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Abstract: The nonlinear Schrödinger equation is an important model equation in the study of
quantum states of physical systems. To improve the computing efficiency, a fast algorithm based
on the time two-mesh high-order compact difference scheme for solving the nonlinear Schrödinger
equation is studied. The fourth-order compact difference scheme is used to approximate the spatial
derivatives and the time two-mesh method is designed for efficiently solving the resulting nonlinear
system. Comparing to the existing time two-mesh algorithm, the novelty of the new algorithm is that
the fine mesh solution, which becomes available, is also used as the initial guess of the linear system,
which can improve the calculation accuracy of fine mesh solutions. Compared to the two-grid finite
element methods (or finite difference methods) for nonlinear Schrödinger equations, the numerical
calculation of this method is relatively simple, and its two-mesh algorithm is implemented in the
temporal direction. Taking advantage of the discrete energy, the result with O(τ4

C + τ2
F + h4) in the

discrete L2-norm is obtained. Here, τC and τF are the temporal parameters on the coarse and fine
mesh, respectively, and h is the space step size. Finally, some numerical experiments are conducted to
demonstrate its efficiency and accuracy. The numerical results show that the new algorithm gives
highly accurate results and preserves conservation laws of charge and energy. Furthermore, by
comparing with the standard nonlinear implicit compact difference scheme, it can reduce the CPU
time without loss of accuracy.

Keywords: high-order compact difference scheme; time two-mesh algorithm; error estimate;
conservation law; soliton

1. Introduction

In this paper, we consider the one-dimensional cubic nonlinear Schrödinger (NLS)
equation

i
∂u
∂t

+ η
∂2u
∂x2 + q|u|2u = 0, x ∈ R, t ≥ 0, (1)

where i =
√
−1 is the complex unit, the subscripts x and t denote the spatial and temporal

variable, respectively; η and q are positive real constants; u = u(x, t) is an unknown
complex-valued wave function. The initial condition

u(x, 0) = ϕ(x), x ∈ R,

is a prescribed smooth complex function, which decreases exponentially as |x| → 0. We as-
sume that the solution to NLS Equation (1) has compact support on a bounded interval [a, b]
during the time period [0, T]. So, artificial boundary conditions

u(a, t) = u(b, t) = 0, t ∈ (0, T],

are taken here.
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The NLS equation is one of the most important equations of mathematical physics
and it has been widely used to model various nonlinear physical phenomena, such as
underwater acoustics, plasma physics, bimolecular dynamics, and nonlinear optics. NLS
Equation (1) is a generic model for the slowly varying envelop of a wave train in conser-
vative, dispersive, mildly nonlinear wave phenomena. It is also obtained as the subsonic
limit of the Zakharov model for Langmuir waves in plasma physics, and known as the
Gross–Pitaevskii equation (GPE) in modeling the hydrodynamics of the Bose–Einstein
condensate [1]. The real constant parameter q in Equation (1) (focusing for q > 0, and de-
focusing for q < 0) describes the strength of the local interactions between particles. The
complex function u(x, t) describes the envelope of a physical solution, and, in optics, its
squared modulus represents a measurable quantity, viz. intensity. Localizing along the t
axis, NLS Equation (1) has soliton solutions, which can exist on a zero background (com-
pletely localized) or on a plane wave background [2]. Localizing along the x axis, it has the
“Akhmediev breathers” [2,3]. The interrelation between these solutions is schematically
represented in [2]. The extended family of NLS equation contains the Hirota equation (HE)
and other higher-order members of the NLS hierarchy of equations [4,5]. In [4,5], the nu-
merical simulations with high accuracy along the transversal axis were used to calculate
solitons and breathers of the Hirota equation, which is an extension of the NLS equation.

Due to the presence of nonlinearity and the complex nature of the NLS equation, it
is still a challenge for researchers to determine the most suitable method. Many analyt-
ical and numerical studies have been carried out to overcome this difficulty. Along the
analytical front, one can refer to [3,6] and the references therein. Along the numerical
front, different efficient and accurate numerical methods including finite difference (FD)
methods [7–17], finite element (FE) methods [18–22], spectral method [23], discontinuous
Galerkin method [24], virtual element method [25], and so on. Furthermore, there have also
been some other efficient algorithms, such as the multigrid methods [26–28] and two-grid
methods [29–37], where the idea is presented firstly by Xu in [38]. In [29–33], some two-grid
(mixed) finite element schemes were proposed for solving the NLS equation, respectively,
and the error estimates are discussed. In [34,35], Zhang et al. and Chen et al. constructed
two-grid finite volume (element) methods and performed the corresponding convergence
analysis, respectively. In [36], Wang et al. discussed the global H1-norm super-convergence
result of the two-grid FE method for the NLS equation. Ignat et al. [37] constructed a space
two-grid FD scheme for NLS equations, where the equations on the fine grid are linearized,
but not decoupled.

It is worth mentioning that compared with the two-grid FEMs [29–36], the two-grid
FDMs [37,39–41] are relatively simple from the point of view of numerical calculation.
This means that the time two-mesh (TT-M) method combined with FD can also solve
the NLS equation with better computational efficiency. The TT-M algorithm is proposed
firstly by Liu et al. [42], and combined with the FE method to solve some other fractional
models [43–45]. Recently, based on the idea proposed in [42], Qiu and Xu et al. [46,47] devel-
oped and analyzed a TT-M algorithm based on FD methods for nonlinear fractional partial
differential equations (FPDEs). Niu et al. [48] and Chai et al. [49] used the TT-M technique
to propose a fast high-order compact difference scheme for the nonlinear distributed-
order fractional Sobolev model appearing in porous media and nonlinear space fractional
Gray–Scott model, respectively; however, from the current literature, we find that there is
no report about the TT-M based on the compact difference (CD) method for solving the
NLS equation.

The aim of this paper is the development of a time two-mesh high-order compact
difference (TT-MCD) method to obtain the solution of the NLS Equation (1). We show that
the TT-MCD method is suitable for the treatment of the NLS equation. In addition, for the
study of the two-grid FD method, our article is different from Refs. [37,39–41], where a
two-grid algorithm for the spatial direction is combined with the finite difference method;
however, our article uses a two-mesh algorithm for the temporal direction. Furthermore,
compared to the TT-M algorithms [42–44,46,47], our method made a modification, analo-
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gous to the Gauss–Seidel method for linear systems, of the initial guess in the linearization
process, where the available fine grid solution is used as well. Such modification can
improve the calculation accuracy of fine grid solutions. In addition, through numerical
schemes and experiments, it can find that our method has the advantages of the simple
numerical calculation. In addition, compared to the standard nonlinear implicit (SNI) CD
scheme, it can reduce the CPU time without loss of accuracy.

The new TT-MCD algorithm includes three steps: firstly, a nonlinear implicit CD
scheme, which will be solved by an iterative method on the time coarse mesh, is established;
secondly, utilizing the numerical data obtained from the first step, the Lagrange’s linear
interpolation formula is employed to obtain rough solutions on the time fine mesh; finally,
one Newton iteration is applied on the time fine mesh to linearize the nonlinear CD scheme
using the mean value of the rough solution and available fine mesh solution as the initial
guess. We then solve the linear system to obtain the finial numerical solutions. The main
contributions or contents of this article are as follows:

• A fast numerical algorithm, which is formulated by combining the fourth-order CD
method with the TT-M method, is proposed and developed to solve the NLS equation.

• A modification, analogous to the Gauss–Seidel method for linear systems, of the initial
guess in the linearization process is taken to improve the calculation accuracy of fine
grid solutions.

• By using the discrete energy, the detailed proof of the convergence result with
O(τ4

C + τ2
F + h4) in the discrete L2-norm is given.

• Numerical experiments on some model problems, including single soliton, interaction
of two solitons and birth of standing soliton, are conducted to demonstrate efficiency
and accuracy of the TT-MCD algorithm.

• It is easy to see from the numerical results that the proposed TT-MCD algorithm not
only gives highly accurate results and preserves conservation laws of charge and
energy, but also can save the CPU time.

The remainder of this paper is organized as follows. In Section 2, notations and some
lemmas are given. Section 3 devotes to the establishment of the time two-mesh compact
difference scheme. The convergence of the TT-MCD scheme is analyzed in Section 4.
In Section 5, two numerical examples are given to verify the feasibility and effectiveness.
The article ends with a brief conclusions section. Throughout this paper, the symbol M is
used to denote a generic positive constant.

2. Notations and Some Lemmas

First, for the temporal approximation on the fine mesh TF, we define τF = T
N ,

tn = nτF (n = 0, 1, · · · ,N ). Similarly, for the coarse mesh TC, denote τC = T
N where

N = N
s , (2 ≤ s ∈ Z+), tks = kτC (k = 0, 1, · · · , N). For the spatial approxima-

tion, let h = b−a
J for positive integer J, xj = a + jh, j = 0, 1, · · · , J. Let un

j = u(xj, tn)

and Ih = {x0, x1, · · · , xJ} denote the set of nodes of the interval [a, b]. We use the following
notations for simplicity:

(uj)
n
x =

un
j+1 − un

j

h
, (uj)

n
x̄ =

un
j − un

j−1

h
, (uj)

n
t =

un+1
j − un

j

τ
,

(uj)
n
xx̄ =

un
j+1 − 2un

j + un
j−1

h2 , un+ 1
2

j =
1
2
(un+1

j + un
j ),

where τ denotes the time step length τC or τF. Let Hh,0 denote the set of mesh functions u
defined on Ih with boundary conditions u0 = uj = 0. We define the discrete inner products
and norms via
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(u, w) =
J−1

∑
j=1

ujw̄jh, (ux, wx)l =
J−1

∑
j=0

(uj)x(w̄j)xh ∀u, w ∈ Hh,0,

‖u‖L2 =
√
(u, u), ‖u‖L∞ = max

1≤j≤J−1
|uj|, ‖|ux|‖L2 =

√
(ux, ux)l .

And for any complex-valued function u = v + iw, let

‖u‖L2 =
(
‖v‖2

L2
+ ‖w‖2

L2

)1/2, ‖|ux|‖L2 =
(
‖|vx|‖2

L2
+ ‖|wx|‖2

L2

)1/2.

Next, we give some auxiliary lemmas, which will be used later.

Lemma 1 (See [7]). For any grid functions u, w ∈ Hh,0, we have

(a) (uxx̄, w) = −(ux, wx)l , (b) ‖|ux|‖2
L2
≤ 4

h2 ‖u‖
2
L2

, (c) ‖u‖L∞ ≤
√

b− a
2
‖|ux|‖L2 .

Lemma 2 (See [7]). Assume that a sequence of nonnegative real numbers {aj}∞
j=0 satisfying

an+1 ≤ α + β
n

∑
j=0

ajτ, n ≥ 0,

then there has the inequality an+1 ≤ (α + τβa0)eβ(n+1)τ , where α ≥ 0, β and τ are positive
constants.

3. The Time Two-Mesh Compact Difference Scheme

In order to construct the compact difference scheme [7], we first split the NLS
Equation (1) into a system 

− i
∂u
∂t
− q|u|2u = ν,

η
∂2u
∂x2 = ν.

Using Taylor expansion, we obtain

− i(uj)
n
t − q(|u|2)n+ 1

2
j un+ 1

2
j = ν

n+ 1
2

j + O(τ2), (2)

and

ν
n+ 1

2
j = η

(∂2u
∂x2

)n+ 1
2

j
= η(uj)

n+ 1
2

xx̄ − η
h2

12

(∂4u
∂x4

)n+ 1
2

j
+ O(h4)

= η(uj)
n+ 1

2
xx̄ − h2

12

( ∂2ν

∂x2

)n+ 1
2

j
+ O(h4)

= η(uj)
n+ 1

2
xx̄ − h2

12
(νj)

n+ 1
2

xx̄ + O(h4).

(3)

From Equations (2) and (3), we obtain

i(uj)
n
t + q(|u|2)n+ 1

2
j un+ 1

2
j + η(uj)

n+ 1
2

xx̄ − 1
12
(
ν

n+ 1
2

j+1 − 2ν
n+ 1

2
j + ν

n+ 1
2

j−1

)
= O(τ2 + h4). (4)
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Then substituting Equations (2) into (4), we have

i
12
[
(uj−1)

n
t + 10(uj)

n
t + (uj+1)

n
t
]
+ η(uj)

n+ 1
2

xx̄

+
q

12
[
(|u|2)n+ 1

2
j−1 un+ 1

2
j−1 + 10(|u|2)n+ 1

2
j un+ 1

2
j + (|u|2)n+ 1

2
j+1

]
= O(τ2 + h4),

(5)

Next, based on Equation (5), a time two-mesh CD scheme for problem Equation (1) is
constructed as follows.

Step 1: Letting Uks
C,j = Vks

C,j + iWks
C,j, we find

{
Vks+1

C,j , Wks+1
C,j

}
∈ Hh,0 × Hh,0 on the

coarse mesh, such that

− 1
12
[
(WC,j+1)

ks
t + 10(WC,j)

ks
t + (WC,j−1)

ks
t
]
+ η(VC,j)

ks+ 1
2

xx̄

+
q

12
[
F̂j−1 + 10F̂j + F̂j+1

]
= 0, 1 ≤ j ≤ J − 1,

(6)

1
12
[
(VC,j−1)

ks
t + 10(VC,j)

ks
t + (VC,j+1)

ks
t
]
+ η(WC,j)

ks+ 1
2

xx̄

+
q

12
[
F̃j−1 + 10F̃j + F̃j+1

]
= 0, 1 ≤ j ≤ J − 1,

(7)

U0
C,j = ϕ(xj), 1 ≤ j ≤ J − 1,

Vks
C,0 = Vks

C,J = 0, Wks
C,0 = Wks

C,J = 0, 1 ≤ k ≤ N,
(8)

where

F̂j = (|UC,j|2)ks+ 1
2 Vks+ 1

2
C,j , F̃j = (|UC,j|2)ks+ 1

2 Wks+ 1
2

C,j .

Step 2: Based on the solutions Uks
C,j obtained from Step 1, we use the Lagrange’s

linear interpolation formula to compute Un
C,j (n = 1, 2, · · · ,N ), that is, at time levels

tks−l (l = 0, 1, · · · , k, and k = 1, 2, · · · , N, ks− l = n), we have

Uks−l
C =

tks−l − tks
t(k−1)s − tks

U(k−1)s
C +

tks−l − t(k−1)s

tks − t(k−1)s
Uks

C

=
l
s

U(k−1)s
C + (1− l

s
)Uks

C .

(9)

Step 3: Taking the mean value of the solution Un+1
C obtained from Step 2 and the

former time level fine mesh solution Un
F as the initial value, we construct a linear system on

the time fine mesh as follows to solve the solutions
{

Vn+1
F,j , Wn+1

F,j
}
∈ Hh,0 × Hh,0 such that

1
12
[
(WF,j+1)

n
t + 10(WF,j)

n
t + (WF,j−1)

n
t
]
− η(VF,j)

n+ 1
2

xx̄ − q
12

[
Θ̂j−1 + 10Θ̂j + Θ̂j+1

]
= 0, (10)

1
12
[
(VF,j−1)

n
t + 10(VF,j)

n
t + (VF,j+1)

n
t ] + η(WF,j)

n+ 1
2

xx̄ +
q

12

[
Θ̃j−1 + 10Θ̃j + Θ̃j+1

]
= 0, (11)

U0
F,j = ϕ(xj), Vn

F,0 = Vn
F,J = 0, Wn

F,0 = Wn
F,J = 0 1 ≤ j ≤ J − 1, 0 ≤ n ≤ N , (12)

where

Θ̂j =
1
8
[
(Vn+1

C,j + Vn
F,j)

2 + (Wn+1
C,j + (Wn

F,j)
2](Vn+1

C,j + Vn
F,j
)

+
1
8
[
3(Vn+1

C,j + Vn
F,j)

2 + (Wn+1
C,j + Wn

F,j)
2](Vn+1

F,j −Vn+1
C,j

)
+

1
4
[
(Vn+1

C,j + Vn
F,j)(W

n+1
C,j + Wn

F,j)
](

Wn+1
F,j −Wn+1

C,j
)
,
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Θ̃j =
1
8
[
(Vn+1

C,j + Vn
F,j)

2 + (Wn+1
C,j + (Wn

F,j)
2](Wn+1

C,j + Wn
F,j
)

+
1
8
[
3(Wn+1

C,j + Wn
F,j)

2 + (Vn+1
C,j + Vn

F,j)
2](Wn+1

F,j −Wn+1
C,j

)
+

1
4
[
(Vn+1

C,j + Vn
F,j)(W

n+1
C,j + Wn

F,j)
](

Vn+1
F,j −Vn+1

C,j
)
.

Remark 1. A modification, analogous to the Gauss–Seidel method for linear systems, of our
algorithm is that the fine mesh solution Un

F is also used in calculation of the fine mesh solution Un+1
F ,

by which one can improve the calculation accuracy of fine mesh solutions.

4. The Convergence Analysis of the TT-MCD Scheme

In this section, we first consider error analysis of the nonlinear system on the time
coarse mesh. Denote eks

C,j = vks
j −Vks

C,j, Eks
C,j = wks

j −Wks
C,j, Rks

C,j = R̂ks
C,j + iR̃ks

C,j, 1 ≤ j ≤ J− 1,
0 ≤ k ≤ N. From Equations (5)–(7), we obtain

− h2

12
(EC,j)

ks
t,xx̄ − (EC,j)

ks
t + η(eC,j)

ks+ 1
2

xx̄ +
qh2

12
[
g(vks+ 1

2
j , wks+ 1

2
j )xx̄

− g(Vks+ 1
2

C,j , Wks+ 1
2

C,j )xx̄
]
+ q
[
g(vks+ 1

2
j , wks+ 1

2
j )− g(Vks+ 1

2
C,j , Wks+ 1

2
C,j )

]
= R̂ks

C,j,
(13)

h2

12
(eC,j)

ks
t,xx̄ + (eC,j)

ks
t + η(EC,j)

ks+ 1
2

xx̄ +
qh2

12
[
g(wks+ 1

2
j , vks+ 1

2
j )

− g(Wks+ 1
2

C,j , Vks+ 1
2

C,j )xx̄
]
+ q
[
g(wks+ 1

2
j , vks+ 1

2
j )− g(Wks+ 1

2
C,j , Vks+ 1

2
C,j )

]
= R̃ks

C,j,
(14)

where R̂ks
C = O(τ2

C + h4), R̃ks
C = O(τ2

C + h4), and the function g(x, y) = (x2 + y2)x satis-
fies max

(x,y)∈R2
|gx(x, y)|+ |gy(x, y)| ≤ L.

For simplification, we further denote φ = g(v, w)− g(V, W) and ψ = g(w, v)− g(W, V).
Then Equations (13) and (14) can be written as

− h2

12
(EC,j)

ks
t,xx̄ − (EC,j)

ks
t + η(eC,j)

ks
xx̄ +

qh2

12
(φC,j)

ks+ 1
2

xx̄ + qφ
ks+ 1

2
C,j = R̂ks

C,j, (15)

h2

12
(eC,j)

ks
t,xx̄ + (eC,j)

ks
t + η(EC,j)

ks+ 1
2

xx̄ +
qh2

12
(ψC,j)

ks+ 1
2

xx̄ + qψ
ks+ 1

2
C,j = R̃ks

C,j. (16)

Based on the above set of error equations, we obtain the following error estimation of the
coarse mesh solution.

Theorem 1. Suppose that the exact solution un = vn + iwn to the initial boundary value problem
Equation (1) is sufficiently smooth and let Un

C = Vn
C + iWn

C be the numerical solution on the time
coarse mesh. Then, there exist a positive constant M independent of h, τC such that

‖un −Un
C‖L2 ≤ M(τ2

C + h4).

Proof. (I) The proof contains two cases. First, we consider the case of n = ks,
(k = 1, · · · , N). For simplification, we will omit the subindex j and the mark C of coarse
mesh in Equations (15) and (16). Taking the inner product (·, ·) on both sides of Equation (15)
with En+1 + En, we obtain

h2

12τ

[
‖|En+1

x |‖2
L2
− ‖|En

x |‖2
L2

]
− 1

τ

[
‖En+1‖2

L2
− ‖En‖2

L2

]
− 2η(en+ 1

2
x , En+ 1

2
x )− qh2

6
(φ

n+ 1
2

x , En+ 1
2

x ) + 2q(φn+ 1
2 , En+ 1

2 ) = 2(R̂n, En+ 1
2 ).
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Using Lemma 1 and Cauchy–Schwarz inequality, we obtain

‖En+1‖2
L2
− h2

12
‖|En+1

x |‖2
L2
+ 2ητ(en+ 1

2
x , En+ 1

2
x )

≤ ‖En‖2
L2
− h2

12
‖|En

x |‖2
L2
+

4qτ

3
‖φn+ 1

2 ‖2
L2
+ τ(

4q
3

+ 1)‖En+ 1
2 ‖2

L2
+ τ|R̂n|2.

(17)

Using two order Taylor expansion at a point (Vn+ 1
2 , Wn+ 1

2 ) for g(vn+ 1
2 , wn+ 1

2 ), we have

‖φn+ 1
2 ‖2

L2
≤ 2‖gx(v∗, w∗)(vn+ 1

2 −Vn+ 1
2 )‖2

L2
+ 2‖gy(v∗, w∗)(wn+ 1

2 −Wn+ 1
2 )‖2

L2

≤ 2 L2‖vn+ 1
2 −Vn+ 1

2 ‖2
L2
+ 2L2‖wn+ 1

2 −Wn+ 1
2 ‖2

L2
.

(18)

Combining Equation (17) with Equation (18), we then have

‖En+1‖2
L2
− h2

12
‖|En+1

x |‖2
L2
+ 2τη(en+ 1

2
x , En+ 1

2
x )

≤ ‖En‖2
L2
− h2

12
‖En

x‖2
L2
+

8 Mqτ

3
‖en+ 1

2 ‖2
L2
+ τ(4q + 1)M‖En+ 1

2 ‖2
L2
+ τ|R̂n|2.

(19)

Similarly, taking the inner product (·, ·) on both sides of Equation (16) with en+1 + en,
and then using Lemma 1, Cauchy–Schwarz inequality and Taylor expansion for function g,
we can obtain

‖en+1‖2
L2
− h2

12
‖|en+1

x |‖2
L2
− 2τη(En+ 1

2
x , en+ 1

2
x )

≤ ‖en‖2
L2
− h2

12
‖|en

x |‖2
L2
+

8Mqτ

3
‖En+ 1

2 ‖2
L2
+ τ(4q + 1)M‖en+ 1

2 ‖2
L2
+ τ|R̃n|2.

(20)

summing from 0 to n− 1 in Equations (19) and (20), respectively, and then adding the two
inequalities, we have

(2
3
−MτC

)
‖un −Un

C‖2
L2
≤ MτC

n−1

∑
p=0
‖up −UP

C‖2
L2
+ 2τC

n−1

∑
p=0
|Rp|2.

By taking τC small enough so that τC < 2
3M and applying Lemma 2, we obtain

‖un −Un
C‖L2 ≤ M(τ2

C + h4). Further, noticing that n = ks, then we have

‖uks −Uks
C ‖L2 ≤ M(τ2

C + h4). (21)

(II) The second case is n = ks− l, (l = 1, · · · , k− 1, and k = 1, 2, · · · , N). Based on
the Lagrange’s interpolation formula, we obtain

uks−l =
tks−l − tks

t(k−1)s − tks
u(k−1)s +

tks−l − t(k−1)s

tks − t(k−1)s
uks =

l
s

u(k−1)s + (1− l
s
)uks

+
u
′′
(η)

2
(t− t(k−1)s)(t− tks), η ∈ (t(k−1)s, tks).

(22)

Subtracting Equations (9) and (22), we can have

uks−l −Uks−l
C =

l
s
(u(k−1)s −U(k−1)s

C ) + (1− l
s
)(uks −Uks

C )

+
u
′′
(η)

2
(t− t(k−1)s)(t− tks).

Using (21) and triangle inequality, we obtain ‖uks−l −Uks−l
C ‖L2 ≤ M(τ2

C + h4). In addition
to synthesizing the above two cases, we then obtain the result of Theorem 1.
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Next, we give the convergence result on the time fine mesh. Letting en
F,j = vn

j −Vn
F,j,

En
F,j = wn

j −Wn
F,j, (1 ≤ j ≤ J − 1, 0 ≤ n ≤ N ), then from Equations (5), (10) and (11),

we obtain

−(EF,j)
n
t −

h2

12
(EF,j)

n
t,xx̄ + η(eF,j)

n+ 1
2

xx̄ +
qh2

12
(

g(vn+ 1
2

j , wn+ 1
2

j )− Θ̂j
)

xx̄

+ q
(

g(vn+ 1
2

j , wn+ 1
2

j )− Θ̂j
)
= R̂n

F,j,
(23)

(eF,j)
n
t +

h2

12
(eF,j)

n
t,xx̄ + η(EF,j)

n+ 1
2

xx̄ +
qh2

12
(

g(wn+ 1
2

j , vn+ 1
2

j )− Θ̃j
)

xx̄

+ q
(

g(wn+ 1
2

j , vn+ 1
2

j )− Θ̃j
)
= R̃n

F,j,
(24)

where

g(vn+ 1
2

j , wn+ 1
2

j )− Θ̂j = ĝxen+ 1
2

F,j + ĝyEn+ 1
2

F,j +
1
2

ĝ∗xx
( en+1

C,j + en
F,j

2
)2

+
1
2

ĝ∗yy
(En+1

C,j + En
F,j

2
)2

+
1
2

ĝ∗xy
( en+1

C,j + en
F,j

2

En+1
C,j + En

F,j

2
)
,

g(wn+ 1
2

j , vn+ 1
2

j )− Θ̃j = g̃xEn+ 1
2

F,j + g̃yen+ 1
2

F,j +
1
2

g̃∗xx
(En+1

C,j + En
F,j

2
)2

+
1
2

g̃yy∗
( en+1

C,j + en
F,j

2
)2

+
1
2

g̃∗xy
( en+1

C,j + en
F,j

2

En+1
C,j + En

F,j

2
)
,

and

vn+ 1
2

j =
Vn+1

C,j + Vn
F,j

2
, wn+ 1

2
j =

Wn+1
C,j + Wn

F,j

2
,

ĝx = gx(v
n+ 1

2
j , wn+ 1

2
j ), ĝy = gy(v

n+ 1
2

j , wn+ 1
2

j ),

ĝ∗xx = gxx(v∗j , w∗j ), ĝ∗yy = gyy(v∗j , w∗j ), ĝ∗xy = gxy(v∗j , w∗j ),

g̃x = gx(w
n+ 1

2
j , vn+ 1

2
j ), g̃y = gy(w

n+ 1
2

j , vn+ 1
2

j ),

g̃∗xx = gxx(w∗j , v∗j ), g̃∗yy = gyy(w∗j , v∗j ), g̃∗xy = gxy(w∗j , v∗j ).

Based on the above set of error equations, we then obtain the following error estimation of
the fine mesh solution.

Theorem 2. Suppose that the exact solution un = vn + iwn to the initial boundary value
problem Equation (1) is sufficiently smooth and let Un

F = Vn
F + iWn

F be the numerical solution on
the time fine mesh. Then, there exists a positive constant M independent of h, τC, τF such that

‖un −Un
F‖L2 ≤ M

(
τ2

F + τ4
C + h4).

Proof. Omitting the subindex j and taking the inner product (·, ·) on both sides of
Equation (23) with En+1

F + En
F, we have
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1
τF

[
‖En+1

F ‖2
L2
− ‖En

F‖2
L2

]
− h2

12τF

[
‖|En+1

F,x |‖
2
L2
− ‖|En

F,x|‖2
L2

]
− 2η(en+ 1

2
F,xx̄ , En+ 1

2
F )

=
qh2

6
(
(ĝxen+ 1

2
F )xx̄, En+ 1

2
F

)
+ 2q(ĝxen+ 1

2
F , En+ 1

2
F )

+
qh2

6
(
(ĝyEn+ 1

2
F )xx̄, En+ 1

2
F

)
+ 2q(ĝyEn+ 1

2
F , En+ 1

2
F )

+
qh2

12

((
ĝ∗xx(

en+1
C + en

F
2

)2)
xx̄, En+ 1

2
F

)
+ q
(

ĝ∗xx(
en+1

C + en
F

2
)2, En+ 1

2
F

)
(25)

+
qh2

12

((
ĝ∗yy(

En+1
C + En

F
2

)2)
xx̄, En+ 1

2
F

)
+ q
(

ĝ∗yy(
En+1

C + En
F

2
)2, En+ 1

2
F

)
+

qh2

6

((
ĝ∗xy(

en+1
C + en

F
2

En+1
C + En

F
2

)
)

xx̄, En+ 1
2

F

)
+ q
(

ĝ∗xy(
en+1

C + en
F

2
En+1

C + En
F

2
), En+ 1

2
F

)
− 2(R̃n

F, En+ 1
2

F ) =
10

∑
i=1

Ti − 2(R̃n
F, En+ 1

2
F ),

For each term on the right side of Equation (25), we estimate them as follows:

|T1| =
∣∣∣ qh2

6
(
(ĝxen+ 1

2
F )xx̄, En+ 1

2
F

)∣∣∣
=
∣∣∣− qh2

6
(
(ĝxen+ 1

2
F )x, En+ 1

2
F,x

)∣∣∣ ≤ Mh2‖|(ĝxen+ 1
2

F )x|‖L2‖|E
n+ 1

2
F,x |‖L2 (26)

≤ M‖ĝxen+ 1
2

F ‖L2‖E
n+ 1

2
F ‖ ≤ M‖en+ 1

2
F ‖L2‖E

n+ 1
2

F ‖L2 ,

|T2| =
∣∣2q(ĝxen+ 1

2
F , En+ 1

2
F )

∣∣ ≤ M‖en+ 1
2

F ‖L2‖E
n+ 1

2
F ‖L2 , (27)

where the assumption max
(x,y)∈R2

|gx|+ |gy| ≤ L, Cauchy–Schwarz inequality and Lemma 1

are used. Similarly, we also have

|T3|+ |T4| ≤ M‖En+ 1
2

F ‖2
L2

,
10

∑
i=5
|Ti| ≤ M

{
‖(en+1

C )2‖L2 + ‖(e
n
F)

2‖L2 + ‖(En+1
C )2‖L2 + ‖(En

F)
2‖L2

}
‖En+ 1

2
F ‖L2 ,

|2(R̂n
F, En+ 1

2
F )| ≤ M|R̂n

F|‖E
n+ 1

2
F ‖L2 .

(28)

Then, from Equations (26)–(28), we obtain

[
‖En+1

F ‖2
L2
− ‖En

F‖2
L2

]
− h2

12
[
‖|En+1

F,x |‖
2
L2
− ‖|En

F,x|‖2
L2

]
− 2τFη(en+ 1

2
F,xx̄ , En+ 1

2
F )

≤ MτF
{
‖En+ 1

2
F ‖2

L2
+ ‖en+ 1

2
F ‖2

L2

+ ‖(en+1
C )2‖2

L2
+ ‖(en

F)
2‖2

L2
+ ‖(En+1

C )2‖2
L2
+ ‖(En

F)
2‖2

L2
+ |R̂n

F|2
}

.

(29)

Taking the inner product on both sides of Equation (24) with en+1
F + en

F, and then in an
entirely analogous manner, a similar estimate may be obtained as follows.

[
‖en+1

F ‖2
L2
− ‖en

F‖2
L2

]
− h2

12
[
‖|en+1

F,x |‖
2
L2
− ‖|en

F,x|‖2
L2

]
+ 2τFη(En+ 1

2
F,xx̄ , en+ 1

2
F )

≤ MτF
{
‖En+ 1

2
F ‖2

L2
+ ‖en+ 1

2
F ‖2

L2

+ ‖(en+1
C )2‖2

L2
+ ‖(en

F)
2‖2

L2
+ ‖(En+1

C )2‖2
L2
+ ‖(En

F)
2‖2

L2
+ |R̃n

F|2
}

.

(30)
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Adding Equations (29) and (30) and summing from n = 0 to m, we obtain

‖um −Um
F ‖2

L2
≤ MτF

m−1

∑
p=0
‖up −Up

F‖
2
L2
+ MτF

m

∑
p=0

(
‖(ep

C)
2‖2

L2
+ ‖(Ep

C)
2‖2

L2

)
+ MτF

m−1

∑
p=0
|Rp

F|
2 + MτF

m−1

∑
p=0

(
‖(ep

F)
2‖2

L2
+ ‖(Ep

F)
2‖2

L2

)
.

Here we have used Lemma 1 and the assumption that τF is small enough. Furthermore, we
use the technique shown in [48,49] and Lemma 2 to obtain the conclusion.

5. Numerical Results

In this section, we present two numerical examples to illustrate the efficiency of the
algorithm discussed in Section 4.

5.1. Single Soliton Solution to the NLS Equation

In order to test the accuracy of the algorithm presented in Section 4, Equation (1) with
the coefficient η = 1, q = 2 and the exact solution [24]

u(x, t) = sech(x− 4t) exp(2ix− 3it)

is solved by time two-mesh (TT-M) CD scheme Equations (6)–(12) and standard nonlinear
implicit (SNI) CD scheme Equations (6)–(8) at the domain of (t, x) ∈ (0, 1] × [−30, 30],
respectively. The NLS Equation (1) has an infinite number of conservation laws including,
e.g.,

Q =
∫ +∞

−∞
|u(x, t)|2dx =

∫ +∞

−∞
|ϕ(x)|2dx,

E =
∫ +∞

−∞

(∣∣∂u
∂x
∣∣− q

2
|u|4

)
dx =

∫ +∞

−∞

(∣∣∂ϕ

∂x
∣∣− q

2
|ϕ|4

)
dx.

Further, the numerical invariants are evaluated as

Q '
J−1

∑
j=0
|Un

j |2h, E '
J−1

∑
j=0

[
|(Uj)

n
x |2 −

q
2
|Un

j |4
]
h.

Let UF and US be the numerical solutions of the TT-MCD scheme and the SNI-CD scheme,
respectively. Here, we also used some notations

ETT−M(τ, h) = ‖uN −UNF ‖L2 , ESNI(τ, h) = ‖uN −UNS ‖L2 ,

Ratet
TT−M = log2

(ETT−M(2τ, h)
ETT−M(τ, h)

)
, Ratex

TT−M = log2

(ETT−M(τ, 2h)
ETT−M(τ, h)

)
to denote the convergence rates of the TT-MCD scheme in time and space, respectively.
Similarly, notations Ratet

SNI and Ratex
SNI are defined in the SNI-CD scheme.

In Table 1, the discrete L2-norm errors, convergence rates in time and the time cost
of the TT-MCD scheme and the SNI-CD scheme are given, respectively. These data are
obtained by taking fixed the space step h = 0.02 and changed the time step τC = 5τF = 1/4,
1/8, 1/16, 1/32. Further, Table 2 presents the discrete L2-norm errors, convergence rates in
space and the time cost of the two schemes by taking fixed τC = 1/50, τF = 1/2500 and
changed h = 1/2, 1/4, 1/8, 1/16. From Tables 1 and 2, we observe that the errors of the two
schemes are almost identical and the temporal and spatial convergence rates of the both
schemes are nearly approach two and four, respectively, which are in agreement with our
theoretical results. Furthermore, from Tables 1 and 2, one can also clearly that our TT-MCD
scheme has much lower time cost than the SNI-CD scheme.
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The curves of real and imaginary parts of the TT-MCD and exact solutions at t = 1.0
are shown in Figure 1, which indicates that our numerical solution and the exact solution
are in good agreement. The numerical invariant values are plotted in Figure 2, which
shows that our method preserves the two conservation laws. A comparison of L2 norm
errors of the original TT-M method and its of the proposed TT-M method at t = 1 with
τC = 0.1, τF = 0.01, h = 0.1 is shown in Figure 3, which implies that our method can
improve the calculation accuracy of fine grid solutions.

Table 1. The errors and convergence rates in time with h = 0.02, τC = 5τF.

(τC , τF) ETT−M(τ, h) Ratet
TT−M CPU Time (s) ESN I(τF , h) Ratet

SN I CPU Time (s)

( 1
4 , 1

20 ) 7.2763× 10−2 – 139.9 5.5807× 10−2 – 332.6
( 1

8 , 1
40 ) 1.5492× 10−2 2.2317 278.6 1.3867× 10−2 2.0088 678.4

( 1
16 , 1

80 ) 3.1757× 10−3 2.2864 568.6 3.4604× 10−3 2.0027 1253.0
( 1

32 , 1
160 ) 8.0260× 10−4 1.9843 1138.6 8.6496× 10−4 2.0002 2195.9

Table 2. The errors and convergence rates in space with τC = 1/50 and τF = 1/2500.

h ETT−M(τ, h) Ratex
TT−M CPU Time (s) ESN I(τF , h) Ratex

SN I CPU Time (s)
1
2 2.3706× 10−1 – 28.8 2.3718× 10−1 – 51.6
1
4 1.1128× 10−2 4.4130 85.8 1.1136× 10−2 4.4127 199.9
1
8 6.7349× 10−4 4.0464 291.3 6.7723× 10−4 4.0395 924.1
1

16 4.2889× 10−5 3.9730 1023.9 4.5251× 10−5 3.9036 3751.5

Figure 1. Real (left) and imaginary (right) parts of exact and numerical solutions at t = 1
with τC = 0.1, τF = 0.01, h = 0.1.

Figure 2. Numerical charge (Q) and energy (E) from t = 0 to 1 with τC = 0.1, τF = 0.01, h = 0.1.
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Figure 3. Comparison of L2 norm errors of the original TT-M method and its of the proposed TT-M
method at t = 1.

5.2. The Interaction of Two Solitons for the NLS Equation

In this test problem, we investigate the interaction of two solitary wave propagation.
The initial and boundary conditions are, respectively, given by [17]

u(x, 0) = sech(x + 15)exp(2ix) + 1.5sech(1.5 x− 7.5)exp(−2ix),

and
u(−30, t) = u(30, t) = 0.

This initial condition yields a two-soliton solution. As a result of solitons, after the collision,
double solitons preserve their properties such as shape, velocity, and amplitudes, which
will be observed at the simulations of double solitons are given in Figure 4. The numer-
ical experiment is performed from t = 0 to t = 6 with τC = 0.03, τF = 0.01, h = 0.1.
As time progresses, the two solitons are traveling in opposite directions. The faster soliton
eventually catches up with the slower one. Then, the two solitons collide and separate,
but recover their shapes afterward despite a strongly nonlinear interaction. These results
are in qualitative agreement with the behavior predicted by the soliton theory [6]. The
evolution of the two invariants is given in Figure 5, in which the charge Q seems to remain
constant all the time. The energy E also keeps constant except for a slight change that
occurs during the interaction of two solitons. The results given in Figure 5 show that our
method preserves the conservation laws for charge and energy.

Figure 4. 2D (left) and 3D (right) graphics of collision of double solitons with τC = 0.03,
τF = 0.01, h = 0.1.
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Figure 5. Numerical charge (Q) and energy (E) from t = 0 to 6 with τC = 0.03, τF = 0.01, h = 0.1.

5.3. Birth of Standing Soliton with the Maxwellian Initial Condition

Theory predict that if ∫ ∞

∞
u(x, 0)dx ≥ π,

a soliton u(x, t) will appear over time, otherwise the soliton decay away [24]. Here, we
consider the birth of soliton with the Maxwellian initial condition [24]:

u(x, 0) = A exp(−x2), −45 ≤ x ≤ 45.

The values of all parameters are chosen to be h = 0.08, τC = 0.025, τF = 0.005 and q = 2 to
exhibit the behaviors of solutions for A = 1 and A = 1.78 and time running up from t = 0
to t = 6 are given in Figures 6 and 7, respectively. It is seen from Figures 6 and 7 that the
approximate solution of |u| decay by time increases for A = 1 unless for A = 1.78 soliton’s
amplitude, shape, and speed are protected, and the locations of solitons do not change for
both cases. In Figure 8, the numerical invariants Q and E for A = 1.78 are plotted. As it is
seen undoubtedly from Figure 8 that TT-MCD method produces charge Q and energy E
are almost constant.

Figure 6. Birth of standing solitons for A = 1 at different time t = 0, 2, 4, and t = 6.



Entropy 2022, 24, 806 14 of 16

Figure 7. Birth of standing solitons for A = 1.78 at different time t = 0, 2, 4, and t = 6.

Figure 8. Numerical charge (Q) and energy (E) from t = 0 to 6 for A = 1.78.

6. Conclusions

In this article, a TT-MCD algorithm is presented for the one-dimensional nonlinear
Shördinger equation. This new TT-MCD algorithm contains three steps of a nonlinear
implicit CD system on the time coarse mesh of size τC, some useful values on the time
fine mesh of size τF, and a linear system on the time fine mesh. Especially, the fine
mesh solution, which becomes available, is also used as the initial guess in the third
step to improve the calculation accuracy of fine grid solutions. The discrete L2-norm
convergence result with O(τ4

C + τ2
F + h4) is proved in detail. Three different test problems

have been investigated. The performance and accuracy of the algorithm have been shown
by investigating calculating the error discrete L2-norm and two conservation laws of charge
and energy and their relative changes. The obtained results show that the new TT-MCD
algorithm can produce numerical solutions of the NLS equation with high accuracy and
preserve the conservation laws of charge and energy. Moreover, the computing cost of the
TT-MCD method is less than that of the standard nonlinear implicit (SNI) CD scheme. In the
near future, we will focus on the extension of the time two-mesh idea to multidimensional
nonlinear Shördinger equations combining with alternating direction implicit (ADI) or
locally one-dimensional (LOD) techniques.
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