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Abstract: In this paper, we investigate the mathematical models of discrete memristors based on
Caputo fractional difference and G–L fractional difference. Specifically, the integer-order discrete
memristor is a special model of those two cases. The “∞”-type hysteresis loop curves are observed
when input is the bipolar periodic signal. Meanwhile, numerical analysis results show that the area
of hysteresis decreases with the increase of frequency of input signal and the decrease of derivative
order. Moreover, the memory effect, characteristics and physical realization of the discrete memristors
are discussed, and a discrete memristor with short memory effects is designed. Furthermore, discrete
memristive systems are designed by introducing the fractional-order discrete memristor and integer-
order discrete memristor to the Sine map. Chaos is found in the systems, and complexity of the
systems is controlled by the parameter of the memristor. Finally, FPGA digital circuit implementation
is carried out for the integer-order and fractional-order discrete memristor and discrete memristive
systems, which shows the potential application value of the discrete memristor in the engineering
application field.

Keywords: memristor; discrete modeling of memristor; fractional-order difference; digital circuits;
memristive system

1. Introduction

In 1971, Chua [1] suggested there should be a fourth electron component in addition
to resistance, capacitance and inductance. This new component was proposed to be called
a memristor. In 2008, researchers at Hewlett Packard Labs reported that the memristor
could be realized using nanoscale material [2]. Since this, there has been explosive growth
in the research into memristors. It should be noted that the concept of the generalized
memristor and the three fingerprint characteristics [3] of memristors have been reported,
which provides a guide for the design of memristors. Owing to their properties, including
memory and intrinsic nonlinearity, memristors have many potential applications in fields
such as flash memory [4], reconfigurable computing [5], logic circuits [6], synapses [7],
neural networks [8,9], solving mazes [10] and oscillation circuits [11]. Among those,
memristor-based nonlinear systems or circuits have rich dynamics such as multistability
and chaos [12,13].

The physical implementation of the memristor is important for real applications
of memristors in the future. However, to date, there have been almost no memris-
tor devices on sale, in comparison with resistance, capacitance and inductance ones.
At present, researchers of material science are trying to realize memristors based on differ-
ent kinds of nanometer materials, such as ZnO [14], TaOx [15], ZnO-rGO [16], VO2 [17] and
CuSO4 [18]. A nanoscale memristor device can be applied in the neuromorphic systems
as the synapse [19]. It should be noted that those nanoscale memristor devices satisfy
the definition of a memristor, but do not have good mathematical models for theoreti-
cal analysis. In fact, researchers have used alternative techniques to design memristor
devices based on mathematical models. Analog circuit implementation of memristors is
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important, and there are many different implementations [20–23]. Meanwhile, FPGA im-
plementation has aroused much interest among researchers due to its easily programmable,
reconfigurable, controllable, precise and better performance [24,25]. To improve the theo-
retical framework and applications of memristors, it is necessary to investigate functional
memristor emulators and their intrinsic features.

There are two main approaches to building mathematical models for real systems.
One is to build continuous models, and the other is to establish discrete models. Differential
calculus is used in continuous models, and difference calculus is used in discrete models.
As a result, some practical methods are proposed based on the difference [26–29]. For
instance, in digital image processing [26], image enhancement operators can be obtained
using difference and fractional-order difference. Meanwhile, since we have continuous
memristors, discrete memristors should also exist. In fact, the concept of discrete mem-
ristors was first mentioned by Wang et al. [30], but the proposed model is not satisfying.
In 2020, He et al. [31] proposed a mathematical model for a discrete memristor based on
difference. Later, they introduced a discrete memristor to a Hénon map [32] and a higher-
dimensional chaotic map [33]. Meanwhile, Bao et al. [34–37] designed discrete memristor
chaotic maps and investigated their multistability. Moreover, Simulink simulation of a
discrete memristor has been carried out [38]. To date, most of the work has been carried
out based on integer-order discrete memristors. To build mathematical models and explain
the physical significance of discrete memristors, some issues should be noted:

• The mathematical model for integer-order discrete memristors is clear, but the physical
significance of discrete memristors still needs to be explored.

• Since there are different kinds of fractional-order difference, it is necessary to build
fractional-order discrete memristors using different differences. At present, the two
widely used fractional-order differences are Caputo-like difference [39] and G–L
difference [40].

• The characteristics of discrete memristors, such as the memory effect and frequency
domain, should be discussed.

• Physical implementation of the designed discrete memristors should be carried out
and discussed.

Figure 1 shows a short history of the study of memristors and the position of this
paper. It was started by Chua in 1971, when the model for the generalized memristor
and the three fingerprints for memristors were proposed. This indicated the rules for
designing memristors. To date, the design of memristors has been investigated by scientists
from different research fields, such as mathematical modeling, circuit implementation,
nanoscale materials, and applications. Therefore, what is the role of discrete memristors
in the memristor family? In our opinion, the research of discrete memristors and discrete
memristive systems in this paper follows the dashed lines in Figure 1. We use Caputo
difference and G–L difference to build the mathematical models of fractional-order discrete
memristors and realize them in digital circuits. This shows that a discrete memristor can
also be a device for real applications.

The outline of this paper is given as follows. In Section 2, definitions of fractional-
order differences and generalized memristors are presented. In Section 3, models of
fractional-order discrete memristors are proposed, numerical simulations are carried out,
and the short-term memory effect is discussed. In Section 4, physical significance of the
discrete memristor is discussed. In Section 5, two kinds discrete memristive systems are
designed, and their dynamics are analyzed. In Section 6, FPGA implementations of discrete
memristive systems are carried out. Finally, we summarize the whole analysis.
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Figure 1. A short history of research about memristor and the position of this paper [1–3,41].

2. Preliminaries
2.1. Fractional-Order Differences

In this section, two different fractional-order differences are presented.

Definition 1 ([39,42]). For a given fractional-order α > 0, α /∈ N, when u(t) is defined in Nt0 , its
Caputo difference is defined by

C∆α
t0

u(t) := ∆−(m−α)
t0

∆mu(t)

= 1
Γ(m−α)

t−(m−α)

∑
s=t0

(t− σ(s))(m−α−1)∆mu(s)
, (1)

where Γ(·) is the gamma function, t ∈ Nt0+m−α, Nt0 := {t0, t0 + 1, t0 + 2, · · ·}, m = dαe,
and σ(s) denotes the next point in the time scale after s, namely σ(s) = s + 1 for s ∈ Nt0 .

Obviously, when α = 1, the fractional difference becomes ∆u(tn) = u(tn+1)− u(tn).

Theorem 1 ([39,42]). For the Caputo-like fractional-order system

C∆α
t0

u(t) = g(t + α− 1, u(t + α− 1)), (2)

its solution is given by

u(t) =
m−1
∑

k=0

(t−t0)
(k)

k! ∆ku(t0)

+ 1
Γ(α)

t−α

∑
s=t0+m−α

g(s+α−1,u(s+α−1))
(t−σ(s))1−α

, (3)
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where u(t) is the system variable, g(·) is the system equation and ∆ku(t0) = uk, k = 0, 1, · · · ,
m−1, m = dαe.

Definition 2 ( [40]). The G–L fractional-order difference is defined by

G∆α
t0

g(tn) =
n

∑
j=0

(−1)j
(

α
j

)
g(tn−j), (4)

where α is the fractional difference order, and
(

α
j

)
is denoted as

(
α
j

)
=

Γ(α + 1)
Γ(j + 1)Γ(α− j + 1)

, (5)

and
(

α
0

)
= 1.

When α = 1, we have

G∆α
t0

x(tn) = x(tn)− x(tn−1) . (6)

It can be seen that is a forward-difference operator.

Definition 3 ([43]). For a given G–L fractional-order discrete system with initial condition x(t0)
defined by

G∆α
t0

x(tn) = g(x(tn−1), tn−1), (7)

since
G∆α

t0
x(tn) =

n
∑

j=0
(−1)j

(
α
j

)
x
(
tn−j

)
= x(tn) + (−1)1

(
α
1

)
x(tn−1)

+(−1)2
(

α
2

)
x(tn−2) + · · ·+ (−1)n

(
α
n

)
x(t0)

= x(tn) +
n
∑

j=1
G(α)

j x
(
tn−j

)
, (8)

the solution of this system is denoted as

x(tn) = g(x(tn−1), tn−1)−
n

∑
j=1

G(α)
j x

(
tn−j−1

)
, (9)

By formula (5)

Gα
j = (−1)j Γ(α + 1)

Γ(j + 1)Γ(α− j + 1)
(10)

and Gα
0 = 1.

In Definition 3, G(α)
j is the coefficient of the history data, with G(α)

j = 0 (j = −2, −1)

and G(α)
j = (−1)j

(
α
j

)
, (j = 0, 1, 2, · · · ).

2.2. The Generalized Memristor

The definition of the generalized memristor is presented in Definition 3. It shows the
relationship between the input i(t) and output y(t). For example, if i(t) and y(t) correspond
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to current and voltage of two circuit variables, respectively, it defines a current-controlled
memristive system or a charge-controlled memristor.

Definition 4 ([41]). The generalized continuous memristor is defined by{
y(t) = g(x(t), i(t), t)i(t)
ẋ(t) = f (x(t), i(t), t)

, (11)

where x(t) is the internal state variable of the memristor, g(·) is a function that represents the value
of the memristor, and f (·) is a continuous function.

Definition 5. describes the case of a continuous memristor. Here, we give a definition for the
generalized discrete memristor.

Definition 6. The generalized fractional discrete memristor is defined as{
y(tn) = g(xn, i(tn), tn)i(tn)
∆α

t0
x(tn) = f (x(tn−1), i(tn−1), tn−1)

, (12)

where g(·) is a function that represents the value of the discrete memristor, and f (·) is a continuous
function. As with the continuous memristor, the generalized discrete memristor also describes the
relationship between the input signal and the output signal.

The input and output signal are not limited by the voltage and current, but can be any
discrete signals.

According to Definition 4, a universal fractional-order discrete memristor is defined
by {

y(tn) = g(x(tn))i(tn)
∆α

t0
x(tn) = f (x(tn−1), i(tn−1), tn−1)

. (13)

An ideal fractional-order discrete universal memristor is defined by{
y(tn) = g(x(tn))i(tn)
∆α

t0
x(tn) = f (x(tn−1))i(tn−1)

. (14)

In this paper, the ideal fractional-order discrete memristor is defined as{
y(tn) = g(x(tn))i(tn)
∆α

t0
x(tn) = f (i(tn−1))

. (15)

Here, g(·) is defined in two cases:

Case 1: g(x) = a1 + b1x.
Case 2: g(x) = a2 + b2|x|.

In this paper, we fix a1 = 0.8, b1 = −0.0001, a2 = 0.667, b2 = 1.4828× 10−4, and the
periodic input signals are defined as

i(tn) = A sin(ωtn), (16)

where tn = 0, 1, 2, · · · .

Theorem 2 ([3]). The three fingerprints determine whether a device is a memristor or not. The fin-
gerprints are:

(1) When it is driven by a bipolar periodic signal, the device must exhibit a “pinched hysteresis
loop” in the voltage–current plane, assuming the response is periodic.

(2) Starting from some critical frequency, the hysteresis loop area should decrease monotonically
as excitation frequency increases.
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(3) The pinched hysteresis loop should shrink to a single-valued function when the frequency tends
to infinity.

For the discrete memristor, it should have the three fingerprints when the input of
the discrete memristor contains bipolar periodic signals. For the function f (·), there are
many different choices, including piecewise nonlinearity, linear nonlinearity, absolute value,
linear function, sine function, and square function [44]. In this manuscript, we use the idea
of memristor models including HP memristors (linear function) and absolute function,
to show the effectiveness of the proposed methods. However, for function g(·), this does
not offer much choice, and they are ẋ(t) = ki(t) and ∆x(tn) = ki(tn) for the continuous
case and discrete case, respectively, where k is strength. In this paper, we also use three
fingerprints to verify the rationality of the designed discrete memristors.

3. Models of Discrete Memristor
3.1. Fractional-Order G–L Difference-Based Model

Based on the G–L definition, the fractional-order discrete memristor is defined by{
ψ(tn) = F(ϕ, i(tn), tn)i(tn)
G∆α

t0
ϕ(tn) = f (ϕ(tn−1), i(tn−1), tn−1)

. (17)

According to Definition 4, the internal valuable in the G–L fractional-order discrete
memristor is defined by

ϕ(tn) = f (ϕ(tn−1), i(tn−1), tn−1)−
n

∑
j=1

G(α)
j ϕ

(
tn−j

)
. (18)

As a result, this discrete memristor can be written as
ψ(tn) = F(ϕ(tn), i(tn), tn)i(tn)

ϕ(tn) = f (ϕ(tn−1), i(tn−1), tn−1)

−
n
∑

j=1
G(α)

j ϕ(tn−1)
. (19)

To simulate the system, we need to calculate coefficient G(α)
j in a more effective way.

First, we have the following equation

Γ(α + 1) = αΓ(α). (20)

According to the definition of the coefficient, j = (1, 2, 3, · · · ), we have

G(α)
j−1 = (−1)j−1 Γ(α + 1)

Γ(j)Γ(α− j + 2)
. (21)

Then,
G(α)

j = (−1)j Γ(α+1)
Γ(j+1)Γ(α−j+1)

= −(−1)j−1 Γ(α+1)
Γ(j)Γ(α−j+2) ·

Γ(j)Γ(α−j+2)
Γ(j+1)Γ(α−j+1)

= −G(α)
j−1

Γ(j)Γ(α−j+2)
Γ(j+1)Γ(α−j+1)

= −G(α)
j−1

Γ(j)(α−j+1)Γ(α−j+1)
jΓ(j)Γ(α−j+1)

= − α−j+1
j G(α)

j−1 =
(

1− α+1
j

)
G(α)

j−1

. (22)

When j = 0, G(α)
0 = 1. Thus, we can obtain the values of G(α)

j using the relationship as
given in Equation (22).
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An example of the G–L fractional-order discrete memristor is given by{
y(tn) = g(x(tn))i(tn)
G∆α

t0
x(tn) = ki(tn−1)

. (23)

Thus, the model is denoted as
y(tn) = g(x(tn))i(tn)

x(tn) = i(tn−1)−
n
∑

j=1
G(α)

j x
(
tn−j

) . (24)

The hysteresis loop of the G–L difference-based discrete memristor with different
functions g(·), order α and frequency ω is illustrated in Figure 2, where Figure 2a,b are
plotted using A = 4, ω = 0.001 and different order α and Figure 2c,d are plotted using
A = 4, α = 0.95 and different frequency ω. Obviously, the “∞” pinched hysteresis loops are
observed with the given bipolar periodic inputs. As with the Caputo-like difference-based
memristor, the area in the hysteresis loop shrinks with the decrease in derivative-order
α and increase in frequency ω. According to the numerical simulation analysis results,
the designed fractional-order memristor satisfies the three fingerprints of the memristor.

Figure 2. Pinched hysteresis loops of the G–L difference-based discrete memristor with x(t0) = 0.1.
(a) g(x) = a1 + b1x, amplitude A = 4 and frequency ω = 0.001, and different derivative order;
(b) g(x) = a2 + b2|x|, amplitude A = 4 and frequency ω = 0.001, and different derivative order;
(c) g(x) = a1 + b1x, A = 4, α = 0.95 and different frequency ω; (d) g(x) = a2 + b2|x|, A = 4, α = 0.95
and different frequency ω.
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3.2. Fractional-Order Caputo Difference-Based Model

Based on Caputo-like difference, the mathematical model of the fractional-order
discrete memristor is denoted as [31]{

ψ(tn) = g(ϕ, u, tn)i(tn)
C∆α

t0
ϕ(t) = f (ϕ, i, t + α− 1)

, (25)

where g(·) and f (·) are the nonlinear functions and ϕ is the internal state variable of the
memristor (equivalent to the “charge” or “magnetic flux” in the continuous memristors).

According to Definition 2, the solution of the second equation in Equation (25) is
given by

ϕ(tn) = ϕ(t0) +
1

Γ(α)

n

∑
j=1

C(α)
j f

(
ϕ
(
tj−1

)
, u, tj−1

)
, (26)

where the coefficient is defined by

C(α)
j =

Γ(n− j + α)

Γ(n− j + 1)
, (27)

and it can be calculated in a more effective way, which is denoted as

C(α)
j =

{
Γ(α), j = 0
C(α)

j−1
α+j−1

j , j = 1, 2, · · · . (28)

Finally, the fractional-order discrete memristor is rewritten as
ψ(tn) = g(ϕ, u, tn)u(tn)

ϕ(tn) = ϕ(t0) +
n
∑

j=1
C(α)

j f
(

ϕ
(
tj−1

)
, u, tj−1

) . (29)

The nonlinear functions including g(·) and f (·) in the memristor have different kinds
of considerations.

An example of the Caputo fractional-order discrete memristor is given by{
y(tn) = g(x(tn))i(tn)
C∆α

t0
x(t) = ki(t + α− 1)

. (30)

Thus, the model with coefficient is
y(tn) = g(x(tn))i(tn)

x(tn) = x(t0) +
k

Γ(α)

n
∑

j=1
C(α)

j i
(
tj−1

) . (31)

The voltage–current curves of the discrete memristor with different functions g(·),
derivative-order α, and frequency ω are shown in Figure 3. Figure 3a,b are plotted using
A = 4, ω = 0.001 and different derivative-order α. Figure 3c,d are plotted using A = 4,
α = 0.9 and different frequency ω. This shows that there exist pinched hysteresis loops
when the input signal is bipolarly periodic. The area of the hysteresis loop decreases with
the decrease of derivative-order α and the increase of frequency ω. First, this shows that
the fractional difference makes the discrete memristor have a lower frequency domain,
since the area of the hysteresis loops decreases with order α. Second, this shows that the
pinched hysteresis loop shrinks with frequency ω and becomes a line when ω = 0.5. It
can be seen that the designed fractional-order memristor satisfies the three fingerprints of
the memristor.
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Figure 3. Pinched hysteresis loops of the Caputo-like difference-based discrete memristor with
x(t0) = 0.1. (a) g(x) = a1 + b1x, amplitude A = 4 and frequency ω = 0.001, and different derivative
order; (b) g(x) = a2 + b2|x|, amplitude A = 4 and frequency ω = 0.001, and different derivative
order; (c) g(x) = a1 + b1x, A = 4, α = 0.9 and different frequency ω; (d) g(x) = a2 + b2|x|, A = 4,
α = 0.9 and different frequency ω.

3.3. Integer-Order Discrete Memristor

For the G–L fractional-order difference-based discrete memristor, when α = 1, the co-
efficients are given by

G(1)
0 = 1, G(1)

1 = −1, G(1)
j = 0(j = 2, 3, · · ·). (32)

Thus, the “charge” or “magnetic flux” in the integer-order discrete memristor is denoted as

ϕ(tn) = ϕ(tn−1) + f (ϕ(tn−1), i(tn−1), tn−1). (33)

For the Caputo difference-based fractional-order discrete memristor, the coefficients are
G(1)

j = 1(j = 0, 1, 2, · · ·) for α = 1. The solution of the “charge” or “magnetic flux” is
denoted as

ϕ(tn) = ϕ(t0) +
n
∑

j=1
f
(

ϕ
(
tj−1

)
, i
(
tj−1

)
, tj−1

)
= ϕ(t0) +

n−1
∑

j=1
f
(

ϕ
(
tj−1

)
, i
(
tj−1

)
, tj−1

)
+ f (ϕ(tn−1), i(tn−1), tn−1)

= ϕ(tn−1) + f (ϕ(tn−1), i(tn−1), tn−1)

. (34)

Thus, for both the Caputo difference-based memristor and the G–L difference-based mem-
ristor, when α = 1, the integer-order counterpart is defined by{

ψ(tn) = g(ϕn, i(tn), tn)i(tn)
ϕ(tn) = ϕ(tn−1) + f (ϕ(tn−1), i(tn−1), tn−1)

. (35)



Entropy 2022, 24, 786 10 of 25

It should be noted that the integer-order discrete memristor is a special case of
fractional-order discrete memristors. At present, integer-order discrete memristors are
being investigated. For example, there is a chaotic map using a second-order discrete
memristor [34], which is defined by{

xn+1 = xn − kxn cos ϕn
ϕn+1 = ϕn + εxn

, (36)

where the discrete memristor is given by{
xn+1 = kxn cos ϕn
ϕn+1 = ϕn + εxn

. (37)

It is not difficult to verify that there is an “∞” hysteresis loop, which means that there exists
a memristor in the given discrete memristor.

3.4. Short-Term Memory Effects and Frequency Domain
3.4.1. The Imperfect Memory Effect

As shown in Figure 4a, the integer-order discrete memristor has the ideal memory
effect, since ϕ(tn) is the summation of all the history data. The reason for this simplified
calculation is that all the coefficients for the history data are same, which is one.
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Figure 4. Memory effect of the fractional-order differences. (a) Caputo difference; (b–e) G–L differ-
ence, where (e) is the partial enlarged drawing of (b), and vertical coordinates of (b,e) are logarithmic,
(d) is the partial enlarged drawing of (c).

However, when 0 < α < 1, then there is a different coefficient for each history data
point, and the values of the coefficients based on the two fractional calculi are different.
The kernel functions C(α)

j and G(α)
j are plotted in Figure 4, where n = 100. As shown

in Figure 4, for the Caputo difference, C(α)
j tends to zero with a speed that is not as fast

as the G(α)
j from G–L difference. However, when α = 1, j = 0, 1, 2, · · · , and we have a

horizontal line for C(α)
j . In addition, α = 1, C(α)

j = 1 and for j = 2, 3, 4, · · · , there is no

line for G(1)
j , because when α < 1, the coefficients for different positions are different.
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First, for fractional-order cases, the calculation cost increases with iterations and, in real
applications, we need to balance calculation cost and accuracy. Second, when 0 < α < 1,
the memory effect is not “perfect”. Thus, from the point view of this paper, there exists an
“imperfect memory effect" in the fractional-order discrete memristors.

3.4.2. Short-Term Memory Memristor

The short-term memory effect of the fractional-order difference has been discussed by
different researchers [45,46]. It sacrifices the accuracy of the model to balance calculation
cost. In this paper, we use the sliding-window memory scheme. It means that current data
are related to the previously limited number of data. For the Caputo-like fractional-order
discrete memristor with short-term memory effect, it is defined as

ϕ(tn) = ϕ(t0)+

1
Γ(α)

L
∑

j=1
C(α)

j f
(

ϕ
(
tn−j

)
, i
(
tn−j

)
, tn−j

) , (38)

where L = min{n, LC}, and LC is the memory length. For the Caputo fractional-order
discrete memristor given in Equation (30), the short-term memory model is given by

x(tn) = x(t0) +
k

Γ(α)

L

∑
j=1

C(α)
j i
(
tn−j

)
. (39)

The bipolarly periodic input signals and parameters of the memristor function g(·)
are given in Equation (16). Let α = 0.95, x(t0) = 0.01. The pinched hysteresis loops of the
Caputo difference-based memristor with different memory length and frequency are shown
in Figure 5. This shows that the area of the pinched hysteresis loops decreases with an
increase of frequency and decrease of memory length. Thus, the memristor with short-term
memory effect also satisfies the definition of the memristor, and the memory length should
not be too short. For the given example, memory length should be larger than 1000.

Figure 5. Pinched hysteresis loops of the Caputo difference-based discrete memristor with short-
term memory effect. (a) g(x) = a1 + b1x, and LC = 2000; (b) g(x) = a1 + b1x, and LC = 1000;
(c) g(x) = a1 + b1x, and LC = 100; (d) g(x) = a2 + b2|x|, and LC = 2000; (e) g(x) = a2 + b2|x|,
and LC = 1000; (f) g(x) = a2 + b2|x|, and LC = 100.
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For the G–L definition-based model, the memory part is in the second item. Here,
the G–L definition-based fractional-order discrete memristor with memory length L is
defined by

ϕ(tn) = f (ϕ(tn−1), u, tn−1)−
L

∑
j=1

G(α)
j ϕ

(
tn−j

)
, (40)

where L = min{n, LGL}. Although G(α)
j decreases with j significantly as shown in Figure 4,

it is still necessary to investigate how memory length affects the nonlinearity of the memris-
tor. The discrete memristor given in Section 3.2 with short-term memory effect is defined by

x(tn) = i(tn−1)−
L

∑
j=1

G(α)
j x

(
tn−j

)
. (41)

The bipolar periodic input signals and parameters of the memristor function g(·) are
given in Equation (16). Let α = 0.95, x(t0) = 0.01. The pinched hysteresis loops of the G–L
difference-based memristor with different memory lengths and frequencies are shown in
Figure 6. This also shows that the area in the pinched hysteresis loops decreases with an
increase in frequency and decrease in memory length. As shown in Figure 6, when the
memory length is larger than 10, the nonlinearity of the memristor is acceptable. However,
the larger memory means a larger area in the pinched hysteresis loops. Compared with the
Caputo difference memristor, the G–L difference-based memristor has much less memory
for the satisfying nonlinearity.

Figure 6. Pinched hysteresis loops of the G–L difference-based discrete memristor with short-
term memory effect. (a) g(x) = a1 + b1x, and LGL = 100; (b) g(x) = a1 + b1x, and LGL = 50;
(c) g(x) = a1 + b1x, and LGL = 10; (d) g(x) = a2 + b2|x|, and LGL = 100; (e) g(x) = a2 + b2|x|,
and LGL = 50; (f) g(x) = a2 + b2|x|, and LGL = 10.

4. Physical Significance of Discrete Memristor

At present, scientists use different symbols to represent different memristors. Gener-
ally, a solid rectangle represents an integer-order memristor, while a solid triangle represents
a fractional-order memristor. However, there are no recognized symbols for discrete mem-
ristors. Here, Table 1 is the summary of the symbols used for different kinds of memristors.
For the discrete memristor, it can be realized in a digital circuit where parameters are set by
the control signal. In fact, the symbol represents a black box, where the interior structure of
different memristors is different with different implementation techniques.
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Table 1. Types, formulas and symbols of generalized memristors.

Memristor
Integer-Order Fractional-Order

Formula Symbol Formula Symbol

Charge-controlled memristor
V = M(q, i)i
dq
dt = ki V M

I

+

-

V M

I

+

-

V = M(q, i)i
Dα

t0
q = ki V

M

I

+

-

α  

Magnetron controlled memristor
i = G(ϕ, V)V
dϕ
dt = kV V G

+

-

I

i = G(ϕ, V)V
Dα

t0
ϕ = kV V G

+

-

α  

Discrete memristor
yout = F(ϕ, xin)xin
∆ϕ = f (ϕ, xin) xin(tn)

yout(tn) Ctrl yout = F(ϕ, xin)xin
∆α ϕ = f (ϕ, xin)

α 
xin(tn)

yout(tn) Ctrl

Table 2 shows that characteristics of different kinds of memristors are different.

• Both continuous and discrete memristors have memory effects. In particular, there
exists a perfect memory effect in integer-order memristors, according to their mathe-
matical models.

• The theoretical work of continuous memristors has been investigated systematically.
However, there is little work on discrete cases.

• There is some research regarding nano-device implementation of both continuous and
discrete memristors. However, an issue should be resolved. The implemented nano-
devices have “∞” hysteresis loop but usually do not relate to a mathematical model,
and the “∞” hysteresis loops are not elegant. We believe that discrete memristor
models can prove a useful tool for memristor nano-devices.

• Although there are reports of the FPGA implementation of continuous memristors,
analog circuit implementation of continuous memristors is the main technical means.
However, discrete memristors are naturally supposed to be realized in digital circuits
including DSP and FPGA.

• Continuous memristors can be used in continuous systems such as nonlinear chaotic
systems and neural networks.

In real applications, there are many discrete systems, such as chaotic maps and discrete
neural networks. Thus, how to introduce memristors to those discrete processes is a
challenging topic. However, the proposed discrete memristors prove good models for
these issues.

Table 2. The characters of different kinds of memristors.

Type Characteristics Applications Modeling

Continuous memristor

? Memory effect;
? Mathematical models are mature;
? Nano-device implementation;
? The parameters of memristor are fixed.

? Continuous system;
? Differential system

? Differential operator;
? Analog circuit

Discrete memristor

? Memory effect
? Mathematical models is not mature
? Nano-device implementation
? Digital circuit realization of controllability
? Input and output can be digital sequences

? Discrete system;
? Difference system;
? Iterative system ;
? Signal processing

? Difference operator;
? Digital circuit;
? Mixed circuit

At present, there is no uniform definition for fractional calculus and difference. There-
fore, the proposed models for fractional-order discrete memristors may not be final results.
We believe there could be better models and implementations for discrete memristors. Here,
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we propose two different fractional-order discrete memristors using Caputo difference and
G–L difference.

Moreover, it is necessary to discuss the scheme for the realization of discrete memris-
tors in analog circuits. Here, a feasible way is presented in Figure 7, which is proposed
by Wu et al. [47]. Since the value of the memristor is decided by charge or magnetic flux,
we sample the current or voltage of the circuit, and then the charge or magnetic flux is
estimated in the microprocessor based on sample data. Finally, the output signal of the
microprocessor decides the value of the variable resistance, which can be a digital poten-
tiometer. Figure 7 provides a scheme based on the analog–digital hybrid circuit, but it still
needs to be further investigated by engineers.

Figure 7. A physical realization scheme of the discrete memristor for analog and digital circuits
(Reproduced with permission from [47] [Guangyi Wang], [J. Hangzhou Dianzi Univ. Nat. Sci];
published by [J. Hangzhou Dianzi Univ. (Natural Science edition)], [2018]).

5. Discrete Memristive Systems
5.1. Design of Discrete Memristive Map

The Sine map is defined by

yn = ε sin(πyn−1), (42)

where ε is the system parameter. Fixed ε = 3, phase diagram and time series of the Sine
map are shown in Figure 8. In this section, the integer-order and fractional-order discrete
memristors are introduced to this system.

(a) (b)

Figure 8. Phase diagram and time series of the Sine map. (a) Phase diagram; (b) Time series.

The design of discrete memristive chaotic maps is a hot topic. To date, as for the
applications of discrete memristors in nonlinear systems, we have already introduced
discrete memristors into chaotic maps, including the Sine map [31] and Hénon map [32] for
better performance. However, designing a fractional-order chaotic memristive map is still
a challenge. The block diagrams, as shown in Figure 9, are the Sine map and the discrete
memristor Sine map. For a discrete memristive map, the signal yn−1 is the input of the
discrete memristor and the output of the memristor Vn−1 is then sent to the Sine map.
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(a) (b)

Sin(·)

D
1ny −

ny

α

 

α

 

Sin(·)

D

1ny − ny
1nV −

Figure 9. The block diagrams for the (a) chaotic map and (b) chaotic map with discrete memristor.

5.2. Caputo Fractional-Order Sine Map

According to Figure 9b, the fractional-order discrete memristive Sine map with Caputo
discrete memristor is defined by [31]

y(tn) = ε sin(πVn−1)
Vn−1 = y(tn−1)g(q(tn−1))

C∆α
t0

q(t) = ki(t + α− 1)
, (43)

where g(q) = 0.667 + b|q|. When we considered the short-term memory effect, the third
equation in this model is solved by

q(tn) = q(t0) +
k

Γ(α)

L

∑
j=1

C(α)
j i
(
tn−j

)
, (44)

where L = min{n, LC}, and LC is the memory length. In this study, LC = 1000. The initial
conditions of the system are q0 = 0.2 and y0 = 0.63.

Fixing ε = 3 and letting b take different values including b = 1.4828× 10−1, b =
1.4828× 10−2, b = 1.4828× 10−3 and b = 1.4828× 10−4, phase diagrams of the Caputo
fractional-order memristive Sine map are shown in Figure 10. This shows that the distribu-
tion of the points in the phase plane yn − yn+1 becomes concentrated with the decrease of
parameter b. Thus, the complexity of the system can be affected by memristor parameter b.

(a) (b)

(c) (d)

(a) (b)

(c) (d)

Figure 10. Phase diagrams of the Caputo fractional-order chaotic memristive Sine map with
different parameter b. (a) b = 1.4828 × 10−1; (b) b = 1.4828 × 10−2; (c) b = 1.4828 × 10−3;
(d) b = 1.4828× 10−4.
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5.3. G–L Fractional-Order Sine Map

Here, based on the G–L difference, the G–L memristor Sine map is defined as
y(tn) = ε sin(πVn−1)
Vn−1 = y(tn−1)g(q(tn−1))
G∆α

t0
q(tn) = ky(tn−1)

, (45)

where g(q) = 0.667 + b|q|. The solution of the third equation in Equation (45) is given by

q(tn) = ky(tn−1)−
L

∑
j=1

G(α)
j q

(
tn−j

)
, (46)

where L = min{n, LC}, and LC is the memory length. Here, LC = 50. By putting q(tn)
as the first item of Equation (45), the model of the system G–L difference-based Sine map
is obtained.

Fix ε = 3 and let b take different values. Then, phase diagrams of the system are
shown in Figure 11. These show that the phase diagram becomes to a Sine-like curve with
the decrease of memristor parameter b. As shown in Figure 11, when b = 1.4828, the points
of data fill the whole space. This assumes the highest complexity compared to other cases,
and the complexity of the system decreases with the decrease of b.

Figure 11. Phase diagrams of fractional-order chaotic memristive Sine map with different parameter
b. (a) b = 1.4828; (b) b = 1.4828× 10−1; (c) b = 1.4828× 10−2; (d) b = 1.4828× 10−3; (e) b =

1.4828× 10−4;

5.4. Integer-Order Discrete Sine Map

For both fractional-order cases, when the difference order α = 1, the discrete memris-
tive Sine map is defined as {

yn = ε sin(πyn−1g(qn−1))
qn = qn−1 + kyn−1

, (47)

which is an integer-order discrete memristive system. Here, g(q) = 0.667 + b|q|. ε and b
are the two parameters of this system.

Let ε = 3 and b take different values. Numerical analysis results of the system are
shown in Figure 12. Similar results are obtained from the system. When b takes larger
values, the points in the phase plane are more evenly distributed. Moreover, qn and yn are
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plotted. qn is the accumulation of time series yn, which fluctuates on both sides of zero. In
conclusion, complexity of the integer-order memristive Sine map can be modulated by the
memristor parameter.

Figure 12. Phase diagrams and time series of the integer-order memristive Sine map with different
parameter b. (a) b = 1.4828; (b) b = 1.4828× 10−3.

5.5. Complexity Analysis
5.5.1. Maximum LEs of the Integer-Order System

Vary ε from 0 to 10 with step size of 0.01 and vary the parameter b from 0 to 1.4828
with step size of 0.0148. Maximum Lyapunov exponents (LEs) analysis results are shown
in Figure 13. This shows that the maximum LEs increase with system parameter ε and
memristor parameter b, and there are many periodic windows found. Meanwhile, the value
of the maximum LEs can reach more than 8, which is larger than most of the chaotic maps.
For instance, when ε = 3, the Lyapunov exponent of the Sine map is 1.6721, which is much
smaller than those values. Thus, the complexity of the Sine map is improved with the
introduction of a discrete memristor.

Figure 13. Maximum LEs of the integer-order discrete memristive Sine map.
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5.5.2. SampEn and NetPE Complexity Analysis

Generally, the complexity of time series means the time series are closer to a random
sequence. However, there are many different approaches to measure complexity. In this
paper, we use SampEn [48] and NetPE (network permutation entropy) [49] to measure
the complexity of the time series generated by different chaotic maps. NetPE measures
complexity by building a network using the Bandt–Pompe patterns and their weights.
SampEn measures complexity by estimating the probability of generating new patterns
in the time series. The greater the probability of generating new patterns, the higher the
complexity of the series.

The NetPE algorithm [49] is defined as

NetPE
(

xN , d, error
)
= − 1

log(N − d + 1)

N−d+1

∑
i=1

P(i) log(P(i)), (48)

where xN represents the time series x with length N, d is the Bandt–Pompe dimension,
and error is the tolerance of difference between Bandt–Pompe vectors. More details about
this algorithm can be found in [49]. In this study, d = 3, error = 0.02 and the length of time
series N = 50,000.

For the given sequence {xN : x1, x2, · · · , xN}, the definition of SampEn [48] is given by

SamEn(m, r, N) = ln Φm(r)− ln Φm+1(r)

Φm(r) = (N −m + 1)−1
N−m+1

∑
i=1

Cm
i (r)

Cm
i (r) = (N −m)−1

N−m+1
∑

j=1,j 6=i
dm

i,j

dm
i,j = max

p=1,2,··· ,m
(|u(i + p + 1)− u0(i)|

, (49)

where m is the phase space dimension, r is the similarity tolerance, N is the sequence
length, and m(m ≤ N − 2) is the non-negative integer. In this paper, r = 0.15 and m = 3.
In addition, the length of time series for SampEn is 2500.

Let ε = 3 and α = 0.95. Complexity analysis results with b varying are shown in
Figure 14. Since Sine does not have parameter b, there is a transverse line presented in
this figure for comparison. Let b = 1.4828× 0.8 and α = 0.95. The complexity analysis
results with variation of ε are shown in Figure 15. This shows that memristive Sine maps
have higher complexity than the Sine map, which means that the complexity of the original
chaotic map can be improved with the introduction of discrete memristors.

(a) (b)(a) (b)

Figure 14. Complexity analysis results of the Sine maps with b varying measured by different
methods (a) NetPE; (b) SampEn.
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(a) (b)

Figure 15. Complexity analysis results of the Sine maps with ε varying measured by different methods
(a) NetPE; (b) SampEn.

Since g(q) = 0.667 + b|q|, when b takes larger values, the contribution of q to the
system is obvious. For instance, when b = 1.4828× 10−4, g(q) ≈ 0.667. When b = 1.4828,
g(q) will reach 2.1498. This makes the system more complex. The main reason for this
is that the internal nonlinearity of the discrete memristor can significantly improve the
complexity of the system when b takes large values. In conclusion, the discrete memristor
can improve complex behaviors of the chaotic map.

6. Implementations of the Discrete Memristive Systems
6.1. FPGA Digital Circuit Design

According to the Equation (39), the digital circuit of a Caputo fractional-order discrete
memristor is shown in Figure 16. It shows Reg_It and Reg_Ct are the core components to
implement the Caputo fractional-order discrete memristor, where the former is the queue
to store input current Itn and the latter is the array to store the Caputo differential operator.
Additionally, n and len represent the discrete time and the memory length, respectively. The
value of len is n only when len > n, otherwise it is the set memory length. When the number
of stored values reaches Reg_It′s maximum memory length len, the values in it move to
their next address, and the new input current is stored in the lowest address [0]. The
Caputo differential operator is generated by Cq

n operator module. The calculation process
of the module is defined in Equation (28), and its digital implementation is presented in
Figure 17a, where n = 0, 1, 2, 3, · · · , Reg_Ct[0] = Γ(q) and q is the derivative order. In
the Caputo differential calculation part of Figure 16, the values in Reg_It and Reg_Ct are
multiplied in accordance with the rule of the sum of address being len. The multiplied
values are accumulated and then combined with constants k, Γ(q) and m0 to form x(tn),
where m0 = x(t0). x(tn) is the input into the compute unit, g(x(tn)) is the output, and
then it multiplies by Itn to obtain the voltage output Vtn, which also is y(tn).
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Figure 16. Digital circuit of the Caputo fractional-order discrete memristor.
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𝑛 
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𝑛 
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𝑅𝑒𝑔_𝐺𝑡[𝑛] 𝑅𝑒𝑔_𝐺𝑡[𝑛+ 1] 

 𝑎   𝑏  

Figure 17. (a) Digital circuit of the Cq
n operator module; (b) Digital circuit of the Gq

n operator module.

According to Equation (40), the digital circuit of the G–L fractional-order discrete mem-
ristor is shown in Figure 18. In Figure 18, Reg_Xt is the queue to store x(tn) and Reg_Gt is
the array to store G–L differential operator, where Reg_Xt[0] = x(t0). The definition of this
module is given in Equation (22) and its digital implementation is presented in Figure 17b,
where n and q have the same meanings as above. In the G–L differential calculation part of
Figure 18, the values in Reg_Xt and Reg_Gt are multiplied in the same manner as above.
The multiplied results are accumulated and combined with Itn to obtain x(tn). On the
one hand, the value of x(tn) is stored in Reg_Xt; on the other hand, the value of x(tn) is
transmitted to compute the unit part to obtain g(x(tn)), which multiplies with Itn to obtain
the voltage output Vtn, which also is y(tn). Moreover, when the number of stored values
of Reg_Xt reaches the maximum storage length len, it will also perform the same operation
as Reg_It above.
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Figure 18. Digital circuit of the G–L fractional-order discrete memristor.

The model for the discrete memristive Sine map is shown in Figure 19. The designed
Caputo fractional-order IP core and G–L fractional-order IP core are employed. Since the
integer-order memristor is a special case of fractional-order memristor, we designed the IP
core of the integer-order memristor directly in the memristive chaotic map, and have not
presented the details. There is a selector, thus one of the three memristors works for the
system and the proposed scheme can generate three different kinds of chaotic system.

S
el

ec
to

r

ν

ν

D

ɛsin(π· ) 
yn

yn-1

yn-1

yn-1

Vn-1

Integer-order

G-L FO

Caputo FO

Figure 19. The data path circuit of the discrete memristive Sine map.

To compare our models with Matlab simulation results, we designed a memristor
chaotic test system that contains multiple types of discrete memristors and discrete mem-
ristive chaotic systems. Figure 20 shows the designed system. It shows that the current and



Entropy 2022, 24, 786 21 of 25

generated voltage are converted from floating-point numbers to fixed-point numbers. As a
result, these signals can be displayed in the oscilloscope.

Oscilloscope

Discrete 

memristi

ve system

Floating 

to Fixed 

unit

Parameters

Vt_out[31:0] DAC_Vt_out[31:0]

Figure 20. The designed system test circuit.

6.2. FPGA Implementation Results

The designed discrete memristor and memristive chaotic maps are realized in Altera
DE2-115 with EP4CE115F29C7. It is shown in Figure 21 that the physical implementation
platform for the discrete memristor systems is carried out. The output of the Altera DE2-115
contains two 16-bit current and voltage signals, which are converted using the DAC8552
chip. Finally, the obtained results are displayed in the oscilloscope.

Figure 21. The physical implementation platform of the discrete memristive system.

In the discrete memristor IP core, we set a = 0.667 and b = 1.4828 × 10−4. The
pinched hysteresis loops of the integer-order discrete memristor are presented in Figure 22.
Meanwhile, the pinched hysteresis loops of the Caputo fractional-order discrete memristor
are presented in Figure 23, and the pinched hysteresis loops of the G–L fractional-order
discrete memristor are presented in Figure 24. They show that the pinched hysteresis loops
displayed in the oscilloscope agree well with the corresponding Matlab simulation results
and indicate that the designed memristor digital circuit can be used in the engineering
application field.

Figure 22. Pinched hysteresis loops of the integer-order discrete memristor. (a) Different A; (b) Dif-
ferent ω.
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Figure 23. Pinched hysteresis loops of the Caputo-like difference-based-discrete memristor. (a) Dif-
ferent ω; (b) Different A; (c) Different α.

Figure 24. Pinched hysteresis loops of the G–L difference-based-discrete memristor. (a) Different ω;
(b) Different A; (c) Different α.

Meanwhile, the discrete memristive chaotic maps are realized in the FPGA digital
circuit. Let ε = 3 and b take values including b = 1.4828× 10−4 and b = 1.4828, the results
are shown in Figure 25. This shows that the digital circuit implementation results agree well
with the corresponding Matlab simulation results. The proposed fractional-order discrete
memristive Sine map can be realized in the hardware circuit for further applications.

(b) (c)(a)

(d) (e) (f)

Figure 25. Phase diagrams of the chaotic maps from the FPGA digital circuit. (a) Integer-order
system with b = 1.4828× 10−4; (b) G–L fractional-order system with b = 1.4828× 10−4; (c) Caputo
fractional-order system with b = 1.4828× 10−4; (d) Integer-order system with b = 1.4828; (e) G–L
fractional-order system with b = 1.4828; (f) Caputo fractional-order system with b = 1.4828.
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7. Conclusions

In this paper, we discussed the mathematical models for discrete memristors based on
Caputo-like difference and G–L difference. Numerical simulations show that both kinds of
discrete memristor satisfy the three fingerprints of a memristor device. The integer-order
memristor can be deduced from both fractional-order memristors, although they are built
through different fractional-order differences. Compared with the Caputo difference-based
memristor, the G–L difference-based memristor works in a much lower frequency do-
main. The analysis results show that the integer-order memristor has the perfect memory
effect, and the fractional-order memristor does not. The solution of the fractional-order
memristor has a series of coefficients related to the fractional-order difference. Since the
fractional-order discrete memristor is related all the historical data, to improve computa-
tional efficiency and to realize the discrete memristor in a digital circuit, discrete memristors
with a short-term memory effect are built and analyzed. As a result, the characteristics of
discrete memristors have some differences with the continuous memristors. Thus, it is a
new way to model memristors, which can be used in discrete systems.

By introducing discrete memristors to the Sine map, three memristive chaotic maps
are obtained. This shows that the system has higher complexity than the original Sine map.
Moreover, FPGA digital circuit implementation of the fractional-order discrete memristors
and chaotic maps are carried out. This shows that the proposed memristive systems can
be realized in digital circuits. Finally, applications of discrete memristors and memristive
chaotic systems will comprise our future work.
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