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Abstract: In this paper, a robust trajectory tracking control method with state constraints and uncer-
tain disturbances on the ground of adaptive dynamic programming (ADP) is proposed for nonlinear
systems. Firstly, the augmented system consists of the tracking error and the reference trajectory,
and the tracking control problems with uncertain disturbances is described as the problem of robust
control adjustment. In addition, considering the nominal system of the augmented system, the guar-
anteed cost tracking control problem is transformed into the optimal control problem by using the
discount coefficient in the nominal system. A new safe Hamilton–Jacobi–Bellman (HJB) equation is
proposed by combining the cost function with the control barrier function (CBF), so that the behavior
of violating the safety regulations for the system states will be punished. In order to solve the new
safe HJB equation, a critic neural network (NN) is used to approximate the solution of the safe HJB
equation. According to the Lyapunov stability theory, in the case of state constraints and uncertain
disturbances, the system states and the parameters of the critic neural network are guaranteed to be
uniformly ultimately bounded (UUB). At the end of this paper, the feasibility of the proposed method
is verified by a simulation example.

Keywords: adaptive dynamic programming; robust tracking control; control barrier function; state
constraints

1. Introduction

With the continuous application of automatic driving technology [1,2] and intelligent
robot technology [3,4], the role of the safety-critical system has attracted extensive attention.
In the process of designing a controller, safety is the primary consideration compared to
other performances. For the control system with strict safety requirements, the CBF was
applied to the control system as a tool to achieve the purpose of state constraints.

Reinforcement learning (RL) can be regarded as the technology of strategy learning
and evaluation learning. In the actual engineering application, although the phenomenon
of the dimension curse exists in dynamic programming, RL can deal with it well, and we
also call it adaptive dynamic programming (ADP) [5–7]. Adaptive dynamic programming
is an intelligent control method, and it is also an approximate tool to deal with optimal
control problems. However, the analytical solution of the Hamilton–Jacobi–Bellman (HJB)
equation is generally difficult to obtain; therefore, the adaptive dynamic programming
(ADP) can learn the solution of the HJB equation online by the neural network (NN)
approximation method [8–10]. At present, a variety of control methods based on ADP have
been proposed by researchers to deal with the problem of trajectory tracking and optimal
control [11–16].

Adaptive dynamic programming enables the complex nonlinear system to achieve
the desired tracking control goal [17–20]. In reference [17], the tracking performance of
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continuous-time nonlinear systems was analyzed by considering the influence of input con-
straints. Due to the influence of the actual situation, a series of uncertain disturbance factors
are often considered. Therefore, robust optimal tracking control has become a research
hot spot. In reference [18], solving tracking problems for complex nonlinear systems with
uncertainty can be more difficult, and the adaptive criticism technique was used to solve
the robust tracking control problems of nonlinear systems with random disturbances. Con-
sidering the nonlinear system with a continuous-time matching uncertainty, an effective
robust tracking control method was adopted, and the discounted coefficient was selected
for the nominal augmented error system in references [19,20]. Considering the system
with disturbances, H∞ tracking control was used in control systems with disturbances [21].
In order to reduce the design cost and waste of resources and adjust the accuracy of the
control system, a tracking control method based on the event triggering was proposed [22].
Considering the optimal regulation problem, a new non-quadratic discount performance
function was proposed in reference [23]. In reference [24], an improved adaptive robust
tracking method was proposed for the uncertainty of nonlinear systems and successfully
extended to the mass-spring-damper system. The tracking control method proposed above
enabled the feasibility of the control strategy and enabled the system to achieve the prede-
termined control target. However, none of the tracking control methods proposed above
consider the state constraints problem.

In references [25–28], different ADP-based methods were proposed to solve various
engineering problems. In some specific environments, the control system is often required
to have reliable security. The purpose for which the safety system was designed is to find
its control strategy by conforming to the safety specifications specified by the physical
constraints of the system [29]. The use of the CBF method to solve the safety constraints
of systems with strict requirements has attracted extensive attention [30–33]. Let the
states displayed by the system converge to the desired equilibrium point; an approximate
adjustment method for solving the optimization problem of safety boundary control was
proposed, and the cost of violating the safety constraint was directly embedded into the
value function [34]. In reference [35], the application of the CBF was introduced, and the
verification method and the characteristics of implementation safety in the context of a
safety-critical control system are summarized. The discrete-time state constraints problem
was described in reference [36], and the HJB equation with the CBF was solved by using
the approximate properties of the neural network.

In this paper, a new guaranteed cost robust tracking method with state constraints
and uncertain disturbances is proposed. This method can guarantee the convergence of
the system error under conditions of uncertain disturbances and state constraints. The
discounted coefficient is selected for the nominal augmented system with tracking errors.
In addition, the CBF is added to the system to solve the constraint problem of system
states. Finally, the approximation property of the critic NN is adopted to deal with the HJB
equation. The contributions of this paper are described below:

1. For robust tracking control problems, the CBF is applied to the tracking control
system with uncertain disturbances so that the system can still have good tracking
performance in the case of state constraints;

2. Combining the traditional adaptive control method with the CBF, the CBF is directly
extended to the original system, and the CBF is used as a penalty function to punish
unsafe behavior;

3. A new guaranteed cost robust adaptive tracking method with state constraints and
uncertain disturbances is proposed to solve the safety HJB equation through the critic
NN learning framework, and the critic NN parameters are guaranteed to be uniformly
ultimately bounded (UUB) under the influence of state constraints and uncertain
disturbances.

The arrangement of other parts of this article is described below: Section 2 states the
preliminary knowledge and introduces the relevant contents of the control barrier function.
Section 3 describes the selection of discount value functions for the nominal augmented
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system and introduces the form of the new cost function after adding the barrier function.
Section 4 introduces the learning method of a critic neural network with state constraints
and uncertain disturbances. In Section 5, the effectiveness of the proposed method is
verified by a simulation example. Finally, some conclusions are summarized in Section 6.

2. Preliminaries
2.1. Problem Statement

Consider the following uncertain nonlinear safety system

ẋ(t) = f (x(t)) + g(x(t))u(t) + ∆ f (x(t)), (1)

where x(t) ∈ Φ ⊂ Rn is the state variable, u(t) ∈ U ⊂ Rm is the control vector, Φ represents
the safe feasible states set, U represents all admissible input sets, f (x(t)) ∈ Rn and g(x(t))
∈ Rm are known functions with f (0) = 0, and ∆ f (x(t)) ∈ Rn is the unknown perturbation
term with ∆ f (0) = 0. Here, let the initial state x(0) = x0; we assume that there exists a
constant gM and it satisfies 0 < ‖g(x)‖ ≤ gM for ∀x ∈ Rn, and ∆ f (x) = g(x)d(x), where
d(x) ∈ Rm is an unknown perturbation, and the known perturbation function dM(x) > 0
is the boundary of d(x), here, ‖d(x)‖ ≤ dM(x). In addition, d(0) = 0 and dM(0) = 0.

Assumption 1. Let the reference trajectory of the system (1) be xd(t), and xd(t) is a bounded
function, which is limited and generated by the command generator ẋd(t) = r(xd(t)). Meanwhile,
the reference trajectory xd ∈ Rn and the command function r ∈ Rn are all Lipschitz continuous.

2.2. Control Barrier Function

The application of the CBF further solves the constraint problem of the system [36].
In a predefined security set, the CBF candidate is always positive and tends to infinity
at the defined set boundary. The CBF has a negative derivative at infinity, so the CBF
will not reach infinity. If the state of the system is close to the safety boundary, then the
condition that the derivative is negative will return the state to the safety set, so that the
state displayed by the system will be maintained within the predetermined set. The safe
feasible set Φ consists of operational constraints and safety specifications [34],

Φ = {x ∈ Rn|h(x) ≥ 0}, (2)

∂Φ = {x ∈ Rn|h(x) = 0}, (3)

IntΦ = {x ∈ Rn|h(x) > 0}, (4)

where ∂Φ represents the boundary of the safe feasible set Φ, IntΦ represents the interior
of the set Φ, and h is a continuously differentiable function of x, which is composed of a
one-dimensional system constraint range.

The CBF candidate B(x) satisfies all of the following properties,

1
α1(h(x))

≤ B(x) ≤ 1
α2(h(x))

, ∀x ∈ intΦ (5)

Ḃ(x) ≤ α3(h(x)), ∀x ∈ intΦ (6)

where α1(·), α2(·), and α3(·) are Lipschitz class K functions, and B(x) is a control barrier
function.

Assumption 2. Under the condition of uncertain disturbances, to ensure that the states of the
system are constrained . We use a logarithmic control barrier function Br(x), which satisfies the
following properties, {

Br(x) > 0, ∀x ∈ Φ,
Br(x)→ ∞, ∀x ∈ ∂Φ.

(7)

Besides, Br(x) is monotonically decreasing for ∀ x ∈ Φ.
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Under the condition of satisfying Assumption 2, the expression of the specific loga-
rithmic barrier function can be defined as

Br(x) = −log(
γh(x)

γh(x) + 1
). (8)

In (8), the parameter γ is a constant, and γ also determines the speed at which Br(x)
is limited as it approaches the safety barrier.

Before describing the modified robust tracking method with constraints, we first make
the following definitions and assumptions.

Definition 1. The safety control input set of the nonlinear system (1) is given below

Uc = {u ∈ Rm|xu ∈ intΦ}, (9)

where xu is the system state associated with the control strategy u, and intΦ is the interior of the
set defined in (4).

Assumption 3. The initial condition of the nonlinear system (1) is strictly within Φ; in other words,
x0 ∈ intΦ. Assume that the initial set of allowed inputs is not empty and satisfies Ua = U ∩ Uc. In
addition, the control strategy u(x0) ∈ Ua exists.

3. Guaranteed Cost Robust Tracking Design with State Constraints and
Uncertain Disturbances
3.1. Modified Robust Adaptive Tracking Control

The augmented system is constructed by combining the tracking error and the ref-
erence trajectory. Before describing the modified robust adaptive tracking control, the
tracking error is written as ex(t) = x(t)− xd(t). According to (1), the tracking error system
is derived as

ėx(t) = f (xd(t) + ex(t)) + g(xd(t) + ex(t))u(t) + ∆ f (xd(t) + ex(t))− r(xd(t)), (10)

where r(xd(t)) is a Lipschitz continuous function.
By considering the tracking error dynamics (10), the infinite horizon cost function is

given below [37]

V̄(ex(t), u) =
∫ ∞

t
e−α(τ−t)U(ex(τ), u(τ))d(τ), (11)

where α > 0 is a discount factor, and U(ex, u) = eT
x Qex + uT Ru, both Q ∈ Rn×n and

R ∈ Rm×m are symmetric positive definite matrices.
Under the condition of state constraints and uncertain disturbances, the purpose

of dealing with the guaranteed cost tracking problem is to find the control input u =
u(ex(t), xd(t)) and a positive real number V̄∗; then the tracking error ex(t) converges to
zero. Meanwhile, the cost function described in (11) satisfies V̄ < V̄∗. It should be pointed
out that V̄∗ is called a guaranteed cost function, and the control u is called a guaranteed
cost control input.

Remark 1. The discount term e−α(τ−t) given in (11) is mainly used to ensure that the cost function
is V̄ < ∞ since the control u(ex(t), xd(t)) contains a part depending on the reference trajectory
xd(t). In the absence of the discount term, u(ex(t), xd(t)) may make (11) to be unbounded. If the
reference trajectory xd(t)) does not converge to zero, the cost function (11) is unbounded without
considering the discount term e−α(τ−t).

Let s(t) = [eT
x (t), xT

d (t)]
T ∈ R2n, and the augmented system of error dynamics can be

given
ṡ(t) = F(s(t)) + G(s(t))u(t) + ∆F(s(t)), (12)
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the specific forms of F(s(t)) and G(s(t)) can be expressed as

F(s(t)) =
[

f (xd(t) + ex(t))− r(xd(t))
r(xd(t))

]
and

G(s(t)) =
[

g(xd(t) + ex(t))
0

]
,

and ∆F(s(t)) = G(s(t))d(s(t)), and because we know that ‖d(x)‖ ≤ dM(x), it is very easy
to know that the uncertain disturbance term ‖d(s(t))‖ ≤ dM(s(t)) holds, and dM(s(t)) is
the boundary of the uncertain disturbance term d(s(t)).

Remark 2. There is a random disturbance term d(s(t)) in the augmented system (12) described
above, which makes the process of designing the controller difficult. In the following introduction,
the augmented error system (12) is equivalent to the optimal control of its nominal system, and
the tracking problem with the random disturbance is transformed into an optimization adjustment
problem with the discounted value function.

Considering the existence of the uncertain term d(s(t)), the nominal system description
of the system (12) is

ṡ(t) = F(s(t)) + G(s(t))u(t). (13)

Inspired by references [29,36], Br(x) is combined with the nominal augmented sys-
tem (13), and the modified value function is

V(s(t)) =
∫ ∞

t
e−α(τ−t)[ρd2

M(s(τ)) + sT(τ)QTs(τ) + uT(τ)Ru(τ) + Br(s(τ))]d(τ), (14)

where QT = diag{Q, 0n×n}, ρ = λmax(R), the maximum eigenvalue of R can be expressed
by λmax(R), both Q ∈ Rn×n and R ∈ Rm×m are weighted symmetric positive definite
matrices of augmented systems, and α > 0 is a discount coefficient.

According to Bellman’s principle of the optimal control theory [38], the minimum
value of the Hamiltonian of the modified value function (14) of the nominal system (13)
is given

Hmin(s, u, Vs) = ρd2
M(s) + sTQTs + uT Ru− αV(s) + Br(s) + VT

s (F(s) + G(s)u), (15)

where Vs = ∂V/∂s, and the cost function V∗(s(t)) can be considered as

V∗(s(t)) = min
u

V(s(t)). (16)

For the system (13) with the control barrier value function (14), since the equation
∂H(s, u∗, V∗s )/∂u∗ = 0 holds, we can obtain the optimal control input u∗ from (15)

u∗ = −1
2

R−1GT(s)V∗s , (17)

where V∗s = ∂V∗(s)/∂s, and V∗(s) denotes the optimal value V(s).

3.2. State Constraints Analysis

In the process of designing a robust tracking controller, the CBF as a constraint tool
makes the states of the system evolve within the specified constraints, and the system can
maintain good performance within the set safety constraints. The CBF provides a constraint
tool for safety-critical systems to optimize the performance of other control objectives and
clearly explains the priority of security compared to other performance indexes. In order to
further describe that the CBF is bounded, it is described below that the boundedness of the
CBF is demonstrated by changing the order of the controller.
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Lemma 1. Consider an admissible feedback control strategy u1 ∈ Ua; there is the following
time-invariant positive definite function Z, which satisfies Z ∈ N1

∂VT

∂x
(F(s) + G(s)u1) + ρd2

M(s) + sTQTs + uT
1 Ru1 − αV(s) + Br(s) = 0, (18)

V(s0, u1) = Z(s0, u1), (19)

where V is the value function of the system for all t ∈ [0, ∞), and the following formula holds

V(s, u) = Z(s, u). (20)

Proof. Assume V(s, u1) > 0 exists and is continuously differentiable; then, we have

V(s(t), u1)−V(s0, u1) =
∫ t

0
V̇(s(τ), u1)d(τ) =

∫ t

0

∂V
∂s

(F + Gu1)d(τ). (21)

Considering (21), there are also

Z(s(t), u1)− Z(s0, u1) =−
∫ t

0
P(s(τ), u1)d(τ), (22)

where P(s, u) = ρd2
M(s) + sTQTs + uT Ru− αV(s) + Br(s).

We can derive from (21) and (22)

Z(s(t), u1)−V(s(t), u1) =
∫ t

0
(−∂V

∂s
(F + Gu1)− P(s(τ), u1))d(τ) + Z(s0, u1)−V(s0, u1). (23)

Combining (18), (21), and (23), we can obtain

Z(s(t), u1)−V(s(t), u1) =
∫ t

0
(P(s(τ), u1)− P(s(τ), u1))d(τ) = 0. (24)

Therefore, we can obtain

Z(s(t), u1) = V(s(t), u1). (25)

This completes the proof.

Lemma 2. We consider a series of positive definite value functions V(s, t, u1), V(s, t, u2),. . ., and
V(s, t, ui), and the corresponding abbreviations are V1, V2, . . ., and Vk, which are concerned with
the allowable control inputs u1(s, t), u2(s, t), . . ., and uk(s, t) ∈ Ua. Then, the Hamiltonian value
defined in (15) satisfies the following conditions

Hmin1 ≤ Hmin2 ≤ . . . Hmini , (26)

and the CBF candidate Bk
r is bounded in the range of 1 < k < i .

Proof. Assume that 0 ≤ k ≤ j ≤ i is satisfied for any j and k, and the condition Hmink ≤
Hminj holds; therefore, one has

Vj = Vk + Vo, (27)

where Vo = Vo(s(t), uk). According to (17), u∗ can be rewritten as

u∗ = −1
2

R−1GT∇Vj,

Hminj =∇VT
j (F + G(−1

2
R−1GT∇Vj)) + T(s) +

1
4
∇VT

j GR−1GT∇Vj.
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Considering T(s) = ρd2
M(s) + sTQTs + Br(s) − αV(s). According to (27), one may

obtain
Hminj = Hmink +∇VT

o (F + Gu∗k )− (u∗To Ru∗o ).

According to the above description, since Hminj − Hmink + (u∗To Ru∗o ) ≥ 0, we can
obtain

∂Vo(s, uk)

∂t
≥ 0.

Because limt→∞Vo(s(t)) = 0, the following results are obtained

Vo ≤ 0,

V(s, t, u1) > V(s, t, u2) > . . . > V(s, t, ui).

From the above Lemmas 1 and 2, we can obtain

Z(s(t), uk) < Z(s(t), u1), 1 < k < i. (28)

In the above derivation, not only Z(s(t), uk) is bounded, but also P(s, u) is positive
definite, and then Bk

r is also bounded. In other words, in the case of state constraints, the
system states will not reach the safety boundary in the process of tracking the reference
trajectory. This proves that the CBF is bounded within each moment.

Theorem 1. For the performance optimization problem described in (16), let both Assumption 2
and Assumption 3 hold. Through the improvement of control input (17), the security of the tracking
state is guaranteed within a certain range for all t > 0.

Proof. Through the introduction to Lemmas 1 and 2 above, the performance functions
Z(s, uk) and candidate function Bk

r are bounded at each moment after the control input (17)
is changed. From Assumptions 1 and 2, at the boundary of the constraint range, the value
of the barrier function Bk

r will reach infinity; in other words, the CBF remains is bounded at
any moment, which ensures that the states of the system never reach the safe boundary.

In the above introduction, the CBF is directly added to the cost function, which makes
the states of the system constrained. This method is applicable to the guaranteed cost
robust trajectory tracking control without initial admissible control. The traditional tracking
controller usually needs the initial admissible control law. Although the appropriate initial
admissible control law is found, the appropriate initial admissible control law may not
satisfy the condition of state constraints.

Due to the existence of the discount term e−α(τ−t) in Equation (11), to guarantee the
stability of the closed-loop system in the process of the tracking reference trajectory process,
a guaranteed cost adaptive critic NN learning framework is designed. Before proceeding
to the next step, we make the following assumption.

Assumption 4. Let J1(s) be a candidate of Lyapunov function and satisfy the condition of J̇1(s) =
∇JT

1 (s)(F(s)+G(s)u∗) < 0, and J1(s) is continuously differentiable, where∇J1(s) = ∂J1(s)/∂s.
Assume there exists a symmetric positive definite matrix Λ(s), and the condition of expression
(∇J1(s))T(F(s) + G(s)u∗) = −(∇J1(s))TΛ(s)∇J1(s) holds.

4. Design of Guaranteed Cost Adaptive Critic NN Learning Framework

In this section, the approximation property of the critic NN is used to approximate
the solution of the safety HJB Equation (15), a guaranteed cost adaptive critic NN learning
framework is proposed, the weight of the critic NN is updated through online the learning
scheme, and all the vectors of the critic NN finally are guaranteed to be UUB. Considering
the cost function described in (16), we design a critic NN to approximate the cost function
V∗(s(t)) and its partial derivative
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V∗(s) = WTφ(s) + εv(s), (29)

∇V∗(s) = (∇φ(s))TW +∇εv(s), (30)

where W ∈ Rl is the ideal vector of the critic neural network, the activation function of the
critic NN can be expressed as φ(s) = [ϕ1 ϕ2 ϕ3 · · · ϕl ]

T ∈ Rl , l is the number of
hidden-layer neurons, ∇φ(s) is denoted as the derivative of φ(s), the approximation error
of the critic NN is denoted by εv(s), and ∇εv(s) is the derivative of εv(s).

Assumption 5. The vector W of the critic NN is bounded by a positive constant, i.e., ‖W‖ < WM,
the activation function φ(s) and its derivative ∇φ(s), the critic NN error εv(s) and its derivative
∇εv(s), are bounded, and satisfy ‖φ(s)‖ < φε, ‖∇φ(s)‖ < φdε, ‖εv(s)‖ < εσ, and ‖∇εv(s)‖<
εdσ, where φε, φdε, εσ, and εdσ are positive constants.

From Equations (15), (16), and (30), the approximate error of the safety HJB form is

ρd2
M(s) + sTQTs + u∗T Ru∗ − αV∗(s) + Br(s) + WT∇φ(s)(F(s) + G(s)u∗) + εv1(s) = 0, (31)

where εv1(s) = ∇εT
v (s)(F(s) + G(s)u∗).

Considering Equations (17) and (30), we can draw the following conclusion,

u∗ = −1
2

R−1GT(s)(∇φ(s))TW + εv2, (32)

where εv2 = −(1/2)R−1GT(s)∇εv. At the same time, we substitute (32) into (31) and can
obtain

ρd2
M(s) + sTQTs− αWTφ + Br(s) + WT∇φF− 1

4
WT∇φ$(∇φ)TW −ω = 0, (33)

where $ = G(s)R−1G(s), and ω = αεv− (∇εv)T F+(1/4)(∇εv)T$∇εv +(1/2)WT∇φ$∇εv
is the approximation error.

We do not know the value of the ideal weight W; therefore, by using the critic NN to
approximate the cost function V∗(s) as

V̂(s) = ŴTφ(s), (34)

where Ŵ denotes the estimated value of the ideal vector W, and V̂ is the estimated value
of the ideal cost function V∗. We can obtain the approximate HJB equation form from
Equations (15) and (34)

Ĥ(s, u, V̂s) = ρd2
M(s) + sTQTs + uT Ru− αV̂(s) + Br(s) + V̂T

s (F(s) + G(s)u). (35)

Based on Equation (34), the control input û(s) can be approximated by

û(s) = −1
2

R−1GT(s)(∇φ(s))TŴ. (36)

Through Equations (31) and (35), we define the HJB equation error caused by the critic
NN in the approximation process as

ε = ρd2
M(s) + sTQTs− αŴTφ + Br(s) + ŴT∇φF− 1

4
ŴT∇φ$(∇φ)TŴ. (37)

The estimation error of the weights of the critic NN is defined as W̃, and we can obtain

W̃ = W − Ŵ. (38)
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The HJB approximation error can be defined as

ε = −W̃Tξ +
1
4

W̃T∇φ$(∇φ)TW̃ + ω, (39)

where ξ = ∇φ(F(s) + G(s)û)− αφ(s). The Lyapunov function candidate J1(s) is shown in
Assumption 4, and we take Π(s, û) as an indicator function and define it as

Π(s, û) =

{
0, if JT

1 (s)(F(s) + G(s)û) < 0,
1, else.

(40)

We choose Ŵ to minimize the square residual E = (1/2)εTε, and then we obtain the
minimum value of the HJB approximation error ε. We use the gradient descent method as
the critic vector adjustment optimization law

˙̂W = −βξ̄(L(s) + Y(s) + Br(s) + ρd2
M(s)) +

β

2
Π(s, û)∇φ$J1(s) + β((K1θT − K2) + A(s))Ŵ, (41)

where ξ̄ = ξ/(1 + ξTξ)2, θ = ξ/(1 + ξTξ), L(s) = ŴT∇φF − αŴTφ + sTQTs, Y(s) =
−(1/4)ŴT∇φ$(∇φ)TŴ, and A(s) = (1/4)∇φ$(∇φ)TŴ(θ/(1 + ξTξ))T , and β > 0 is a
learning rate that determines the convergence speed of the critic NN. K1 and K2 are two
tuning parameters.

From the above description, it is deduced that the weight estimation error is

˙̃W = −βξ̄(W̃Tξ + Ỹ(s)− Br(s))−
β

2
Π(s, û)∇φ$J1 − β((K1θT − K2)− Ã(s))(W − W̃), (42)

where Ỹ(s) = −(1/4)W̃T∇φ$(∇φ)TW̃, Ã(s) = (1/4)∇φ$(∇φ)T(W − W̃)(θ/(1 + ξTξ))T .

Theorem 2. Consider the nominal system (13), the modified value function (15), and the tuning
laws (41). Only if all the above Assumptions 1–5 hold, then the critic NN error W̃, the system state
x, and the control input u∗ are guaranteed to be UUB.

Proof. Analyze the Lyapunov candidate function described below

L(t) = Vs(s(t)) +
1
2

W̃T β−1W̃. (43)

The result of deriving Equation (43) is shown as

L̇(t) = V̇s(s(t)) + W̃T β−1 ˙̃W

= L̇V + L̇W .
(44)

The first term L̇V is

L̇V = W̃T∇φ(s)(F(s) + G(s)u) +∇εT
v (s)(F(s) + G(s)u)

= WT(∇φ(s)F(s)− 1
2

D1Ŵ) + εv1(s)

= WT∇φ(s)F(s) +
1
2

WT D1(W − Ŵ)− 1
2

WT D1W + εv1(s)

= WT∇φ(s)F(s) +
1
2

WT D1W̃ − 1
2

WT D1(s)W + εv1(s)

= WTσ +
1
2

WT D1W̃ + εv1(s),

(45)

where εv1(s) = ∇εT
v1(s)(F(s)− 1

2 G(s)R−1G(s)T∇φ(s)W̃), σ = ∇φ(s)(F(s) + G(s)u), and
D1 = ∇φ$(∇φ)T .

The second term L̇W can be obtained by (41)
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L̇W = W̃T β−1 ˙̃W

= W̃T β−1[−βξ̄(W̃Tξ + Ã(s)− Br(s))−
β

2
Π(s, û)∇φ$J1 − β((K1θT − K2)

− Ã(s))(W − W̃)]

= W̃T [−ξ̄(W̃Tξ + Ã(s)− Br(s))−
1
2

Π(s, û)∇φ$J1 − ((K1θT − K2)− Ã(s))(W − W̃)]

= W̃T [−ξ̄((W̃Tξ −ω)− 1
4

W̃T D1W̃)− ((K1θT − K2)−
D1

4
(W − W̃)

θT

m
)(W − W̃)]

− 1
2

Π(s, û)W̃T∇φ$J1

= W̃T [−θW̃Tθ +
θω

m
+

θW̃T D1W̃
4

]− W̃T [(K1θT − K2)(W − W̃)

− D1

4
(W − W̃)(θ/m)T(W − W̃)]− c,

(46)

where m = 1 + ξTξ, c = −Π(s,û)W̃T∇φ$J1
2 . Further, we can obtain

L̇W =− W̃TθW̃Tθ +
W̃Tθω

m
+

W̃TθW̃T D1W̃
4

− W̃T(K1θT − K2)(W − W̃) +
W̃T D1θT

4m
(W

− W̃)(W − W̃)− c

=− W̃TθW̃Tθ +
W̃Tθω

m
+

W̃TθW̃T D1W̃
4

− W̃T(K1θT − K2)W + W̃T(K1θT − K2)W̃

+
W̃T D1WθT

4m
W − W̃T D1W̃θT

4m
W − W̃T D1WθT

4m
W̃ +

W̃T D1W̃θT

4m
W̃ − c.

(47)

Taking the sum of the terms L̇V and L̇W , we obtain

L̇(t) = WTσ +
1
2

WT D1W̃ − W̃TθW̃Tθ +
W̃Tθω

m
+

W̃TθW̃T D1W̃
4

− W̃T(K1θT − K2)W

+ W̃T(K1θT − K2)W̃ +
W̃T D1WθT

4m
W − W̃T D1W̃θT

4m
W − W̃T D1WθT

4m
W̃

+
W̃T D1W̃θT

4m
W̃ − c + εv1(s).

(48)

Assume that Z = [W̃Tθ, W̃T ]T , then we can obtain

L̇(t) = −ZT

[
I −WT D1

8m − KT
1

2

−D1W
8m −

K1
2 K2 − θTWD1

4m

]
Z

+ ZT

[
ω
m

D1WθTW
4m + K2W − K1θTW

]
+ b + d, (49)

where
b = c + WTσ + ‖εv1(s)‖, (50)

d =
WT D1(W̃θTW̃ − W̃θTW −WθTW̃)

4m
. (51)

Define

M =

[
I −WT D1

8m − KT
1

2

−D1W
8m −

K1
2 K2 − θTWD1

4m

]
, (52)

a =

[
ω
m

D1WθTW
4m + K2W − K1θTW

]
. (53)
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Let the tuning parameters K1, K2, and γ be chosen so that M > 0, and we obtain

L̇(t) < −‖Z‖2σmin(M) + ‖a‖‖Z‖+ µ, (54)

where µ = b + d. In summary, the Lyapunov derivative L̇(t) is negative if

‖Z‖ > ‖a‖
2σmin(M)

+

√
µ

σmin(M)
+

a2

4σmin(M)
. (55)

Based on the Lyapunov theorem [39], as long as the selected appropriately tuning parame-
ters K1, K2, and γ make the formula (32) hold, in the case of state constraints and uncertain
disturbances, the critic NN weight error W̃, the system state x, and the control input u∗ are
guaranteed to be UUB, and the nonlinear system (1) is guaranteed to be closed-loop stable
in the presence of state constraints and uncertain disturbances. The proof is completed.

5. Simulation

We consider a spring-mass-damping system with nonlinear properties [22], and the
system dynamics of the spring-mass-damper are as follows [24]{

ẋ1 = x2,

ẋ2 = −K(x2)
M − C

M x1 +
1
M u + px1sin(x2),

(56)

where x = [x1, x2]
T ∈ R2 and the nonlinear condition K(x) = x3, x1, and x2 are the position

and velocity, respectively, and u is the force applied to the object. M is the mass of the
object. K is the stiffness constant of the spring, and C is the damping. The above system
dynamics parameters are M =1 kg and C = 0.5 N· s/m. A mismatched disturbance may
lead to system instability. Considering that the system still has stable performance under
disturbances, the uncertain disturbance matching the system is selected, the uncertain
disturbance term d(x) = px1sin(x2), and we assume that p ∈ [−1, 1] and dM(x) = ‖x‖.

In the simulation process, considering that the initial allowable control law is not
required, to make the tracking errors of the system converge to zero, the reference trajectory
gradually tending to zero is selected, and the following reference trajectory xd(t) is given

ẋd =

[
−0.5xd1 − xd2cos(xd1)

sin(xd1)− xd2

]
, (57)

the initial condition is given as xd(0) = [0.15, 0.25]T , and we set the augmented state vector
as s = [eT

x , xT
d ]

T , and then combine (56) with (57), the dynamics of the augmented system
can be derived

ṡ =


s2 + s4 + 0.5s3 + s4cos(s3)

−(s2 + s4)
3 − 0.5(s1 + s3)− sin(s3) + s4
−0.5s3 − s4cos(s3)

sin(s3)− s4

+


0
1
0
0

(u + d(s)), (58)

where s = [s1, s2, s3, s4]
T = [ex1, ex2, xd1, xd2]

T with exi = xi − xdi.
To constrain the states of the system in augmented system dynamics (58), the control

barrier function used is as follows Br1(s1 + s3) = −log( γh(s1+s3)
γh(s1+s3)+1 )

Br2(s2 + s4) = −log( γh(s2+s4)
γh(s2+s4)+1 ).

(59)

The state constraints of the system are given as−0.2 ≤ x1 ≤ 0.35 and−0.15 ≤ x2 ≤ 0.4,
and the parameter γ = 0.02.

To complete the design of robust trajectory tracking control,the modified value func-
tion (14) can be specified as
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V(s(t)) =
∫ ∞

t
e−α(τ−t)[ρd2

M(s(τ)) + sT(τ)QTs(τ) + uT(τ)Ru(τ) + Br1(s(τ)) + Br2(s(τ))]d(τ). (60)

Besides, we select the learning rate as β = 1.5 and the discount factor α = 0.15,
respectively. In order to deal with the approximate optimal control for the nominal
augmented part of (58), we choose QT = diag{5I2, 02×2} and R = I, and I denotes an
identity matrix of appropriate dimensions. In this example, the activation function for
the critic NN is chosen as φ(s) = [s2

1, s1s2, s1s3, s1s4, s2
2, s2s3, s2s4, s2

3, s3s4, s2
4]

T . In addition,
the weights of the critic NN are denoted as Ŵc = [Wc1, Wc2, . . . , Wc10]

T . The initial value
of the state is given as x(0) = [−0.2, 0.4]T , and it is easy to calculate the initial error
vector according to s(0) = x(0)− xd(0), so the initial state of the augmented system is
s(0) = [−0.35, 0.15, 0.15, 0.25]T . In order to satisfy the condition of persistency of exci-
tation, an exploration noise exp(−0.25t)sin2(t)cos(t) is added during the training of the
neural network.

The convergence of critic parameters is shown in Figure 1, and the critic parameters after 30 s
converge to Ŵ = [3.3767, 0.9606, 0.8867, 0.7752, 1.9266, 1.0686, 1.105, 1.067, 1.0992, 1.0898]T.
Figure 2 shows the control inputs of the system. Figure 3 shows the trajectory of the tracking
errors ex1 and ex2 of the system without state constraints. Figure 4 shows the tracking error
of the system under state constraints. Figures 5 and 6 show that the system tracks the
reference trajectory without state constraints, and we can see that the system states violate
the constraints. Figures 7 and 8 show that the system tracks the desired trajectory with state
constraints, and that under the condition of state constraints and uncertain disturbances,
the system still maintains good performance. The method described in this paper can
ensure the stability of the closed-loop system. In summary, the simulation results display
the effectiveness of the proposed method.

Figure 1. Convergence of parameters of the critic NN.
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Figure 2. The control input of the system.

Figure 3. Tracking error of system without state constraints (p = 0.8).

Figure 4. Tracking error of system with state constraints (p = 0.8).
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Figure 5. Trajectory of the system state x1 without state constraints (p = 0.8).

Figure 6. Trajectory of the system state x2 without state constraints (p = 0.8).

Figure 7. Trajectory of the system state x1 with state constraints (p = 0.8).
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Figure 8. Trajectory of the system state x2 with state constraints (p = 0.8).

6. Conclusions

This paper presented a robust trajectory tracking method for nonlinear systems with
state constraints and uncertain disturbances based on adaptive dynamic programming.
Firstly, the system error was combined with the reference trajectory to construct the aug-
mented system, and at the same time, the nominal system of the augmented system was
considered. In order to overcome the uncertain disturbances of the augmented system,
the discount coefficient was introduced into the nominal system, and the CBF was added
into the nominal system with the discount coefficient to constrain the states of the system.
In addition, cost functions and control strategies were learned by designing a guaranteed
cost adaptive critic NN learning framework. Finally, the simulation results demonstrated
that the described method can converge the system error within the state constraints. In
the next work, we will try to extend the state constraints method to discrete-time tracking
control systems and multi-agent systems.
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