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Abstract: In this paper, a wind energy conversion system is studied to improve the conversion
efficiency and maximize power output. Firstly, a nonlinear state space model is established with
respect to shaft current, turbine rotational speed and power output in the wind energy conversion
system. As the wind velocity can be descried as a non-Gaussian variable on the system model, the
survival information potential is adopted to measure the uncertainty of the stochastic tracking error
between the actual wind turbine rotation speed and the reference one. Secondly, to minimize the
stochastic tracking error, the control input is obtained by recursively optimizing the performance
index function which is constructed with consideration of both survival information potential and
control input constraints. To avoid those complex probability formulation, a data driven method is
adopted in the process of calculating the survival information potential. Finally, a simulation example
is given to illustrate the efficiency of the proposed maximum power point tracking control method.
The results demonstrate that by following this method, the actual wind turbine rotation speed can
track the reference speed with less time, less overshoot and higher precision, and thus the power
output can still be guaranteed under the influence of non-Gaussian wind noises.

Keywords: wind energy conversion system; maximum power point tracking; stochastic distribution
control; survival information potential

1. Introduction

In recent years, new energy development has received extensive attention. Among all
kinds of new energy, wind energy is the most widely used. However, the wind speed might
be affected by factors such as seasonal changes, day-night alternation, and topography.
For example, the average wind speed in spring and winter in the coastal areas of East
China is usually larger than that in summer and autumn [1]. In those mountainous areas
of southern China, due to irregular terrain and rough ground, it is more prone to occur
a phenomenon called ‘airflow distortion’, and thus form blocking areas or leeward areas
which result in uneven distribution of wind resources [2].

The output power of the wind turbine varies with the constantly changing wind speed,
so the tip speed ratio will probably deviate from the optimal value, lower the utilization
rate of wind energy and affect the service life of the wind turbine. Therefore, in order to
improve the conversion efficiency of the wind energy conversion system, it is particularly
important to carry out the maximum power tracking (MPPT) control for the wind energy
conversion system [3,4]. In the existing literature about MPPT, output power is maximized
by controlling the tip speed ratio according to the actual wind speed, and various control
techniques have been applied to wind energy conversion system, such as PI control [5–7],
sliding mode control [8–10]; predictive control [11–13]; robust control [14–16]; adaptive
control [17–19] and LQG control [20–22] etc.
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However, wind speed is actually a non-Gaussian random variable which usually leads
to random fluctuation of output power in the wind energy conversion system. To minimize
output power fluctuations and improve the energy conversion efficiency, we will remodel
the system with full consideration of stochastic wind speed, output power of the wind
turbine, as well as the dynamic subsystem of PMSG. The survival information potential
(SIP) will also be adopted to describe the randomness of tracking error in this paper,
and the optimal control law will be obtained by minimizing the SIP included performance
index function.

2. System Description

As shown in Figure 1, a wind energy conversion system usually includes a wind
turbine, a drive train, permanent magnet synchronous generator (PMSG), power converter
and electric grid constitute a PMSG-based wind energy conversion system. In the wind
energy conversion system, the converter controls the rotation speed of the wind turbine
through the voltage on the PMSG terminal, so as to control the power it generates. To es-
tablish a composite model for this conversion system, the wind turbine, the drive train and
PMSG will be briefly introduced.

Drive Train Power Converter

Wind Turbine

PMSG
Electric GridG

Wind

Figure 1. Schematic diagram of PMSG-based wind energy conversion system.

(A) Wind Turbine
According to the characteristics of the wind turbine [23], the relationship between the
wind speed v and output power Pw can be expressed as follows:

Pw =
1
2

Cp(λ)ρπR2
t v3 (1)

where ρ is the air density, Rt is the radius of the wind wheel and Cp(λ) is the wind
energy utilization coefficient. Usually, the conversion rate from wind’s kinetic energy
to wind turbine’s mechanical energy is not 100%, so the coefficient Cp(λ) is used here
to describe the ability of wind turbines to convert wind energy. The larger Cp(λ) is,
the stronger ability the wind turbine will have.
In fact, the wind energy utilization coefficient satisfies Cp(λ) = λCt(λ) where Ct(λ)
is the wind turbine torque coefficient which can be approximated by a quadratic
polynomial function with respect to the tip speed ratio λ [24] as follows

Ct(λ) = α0 + α1λ + α2λ2 (2)

where αi {i = 0, 1, 2} is the coefficient of the quadratic polynomial. The tip speed ratio
λ depends on the rotor speed ωm of the wind turbine and the wind speed v, and the
expression can be written as:

λ =
ωmRt

v
(3)

Obviously, ωm = λv
Rt

, Pw = 1
2 Cp(λ)ρπR5

t (
ωm
λ )3.



Entropy 2022, 24, 818 3 of 13

(B) Drive Train
The role of the drive train is to transfer the wind turbine mechanical torque Tm to the
PMSG. The kinematical equation of the drive train can be expressed as:

J
dωm

dt
= Tm − Tg (4)

where Tm is the torque of the wind turbine which can be expressed as:

Tm =
ρπR3

t v2(a0 + a1λ + a2λ2)

2
(5)

In (4), Tg is the electromagnetic torque of the PMSG, J is the inertia of the rotating
part, and ωm is the rotor speed of the wind turbine.

(C) PMSG
The stator voltages of the PMSG in the d-q frame can be expressed as [25]:

Ld
did
dt

= −Rid + ωeLqiq − ud (6)

Lq
diq
dt

= −Riq −ωeLdid + ωeφm − uq (7)

where ud and uq are the d shaft voltage and q shaft voltage in the rotor coordinate
system, respectively; id and iq are the d shaft current and q shaft current in the
rotor coordinate system, respectively; R is the stator resistance; Ld and Lq are the
inductance in the d-q coordinate system, ωe = pωm is the electrical angular velocity
of the generator; p is the number of pole pairs of the PMSG; and φm is the flux that is
constant due to permanent magnets.

(D) Power Converter and Electric Grid
The job that the power converter does can be divided into three steps: It firstly converts
AC voltage from PMSG to DC voltage, then converts DC voltage back to AC but
variable voltage, and finally, it puts variable AC voltage into the grid.
The wind energy conversion system has partial load mode and full load mode. When
the wind speed is lower than the rated wind speed, the wind energy conversion
system operates in the partial load mode. When the wind speed is higher than the
rated wind speed, the wind energy conversion system operates in the full mode.
To explicitly explain our algorithm, we will only consider about the partial load mode.
For full load mode, the research method will be quite similarly.
In partial load mode, the power electronics dynamic is neglected because it is signifi-
cantly more rapid than the PMSG-based wind energy conversion system dynamic.
As shown in Figure 2, the power converter and the electric grid are equivalent to
a parallel connection of a constant value inductance Ls and a variable resistance
Rs, and thus in this paper, it is regarded as the equivalent load of the PMSG. In
Figure 2, the resistance value of Rs changes with duty ratio of the control pulse of the
power converter.
According to the Figure 2 and literature [26], the stator voltages of the PMSG equiva-
lent model can be formulated as:

(Ld + Ls)
did
dt

= −(R + Rs)id + p
(

Lq − Ls
)
iqωm (8)

(
Lq + Ls

)diq
dt

= −(R + Rs)iq − p(Ld + Ls)idωm + pωmφm (9)
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Figure 2. Equivalent schematic diagram of PMSG-based wind energy conversion system [26].

On the other hand, the electromagnetic torque Tg in (4) can be expressed as:

Tg = pφmiq + p(Ld − Lq)idiq (10)

In order to simplify the system model, assuming that Ld = Lq [27], then the electro-
magnetic torque Tg can be further written as:

Tg = pφmiq (11)

Substituting (5) and (11) into (4), the dynamic equation of wind turbine speed ωm can
be written as:

dωm

dt
=

1
J

(
ρπR3

t v2(a0 + a1λ + a2λ2)

2
− pφmiq

)
(12)

Let x = [x1, x2, x3]
T = [id, iq, ωm]T , u = Rs. Combining (8), (9) and (12), we can get the

following nonlinear state space model:{
ẋ = f (x, v) + g(x)u

y = h(x)
(13)

where u = Rs is the control variable, and the detailed expression of f (x), g(x) and
h(x) are shown as follows

f (x) =

 − R
Ld+Ls

x1 + p Lq−Ls
Ld+Ls

x2x3

− R
Lq+Ls

x2 − p(Ld + Ls)x1x3 + pφmx3
1
J (−pφmx2 + d1v2 + d2vx3 + d3x3

2)

 (14)

g(x) =
[
− 1

Ld+Ls
x1 − 1

Lq+Ls
x2 0

]
(15)

h(x) =
1
2

Cp(λ)ρπR5
t (

x3

λ
)3 (16)

In (12), the output y means the output power Pw in the wind energy conversion
system, and d1 = 1

2 πρR3
t α0, d2 = 1

2 πρR4
t α1, d3 = 1

2 πρR5
t α2 are all known coefficients.

According to (16), the output power Pw (y) increases monotonically with the wind
turbine rotational speed ωm (x3). If the optimal rotational speed ωm can track ωm,re f ,
the output power will reach the maximum. Therefore, the output power control of
the wind power generation system in the partial load mode can be turned into the
control of the wind turbine speed ωm.
From the above analysis, it can be seen that the ability of the wind turbine to capture
the maximum wind energy is equivalent to controlling the rotational speed of the
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wind turbine to track the optimal rotational speed. As the wind speed is usually a
non-Gaussian random variable, the control theory using only mean or variance is
not sufficient.
In fact, due to the influence of non-Gaussian random variable v, the wind turbine
speed ωm is also a non-Gaussian random variable. Denote the tracking error as

e = ωm,re f −ωm. (17)

where ωm,re f is target value. As shown in Figure 3, our objective is to design a
controller to make the probability density function (PDF) of power tracking error e
get close to an impulse shaped PDF with mean value 0.

Controller WECS

v

,m refw
mwe ku

-

+

Wind Speed

Error PDF 

Estimation
eg

Figure 3. Block diagram of MPPT technology based on stochastic distribution control (SDC) strategy.

3. Controller Design

In this section, the SIP will be used to measure the uncertainty of the stochastic tracking
error ek. The SIP is a little similar to traditional entropy, but it overcomes the property of
traditional entropy that it has no translation invariance (that is, it changes with the change
of distribution). And it is easy to compute the actual value from the sample data to avoid
selecting kernel width and computing kernel [28,29]. Based on SIP, the control input can be
obtained by recursively optimizing the performance index function.

3.1. Performance Index Function

System (13) has single input and single output. Recalling e = ωm,re f − ωm in (17),
the α order survival information potential of e can be defined follows:

Sα(e) =
∫

R+

F̄α
|e|(e)de(α > 0) (18)

where F̄|e|(x) = P(|e| > x) = E[I(|e| > x)] is the survival function of the random vector |e|,
e ∈ R+, I is the indicator function. In this paper, the k time performance indicator function
is selected as follows:

J = R1Sα(ek) +
1
2

uT
k R2uk (19)

where R1 and R2 are constant weights, 1
2 uT

k R2uk represents the constraints of the control
input, and Sα(ek) represents the survival information potential of the tracking error.

3.2. SIP Estimation for Tracking Error

The probability distribution of the error is usually unknown. Therefore, here we adopt
a data-driven approach to estimate the SIP of the tracking error [30,31]. Supposing at time
k there exist error samples (e1,k, e2,k, · · · , eN,k) which represent a set of N independent and
identically distributed samples for e, then the estimated value of the survival function
ˆ̄Fek (x) can be expressed as:

ˆ̄Fek (x) =
1
N

N

∑
i=1

I(ek,i > x) (20)
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Furthermore, the sliding window method will be used to estimate the SIP of the track-
ing error ek. Let N be sliding window width. For the sample sequence (e1,k, e2,k, · · · , eN,k),
and without the loss of generality, supposing that 0 ≤

∣∣ek,1
∣∣ ≤ ∣∣ek,2

∣∣ ≤ · · · ≤ ∣∣ek,N
∣∣, the SIP

estimate of the tracking error ek can be further expressed as:

Ŝα(ek) =
∫ ∞

0

(
1
N

N
∑

i=1
I
(∣∣ek,i

∣∣ > e
))α

de =
N
∑

j=1

∫ |ek,j|
|ek,j−1|

(
1
N

N
∑

i=1
I
(∣∣ek,i

∣∣ > e
))α

de

=
N
∑

j=1

(
N−j+1

N

)α(∣∣∣ek,j

∣∣∣− ∣∣∣ek,j−1

∣∣∣) (21)

where ek,0 = 0, then (21) can be simplified as:

Ŝα(ek) =
N
∑

j=1

(
N−j+1

N

)α(∣∣∣ek,j

∣∣∣− ∣∣∣ek,j−1

∣∣∣) =
(

1−
(

N−1
N

)α)∣∣ek,1
∣∣

+ · · ·+
(( 2

N
)α −

(
1
N

)α)∣∣ek,N−1
∣∣+ ( 1

N

)α∣∣ek,N
∣∣

=
N
∑

j=1
µj

∣∣∣ek,j

∣∣∣
(22)

In (22), the weight µj =
(

N−j+1
N

)α
−
(

N−j
N

)α
, µj(j = 1, 2, · · · , N) depends on the

number of samples N. Obviously µj ≥ 0,
N
∑

j=1
µj = 1.

From (22) it can be known that the SIP estimation of e is the weighted sum of ek,j.
Actually, the SIP is not smooth when ek,j = 0. To overcome this, we consider the SIP of
squared ek, and then Equation (22) can be converted to the following

Ŝα(e2
k) =

N

∑
j=1

µje2
k,j (23)

Furthermore, the performance index function (19) can be transformed into

J = R1Ŝα(e2
k) +

1
2

uT
k R2uk (24)

For convenience, we denote the first term on the right side of Equation (24) as:

J̄ = R1Ŝα(e2
k) (25)

3.3. Optimal Control Law

In this paper, J in Equation (24) is the performance index to be optimized. The control
objective is then transformed into finding the control input u∗k , so that J is minimized at
each sample time k, that is,

u∗k = arg min J = arg min
(

R1Ŝα(e2
k) +

1
2

uT
k R2uk

)
(26)

Note uk = uk−1 + ∆uk, Θk(uk) = Ŝα(e2
k). Take the Taylor expansion of Θk(uk) at uk−1,

we obtain:

Θk(uk) ≈ Θk(uk−1) +
∂Θk(uk−1)

∂uk−1
(uk − uk−1) +

1
2

Θk2
∂2Θk(uk−1)

∂2uk−1
(uk − uk−1)

2 (27)

Θk(uk) = Θk,0 + Θk,1∆uk +
1
2

Θk,2∆u2
k (28)
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Substituting (28) into (24) yields:

u∗k = uk−1 + ∆u∗k = uk−1 − (R1Θk,2 + R2)
−1(R1Θk,1 + R2uk−1) (29)

Then the optimal control input u∗k can be calculated by the following equation

∂J(uk)

∂∆uk
= 0 (30)

From (29) and (30), u∗k can be calculated that:

u∗k = uk−1 + ∆u∗k = uk−1 − (R1Θk,2 + R2)
−1(R1Θk,1 + R2uk−1) (31)

where the weights satisfy R1 > 0, R2 > 0, and R1Θk,2 + R2 > 0 should be satisfied.
The algorithm of the optimal control law can be summarized as follows:

Step 1: Initialize control input u0;
Step 2: Select the sliding window width N, the value of the SIP order α and the weight R1

and R2 in Equation (24);
Step 3: Calculate the SIP and the performance index value J̄ by Equations (23) and (24)

respectively;
Step 4: Calculate the Θk,1 and Θk,2 by Equation (28);
Step 5: Solve the optimal control input uk by Equation (31);
Step 6: According to uk = uk−1 + ∆uk, update control law;
Step 7: Increase k by 1 to repeat the process from the step 3 to the step 6.

4. Simulation

In this section, the performance of the proposed control strategy will be verified and
compared with those results in [6,32].

In the performance index J, the weight is α = 2, R1 = 1, R2 = 0.0001 and the width
of the sliding window is N = 100. The sampling interval is chosen as 0.1 s. For (13), we
use the same parameters as in [26], that is R = 3.3 Ω, Ld = lq = 41.56 mH, Ls = 0.1452 H,
p = 3, Rt = 2.5 m, φm = 0.4382 Wb, α0 = 0.1253, α1 = −0.0470.1253, α2 = −0.005.

The basic wind speed model can be approximately determined by the Weibull distri-
bution parameters obtained from wind measurements in the wind farm as [33]:

vb = C • Γ(1 +
1
K
) (32)

where C, K are the scale and shape parameters of the Weibull distribution, respectively. Γ
is the gamma function. In this simulation experiment, the basic wind speed is taken as a
fixed constant k, namely

vb = k m/s (33)

and k is selected to be 7. Actually, the wind speed changes irregularly. This irregular wind
speed variation can be described by a stochastic wind model as:

vs = vs max · rand(−1, 1) · cos(ωst + ϕ) (34)

where vs is random wind; vs max is the maximum value of random wind speed; ωs ∈
{0.5− 2π rad/s} is the average distance of wind speed fluctuation; ϕ ∈ {0− 2π} is a
random variable obeying uniform distribution.

The wind energy conversion system operates with a combination of base wind speed
vb = 7 m/s and random wind speeds vs initially, that is v = vb + vs, and thus v is non-
Gaussian. After 30 s, the basic wind speed becomes 8 m/s, as shown in Figure 4.
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0 10 20 30 40 50 60 70 80

 time(s)

6.5
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7.5

8

8.5

v
(m

/s
)

Figure 4. The combined wind speed.

Figure 5 is the rotor speed wm from which we can see that although the wind speed is
changing, after the stochastic control strategy, the rotor speed can still track the taget rotor
speed. Compared with PI control, the overshoot under SDC is smaller and the tracking
time SDC needs is shorter.

Figure 5. The rotor speed ωm.

Figure 6 shows the control input. It can be seen from Figure 6 that no matter which
control method is used, the system input will eventually tend to a stable value, but the
input of the controller designed in this paper can tend to be stable in a shorter time. As the
performance index function, we can see from Figure 7 that the change for the performance
index generally decreases gradually and eventually tends to be stable.
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Figure 6. The control input uk.
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time(s)
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1.15

1.2

J
k

PI

Adaptive Control

SDC

Figure 7. Performance index function Jk.

Figure 8 is the tip speed ratio. As shown in Figure 8, the tip speed ratio varies in
the range of [6.5, 7.2]. The wind energy utilization coefficient is kept in the range of
[0.471, 0.476]. In the vicinity of the optimal tip speed ratio λopt, the utilization rate of wind
energy is higher, as shown in Figure 9.
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0 10 20 30 40 50 60 70 80

time(s)

6

6.2

6.4

6.6

6.8

7

7.2

7.4

7.6

7.8

8

(r
a

d
)

Figure 8. Tip speed ratio of a wind turbine.
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Figure 9. Power coefficient of a wind turbine.

The 3D PDF of tracking error e is shown in Figure 10. Figure 11 is the PDF of the
tracking error at t = 30 s. As shown in Figure 10, the PDF shape of the tracking error
becomes narrower and sharper over time. This shows that the method proposed in this
paper can effectively reduce the influence of randomness on the system.
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Figure 10. 3D mesh plot of the tracking error PDF.
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Figure 11. Tracking error PDF at different sample times.

5. Conclusions and Future Work

This paper studies the MPPT control strategy for wind energy conversion system.
Firstly, the model of the composite wind energy conversion system is established. Then,
for the non-Gaussian wind energy conversion system, a MPPT control method based on
the SDC strategy is designed, and the performance index function is established based
on the survival information potential. The optimal control law is obtained by minimizing
the performance index function. The experimental results show that, compared with the
traditional PI control or adaptive control, the proposed stochastic distribution controller
can provide smoother rotor speed regulation and avoid unnecessary power fluctuations
in the presence of stochastic wind speed. The small fluctuation of wind energy utilization
coefficient further shows that the control algorithm can ensure MPPT of the wind energy
conversion system.

Further research includes study of MPPT control at full load model. The stability or
convergence analysis of the control algorithm is quite challenging and deserves attention.
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