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Abstract: Most LLIE algorithms focus solely on enhancing the brightness of the image and ignore
the extraction of image details, leading to losing much of the information that reflects the semantics
of the image, losing the edges, textures, and shape features, resulting in image distortion. In this
paper, the DELLIE algorithm is proposed, an algorithmic framework with deep learning as the central
premise that focuses on the extraction and fusion of image detail features. Unlike existing methods,
basic enhancement preprocessing is performed first, and then the detail enhancement components
are obtained by using the proposed detail component prediction model. Then, the V-channel is
decomposed into a reflectance map and an illumination map by proposed decomposition network,
where the enhancement component is used to enhance the reflectance map. Then, the S and H
channels are nonlinearly constrained using an improved adaptive loss function, while the attention
mechanism is introduced into the algorithm proposed in this paper. Finally, the three channels are
fused to obtain the final enhancement effect. The experimental results show that, compared with the
current mainstream LLIE algorithm, the DELLIE algorithm proposed in this paper can extract and
recover the image detail information well while improving the luminance, and the PSNR, SSIM, and
NIQE are optimized by 1.85%, 4.00%, and 2.43% on average on recognized datasets.

Keywords: detail component prediction model; low-light image enhancement; attention mechanism;
HSV color space

1. Introduction

In recent years, low light image enhancement technology seems extremely significant
in the field of computer vision (target detection, target recognition), illumination cameras,
family security, medical image segmentation, and automatic driving. A dark light image
that delivers blurring details, or a video stream with a weak light backdrop will have a
grievous impact on the aforementioned domains. What’s more, the current mainstream
algorithms are only based on the improvement of image brightness but ignore the extraction
of the original detail information of the image, which greatly reduces the information
entropy of the image, and the original image information can not be fully expressed.
Therefore, low light image enhancement technology has particularly significant research
value, moreover, due to its universality, low illumination images are unavoidable in both
life and scientific research, and further analysis of its main characteristics reveals the lack of
illumination brightness, which leads to the loss of details, obvious noise and the existence
of dark areas locally or even as a whole. This will affect the user experience and the
further application of scientific research. The main reason for this is insufficient exposure
or insufficient surrounding light during acquisition.

At present, for this practical problem, the main low light image enhancement algo-
rithms can be divided into two categories: one is the traditional methods based on HE,
Retinex, HSV of color space transform, wavelet transform, dual-domain decomposition,
and so on, and they start from the essence of the images, so no matter what the advance
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of brightness, nevertheless the restoration of details is just barely satisfactory; the other is
the artificial neural network method based on deep learning, and has more advantages in
brightness hoist and details recovery than traditional methods. However, they are mostly
driven by a large number of high-quality data to train the model, which makes the duties of
low light enhancement utterly cumbersome. The DELLIE algorithm proposed in this paper
combines the operations of traditional algorithms, such as HSV three channels separation,
and is based on the idea of deep learning. Then, the detail component prediction model
(DCPM) is proposed, which following DELLIE draws into the fiery attention mechanism in
the NLP field, which makes the proposed DELLIE algorithm in this paper not only take into
account the essence of the image but also give consideration to the deep learning method.
At the same time, the detail component of the image can be fleetly estimated, according
to the proposed DCPM, and in this way can enormously abate the time complexity of the
network model.

In recent years, in traditional methods, adaptive enhancement algorithms for low illu-
mination images based on wavelet transform have been produced [1], dispersed wavelet
transform (DWT) has been used to separate the high- and low-frequency subbands of the
image, and then enhance them respectively. The image enhancement algorithm based on
dual-domain decomposition [2] decomposes the image into a basic layer and detail layer,
to realize the decoupling of contrast improvement and noise suppression. The low illu-
mination image enhancement algorithm is based on multi-scale gradient-domain guided
filtering, which performs nonlinear global brightness correction on the brightness compo-
nent, and proposes a brightness enhancement model for enhancement [3]. Both low-light
image enhancement via progressive-recursive network [4] and research on image enhance-
ment algorithm based on convolutional neural network in scotopic vision environment [5]
have produced certain effects in the enhancement of dark light images. However, because
they only focus on enhancing the contrast of images, although the overall brightness has
been significantly improved, the corresponding dark area noises may also be amplified,
and local areas may be uneven. They have not made remarkable progress in the processing
of details retention. Further research shows that HSV color space has more advantages
in adjusting picture details than RGB color space. Therefore, Qin et al. proposed the
Retinex structured light image enhancement algorithm in HSV color space, and Zhang et al.
proposed the retirement low illumination image enhancement algorithm in HSV space [6,7].
While the color is maintained, the information of the image is also enhanced, which further
proves the advantages of HSV color space in image processing, but does not focus on how
to retain the detail features of dark image edges to the greatest extent.

With the popularity of deep learning in the field of computer vision, neural networks
that are data-driven as the main solution began to enter the field of low-light image en-
hancement. Tao, Li, et al. proposed LLCNN [8]. Ma, Shiping, et al. proposed a low-light
sensor image enhancement algorithm based on the HSI color model [9]. Li, Chongyi, et al.
proposed LightenNet: A convolutional neural network for weakly illuminated image
enhancement [10]. LiCENt, a fast and lightweight algorithm is proposed [11], and the
combination of automatic encoder and convolutional neural network (CNN) is used to
train the weak light intensifier. Among them, Zero-DCE and Zero-DCE++ first put for-
ward the idea of the zero-reference curve [12,13]. Paired or unpaired datasets can train
the model and achieve good results. The kind algorithm adopts the ablation concept for
experiment [14] and establishes a simple and effective network to ignite darkness, based
on the Retinex theory. However, due to the absence of any reflectivity and illumination
information in the GT image, there will be some deviation between the enhanced image
and the GT image. Considering the time-consuming disadvantage of traditional meth-
ods in processing a single image [15], RetinexNet proposes a convolution neural network
based on Retinex theory, which greatly shortens the processing time. It adopts smoothing
processing in the enhancement network, to reduce the image sharpness, which makes the
reconstructed image slightly blurred. EnlightenGAN proposes an unsupervised genera-
tion countermeasure network [16], which can be trained without low/normal light image
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pairs. Because it does not use GT diagrams for supervised learning, but only uses the
benchmark proposed by it for experiments, the results are the same as KinD, and there
is also a certain deviation from GT diagrams. LLNet proposes a method based on depth
self-coding to extract image features [17], and appropriately enhance image brightness.
TBEFN [18] proposes a two-branch exposure fusion network, which is a new generation
and fusion strategy and proposes a two-stage denoising strategy to ensure effective noise
reduction. DSLR [19] proposed a new low-light-level image enhancement method, based
on the useful characteristics of the Laplacian pyramid, in image and feature space. Based
on the rich relationship of high-order residuals in multi-scale structure, LIME [20] finds the
maximum values in R, G, and B channels to estimate each pixel separately and refines the
initial illumination map by adding a structure to the initial illumination map as the final
illumination map. C. Chen et al. [21] introduce an original short exposure low light level
image dataset. M. Li et al. [22] consider a noise map and propose an optimization function
and a logarithmic transformation free alternating direction minimization algorithm based
on the Augmented Lagrange multiplier. Y. Shi et al. [23] present a perceptual unsupervised
network, and a self-supervised color consistency model is established through a degenerate
estimation algorithm to recover lost colors. B. Xu et al. [24] enhance the performance of the
algorithm by combining multiscale Retinex color reproduction contrast constrained adap-
tive histogram equalization. MTRBNet [25] presents a multibranch topology residual block
based on information connection and feedback mechanisms. The above deep learning-
based image enhancement algorithms have good enhancement performance, but because
of the excessive dependence on high-quality and large numbers of datasets, the real-time
performance of the algorithms is affected. Singh et al. proposed two exposure-based recur-
sive histogram equalization methods for image enhancement [26]. Jung, Cheolkon, et al.
proposed an effective contrast enhancement method based on dual-tree complex wavelet
transform [27]. Schmidt et al. proposed shrinkage fields, a random field-based archi-
tecture [28]. Gao et al. implemented Retinex algorithms in HSI (Hue, Saturation, Inten-
sity) color space [29]. Gao, Yin, et al. introduced the local weight correction function to
each channel pixel value and the Gaussian kernel of the required scale is calculated [30].
Wu, Yahong et al. explored a weighted L 1-norm regularization according to the similar-
ity measure of non-local patches [31]. SA Priyanka et al. proposed a principal compo-
nent analysis framework to enhance low-light-level images with decomposed luminance–
chrominance components [32].

Given the aforementioned analyses, this paper aims at the limitations on the image
details, which occurred to the existing low light image enhancement methods. Firstly, by
making the improved DexiNed [33] network framework the foundation of the proposed
DELLIE, using the proposed detail component prediction model (DCPM), the operation of
estimating the enhancement component will be fulfilled quickly and accurately, based on an
assigned input image. Secondly, HSV channel separation is the essential measure that takes
the decomposing network as an implement, which goes on segregating the reflection map
and the illumination map. Furthermore, it is supplemented by the attention mechanism
and the improved loss function. Based on deep learning and the innate character of images,
an effective algorithm DELLIE is proposed for low-light image detail enhanced recovery
and brightness enhancement.

2. Related Work

We will introduce HSV color space and attention mechanism.

2.1. HSV Color Space

With three basic attributes of color hue, saturation and value, HSV color space is a
color model for visual perception, which is more in line with human eye characteristics
(objective evaluation) than RGB three primary color space, so it is easier to achieve image
enhancement results in line with the real situation. Secondly, the three color components
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of HSV are independent of each other. Adjusting one component alone will not affect the
other components, which is more flexible than RGB space, as shown in Figure 1.

H =


0◦ ∆ = 0

60◦ × (G′−B′
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Through the above formulas, the conversion from RGB image to HSV space can
be completed.

2.2. Attention Mechanism

Attention mechanism CBAM [34] is extensively applied in natural language processing.
Through this mechanism, we can rapidly acquire the target areas of attention, thereupon
then receive the focal point of attention, and after that invest more attention to obtain more
detailed information about the task concerned. It is discovered in this paper, that even
under the constraint of the total loss function, there are trifling structural loss, content
loss, and color loss. However, after convolution, a channel attention mechanism (CA) is
introduced for high-level features; for low-level features, a spatial attention mechanism (SA)
is introduced, and the enhanced feature map obtained in this way will enormously boost
the quality of the restored image. Among them, the purpose of using the channel attention
mechanism is to make the input image more meaningful by calculating the weights of each
channel of the input image through the network, and paying more attention to the channels
containing more critical information and less attention to the channels with little important
information, thus improving the feature representation capability. Spatial attention aims
to enhance the feature representation of key regions, essentially transforming the spatial
information in the original image into another space and preserving the key information
through a spatial transformation module, generating a weighted mask for each location and
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weighting the output so as to enhance specific target regions of interest while weakening
irrelevant background regions. The overall attention process can be summarized.

F′ = Mc(F)⊗ F
F′′ = Ms(F′)⊗ F′

(4)

where F∈RC×H×W represents intermediate characteristic diagram for input and F′′ is
the final refined output. ⊗ denotes element-wise multiplication. During multiplica-
tion, the attention values are broadcasted (copied) accordingly: channel attention val-
ues are broadcasted along the spatial dimension, and vice versa. MC∈RC×1×1 represents
1 × 1 Conv channel attention map, Ms∈R1×H×W represents 2 × 2 Conv spatial attention
map and channel attention, as shown Formula (5).

Mc(F) = Sigmoid(MLP(AvgPool(F)) + MLP(MaxPool(F)))
= Sigmoid(W1(W0(Fc

avg)) + W1(W0(Fc
max)))

(5)

where W0∈RC/r×C, W1∈ RC×C/r represent the weight value of input and the ReLU activation
function. Note that the MLP weights, and they share weights. Spatial attention as shown in
Formula (6).

Ms(F) = Sigmoid( f 7×7([AvgPool(F); MaxPool(F)]))
= Sigmoid( f 7×7([Fs

avg; Fs
max]))

(6)

Fs
avg ∈ R1×H×W and Fs

max ∈ R1×H×W . Each denotes average-pooled features and
max-pooled features across the channel. Those are then concatenated and convolved by
a standard convolution layer, producing our 2D spatial attention map. f 7×7 represents a
convolution operation with the filter size of 7 × 7.

By innovatively drawing the mature and hot attention mechanism in NLP domain
into this algorithm, it is possible to pay preferably attention to the details of the connection
between the original image and the restored image.

3. Our Approach

The main innovative work of this paper can be summarized as follows. Firstly, this
paper proposes a new low-light image enhancement algorithm, called DELLIE, which
outperforms other mainstream algorithms in both qualitative and quantitative terms.
Second, it proposes the innovative use of basic enhancement pre-processing before the
enhancement process. Then this paper proposes a detail component prediction model,
which greatly improves the efficiency of recovering image details. Then this paper proposes
the decomposition network to improve the efficiency of the separation task of HSV three
channels. Subsequently, this paper improves the related loss function and innovatively
introduces the hot attention mechanism in NLP to achieve the reconciliation of local and
global information in the recovery process.

The principal ideology of the DELLIE algorithm proposed in this paper may be divided
into two steps: the first step is distinct from other algorithms. Firstly, the original low light
image is going through enhanced preconditioning elementarily, then the heightened detail
feature component is obtained through the detail component prediction model (DCPM)
proposed in this paper. In the second step, the primitive low light image is separated
into three channels: H, S, V, and the enhanced detail feature component, obtained in the
first step, is used to enhance the V channel, simultaneously and innovatively introducing
the attention mechanism that is common in the field of NLP for local constraints. At the
same time, the S channel and H channel are trimmed from the whole situation through the
improved loss function. So far, the total DELLIE algorithm has been accomplished.

3.1. Algorithm Implementation Process

(1) Firstly, the RGB image is converted to HSV color space to gain three independent
color channels of the image. According to Retinex theory, the part reflected by the image
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itself is its inherent attribute. The normal image and the low-light image have identical
reflection components, and the V-channel is decomposed into the reflection component
and illumination component proposed by DecomNet. (2) Secondly, the primeval low-
light image is preprocessed by basic enhancement. Firstly, MSR is used to strengthen the
brightness, and Gamma correction is used to suppress the noise. Gamma = 0.65 is selected
to suppress noise during the experiment. Afterward, it is transmitted to the proposed
detail component prediction model to obtain the enhanced component. (3) Finally, feature
fusion is performed under the action of the attention mechanism. Firstly, the enhancement
component is used to enhance the V-channel reflection map, and at the same time, the satu-
ration component (S) and hue component (H) are constrained by improved adaptive loss
function respectively. Experiments show that the proposed algorithm DELLIE can recover
the detailed texture features without excessive brightness or undue contrast heightening,
such as in Figure 2.
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3.2. The Proposed Detail Component Prediction Model

(1) Using the current advanced DexiNed network and improving it, the detailed feature
maps corresponding to each image are being solved and transformed into HSV channel
maps to obtain a V channel map. (2) The low light image, which had gone through basic
enhancement, and the V-channel image in (1) are composed of training image pairs, which
are transmitted to the DCPM model for training to obtain the detail feature enhancement
component. (3) Finally, based on any given low illumination image, the task of accurately
generating the corresponding detail feature enhancement component is being achieved. As
shown in Figure 3.

In order to better reflect the ability of the proposed detail component prediction
model to fully extract the image detail information and to extract and recover more details
after the enhanced preprocessing process than without the enhanced preprocessing, the
proposed detail component prediction model is presented with a detailed network structure
and parameters.
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network layers, and in the last, with 1 × 1 Conv consisting of convolution layer, without pool layer
and full connection layer. Among them, Conv+ReLu network has 10 layers; 1 × 1 Conv layer is one
layer. The procedure uses only ReLu as the activation function.

The datasets used are a total of 200 pairs of images that were randomly selected from
LOL datasets and Brightening Train datasets, which are for DCPM training. MSR is based
on SSR, which has the advantage of maintaining high image fidelity and compressing the
dynamic range of the image at the same time. MSR can also achieve color enhancement,
color constancy, local dynamic range compression and global dynamic range compression,
as shown in (7)–(10).

I f e = ∑K
k wk{log Ilow(x, y)− log[Fk(x, y)·Ilow(x, y)]} (7)

where K is the number of Gaussian center surround functions. When K = 1, MSR degener-
ates to SSR. Fk(x, y) is centered surround function. Ilow is the input and Ife is the output.
Generally speaking, in order to ensure that the advantages of both high, medium and low
scales of SSR are considered, K is usually taken to be 3, and there are w1 = w2 = w3 = 1/3.

At the same time, considering that simple brightening work only into the MSR will
largely bring about the amplification of the corresponding noise, the Gamma correction
method is first adopted to suppress the noise present, as in the following Equation (8).

Ig = C·I f e
Υ (8)

C is called gray scale factor, it is used to stretch the gray scale of the image as a whole,
and is usually taken as 1, and in this paper Υ = 0.5.

In order to improve the extraction ability for image detail information in the algorithm
of this paper, the methods of the algorithm in this paper regarding the work of edge texture
feature extraction are summarized as follows.

Idcp = ln(W, wn) = −β ∑
j∈Y+

logσ(yi = 1
∣∣Ig; W, wn) − (1− β) ∑

j∈Y−
logσ(yi = 0|Ig; W, wn) (9)
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L(W, w) =
N

∑
n=1

δn Igln(W, wn) (10)

Ig, Idcp are the results after Gamma and DCPM. W is network parameter; w is n
corresponding parameters. δ is the weight of each scale level. β = |Y −−/|Y + + Y −|,
(1 − β) = |Y +|/|Y + + Y −| represent edges and non edges in GT images respectively. In
order to strengthen the ability of detail extraction, this paper proposes the idea of iterating
the network layer, as shown in (11).

LCn(x) = LCn−1(x) + nLCn−1(x)(1− LCn−1(x)) (11)

Cn(X) and Cn−1(X) expresses as each feature layer, n = 6 and n ≥ 2. According
to the DexiNed algorithm, there are six layers of extracted feature layers, and in this
paper, the DELLIE algorithm, after taking full advantage of them, chooses to improve the
algorithm by adopting the idea of iteration to iteratively enhance the extraction of feature
network layers and fuse them with the previous feature layer. Since the DexiNed algorithm
itself does not require previous training or fine-tuning processes, such an iterative process
does not cause an increase in processing time; instead, the weight for detailed features
is increased in each iteration, so that a more adequate detail confidence is extracted after
the completion of the iteration. After the analysis of the experimental results, the detail
component prediction model proposed in this paper outperforms the DexiNed algorithm
in terms of processing speed and extracting image details. From Figure 3, it is obvious that
the extracted image details are more adequate especially after the innovative enhancement
preprocessing process is adopted. The specific experimental analysis results can be referred
to in Section 4.2: Basic enhancement preprocessing.

3.2.1. DecomNet Network Structure

DecomNet network structure: The network structure of DecomNet is shown Figure 4 below.
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not cause an increase in processing time; instead, the weight for detailed features is in-
creased in each iteration, so that a more adequate detail confidence is extracted after the 
completion of the iteration. After the analysis of the experimental results, the detail com-
ponent prediction model proposed in this paper outperforms the DexiNed algorithm in 
terms of processing speed and extracting image details. From Figure 3, it is obvious that 
the extracted image details are more adequate especially after the innovative enhance-
ment preprocessing process is adopted. The specific experimental analysis results can be 
referred to in Section 4.2: Basic enhancement preprocessing. 

3.2.1. DecomNet Network Structure 
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Figure 4. DecomNet network structure. Figure 4. DecomNet network structure.

DecomNet adopts a five layer network structure, which is composed of three layers of
Conv+ReLu, one layer of Conv and sigmoid activation function.

3.2.2. Residual Block Network Structure

Residual block network structure: The network structure of Residual block network
structure is shown in Figure 5 below.
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The residual module is modified, and uses firstly 1 × 1 Conv convolution, then this
layer is downsampled to reduce the calculation time, and then is 3 × 3 Conv. Finally, it
goes through 1 × 1 Conv and skip connection, and channel recovery is carried out for this
convolution layer.

3.3. The Improved Loss Functions

After HSV decomposition, three channels are obtained. To recover the enhanced
image more in line with the subjective and objective standards, this paper improves the loss
function: that is, the decomposed three channels are regarded as a whole. While processing
the V channel, the S and H channels are pixel-level adaptive to the V component, as shown
in (12).

Ltotal =wh

√
wp

h(∆Hp)
2 + ws

√
wp

s (∆Sp)
2 + wV

√
wp

v(∆Vp)
2 (12)

Considering that the three channels are separated from each other and do not affect
each other in the process of low-light image recovery, but it has been proved that if they
are not constrained accordingly, the results of the three-channel fusion recovery will result
in saturation, chromaticity, and luminance deviating from the human eye perception.
Therefore, the three HSV channels are constrained by the corresponding weights, where
wh, ws, wv, respectively, represent the weights between the three HSV channels, which are
used to constrain the changes between the channels. wh

p, ws
p, wv

p represent the constraints
between the pixel points within each channel, so that the constraints between the channels
can be carried out after the pixel-level constraints within each channel are completed,
so that the local adjustment can be achieved. The global adjustment greatly satisfies the
perceptual characteristics of the human eye and is also consistent with the overall scientific
rigor. Because of the independence between channels, the relationship between them is
nonlinear. In order to minimize the structure loss and content loss of the enhanced image,
a pixel-level weighted Euclidean distance method is proposed.

p means that the whole is based on the pixel-level, and ∆Hp, ∆Sp, ∆Vp are the losses
between the low light image and the real image of each channel respectively; wp

h , wp
S, wp

v
are the weight values of each channel respectively, which are determined by each channel
and the sum of the three channels, and considering the overall consistency of the image
itself, it is further expressed as (13).

Ltotal = ∑
c∈ζ

(
∣∣5x +5y

∣∣) 2, ζ = {H, S, V} (13)
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where c is the channel and is taken from the three channels H, S, V, and∇x +∇y represents
the operation of horizontal and vertical gradients respectively. In order to strictly restrict
each channel, its weight value is now constrained, as shown in (14)–(16).

Wp
h =

(
Hp

gt + Sp
gt

)(
Hp

gt + Sp
gt + Vp

gt

)−1
+ ζ (14)

Wp
s =

(
Sp

gt + Vp
gt

)(
Hp

gt + Sp
gt + Vp

gt

)−1
+ ζ (15)

Wp
V =

(
Hp

gt + Vp
gt

)(
Hp

gt + Sp
gt + Vp

gt

)−1
+ ζ (16)

ζ is the offset value of limiting weight. The DELLIE algorithm proposed in this paper
makes full use of the advantage of the network framework of the improved DexiNed
algorithm, which extracts image edge texture information quickly and adopts the idea of
iteration to enable it to extract more sufficient edge texture information, and then proposes
DCPM. DCPM takes into account the advantages of fast speed and strong extraction ability
based on the improved DexiNed algorithm. Then, the classical attention mechanism in the
NLP field is innovatively introduced for local adjustment, and the improved loss functions
are used to globally restrict the three channels H, S, and V.

4. Results
4.1. Experimental Conditions and Datasets

All experiments in this paper are carried out in Pycharm. The PyTorch framework
is used for deep learning. The memory is 16 G and the graphics card is RTX3080ti. The
recognized PSNR, SSIM, NIQE, and AG are used as the objective evaluation indexes of the
experimental results, and the LPIPS is used as the subjective evaluation index. To prove
the effectiveness of the proposed DELLIE algorithm on different datasets, the datasets
of this paper will be selected from recognized LOL datasets, Brightening Train datasets
and Mit-Adobe FiveK datasets. The Brightening Train datasets also contain data pairs of
dark and normal light images as shown in Figure 6. The LOL datasets include 500 data
pairs of very weak light and normal images, obtained by adjusting the exposure time
and ISO method as shown in Figure 7. MIT-Adobe FiveK is a database often used by
many people doing image enhancement and image retouching research. This database
contains 5000 original images in dng format and images retouched by five (A, B, C, D, E)
professional retouchers respectively. To demonstrate the randomness and generalization of
the experiments, 200 pairs will be randomly selected from these publicly available datasets
for this paper. In order to more accurately reflect the efficiency of the model, the ratio of
training set, validation set, and test set is set to 6:2:2 in this paper.

To verify the scientificity and realizability of the basic flow of DELLIE algorithm
proposed in this paper, the corresponding all-around and multi-angle experimental analyses
and evaluations are carried out for each link in the basic flow. For example, (1) analyzes the
impact of basic enhancement preprocessing on image detail extraction and (2) analyzes and
evaluates the ablation experiment of loss functions in detail recovery, structure adjustment,
and content retention; (3) discusses the selection of bias values in the loss functions to
determine the range; (4) analyzes the influence of self-attention mechanism on the loss and
accuracy of the algorithm; and (5) presents overall result analyses.
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4.2. Basic Enhancement Preprocessing

Different from other mainstream algorithms that directly enhance the low light image,
to obtain more sufficient detail information map, in the process of obtaining the final
enhancement result. As mentioned in the main process of the algorithm proposed in this
paper, the proposed algorithm DELLIE differs from other mainstream low-light image
enhancement algorithms in that at the beginning of the algorithm, the enhancement pre-



Entropy 2022, 24, 815 12 of 22

processing process is first performed, and the main purpose of this process is to perform
the simple task of brightness enhancement and noise suppression without affecting other
characteristics of the image itself. The MSR method is used for the task of brightness
enhancement, and the Gamma function correction method is used for the task of suppres-
sion of noise that may be amplified, and these two tasks are collectively referred to as
the enhancement preprocessing process in this paper. From left to right are input, MSR,
Gamma correct, and their corresponding gray histogram, as shown in Figure 8.

Entropy 2022, 24, 815 12 of 22 
 

 

adjustment, and content retention; (3) discusses the selection of bias values in the loss 
functions to determine the range; (4) analyzes the influence of self-attention mechanism 
on the loss and accuracy of the algorithm; and (5) presents overall result analyses. 

4.2. Basic Enhancement Preprocessing 
Different from other mainstream algorithms that directly enhance the low light im-

age, to obtain more sufficient detail information map, in the process of obtaining the final 
enhancement result. As mentioned in the main process of the algorithm proposed in this 
paper, the proposed algorithm DELLIE differs from other mainstream low-light image 
enhancement algorithms in that at the beginning of the algorithm, the enhancement pre-
processing process is first performed, and the main purpose of this process is to perform 
the simple task of brightness enhancement and noise suppression without affecting other 
characteristics of the image itself. The MSR method is used for the task of brightness en-
hancement, and the Gamma function correction method is used for the task of suppres-
sion of noise that may be amplified, and these two tasks are collectively referred to as the 
enhancement preprocessing process in this paper. From left to right are input, MSR, 
Gamma correct, and their corresponding gray histogram, as shown in Figure 8. 

 
Figure 8. Basic enhancement. 

In order to prove that more detailed information can be obtained after basic enhance-
ment than without basic enhancement, the experimental results are analyzed, as shown 
in Figure 9. 

 
Figure 9. Before Basic enhancement and After Basic enhancement. 

According to the above figure of After Basic enhancement, the cat pattern in the up-
per right corner of the bookcase has a smoother outline and more obvious lines. It is 
proved that more sufficient details are extracted after basic enhancement, which facilitates 
the subsequent image enhancement and restoration process. In order to prove the gener-
alization ability of DELLIE algorithm, six non-synthetic image pairs are randomly added 

Figure 8. Basic enhancement.

In order to prove that more detailed information can be obtained after basic enhance-
ment than without basic enhancement, the experimental results are analyzed, as shown in
Figure 9.
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According to the above figure of After Basic enhancement, the cat pattern in the upper
right corner of the bookcase has a smoother outline and more obvious lines. It is proved
that more sufficient details are extracted after basic enhancement, which facilitates the
subsequent image enhancement and restoration process. In order to prove the generaliza-
tion ability of DELLIE algorithm, six non-synthetic image pairs are randomly added from
the Mit-Adobe FiveK dataset, with the above six images for basic enhancement operation.
They are divided into three groups, and four test images in each group are randomly
combined images in BrightTrain datasets, LOL datasets, and Mit-Adobe FiveK datasets.
The information entropy of an image represents the amount of detailed information that the
image contains. The standard value of information entropy of an image is very applicable
to the details of the algorithm proposed in this paper; a higher information entropy means
that more detailed information is recovered. Now, the comparison of information entropy
and AG before and after basic enhancement are shown in Figures 10 and 11 below.
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Figure 11. Information entropy of groups.

The experimental results show that the DELLIE algorithm proposed in this paper
also has the advantage of a strong ability to extract detailed features and rich information
entropy in non-synthetic images. It is further proved that the low-light image can be
extracted with more sufficient detailed features after basic enhancement (MSR) and Gamma
rectification (GR). Now, the evaluation indexes PSNR, SSIM, and NIQE are compared and
analyzed. When MSR = True and GR = True, the left arrow is the comparison of MSR = True
and GR = False. The right arrow is a comparison of MSR = False and GR = False, as shown
in Table 1. The optimal values for each of these evaluation criteria have been bolded in
black in Table 1.

Table 1. PSNR, SSIM, NIQE of with or not MSR or GR. The optimal value for each of these evaluation
criteria has been bolded in black.

MSR = True MSR = True MSR = False

Epoch GR = False GR = True GR = False

PSNR SSIM NIQE ↑PSNR↑ ↑SSIM↑ ↓NIQE↓ PSNR SSIM NIQE

600 18.32 0.66 3.75 18.36 0.68 3.71 18.33 0.65 3.73

650 18.58 0.71 3.66 18.62 0.73 3.69 18.59 0.72 3.72

700 18.95 0.77 3.66 18.96 0.79 3.63 18.93 0.75 3.64

750 18.89 0.73 3.70 18.92 0.76 3.66 18.86 0.73 3.68

800 18.93 0.72 3.67 18.94 0.75 3.60 18.87 0.69 3.62

The experimental results show that the information entropy and average gradient of
the detail image obtained by basic enhancement are significantly higher, which shows that
the image with basic enhancement has richer information and more sufficient details.
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4.3. Loss Function Ablation Experiment

In order to verify the advantages of the improved loss functions in detail recovery,
structure adjustment, and content retention, an ablation experiment is carried out, as shown
in Figure 12.
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From the experimental results, we can see that when the V channel is not constrained
by the Lv, the image will have too much brightness and noise distortion, which we should
try our best to avoid. It can be seen that when the H channel is not constrained by the Lh,
the color of the image will be biased, and it can be seen in the bookcase, where the color
channel is biased towards a single-color channel. In this experiment, it can be speculated
that the color temperature deviation of the restored image is mainly caused by failure to
adjust the synchronization constraint with the V channel, that is, the abnormal proportion
of blue light in the image. When the S channel is not constrained by the Ls, the image will
appear supersaturated or undersaturated. Saturation indicates the purity of the image,
which will affect the brightness and color purity of the final result image. Now, the ablation
experiment of loss function is compared and analyzed by PSNR, SSIM, and NIQE as shown
in Table 2 below. The optimal values for each of these evaluation criteria have been bolded
in black in Table 2.

Table 2. Loss function Ablation Experiment.

Lh Ls Lv PSNR SSIM NIQE
√ √

19.93 0.71 3.78√ √
19.88 0.75 3.76√ √
20.46 0.73 3.82√ √ √
20.87 0.77 3.73

It can be seen from the above figure and table that PSNR, SSIM, and NIQE of the low
illumination image are enhanced by the DELLIE algorithm. Although they do not exist in a
monotonic trend, they all achieve the best data only at Ltotal as shown in Table 2.

4.4. Selection of Offset Value

It is found that the different offset values of the loss functions have a certain impact
on the loss and accuracy of the algorithm. The first figure shows the impact of different
bias values on the whole, and the second and third figures show the impact of different
bias values on accuracy and loss respectively, as shown in Figure 13.
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Through the analyses of test results, when the range of offset value is between
(0.72568–0.78253), the accuracy of the model is relatively optimal, and the accuracy range
is (0.96089–0.96569). The accuracy decreased slightly after offset value being greater than
0.72568, but increased slightly after offset value 0.75416. When the range of offset value
is between (0.75416–0.78253), the loss degree of the model is relatively low, and the loss
range is (0.16003–0.16067). The offset value between (0.70000–0.80000) is analyzed in detail.
The optimal values of loss and accuracy are bold, and the experimental data are shown in
Table 3.

Table 3. Optimal neighborhood variation of 0.7.

Offset Value Loss Accuracy

0.71807 0.17311 0.86285
0.72519 0.18095 0.84679
0.72568 0.18116 0.96089
0.75363 0.18615 0.95628
0.75416 0.16047 0.95282
0.75663 0.16061 0.96385
0.76677 0.16003 0.96496
0.78253 0.16067 0.96569

4.5. Attention Mechanism Ablation Experiment

In order to further prove that the attention mechanism pays attention to the image
texture features, and how much attention it pays, now the image heat maps can reflect the
degree of attention of the DELLIE algorithm model to a certain feature. The darker the color,
the more attention the model pays. Now we analyze the thermodynamic diagram of the
experimental data diagrams in this paper. The thermodynamic diagrams without attention
mechanism are shown in Figure 14a–d below, and the corresponding thermodynamic
diagrams with attention mechanism are shown in Figure 14e–h.
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As shown in Figure 14 above, the attention mechanism commonly used in NLP is
introduced into the algorithm model, to make the model pay more attention to the feature
recovery of details. At the same time, it is combined with the constraints of loss functions,
starting from global color recovery and taking into account the retention of local detail
features so as to minimize the loss of structure, color, and content.
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4.6. Overall Result Analysis

Two recognized datasets and the current mainstream LLIE algorithms are selected
to prove the effectiveness of the DELLIE algorithm in this paper. In order to demonstrate
the scientific validity and effectiveness of the DELLIE algorithm proposed in this paper,
nine mainstream algorithms in the field of low-light image enhancement are selected for
quantitative analysis and comparison, and objective indicators recognized in the field, such
as PSNR, SSIM, NIQE, Average gradient, Information entropy, LPIPS, etc., are used. Infor-
mation entropy, LPIPS, etc. from the quantitative point of view conduct a comprehensive
quantitative analysis from the subjective and objective evaluation directions. The experi-
mental results of various mainstream algorithms and the DELLIE algorithm proposed in
this paper are analyzed more carefully and comprehensively from the qualitative point of
view. Both from the qualitative and quantitative perspectives, the superiority of the DEL-
LIE algorithm proposed in this paper can be clearly and objectively demonstrated. From
left to right are: Input, GT, KinD [14], Zero-DCE [12], Zero-DCE++ [13], RetinexNet [15],
RRDNet [35], EnlightenGAN [16], L LNet [17], TBEFN [18], DSLR [19], Proposed, as shown
in Figures 15–18 below.

Through the comparative analyses of the experimental results, it can be seen that Zero-
DCE, Zero-DCE++, and KinD algorithms, as the mainstream algorithms in the field of low
illumination image enhancement, have obvious advantages over other algorithms in terms
of brightness improvement and restoration of details. However, the overall tone of the
images enhanced by Zero-DCE and Zero-DCE++ are cooler, and the Zero-DCE++algorithm
also has some deficiencies in brightness, and the image presents a white effect as a whole.
The retinex-net algorithm is too prominent in restoring image texture features, resulting
in disharmony of the overall picture, and obvious local noise. The overall brightness of
the RRDNet algorithm is dark in the recovery process. In EnlightenGAN, its enhancement
operation is based on the generation of a countermeasure network. Due to the lack of paired
training data, the brightness enhancement is not clear enough in the enhancement process.
The main enhancement effect of LLNet is that the contrast of the image is excessively
improved, and the edge of the image is too smooth, which will lose some detailed features.
The overall restoration effect of the TBEFN algorithm is very good and close to the GT
image. DSLR simply emphasizes the increase of contrast and also ignores the distortion
caused by insufficient detail processing. After comparing with the current mainstream
algorithms, it is found that the low illumination image enhancement algorithm DELLIE
proposed in this paper has obvious advantages in overall and local contrast brightness,
and retains a large number of original image details. For example, the outline of the cat in
the upper right corner of the first image is more prominent than other algorithms, and the
lines are more fully outlined. At the same time, the overall tone is similar to the original
image, and there is no obvious imbalance in saturation and contrast. When the second one
is restored, the detailed outline of the bench in the upper left corner is also more obvious.

The result analyses of the DELLIE algorithm in Brightening Train datasets are roughly
the same as that in LOL datasets. Due to the use of the proposed DCPM model, and the
introduction of the attention mechanism, DELLIE extracts more sufficient detail features
information and obtains higher information entropy in church and architectural drawings,
which makes the restored results clearer at its edges, and the overall effect of the image
is more in line with the GT value. To prove the scientificity of the DELLIE algorithm, the
recognized PSNR (peak signal to noise ratio), SSIM (structural similarity), and NIQE (natu-
ral image quality evaluator) are used as objective evaluation criteria for the experimental
results. PSNR is the peak signal ratio, which is an objective standard for evaluating images,
and the larger its value, the better; SSIM is a structural similarity, which is an index to
measure the similarity between two images, and the larger its value, the better. NIQE uses
a multivariate Gaussian model to describe these features. The smaller the value, the more
representative the algorithm retains details and reduces artifacts and distortion. For the
test images, one of the two datasets is selected, which means that a total of two images
form a group, and there are three groups called Test1, Test2, and Test3, as shown in Table 4
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below. The optimal values for each of these evaluation criteria have been bolded in black in
Table 4.
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Table 4. PSNR and SSIM NIQE of different methods on the Test1, Test2, Test3.

Test1 Test2 Test3

Method PSNR↑ SSIM↑ NIQE↓ PSNR↑ SSIM↑ NIQE↓ PSNR↑ SSIM↑ NIQE↓
KinD [14] 20.86 0.70 3.76 22.31 0.63 3.77 18.66 0.56 3.77

Zero-Dce [12] 14.88 0.52 3.73 14.56 0.48 3.78 14.39 0.52 3.74
Zero-Dce++ [13] 16.75 0.65 3.70 15.32 0.52 3.79 16.98 0.64 3.78
Retinex-net [15] 16.73 0.55 3.68 17.25 0.47 3.75 16.32 0.48 3.74

RRDNet [35] 18.83 0.74 3.77 16.83 0.54 3.73 15.96 0.65 3.76
EnlighenGAN [16] 21.65 0.75 3.74 20.86 0.63 3.76 17.89 0.71 3.75

LLNet [17] 18.34 0.68 3.72 21.32 0.58 3.74 18.62 0.64 3.73
TBEFN [18] 21.56 0.75 3.78 22.33 0.57 3.76 19.35 0.59 3.74
DSLR [19] 20.89 0.74 3.75 21.83 0.61 3.74 18.63 0.57 3.73
Proposed 21.86 0.76 3.66 22.58 0.68 3.70 20.03 0.73 3.71

From the experimental data in Table 4, it can be concluded that the algorithm in this
paper has obvious advantages and under-recognized indicators. The optimal value is
marked in bold. Considering that the main task of this paper is to restore more sufficient
image detail features, the above evaluation standards are general standards.

To prove the advantages of the DELLIE algorithm over other algorithms in extracting
and restoring image details, AG and LPIPS indexes are evaluated for 10 algorithms. AG
(Average gradient), that is, the sharpness of the image, reflects the ability to express the
comparison of details. The greater its value, the richer the details and the clearer the image.
LPIPS (Learned Perceptual Image Patch Similarity), represents the measurement of human
visual perception. The smaller the value, the more consistent the sensory effect of the
human eyes. The information entropy and average gradient of the image, processed by
each algorithm, are shown in Figures 19 and 20.

Entropy 2022, 24, 815 20 of 22 
 

 

 
Figure 19. AG of different groups. 

  
Figure 20. LPIPS of different groups. 

From the two charts, it can be analyzed that the algorithm proposed in this paper has 
more advantages than the mainstream LLIE algorithms in image restoration, and is more 
in line with the perceptual characteristics of human eyes. 

5. Conclusions 
Through the above experimental analyses, in the process of low-light image enhance-

ment, the details are lost or insufficiently extracted, which could result in insufficient res-
toration of the original low-light image information, and loss of a large amount of image 
information entropy. In this paper, the DELLIE algorithm is proposed based on a deep 
learning artificial neural network. From the analysis of the experimental results, the DEL-
LIE algorithm proposed in this paper has significantly improved the subjective and objec-
tive evaluation indexes, when compared with the current mainstream low-light enhance-
ment algorithms, especially in the indicators AG and LPIPS that reflect the ability of the 
algorithm to extract detailed features, and which have the improvement advantages of 
1.61% and 2.45% respectively when compared with the current optimal algorithms.  

The proposed detail component prediction model is mainly used in the experimental 
process, which can estimate the detail component faster and more accurately based on the 
given weak light image, and then take it as the enhancement component. Due to the use 
of the improved DexiNed algorithm, the DCPM proposed in this paper has obvious ad-
vantages in processing speed and extracting image details; in the decomposed three chan-
nels, the improved loss functions are used for global adjustment, which is a pixel-level 
constraint. The optimal solution of the offset value is found so that the enhanced image 
will not have overexposure distortion and saturation excess; it combines the mature spa-
tial and channel attention mechanism in the field of natural language, and pays more at-
tention to local optimization in the recovery process, and greatly reduces the loss of struc-
ture, color, and content. Experimental analyses show that the overall accuracy of the al-
gorithm model has been significantly improved after adding this mechanism. 

Figure 19. AG of different groups.

From the two charts, it can be analyzed that the algorithm proposed in this paper has
more advantages than the mainstream LLIE algorithms in image restoration, and is more
in line with the perceptual characteristics of human eyes.
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5. Conclusions

Through the above experimental analyses, in the process of low-light image enhance-
ment, the details are lost or insufficiently extracted, which could result in insufficient
restoration of the original low-light image information, and loss of a large amount of
image information entropy. In this paper, the DELLIE algorithm is proposed based on
a deep learning artificial neural network. From the analysis of the experimental results,
the DELLIE algorithm proposed in this paper has significantly improved the subjective
and objective evaluation indexes, when compared with the current mainstream low-light
enhancement algorithms, especially in the indicators AG and LPIPS that reflect the ability
of the algorithm to extract detailed features, and which have the improvement advantages
of 1.61% and 2.45% respectively when compared with the current optimal algorithms.

The proposed detail component prediction model is mainly used in the experimental
process, which can estimate the detail component faster and more accurately based on
the given weak light image, and then take it as the enhancement component. Due to the
use of the improved DexiNed algorithm, the DCPM proposed in this paper has obvious
advantages in processing speed and extracting image details; in the decomposed three
channels, the improved loss functions are used for global adjustment, which is a pixel-level
constraint. The optimal solution of the offset value is found so that the enhanced image
will not have overexposure distortion and saturation excess; it combines the mature spatial
and channel attention mechanism in the field of natural language, and pays more attention
to local optimization in the recovery process, and greatly reduces the loss of structure, color,
and content. Experimental analyses show that the overall accuracy of the algorithm model
has been significantly improved after adding this mechanism.

Compared with the current mainstream algorithms, this algorithm achieves the task
of low illumination image enhancement, and the extraction of image detail texture features.
In the future, due to the practicality of this research, we will conduct further research in the
field of face recognition.

Author Contributions: Methodology, B.L.; Supervision, Y.S.; Writing—original draft, Y.H.; Writing—
review & editing, J.W. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the
study, for studies not involving humans.

Conflicts of Interest: The authors declare no conflict of interest.



Entropy 2022, 24, 815 21 of 22

References
1. Li, Q.; Qing, L. Adaptive enhancement algorithm for low illumination images based on wavelet transform. Chin. J. Lasers 2015,

42, 0209001.
2. Tian, Z.-J.; Man-li, W.; Yuan-gang, Z. Image Enhancement Algorithm Based on Dual Domain Decomposition. Acta Electonica Sin.

2020, 48, 1311.
3. Hong, L.I.; Ruiyao, W.A.N.G.; Zexun, G.E.N.G.; Haifeng, H.U. Low-illumination image enhancement algorithm based on

multi-scale gradient domain guided filtering. J. Comput. Appl. 2019, 39, 3046.
4. Li, J.; Feng, X.; Hua, Z. Low-Light Image Enhancement via Progressive-Recursive Network. IEEE Trans. Circuits Syst. Video

Technol. 2021, 31, 4227–4240. [CrossRef]
5. Zhao, Y.; Lingyun, G.; Lijuan, X.; Qin, Z.; Zhiqiang, Z. Research on image enhancement algorithm base on convolutional neural

network in scotopic vision environment. In Proceedings of the 2020 International Conference on Pattern Recognition and
Intelligent Systems, Athens, Greece, 30 July–2 August 2020.

6. Qin, X.J.; Wang, H.; Du, Y. Retinex Structured Light Image Enhancement Algorithms in HSV Color Space. J. Comput. Des. Comput.
Graph. 2013, 4, 488–493.

7. Hongying, Z.; Jindong, Z. RetinexNet Low Illumination Image Enhancement Algorithm in HSV Space. Laser Optoelectron. Prog.
2020, 57, 201504. [CrossRef]

8. Tao, L.; Zhu, C.; Xiang, G.; Li, Y.; Jia, H.; Xie, X. LLCNN: A convolutional neural network for low-light image enhancement. In
Proceedings of the 2017 IEEE Visual Communications and Image Processing (VCIP), St. Petersburg, FL, USA, 10–13 December
2017. [CrossRef]

9. Ma, S.; Ma, H.; Xu, Y.; Li, S.; Lv, C.; Zhu, M. A Low-Light Sensor Image Enhancement Algorithm Based on HSI Color Model.
Sensors 2018, 18, 3583. [CrossRef]

10. Li, C.; Guo, J.; Porikli, F.; Pang, Y. LightenNet: A Convolutional Neural Network for weakly illuminated image enhancement.
Pattern Recognit. Lett. 2018, 104, 15–22. [CrossRef]

11. Garg, A.; Pan, X.-W.; Dung, L.-R. LiCENt: Low-Light Image Enhancement Using the Light Channel of HSL. IEEE Access 2022, 10,
33547–33560. [CrossRef]

12. Guo, C.; Li, C.; Guo, J.; Loy, C.C.; Hou, J.; Kwong, S.; Cong, R. Zero-reference deep curve estimation for lowlight image
enhancement. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA,
13–19 June 2020.

13. Li, C.; Guo, C.; Loy, C.C. Learning to enhance low-light image via zero-reference deep curve estimation. arXiv 2021, arXiv:2103.00860.
[CrossRef]

14. Zhang, Y.; Zhang, J.; Guo, X. Kindling the darkness: A practical low-light image enhancer. In Proceedings of the 27th ACM
International Conference on Multimedia, New York, NY, USA, 21–25 October 2019.

15. Wei, C.; Wang, W.; Yang, W.; Liu, J. Deep retinex decomposition for low-light enhancement. arXiv 2018, arXiv:1808.04560.
16. Jiang, Y.; Gong, X.; Liu, D.; Cheng, Y.; Fang, C.; Shen, X.; Yang, J.; Zhou, P.; Wang, Z. EnlightenGAN: Deep Light Enhancement

without Paired Supervision. IEEE Trans. Image Process. 2021, 30, 2340–2349. [CrossRef] [PubMed]
17. Lore, K.G.; Akintayo, A.; Sarkar, S. LLNet: A deep autoencoder approach to natural low-light image enhancement. Pattern

Recognit. 2017, 61, 650–662. [CrossRef]
18. Lu, K.; Zhang, L. TBEFN: A Two-Branch Exposure-Fusion Network for Low-Light Image Enhancement. IEEE Trans. Multimedia

2020, 23, 4093–4105. [CrossRef]
19. Lim, S.; Kim, W. DSLR: Deep Stacked Laplacian Restorer for Low-Light Image Enhancement. IEEE Trans. Multimedia 2020, 23,

4272–4284. [CrossRef]
20. Guo, X.; Li, Y.; Ling, H. LIME: Low-Light Image Enhancement via Illumination Map Estimation. IEEE Trans. Image Process. 2016,

26, 982–993. [CrossRef] [PubMed]
21. Chen, C.; Chen, Q.; Xu, J.; Koltun, V. Learning to see in the dark. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018.
22. Li, M.; Liu, J.; Yang, W.; Sun, X.; Guo, Z. Structure-Revealing Low-Light Image Enhancement Via Robust Retinex Model. IEEE

Trans. Image Process. 2018, 27, 2828–2841. [CrossRef]
23. Shi, Y.; Wang, B.; Wu, X.; Zhu, M. Unsupervised Low-Light Image Enhancement by Extracting Structural Similarity and Color

Consistency. IEEE Signal Process. Lett. 2022, 29, 997–1001. [CrossRef]
24. Xu, B.; Zhou, D.; Li, W. Image Enhancement Algorithm Based on GAN Neural Network. IEEE Access 2022, 10, 36766–36777.

[CrossRef]
25. Lu, Y.; Guo, Y.; Liu, R.W.; Ren, W. MTRBNet: Multi-Branch Topology Residual Block-Based Network for Low-Light Enhancement.

IEEE Signal Process. Lett. 2022, 29, 1127–1131. [CrossRef]
26. Singh, K.; Rajiv, K.; Sanjeev, K.S. Enhancement of low exposure images via recursive histogram equalization algorithms. Optik

2015, 126, 2619–2625. [CrossRef]
27. Jung, C.; Yang, Q.; Sun, T.; Fu, Q.; Song, H. Low light image enhancement with dual-tree complex wavelet transform. J. Vis.

Commun. Image Represent. 2017, 42, 28–36. [CrossRef]
28. Schmidt, U.; Stefan, R. Shrinkage fields for effective image restoration. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014.

http://doi.org/10.1109/TCSVT.2021.3049940
http://doi.org/10.3788/LOP57.201504
http://doi.org/10.1109/vcip.2017.8305143
http://doi.org/10.3390/s18103583
http://doi.org/10.1016/j.patrec.2018.01.010
http://doi.org/10.1109/ACCESS.2022.3161527
http://doi.org/10.1109/TPAMI.2021.3063604
http://doi.org/10.1109/TIP.2021.3051462
http://www.ncbi.nlm.nih.gov/pubmed/33481709
http://doi.org/10.1016/j.patcog.2016.06.008
http://doi.org/10.1109/TMM.2020.3037526
http://doi.org/10.1109/TMM.2020.3039361
http://doi.org/10.1109/TIP.2016.2639450
http://www.ncbi.nlm.nih.gov/pubmed/28113318
http://doi.org/10.1109/TIP.2018.2810539
http://doi.org/10.1109/LSP.2022.3163686
http://doi.org/10.1109/ACCESS.2022.3163241
http://doi.org/10.1109/LSP.2022.3162145
http://doi.org/10.1016/j.ijleo.2015.06.060
http://doi.org/10.1016/j.jvcir.2016.11.001


Entropy 2022, 24, 815 22 of 22

29. Gao, H.; Ping, W.; Jun, K. Color enhancement and image defogging in HSI based on Retinex model. In Proceedings of the 2015
International Conference on Optical Instruments and Technology: Optoelectronic Imaging and Processing Technology, Beijing,
China, 17–19 May 2015; SPIE: Bellingham, WA, USA, 2015; Volume 9622.

30. Gao, Y.; Yun, L.; Shi, J.-S.; Chen, F.; Lei, L. Enhancement MSRCR algorithm of color fog image based on the adaptive scale. In
Proceedings of the Sixth International Conference on Digital Image Processing (ICDIP 2014), Athens, Greece, 5–6 April 2014; SPIE:
Bellingham, WA, USA, 2014; Volume 9195. [CrossRef]

31. Wu, Y.; Song, W.; Zheng, J.; Liu, F. Non-uniform low-light image enhancement via non-local similarity decomposition model.
Signal Process. Image Commun. 2021, 93, 116141. [CrossRef]

32. Priyanka, S.A.; Wang, Y.-K.; Huang, S.-Y. Low-Light Image Enhancement by Principal Component Analysis. IEEE Access 2018, 7,
3082–3092. [CrossRef]

33. Poma, X.S.; Edgar, R.; Angel, S. Dense extreme inception network: Towards a robust cnn model for edge detection. In Proceedings
of the IEEE/CVF Winter Conference on Applications of Computer Vision, Snowmass, CO, USA, 1–5 March 2020.

34. Woo, S.; Park, J.; Lee, J.Y.; Kweon, I.S. Cbam: Convolutional block attention module. In Proceedings of the European Conference
on Computer Vision ECCV, Munich, Germany, 8–14 September 2018.

35. Zhu, A.; Zhang, L.; Shen, Y.; Ma, Y.; Zhao, S.; Zhou, Y. Zero-Shot Restoration of Underexposed Images via Robust Retinex
Decomposition. In Proceedings of the 2020 IEEE International Conference on Multimedia and Expo (ICME), London, UK, 6–10
July 2020. [CrossRef]

http://doi.org/10.1117/12.2064391
http://doi.org/10.1016/j.image.2021.116141
http://doi.org/10.1109/ACCESS.2018.2887296
http://doi.org/10.1109/icme46284.2020.9102962

	Introduction 
	Related Work 
	HSV Color Space 
	Attention Mechanism 

	Our Approach 
	Algorithm Implementation Process 
	The Proposed Detail Component Prediction Model 
	DecomNet Network Structure 
	Residual Block Network Structure 

	The Improved Loss Functions 

	Results 
	Experimental Conditions and Datasets 
	Basic Enhancement Preprocessing 
	Loss Function Ablation Experiment 
	Selection of Offset Value 
	Attention Mechanism Ablation Experiment 
	Overall Result Analysis 

	Conclusions 
	References

