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Abstract: Relying on the quantum tunnelling concept and Maxwell–Boltzmann–Gibbs statistics,
Gamow shows that the star-burning process happens at temperatures comparable to a critical value,
called the Gamow temperature (T) and less than the prediction of the classical framework. In order
to highlight the role of the equipartition theorem in the Gamow argument, a thermal length scale is
defined, and then the effects of non-extensivity on the Gamow temperature have been investigated by
focusing on the Tsallis and Kaniadakis statistics. The results attest that while the Gamow temperature
decreases in the framework of Kaniadakis statistics, it can be bigger or smaller than T when Tsallis
statistics are employed.
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1. Introduction

In the framework of Maxwell–Boltzmann–Gibbs statistics, also known as Gibbs statis-
tics, consider a gas with temperature Tg, including particles with mass m and mean velocity
v. In this manner, using the equipartition theorem, one finds

1
2

mv2 =
3
2

KBTg. (1)

Here, KB is the Boltzmann constant. For a pair of particles (called the i-th and j-th particles)
with atomic numbers Zi and Zj, respectively, located at a distance r0 from each other,
the Kinetic energy lets particles overcome the Coulomb barrier meaning that nuclear fusion

begins, and consequently, a star is born if 3
2 KBTg ≥ U(r0) =

ZiZje2

4πε0r0
leading to [1]

Tg ≥
ZiZje2

6πε0KBr0
' 1 · 1× 1010 ZiZj

r0
≡ T0, (2)

for the gas temperature. On the other hand, for the temperature of the gas, we also have [1]

T ≈ 4× 106(
M

M�
)(

R�
R

), (3)

in which M (M�) and R (R�) denote the mass and radius of the gas (Sun), respectively.
As an example, consider the Sun, for which we have T � T0, meaning that the Sun should
not burn [1]. Therefore, nuclear fusion cannot be launched in gasses whose temperature
(T ) are lower than T0 (i.e., T < T0) [1].

Thanks to the scorching Sun, the above argument becomes questionable. Indeed,
Gamow is someone who was able to find a proper answer by proposing a mechanism:
quantum tunneling [1]. Based on this theory, if the particles become close to each other as
their de Broglie wavelength (r0 ' h̄

p ≡ λ), then they overcome the Coulomb barrier. In this
manner, the corresponding de Broglie wavelength of particles can be calculated as
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λ =
2πε0h̄2

mZiZje2 , (4)

where p = mv is considered, we replaced r0 with λ ≡ h̄
p , and then used

p2

2m
=

ZiZje2

4πε0λ
. (5)

Now, using 3
2 KBTg ≥ U(r0), one reaches [1]

Tg ≥
ZiZje2

6πε0KBλ
' 9 · 6× 106Z2

i Z2
j (

m
1
2
) ≡ T, (6)

instead of Equation (2) meaning that nuclear fusion can be started in gases whose tem-
perature are comparable with T (the Gamow temperature) not T0 [1]. Moreover, using
3
2 KBTg ≥ U(r0), one obtains

λ ≥
ZiZje2

6πε0KBTg
≡ rT

0 . (7)

Now, bearing the equals sign in Equations (1) and (5) in mind, we can finally deduce that
the minimum requirement for quantum tunnelling in a gas with temperature Tg ≥ T is
λ = rT

0 . Hence, the equipartition theorem has a vital role, i.e., if it changes, then both
Equation (6) and rT

0 change. In summary, in one hand, it can be seen that T is comparable
(and not equal) to T which justifies the burning of the Sun [1]. On the other hand, T
decreases (increases) when M

R is reduced (is enhanced) i.e., T varies from star to star [1].
Therefore, one may conclude that leaving the Gibbs statistics, a more flexible formula for T
can be obtained which helps us to justify the burning of stars.

Although extensivity is the backbone of Gibbs statistics, there are various arguments
in favor of the non-extensivity, especially in the relativistic systems and those that involve
long-range interactions [2–7]. Tsallis and Kaniadakis (κ) statistics are two of the most
famous and widely used generalized statistics frameworks [3–7] that propose generalized
versions of the equipartition theorem [7–9]. Motivated by various reasons such as the
long-range nature of gravity, and the probable relationship between the quantum aspects
of gravity and the non-extensivity [9–11], these statistics have been employed to lead to
notable outcomes in (i),describing dark energy [9,12], MOND theory [13], (ii) studying
Jeans instability [14–17], and also (iii) stellar sciences [18–22].

Relying on the abovementioned achievements of Tsallis and Kaniadakis statistics,
and the key role of the Gamow temperature in the stellar sciences, we are motivated to
study the Gamow theory in these frameworks. Indeed, finding the Gamow temperature in
Tsallis and Kaniadakis statistics is an important task that also helps one to obtain a better
understanding of non-extensivity, gravity, and in fact, the non-extensive aspects of gravity.
To achieve this goal, we focus on Tsallis and Kaniadakis statistics in the next section, and
a summary will be presented at the end.

2. Generalized Statistics and the Gamow Temperature
2.1. Tsallis Framework

The Tsallis entropy content of a statistical distribution with W states while the i-th
state happens with probability Pi is defined as [5]

ST
q =

1
1− q

W

∑
i=1

(Pq
i − Pi), (8)

where q is a free parameter calculated by other parts of physics or matching with exper-
iments [4,5]. The Gibbs entropy is recovered at q → 1; in fact, each sample has its own
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q [4,5]. For a three-dimensional particle, the ordinary thermal energy ( 3
2 KBT) is modified as

3
5−3q KBT, meaning that Equation (1) changes as

1
2

mv2 =
3

5− 3q
KBTg, (9)

where 0 ≤ q < 5
3 [9]. Now, simple calculations lead to

Tg ≥
5− 3q

2
T ≡ Tq ⇒ 0 < Tq ≤ 2 · 5 T,

λq =
2πε0h̄2

mZiZje2 = λ, (10)

in which the subscript q is used to distinguish the previous results with those of the Tsallis
statistics. Moreover, solving 3

5−3q KBTg = U(r0), one reaches the Tsallis thermal length

scale rT
0q(≡

(5−3q)ZiZje2

12πε0KBTg
= 5−3q

2 rT
0 ) that meets the condition rT

0q(q → 1) → rT
0 . Therefore,

quantum tunneling can happen at a temperature comparable to Tq, and in this manner, we
should have at least rT

0q = λq.

2.2. The κ Statistics

In this framework, entropy is given by [6]

Sκ = −
W

∑
i=1

P1+κ
i − P1−κ

i
2κ

= (11)

1
2

(
∑W

i=1(P1−κ
i − Pi)

κ
+

∑W
i=1(P1+κ

i − Pi)

−κ

)
,

leading to [12]

Sκ =
ST

1+κ + ST
1−κ

2
, (12)

which clearly testifies that the Gibbs entropy is achieved for κ = 0 [3]. Indeed, κ is
an unknown free parameter estimated by observations that varies from case to case [3].
Moreover, the equipartition theorem changes [7,9], and thus, Equation (1) takes the form

p2

2m
=

3
2

γκKBTg, (13)

in which

γκ =
(1 + κ

2 )Γ(
1

2κ −
3
4 )Γ(

1
2κ + 1

4 )

2κ(1 + 3κ
2 )Γ( 1

2κ + 3
4 )Γ(

1
2κ −

1
4 )

, (14)

where 0 ≤ κ < 2
3 and Γ(n) denotes the Gamma function [9]. Moreover, γκ diverges for

κ = 2
3 and the ordinary equipartition theorem ( 3

2 KBT), and thus Equation (1) are recovered
when κ = 0 leading to γκ = 1 [9].

Finally, it is a matter of calculation to find the Kaniadakis counterpart of Equation (10)
and the Kaniadakis length scale as

Tg ≥
T

γκ
≡ Tκ , (15)

λκ =
2πε0h̄2

mZiZje2 = λ,
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and

rT
0κ =

rT
0

γκ
, (16)

respectively. Since 1 ≤ γκ [9], the conditions Tκ ≤ T and rT
0κ ≤ rT

0 are obtained as the
allowed intervals for Tκ and rT

0κ .

3. Conclusions

Reviewing the Gamow theory shows the role of equipartition theorem in more clar-
ification via defining a thermal length scale (rT

0 ). It was deduced that the nuclear fusion
would occur in a gas whose temperature is comparable to the Gamow temperature (T) if
the minimum requirement λ = rT

0 is satisfied. Moreover, equipped with the fact that gener-
alized statistics modifies the equipartition theorem and motivated by their considerable
achievements in various setups [9–22], we studied the Gamow temperature within Tsallis
and Kaniadakis statistics. The results indicate that the Gamow temperature (T) decreases
in Kaniadakis statistics (Tκ ≤ T), and in Tsallis statistics it can be smaller or bigger than
T (i.e., 0 < Tq ≤ 2 · 5 T), depending on the value of q. The same result applies to the
corresponding thermal length scales.

Correspondingly, it may be claimed that stars whose temperature T differs from T are
signals of the non-extensive features of stellar sciences, meaning that if stars obey Tsallis
(Kaniadakis) statistics, then by using T = Tq (T = Tκ), one can find the value of q (κ)
corresponding to each star. Hence, the upper and lower bounds on the q (κ) parameter for
nuclear fusion process occurring can be found in the coldest and hottest stars. Finally, we
should note that further theoretical studies and also fitting with observations are needed to
determine the final probable generalized statistics governing the stellar sciences.

Author Contributions: All authors have the same contribution. All authors have read and agreed to
the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: This manuscript has no associated data or the data will not be deposited.

Acknowledgments: This paper is published as part of a research project supported by the University
of Maragheh Research Affairs Office.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Prialnik, D. An Introduction to the Theory of Stellar Structure and Evolution, 2nd ed.; Cambridge University Press: New York, NY,

USA, 2000; pp. 56–59. ISBN 0-521-65937-X.
2. Kaniadakis, G. Statistical mechanics in the context of special relativity. II. Phys. Rev. E 2005, 72, 036108–036121. [CrossRef]

[PubMed]
3. Kaniadakis, G. Theoretical Foundations and Mathematical Formalism of the Power-Law Tailed Statistical Distributions. Entropy

2013, 15, 3983–4010. [CrossRef]
4. Amigó, J.M.; Balogh, S.G.; Hernández, S. A Brief Review of Generalized Entropies. Entropy 2018, 20, 813. [CrossRef] [PubMed]
5. Tsallis, C. Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys. 1988, 52, 479–487. [CrossRef]
6. Kaniadakis, G. Non-linear kinetics underlying generalized statistics. Physica A 2001, 296, 405–425. [CrossRef]
7. Kaniadakis, G. Statistical mechanics in the context of special relativity. Phys. Rev. E 2002, 66, 056125–056141. [CrossRef]
8. Plastino, A.R.; Lima, J.A.S. Equipartition and virial theorems within general thermostatistical formalisms. Phys. Lett. A 1999, 260,

46–54. [CrossRef]
9. Nunes, R.C.; Barboza, E.M., Jr.; Abreu, E.M.C.; Neto, J.A. Probing the cosmological viability of non-gaussian statistics. J. Cosmol.

Astropart. Phys. 2016, 08, 051. [CrossRef]
10. Moradpour, H.; Corda, C.; Ziaie, A.H.; Ghaffari, S. The extended uncertainty principle inspires the Rényi entropy. Europhys. Lett.

2019, 127, 60006. [CrossRef]

http://doi.org/10.1103/PhysRevE.72.036108
http://www.ncbi.nlm.nih.gov/pubmed/16241516
http://dx.doi.org/10.3390/e15103983
http://dx.doi.org/10.3390/e20110813
http://www.ncbi.nlm.nih.gov/pubmed/33266537
http://dx.doi.org/10.1007/BF01016429
http://dx.doi.org/10.1016/S0378-4371(01)00184-4
http://dx.doi.org/10.1103/PhysRevE.66.056125
http://dx.doi.org/10.1016/S0375-9601(99)00495-8
http://dx.doi.org/10.1088/1475-7516/2016/08/051
http://dx.doi.org/10.1209/0295-5075/127/60006


Entropy 2022, 24, 797 5 of 5

11. Shababi, H.; Ourabah, K. Non-Gaussian statistics from the generalized uncertainty principle. Eur. Phys. J. Plus 2020, 135, 697.
[CrossRef]

12. Moradpour, H.; Ziaie, A.H.; Zangeneh, M.K. Generalized entropies and corresponding holographic dark energy models. Eur.
Phys. J. C 2020, 80, 8. [CrossRef]

13. Moradpour, H.; Sheykhi, A.; Corda, C.; Salako, I.G. Implications of the generalized entropy formalisms on the Newtonian gravity
and dynamics. Phys. Lett. B 2018, 783, 82–85. [CrossRef]

14. Jiulin, D. Jeans’ criterion and non-extensive velocity distribution function in kinetic theory. Phys. Lett. A 2004, 320, 347–351.
[CrossRef]

15. Abreu, E.M.C.; Neto, J.A.; Barboza, E.M., Jr.; Nunes, R.C. Jeans instability criterion from the viewpoint of Kaniadakis’ statistics.
Europhys. Lett. 2016, 114, 55001. [CrossRef]

16. Yang, W.H.; Xiong, Y.Z.; Chen, H.; Liu, S.Q. Jeans gravitational instability with κ-deformed Kaniadakis distribution in Eddington-
inspired Born–Infield gravity. Chin. Phys. B 2020, 29, 110401. [CrossRef]

17. Moradpour, H.; Ziaie, A.H.; Ghaffari, S.; Feleppa, F. The generalized and extended uncertainty principles and their implications
on the Jeans mass. Mon. Not. R. Astron. Soc. Lett. 2019, 488, L69–L74. [CrossRef]

18. Plastino, A.R.; Plastino, A. Stellar polytropes and Tsallis’ entropy. Physica A 1993, 174, 384–386. [CrossRef]
19. Kaniadakis, G.; Lavagno, A.; Quarati, P. Generalized statistics and solar neutrinos. Phys. Lett. B 1996, 369, 308–312. [CrossRef]
20. Sakagami, M.; Taruya, A. Self-gravitating stellar systems and non-extensive thermostatistics. Contin. Mech. Thermodyn. 2004, 16,

279–292. [CrossRef]
21. Soares, B.B.; Carvalho, J.C.; do Nascimento, J.D., Jr.; De Medeiros, J.R. Tsallis maximum entropy distribution function for stellar

rotational velocities in the Pleiades. Physica A 2006, 364, 413–422. [CrossRef]
22. Esquivel, A.; Lazarian, A. Tsallis Statistics as a Tool for Studying Interstellar Turbulence. Astrophys. J. 2010, 710, 125. [CrossRef]

http://dx.doi.org/10.1140/epjp/s13360-020-00726-9
http://dx.doi.org/10.1140/epjc/s10052-020-8307-x
http://dx.doi.org/10.1016/j.physletb.2018.06.040
http://dx.doi.org/10.1016/j.physleta.2003.11.047
http://dx.doi.org/10.1209/0295-5075/114/55001
http://dx.doi.org/10.1088/1674-1056/abb3f0
http://dx.doi.org/10.1093/mnrasl/slz098
http://dx.doi.org/10.1016/0375-9601(93)90195-6
http://dx.doi.org/10.1016/0370-2693(95)01535-3
http://dx.doi.org/10.1007/s00161-003-0168-7
http://dx.doi.org/10.1016/j.physa.2005.08.064
http://dx.doi.org/10.1088/0004-637X/710/1/125

	Introduction
	Generalized Statistics and the Gamow Temperature
	Tsallis Framework
	The  Statistics

	Conclusions
	References

