes set by
the interface morphology. It is also an RT type in the nonlinear regime, with buoyancy
and drag set by the interfacial shear. Yet, the dynamics is RM type in the self-similar
mixing regime and is faster than the acceleration prescribes. For large drag values found
in observations [17,26–30,34,35,38–40,46–49,56,57], the self-similar RM mixing is a slow
sub-diffusive process, with strong dependence on deterministic conditions, with smaller
velocities at larger length scales, and with non-uniformities and localizations.

Our analysis is consistent with and explains the observations of filamentary structures
in supernova remnants. These structures are due to RT/RM instabilities and RT/RM
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interfacial mixing developing at the supernova blast. They are non-uniform, have less mass
and move at a speed higher than the free explosion of a star can produce, in conformity
with our results (Figure 1). The sub-diffusive character of self-similar mixing found in our
work suggests a special mechanism for energy transport at microscopic scales—through
energy trapping and localizations—to enable nucleosynthesis of heavy and intermediate
mass elements in supernovae conditions. The sensitivity of RT/RM dynamics to deter-
ministic conditions in scale-dependent and self-similar regimes implies that supernova
evolution is a non-equilibrium process directed by the arrow of time. The information on
the star’s structure at the time of the explosion is encapsulated in and can be deduced from
observational data in supernova remnants. We find that supernova evolution is indeed the
astrophysical initial value problem [1].

4.3. Scaled Laboratory Experiments

Conditions of high energy density (HED) in supernovae can be realized at high-power
laser facilities [17,26–30]. This enables studies of cosmic events and explosion processes
in the laboratory and links astrophysics to plasma fusion [17,26–30]. To gain a deeper
understanding of supernova remnants and to achieve better control of plasma fusion,
RT/RM dynamics can be modeled in scaled laboratory experiments for broad sets of
acceleration patterns [1–9,17,26–30,38–44].

Since linear and nonlinear RT/RM dynamics are described by standardized functions,
one can link the experimental results obtained for increasing with time accelerations a > 0
to supernova relevant cases −2 < a < 0, and vice versa. In self-similar RT/RM mixing, the
type of dynamics remains the same for a > 0, and has dramatically changing behaviors
for a ∈ (−2,−1). Hence, for accurate quantification of RT/RM dynamics in supernova-
relevant conditions, one needs first to study the linear and nonlinear dynamics by applying
acceleration patterns with a > 0, and the self-similar dynamics by applying the pure RM
case. One needs next to link these results (by using, e.g., artificial intelligence methods),
and only then proceed to patterns with a ∈ (−2,−1).

5. Summary

Supernovae are a central problem in astrophysics; they are also hypothesized as an
initial value problem depicting the entire process of stellar evolution and nucleosynthesis.
Rayleigh–Taylor and Richtmyer–Meshkov instabilities developing during the star’s explo-
sion lead to intense mixing of the materials of the progenitor star and couple astrophysical
to atomic scales. Based on group theory, we directly linked the conservation laws governing
RT/RM dynamics to the symmetry-based momentum model and provided insight into
RT/RM dynamics in a broad range of conditions.

RT/RM dynamics are driven by the specific balance of the rates of momentum gain
and loss, whereas the buoyancy and drag parameters are distinct in different regimes.
RT/RM dynamics are interfacial. It is single-scale in the linear regime and multi-scale in
the nonlinear regime, and it has the amplitude dominance and the merge mechanisms of
transition to self-similar mixing. RT/RM self-similar mixing can vary from super-ballistics
to sub-diffusion, depending on the acceleration and retains memory of deterministic
conditions for any acceleration. The theory outcomes explain the richness of structures
observed in supernovae, contribute to the design of laboratory experiments to quantify
RT/RM dynamics, and suggest that supernova evolution is a non-equilibrium process
directed by the arrow of time.
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