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Abstract: We consider real-time timely tracking of infection status (e.g., COVID-19) of individuals in
a population. In this work, a health care provider wants to detect both infected people and people
who have recovered from the disease as quickly as possible. In order to measure the timeliness of the
tracking process, we use the long-term average difference between the actual infection status of the
people and their real-time estimate by the health care provider based on the most recent test results.
We first find an analytical expression for this average difference for given test rates, infection rates
and recovery rates of people. Next, we propose an alternating minimization-based algorithm to find
the test rates that minimize the average difference. We observe that if the total test rate is limited,
instead of testing all members of the population equally, only a portion of the population may be
tested in unequal rates calculated based on their infection and recovery rates. Next, we characterize
the average difference when the test measurements are erroneous (i.e., noisy). Further, we consider
the case where the infection status of individuals may be dependent, which occurs when an infected
person spreads the disease to another person if they are not detected and isolated by the health
care provider. In addition, we consider an age of incorrect information-based error metric where
the staleness metric increases linearly over time as long as the health care provider does not detect
the changes in the infection status of the people. Through extensive numerical results, we observe
that increasing the total test rate helps track the infection status better. In addition, an increased
population size increases diversity of people with different infection and recovery rates, which may
be exploited to spend testing capacity more efficiently, thereby improving the system performance.
Depending on the health care provider’s preferences, test rate allocation can be adjusted to detect
either the infected people or the recovered people more quickly. In order to combat any errors in
the test, it may be more advantageous for the health care provider to not test everyone, and instead,
apply additional tests to a selected portion of the population. In the case of people with dependent
infection status, as we increase the total test rate, the health care provider detects the infected people
more quickly, and thus, the average time that a person stays infected decreases. Finally, the error
metric needs to be chosen carefully to meet the priorities of the health care provider, as the error
metric used greatly influences who will be tested and at what test rate.

Keywords: timely infection tracking; age of information; timely tracking of multiple processes;
Markovian infection spread model

1. Introduction

We consider the problem of timely tracking of an infectious disease, e.g., COVID-19,
in a population of n people. In this problem, a health care provider wants to detect infected
people as quickly as possible in order to take precautions such as isolating them from the
rest of the population. The health care provider also wants to detect people who have
recovered from the disease as soon as possible since these people need to return to work
which is especially critical in sectors such as education, food retail, public transportation,
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etc. Ideally, the health care provider should test all people all the time. However, as the total
test rate is limited, the question is how frequently the health care provider should apply
tests on these people when their infection and recovery rates are known. In a broader sense,
this problem is related to timely tracking of multiple processes in a resource-constrained
setting where each process takes binary values of 0 and 1 with different change rates.

Recent studies have shown that people who have recovered from infectious diseases
such as COVID-19 can be reinfected. Furthermore, the recovery times of individuals may
vary significantly. For these reasons, in this problem, the ith person becomes infected with
rate λi which is independent of the others. Similarly, the ith person recovers from the
disease with rate µi. We note that the index i may represent a specific individual or a group
of individuals that share common features such as age, gender, and profession. Depending
on the demographics, coefficients λi and µi may be statistically known by the health care
provider. We denote the infection status of the ith person as xi(t) (shown with the black
curves on the left in Figure 1) which takes the value 1 when the person is infected and
the value 0 when the person is healthy. The health care provider applies tests to people
marked as healthy with rate si and to people marked as infected with rate ci. Based on the
test results, the health care provider forms an estimate for the infection status of the ith
person denoted by x̂i(t) (shown with the blue curves on the right in Figure 1) which takes
the value 1 when the most recent test result is positive and the value 0 when it is negative.

t
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t
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t
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Figure 1. System model. There are n people whose infection status are given by xi(t). The health care
provider applies tests on these people. Based on the test results, estimations for the infection status
x̂i(t) are generated. Infected people are shown in red and healthy people are shown in green.

We measure the timeliness of the tracking process by the difference between the actual
infection status of people and the real-time estimate of the health care provider which
is based on the most recent test results. The difference can occur in two different cases:
(i) when the person is sick (xi(t) = 1) and the health care provider maps this person as
healthy (x̂i(t) = 0), and (ii) when the person recovers from the disease (xi(t) = 0) but the
health care provider still considers this person as infected (x̂i(t) = 1). The former case
represents the error due to late detection of infected people, while the latter case represents
the error due to late detection of healed people. Depending on the health care provider’s
preferences, detecting infected people may be more important than detecting recovered
people (controlling infection), or the other way around (returning people to workforce).

The age of information was proposed to measure timeliness of information in commu-
nication systems, and has been studied in the context of queueing systems [1–8], multi-hop
and multi-cast networks [9–17], social networks [18], timely remote estimation of random
processes [19–25], energy harvesting systems [26–40], wireless fading channels [41,42],
scheduling in networks [43–55], lossless and lossy source and channel coding [56–66],
vehicular, IoT and UAV systems [67–70], caching systems [71–82], computation-intensive
systems [83–90], learning systems [91–93], gossip networks [94–97] and so forth. A more
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detailed review of the age of information literature can be found in references [98–100].
Most relevant to our work, the real-time timely estimation of single and multiple counting
processes [19,25], a Wiener process [20], a random walk process [101], and binary and
multiple states Markov sources [23,51,102] have been studied. The study that is closest
to our work is reference [23], where the remote estimation of a symmetric binary Markov
source is studied in a time-slotted system by finding the optimal sampling policies via
formulating a Markov Decision Process (MDP) for real-time error, AoI and AoII metrics.
Different from [23], in our work, we consider real-time timely estimation of multiple non-
symmetric binary sources for a continuous time system. In our work, the sampler (health
care provider) does not know the states of the sources (infection status of people), and
thus, takes the samples (applies medical tests) randomly (exponential random variables)
with fixed rates. Thus, we optimize the test rates of people to minimize the real-time
estimation error.

In this paper, we consider the real-time timely tracking of infection status of n people.
We first find an analytical expression for the long-term average difference between the
actual infection status of people and the estimate of the health care provider based on
test results. Then, we propose an alternating minimization-based algorithm to identify
the test rates si and ci for all people. We observe that if the total test rate is limited, we
may not apply tests on all people equally. Next, we provide an alternative method to
characterize the average difference, by finding the steady state of a Markov chain defined
by (xi(t), x̂i(t)). By using this alternative method, we determine the average estimation
error when there are errors in the test measurements expressed by a false positive rate p
and a false negative rate q. Next, we consider the infection status of two people where
an infected person may spread the disease to another person if the infection has not been
detected by the health care provider to consequently isolate the infected person. Finally,
we consider an age of incorrect information-based error metric where the estimation error
increases linearly over time when the health care provider has not detected the changes in
the infection status of the people.

Through extensive numerical results, we observe that increasing the total test rate
helps track the infection status of people better, and increasing the size of the population
increases diversity which may be exploited to improve the performance. Depending on
the health care provider’s priorities, we can allocate additional tests to people marked
as healthy to detect the infections faster or to people marked as infected to detect the
recoveries more quickly. In order to combat the test errors, the health care provider may
prefer to apply tests to only a selected portion of the population with higher test rates.
When the infection status of a person depends on that of another person, the average time
that a person remains infected can be reduced by increasing the total test rate as it helps to
detect the infected people more quickly. Finally, we observe that depending on the error
metric used, the test rate distribution among the population differs greatly, and thus, we
should choose an error metric that aligns with the priorities of the health care provider.

2. System Model

We consider a population of n people. We denote the infection status of the ith person
at time t as xi(t) (black curve in Figure 2a) which takes binary values 0 or 1 as follows,

xi(t) =

{
1, if the ith person is infected at time t,
0, otherwise.

(1)

In this paper, we consider a model where each person can be infected multiple times
after recovering from the disease. We denote the time interval that the ith person stays
healthy for the jth time as Wi(j) which is exponentially distributed with rate λi. We denote
the recovery time for the ith person after being infected with the virus for the jth time as
Ri(j) which is exponentially distributed with rate µi.
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A health care provider wants to track the infection status of each person. Based on the
test results at times ti,`, the health care provider generates an estimate for the status of the
ith person denoted as x̂i(t) (blue curve in Figure 2a) by

x̂i(t) = xi(ti,`), ti,` ≤ t < ti,`+1. (2)

When x̂i(t) is 1, the health care provider applies the next test to the ith person after an
exponentially distributed time with rate ci. When x̂i(t) is 0, the next test is applied to the
ith person after an exponentially distributed time with rate si.

(a) (b)

Figure 2. (a) A sample evolution of xi(t) and x̂i(t), and (b) the corresponding ∆i(t) in (5). Green
areas correspond to the error caused by ∆i1(t) in (3). Orange areas correspond to the error caused by
∆i2(t) in (4).

An estimation error happens when the actual infection status of the ith person, xi(t),
is different than the estimate of the health care provider, x̂i(t), at time t. This could happen
in two ways: when xi(t) = 1 and x̂i(t) = 0, i.e., when the ith person is sick, but remains
undetected by the health care provider, and when xi(t) = 0 and x̂i(t) = 1, i.e., when
the ith person has recovered, but the health care provider is unaware that the ith person
has recovered.

We denote the error caused by the former case, i.e., when xi(t) = 1 and x̂i(t) = 0, by
∆i1(t) (green areas in Figure 2b),

∆i1(t) = max{xi(t)− x̂i(t), 0}, (3)

and we denote the error caused by the latter case, i.e., when xi(t) = 0 and x̂i(t) = 1, by
∆i2(t) (orange areas in Figure 2b),

∆i2(t) = max{x̂i(t)− xi(t), 0}. (4)

Then, the total estimation error for the ith person ∆i(t) is

∆i(t) = θ∆i1(t) + (1− θ)∆i2(t), (5)

where θ is the importance factor in [0, 1]. A large θ gives more importance to the detection of
infected people, and a small θ gives more importance to the detection of recovered people.

We define the long-term weighted average difference between xi(t) and x̂i(t) as

∆i = lim
T→∞

1
T

∫ T

0
∆i(t)dt. (6)

Then, the overall average difference of all people ∆ is

∆ =
1
n

n

∑
i=1

∆i. (7)

Our aim is to track the infection status of all people. Due to limited resources, there
is a total test rate constraint ∑n

i=1 si + ∑n
i=1 ci ≤ C. Thus, our aim is to find the optimal
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test rates si and ci to minimize ∆ in (7) while satisfying this total test rate constraint. We
formulate the following problem,

min
{si ,ci}

∆

s.t.
n

∑
i=1

si +
n

∑
i=1

ci ≤ C

si ≥ 0, ci ≥ 0, i = 1, . . . , n. (8)

We provide a summary of the list of the variables used in this work in Table 1. In the next
section, we find the total average difference ∆.

Table 1. List of variables used in this work.

Variables Definition of the Variables

Sections 2–4

n number of people in the population

xi(t) infection status of the ith person at time t

x̂i(t) estimation of xi(t) at the health care provider

λi, µi infection and recovery rates for the ith person

ci, si test rates applied to the ith person when x̂i(t) = 1, and x̂i(t) = 0

∆i(t) total estimation error for the ith person at time t

θ importance factor in [0, 1]

∆i the long-time weighted average for the ith person

C total test rate constraint

Section 5

∆e
i

the long-time average difference for the ith person with
erroneous test measurements

q false-negative testing probability with 0 ≤ q < 1
2

p false-positive testing probability with 0 ≤ p < 1
2

vi test rate applied to the ith person with erroneous test measurements

Section 6

λ, µ individual infection and recovery rate of a person

λ12
the rate of spreading the virus from an undetected infected person
to a healthy person

c, s test rates applied to people when x̂i(t) = 1, and x̂i(t) = 0

∆d
i

the long-time average difference for the ith person with
dependent infection rates

Section 7

wi test rate applied to the ith person for AoII-based error metric

∆s
i

the long-time average difference for the ith person with
AoII-based error metric

3. Average Difference Analysis

In this section, we provide a probabilistic analysis to characterize the average difference
∆. In Section 5.1, we give an alternative method to find ∆ by analyzing the steady-state
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distribution of the Markov chain induced by the states (xi(t), x̂i(t)). Here, we first find
analytical expressions for ∆i1(t) in (3) and ∆i2(t) in (4) when si > 0 and ci > 0. We note that
∆i1(t) can be equal to 1 when x̂i(t) = 0 and is always equal to 0 when x̂i(t) = 1. Assume
that at time 0, both xi(0) and x̂i(0) are 0. After an exponentially distributed time with rate
λi, which is denoted by Wi, the ith person is infected, and thus xi(t) becomes 1. At that
time, since x̂i(t) = 0, ∆i1(t) becomes 1. Further, ∆i1(t) will be equal to 0 again either when
the ith person recovers from the disease which happens after Ri which is exponentially
distributed with rate µi or when the health care provider performs a test on the ith person
after Di, which is exponentially distributed with rate si. We define Tm(i) as the earliest
time at which one of these two cases happens, i.e., Tm(i) = min{Ri, Di} (which is shown
by the green areas in Figure 3a). We note that Tm(i) is also exponentially distributed with
rate µi + si, and we have P(Tm(i) = Ri) = µi

µi+si
and P(Tm(i) = Di) = si

µi+si
. If the ith

person recovers from the disease before testing, we return to the initial case where both
xi(t) and x̂i(t) are equal to 0 again. In this case, the cycle repeats itself, i.e., the ith person
becomes sick again after Wi and ∆i1(t) remains as 1 until either the person recovers or the
health care provider performs a test which takes another Tm(i) duration. If the health care
provider performs a test before the person recovers, then x̂i(t) becomes 1. We denote the
time interval for which x̂i(t) stays at 0 as Ii1 which is given by

Ii1 =
K1

∑
`=1

Tm(i, `) + Wi(`), (9)

where K1 is geometric with rate P(Tm(i) = Di) = si
µi+si

. Due to [103] (Prob. 9.4.1),

∑K1
`=1 Tm(i, `) and ∑K1

`=1 Wi(`) are exponentially distributed with rates si and λisi
µi+si

, respec-

tively. As E[Ii1] = E[∑K1
`=1 Tm(i, `)] +E[∑K1

`=1 Wi(`)], we have

E[Ii1] =
1
si
+

si + µi
siλi

. (10)

When x̂i(t) = 1, the health care provider marks the ith person as infected. The ith
person recovers from the virus after Ri. After the ith person recovers, either the health care
provider performs a test after Zi which is exponentially distributed with rate ci or the ith
person is reinfected with the virus which takes Wi time. We define Tu(i) as the earliest time
at which one of these two cases happens, i.e., Tu(i) = min{Wi, Zi} (which is shown by the
orange areas in Figure 3b). Similarly, we note that Tu(i) is exponentially distributed with
rate λi + ci, and we have P(Tu(i) = Wi) =

λi
λi+ci

and P(Tu(i) = Zi) =
ci

λi+ci
. If the person is

reinfected with the virus before a test is applied, this cycle repeats itself, i.e., the ith person
recovers after another Ri, and then either a test is applied to the ith person, or the person is
infected again which takes another Tu(i). If the health care provider performs a test to the
ith person before the person is reinfected, the health care provider marks the ith person as
healthy again, i.e., x̂i(t) becomes 0. We denote the time interval that x̂i(t) is equal to 1 as Ii2
which is given by

Ii2 =
K2

∑
`=1

Tu(i, `) + Ri(`), (11)

where K2 is geometric with rate P(Tu(i) = Zi) = ci
λi+ci

. Similarly, ∑K2
`=1 Tu(i, `) and

∑K2
`=1 Ri(`) are exponentially distributed with rates ci and ciµi

λi+ci
, respectively. As E[Ii2] =

E[∑K2
`=1 Tu(i, `)] +E[∑K2

`=1 Ri(`)], we have

E[Ii2] =
1
ci
+

ci + λi
ciµi

. (12)
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We denote the time interval between the jth and (j + 1)th times that x̂i(t) changes
from 1 to 0 as the jth cycle Ii(j) where Ii(j) = Ii1(j) + Ii2(j). We note that ∆i1(t) is always
equal to 0 during Ii2(j), i.e., x̂i(t) = 1, and ∆i1(t) is equal to 1 when xi(t) = 1 in Ii1(j). We
denote the total time duration when ∆i1(t) is equal to 1 as Te,1(i, j) during the jth cycle
where Te,1(i, j) = ∑K1

`=1 Tm(i, `). Thus, we have E[Te,1(i)] = 1
si

. Then, using ergodicity,
similar to [80], ∆i1 is equal to

∆i1 =
E[Te,1(i)]
E[Ii]

=
E[Te,1(i)]

E[Ii1] +E[Ii2]
. (13)

Thus, we have

∆i1 =
µiλi

µi + λi

ci
µici + λisi + cisi

. (14)

Next, we find ∆i2. We note that ∆i2(t) is equal to 1 when xi(t) = 0 in Ii2(j) and is
always equal to 0 during Ii1(j). Similarly, we denote the total time duration where ∆i2(t) is
equal to 1 in the jth cycle Ii(j) as Te,2(i, j) which is equal to Te,2(i, j) = ∑K2

`=1 Tu(i, `). Thus,
we have E[Te,2(i)] = 1

ci
. Then, similar to ∆i1 in (13), ∆i2 is equal to

∆i2 =
µiλi

µi + λi

si
µici + λisi + cisi

. (15)

By using (5), (14), and (15), we obtain ∆i as

∆i =
µiλi

µi + λi

θci + (1− θ)si
µici + λisi + cisi

. (16)

Then, by inserting (16) in (7), we obtain ∆. In the next section, we solve the optimization
problem in (8).

t

∆i1(t)

1

Wi(1)Tm(i, 1) Wi(2) Tm(i, 2) Ri(1) Tu(i, 1) Ri(2) Tu(i, 2)

Ii1(1) Ii2(1)

Ii(1)

(a)

t

∆i2(t)

1

Wi(1)Tm(i, 1) Wi(2) Tm(i, 2) Ri(1) Tu(i, 1) Ri(2) Tu(i, 2)

Ii1(1) Ii2(1)

Ii(1)

(b)

Figure 3. A sample evolution of (a) ∆i1(t), and (b) ∆i2(t) in a typical cycle.

4. Optimization of Average Difference

In this section, we solve the optimization problem in (8). Using ∆i in (16) in (7), we
rewrite (8) as

min
{si ,ci}

n

∑
i=1

µiλi
µi + λi

θci + (1− θ)si
µici + λisi + cisi

s.t.
n

∑
i=1

si +
n

∑
i=1

ci ≤ C

si ≥ 0, ci ≥ 0, i = 1, . . . , n. (17)
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We define the Lagrangian function [104] for (17) as

L =
n

∑
i=1

µiλi
µi + λi

θci + (1− θ)si
µici + λisi + cisi

+ β

(
n

∑
i=1

si + ci − C

)
−

n

∑
i=1

νisi −
n

∑
i=1

ηici, (18)

where β ≥ 0, νi ≥ 0, and ηi ≥ 0. The KKT conditions are

∂L
∂si

=
µiλici

µi + λi

(1− θ)µi − θ(ci + λi)

(µici + λisi + sici)2 + β− νi = 0, (19)

∂L
∂ci

=
µiλisi

µi + λi

θλi − (1− θ)(µi + si)

(µici + λisi + sici)2 + β− ηi = 0, (20)

for all i. The complementary slackness conditions are

β

(
n

∑
i=1

si + ci − C

)
= 0, νisi = 0, ηici = 0. (21)

First, we find si. From (19), we have

(µici + λisi + sici)
2 =

µiλici
µi + λi

θ(ci + λi)− (1− θ)µi
β− νi

. (22)

When θ(ci + λi) ≥ (1− θ)µi, we solve (22) for si as

si =
µici

λi + ci

(√
1

µici

λi
µi + λi

θ(ci + λi)− (1− θ)µi
β

− 1

)+

, (23)

where we used the fact that we either have si > 0 and νi = 0, or si = 0 and νi ≥ 0, due
to (21). Here, (·)+ = max(·, 0). On the other hand, when θ(ci + λi) < (1− θ)µi, we have
∂∆i
∂si

> 0, and thus it is optimal to choose si = 0 as our aim is to minimize ∆ in (7). In this

case, when si = 0, we have ∆i =
θλi

µi+λi
which is independent of the value of ci. As we obtain

the same ∆i for all values of ci, and the total update rate is limited, i.e., ∑n
i=1 si + ci ≤ C, in

this case, it is optimal to choose ci = 0 as well (i.e., when si = 0).
Next, we find ci. From (20), we have

(µici + λisi + sici)
2 =

µiλisi
µi + λi

(1− θ)(µi + si)− θλi
β− ηi

. (24)

When (1− θ)(µi + si) ≥ θλi, we solve (24) for ci as

ci =
λisi

µi + si

(√
1

λisi

µi
µi + λi

(1− θ)(si + µi)− θλi
β

− 1

)+

, (25)

where we used the fact that we either have ci > 0 and ηi = 0, or ci = 0 and ηi ≥ 0, due
to (21). Similarly, when (1− θ)(si + µi) < θλi, we have ∂∆i

∂ci
> 0. Thus, in this case, it is

optimal to choose ci = 0. When ci = 0, we have ∆i =
(1−θ)µi
µi+λi

which is independent of the
value of si. Thus, it is optimal to choose si = 0 when ci = 0.

From (23), if 1
µici

λi
µi+λi

(θ(ci + λi) − (1 − θ)µi) ≤ β, we must have si = 0. Thus,
for a given ci, the optimal test rate allocation policy for si is a threshold policy where
si’s with small 1

µici

λi
µi+λi

(θ(ci + λi)− (1− θ)µi) are equal to zero. Similarly, from (25), if
1

λisi

µi
µi+λi

((1− θ)(si + µi)− θλi) ≤ β, we must have ci = 0. Thus, for a given si, the optimal

policy to determine ci is a threshold policy where ci’s with small 1
λisi

µi
µi+λi

((1− θ)(si + µi)−
θλi) are equal to zero.
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Next, we show that in the optimal policy, if si > 0 and ci > 0 for some i, then the total
test rate constraint must be satisfied with equality, i.e., ∑n

i=1 si + ci = C.

Lemma 1. In the optimal policy, if si > 0 and ci > 0 for some i, then we have ∑n
i=1 si + ci = C.

Proof of Lemma 1. The derivatives of ∆i with respect to si and ci are

∂∆i
∂si

=
µiλici

µi + λi

(1− θ)µi − θ(ci + λi)

(ciµi + sici + λisi)
2 , (26)

∂∆i
∂ci

=
µiλisi

µi + λi

θλi − (1− θ)(si + µi)

(ciµi + sici + λisi)
2 . (27)

We note that si > 0 in (23) implies that θ(ci + λi) > (1 − θ)µi. In this case, we have
∂∆i
∂si

< 0. Similarly, ci > 0 in (25) implies that (1− θ)(si + µi) > θλi. Thus, we have ∂∆i
∂ci

< 0.
Therefore, in the optimal policy, if we have si > 0 and ci > 0 for some i, then we must have
∑n

i=1 si + ci = C. Otherwise, we can further decrease ∆ in (7) by increasing ci or si.

Next, we propose an alternating minimization-based algorithm for finding si and ci.
For this purpose, for given initial (si, ci) pairs, we define φi as

φi =

{
1

µici

λi
µi+λi

(θ(ci + λi)− (1− θ)µi), i=1, . . . , n,
1

λisi

µi
µi+λi

((1− θ)(si + µi)− θλi), i=n + 1, . . . , 2n.
(28)

Then, we define ui as

ui =


µici

λi+ci

(√
φi
β − 1

)+
, i = 1, . . . , n,

λisi
µi+si

(√
φi
β − 1

)+
, i = n + 1, . . . , 2n.

(29)

From (23) and (25), si = ui and ci = un+i, for i = 1, . . . , n.
Next, we find si and ci by determining β in (29). First, assume that, in the optimal

policy, there is an i such that si > 0 and ci > 0. Thus, by Lemma 1, we must have
∑n

i=1 si + ci = C. We initially take random (si, ci) pairs such that ∑n
i=1 si + ci = C. Then,

given the initial (si, ci) pairs, we immediately choose ui = 0 for φi < 0. For the remaining
ui with φi ≥ 0, we apply a solution method similar to that in [80]. By assuming φi ≥ β, i.e.,
by disregarding (·)+ in (29), we solve ∑2n

i=1 ui = C for β. Then, we compare the smallest φi
which is larger than zero in (28) with β. If we have φi ≥ β, then it implies that ui ≥ 0 for all
remaining i. Thus, we have obtained ui values for given initial (si, ci) pairs. If the smallest
φi which is larger than zero is smaller than β, then the corresponding ui is negative and we
should choose ui = 0 for the smallest non-negative φi. Then, we repeat this procedure until
the smallest non-negative φi is larger than β. After determining all ui, we obtain si = ui and
ci = un+i for i = 1, . . . , n. Then, with the updated values of (si, ci) pairs, we keep finding
ui’s until the KKT conditions in (19) and (20) are satisfied.

We note that for indices (persons) i for which (si, ci) are zero, the health care provider
does not perform any tests, and maps these people as either always infected, i.e., x̂i(t) = 1
for all t, or always healthy, i.e., x̂i(t) = 0. If x̂i(t) = 0 for all t, ∆i =

θλi
µi+λi

, and if x̂i(t) = 1

for all t, ∆i =
(1−θ)µi
µi+λi

. Thus, for such i, the health care provider should choose x̂i(t) = 0 for

all t, if θλi
µi+λi

< (1−θ)µi
µi+λi

, and should choose x̂i(t) = 1 for all t, otherwise, without performing
any tests.

Finally, we note that the problem in (17) is not a convex optimization problem as the
objective function is not jointly convex in si and ci. Therefore, the solutions obtained via
the proposed method may not be globally optimal. For this reason, we select different
initial starting points and apply the proposed alternating minimization-based algorithm
and choose the solution that achieves the smallest ∆ in (7).
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In the next section, we first provide an alternative method to find the average difference
∆ in (6) and then characterize the average difference for the erroneous test measurements.

5. Average Difference for the Case with Erroneous Test Measurements

We note that the infection status of the ith person and its estimate at the health
care provider form a continuous time Markov chain (Section 7.5 of [105]) with the states
(xi(t), x̂i(t)) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}. In this section, by finding the steady-state dis-
tribution for (xi(t), x̂i(t)), we provide an alternative method to find ∆ in (6). Then, we
consider the case with erroneous test measurements. For this case, we characterize the
long-term average difference for the ith person denoted by ∆e

i .

5.1. An Alternative Method to Characterize Average Difference

When there is no error in the tests, the state transition graph is shown in Figure 4a.
Assuming that si > 0, ci > 0, every state is accessible from any other state, and thus,
the Markov chain induced by the system is irreducible. Note that in Section 4, we see
that the testing rates for some people can be equal to 0, i.e., si = 0 and ci = 0. For these
people, we choose x̂i(t) to be either always 0 or 1, i.e., consider them as always healthy
or sick all the time. Depending on the choice of x̂i(t), when si = 0 and ci = 0, either the
states (0, 0) and (1, 0), or the states (0, 1) and (1, 1) will be transient, and thus, have 0
probability in the steady state. By using small time-step approximation to a discrete time
Markov chain, one can show that the self transition probabilities are non-zero, and thus,
the Markov chain induced by the system is also aperiodic (Section 7.5 of [105]). Therefore,
the Markov chain shown in Figure 4a admits a unique stationary distribution given by
π = {π00, π01, π10, π11}. We find the stationary distribution by writing the local-balance
equations which are given as

π00λi =π10µi + π01ci, (30)

π10(µi + si) =π00λi, (31)

π01(ci + λi) =π11µi, (32)

π11µi =π10si + π01λi. (33)

By using (30)–(33) and ∑2
k=1 ∑2

`=1 πk` = 1, we find the steady-state distribution π as

π01 =
µiλi

µi + λi

si
µici + λisi + cisi

, (34)

π10 =
µiλi

µi + λi

ci
µici + λisi + cisi

, (35)

and π00 = µi+si
λi

π10, and π11 = ci+λi
µi

π01. We note that ∆i1 in (14) is also equal to π10 in (35),
i.e., we have ∆i1 = π10. Similarly, ∆i2 in (15) is equal to π01 in (34). Thus, by observing
that the states (xi(t), x̂i(t)) form a continuous time Markov chain, we can find the average
difference ∆ in (6) by finding the steady-state distribution for π. This method will be
particularly useful in the following section where we consider the case with erroneous test
measurements.
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(0, 0) (0, 1)

(1, 0) (1, 1)

ci

λi µi

si

λiµi

(a)

(0, 0) (0, 1)

(1, 0) (1, 1)

pvi

λi µi

(1− q)vi

µiλi

(1− p)vi

qvi

(b)

Figure 4. Transition graphs of the states (xi(t), x̂i(t)) (a) when there is no error in the tests, and
(b) when there are errors in the tests.

5.2. Average Difference with Erroneous Test Measurements

In this section, we consider the case where the test measurements can be erroneous.
When a test in applied to an infected person, i.e., when xi(t) = 1, the test result will be
0 with probability q and 1 with probability 1− q, where 0 ≤ q < 1

2 . In other words, the
false-negative probability is equal to q. Similarly, when a test is applied to a healthy person,
i.e., when xi(t) = 0, the test result will be 1 with probability p and 0 with probability
1− p, where 0 ≤ p < 1

2 . Thus, the false-positive probability is equal to p. The probability
distribution for the test measurements is provided in Table 2.

Table 2. The probability distribution for successful and false test measurements.

xi(t) \ x̂i(t) 0 1

0 1− p p
1 q 1− q

In this section, we consider the case where the health care provider applies only one
test rate vi to the ith person, whether the person is currently marked as healthy or infected.
That is, we do not consider separate testing rates of si and ci for healthy and infected people
as we did before, instead, here both si and ci are equal o vi. Since the health care provider
applies the same test rate for the ith person, here we do not consider the importance factor
θ either. Then, we define the long-term average difference for the ith person with the error
on the test measurements as follows, where the superscript e stands for “erroneous”.

∆e
i = ∆e

i1 + ∆e
i2, (36)

and the definitions of ∆e
i1 and ∆e

i2 follow similarly from (13). We note that with the test
rates vi and errors on the test measurements, the states (xi(t), x̂i(t)) form a continuous
time Markov chain, and the corresponding state transition graph is shown in Figure 4b.
Assuming that vi > 0, one can show that there is a unique steady-state distribution
πe = {πe

00, πe
01, πe

10, πe
11} which can be found by solving the local balance equations which

are given as follows
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πe
00(vi p + λi) =πe

01vi(1− p) + πe
10µi, (37)

πe
10(vi(1− q) + µi) =πe

00λi + πe
11viq, (38)

πe
01(vi(1− p) + λi) =πe

00vi p + πe
11µi, (39)

πe
11(viq + µi) =πe

10vi(1− q) + πe
01λi. (40)

Then, by using (37)–(40) and ∑2
k=1 ∑2

`=1 πe
k` = 1, we find the steady-state distribution πe as

πe
00 =

µiλiq + (1− p)µi(vi + µi)

(λi + µi)(λi + µi + vi)
, (41)

πe
01 =

µiλi(1− q) + pµi(vi + µi)

(λi + µi)(λi + µi + vi)
, (42)

πe
10 =

µiλi(1− p) + qλi(vi + λi)

(λi + µi)(λi + µi + vi)
, (43)

πe
11 =

µiλi p + (1− q)λi(vi + λi)

(λi + µi)(λi + µi + vi)
. (44)

We note that ∆e
i1, and ∆e

i2 are equal to πe
10 in (43), and πe

01 in (42), respectively. Thus, if
vi > 0, then ∆e

i in (36) becomes

∆e
i =

pµ2
i + qλ2

i + (2− p− q)µiλi + vi(pµi + qλi)

(λi + µi)(λi + µi + vi)
. (45)

We immediately note that if false-positive test probability p and false-negative test
probability q are equal to 0, ∆e

i becomes 2µiλi
(λi+µi)(λi+µi+vi)

which is equal to ∆i1 +∆i2 provided

in (14) and (15), respectively, when vi = si = ci. Then, ∂∆e
i

∂p ≥ 0 is equivalent to vi +µi−λi ≥

0 and ∂∆e
i

∂q ≥ 0 is equivalent to vi + λi − µi ≥ 0 which means that depending on the values
of vi, µi, and λi, the long-term average difference ∆e

i can be an increasing function of only p
or only q, or both p and q, but ∆e

i cannot be a decreasing function of both p and q. This is
expected as false-negative and false-positive tests negatively affect the estimation process.

One can also show that ∂∆e
i

∂vi
< 0 and ∂2∆e

i
∂v2

i
> 0 which means that ∆e

i decreases with vi and is

a convex function of the test rate vi.
Next, we consider the case when vi = 0. Note that when vi = 0, the health care

provider either maps these people as always sick or always healthy depending on their
infection and recovery rates. Thus, when vi = 0 and depending on the estimate x̂i(t),
two of the states in Figure 4b will never be visited and thus, these states will have 0
steady-state probabilities. For this case, the steady states are given by π̄e

1,x̂i
and π̄e

0,x̂i
. The

local balance equation is λiπ̄
e
0,x̂i

= µiπ̄
e
1,x̂i

. By using π̄e
0,x̂i

+ π̄e
1,x̂i

= 1, we find the steady-

state distribution as π̄e
0,x̂i

= µi
µi+λi

, and π̄e
1,x̂i

= λi
µi+λi

. Thus, if µi < λi, i.e., if people are
infected more frequently, then the health care provider chooses its estimate as x̂i(t) = 1
and, ∆e

i =
µi

µi+λi
. If µi ≥ λi, i.e., if people stay healthy more often, then we have x̂i(t) = 0,

and ∆e
i =

λi
µi+λi

. Therefore, when vi = 0, we have

∆e
i = min

{
µi

µi + λi
,

λi
µi + λi

}
. (46)

In order to find the optimal test rates vi in the case of errors on the test measurements,
we formulate the following optimization problem
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min
{vi}

n

∑
i=1

1{vi > 0}
pµ2

i + qλ2
i + (2− p− q)µiλi + vi(pµi + qλi)

(λi + µi)(λi + µi + vi)

+ 1{vi = 0}min
{

µi
µi + λi

,
λi

µi + λi

}
s.t.

n

∑
i=1

vi ≤ C

vi ≥ 0, i = 1, . . . , n, (47)

where the objective function is given by the summation of ∆e
i in (45) when vi > 0 and

∆e
i in (46) when vi = 0 over all people and 1{.} is the indicator function taking value 1

when {·} is true and 0, otherwise. In (47), we have a constraint on the total test rate, i.e.,
∑n

i=1 vi ≤ C. We note that the optimization problem in (47) is in general not convex due
to the indicator function in the objective function. However, for a given set of 1{vi =
0}, the optimization problem in (47) is convex and can be solved optimally. Thus, by
solving the problem in (47) for all possible set of 1{vi = 0}, we can determine the global
optimal solution which requires to solve 2n different optimization problems which can be
impractical for large n. Because of this reason, next, we provide a greedy algorithm to solve
the optimization problem in (47).

In the greedy solution, initially, assuming that 1{vi > 0} = 1 for all i, we consider the
following the optimization problem

min
{vi}

n

∑
i=1

pµ2
i + qλ2

i + (2− p− q)µiλi + vi(pµi + qλi)

(λi + µi)(λi + µi + vi)

s.t.
n

∑
i=1

vi ≤ C

vi ≥ 0, i = 1, . . . , n, (48)

where the objective function in (48) is equal to ∆e
i in (45). For this optimization problem, we

define the Lagrangian function for (48) as

L =
n

∑
i=1

pµ2
i + qλ2

i + (2− p− q)µiλi + vi(pµi + qλi)

(λi + µi)(λi + µi + vi)
+ β̄

(
n

∑
i=1

vi − C

)
−

n

∑
i=1

ν̄ivi, (49)

where β̄ ≥ 0, ν̄i ≥ 0. We note that the problem defined in (48) is a convex optimization
problem, and thus we can find the optimal test rates vi by analyzing the KKT and the
complementary slackness conditions. The KKT conditions are given by

∂L
∂vi

=
−2(1− p− q)µiλi

(µi + λi)(µi + λi + vi)2 + β̄− ν̄i = 0, (50)

for all i. The complementary slackness conditions are

β̄

(
n

∑
i=1

vi − C

)
= 0, ν̄ivi = 0. (51)

By using (50) and (51), we find the optimal vi values for the problem in (48) as

vi = (µi + λi)

(√
µiλi

(µi + λi)3
2(1− p− q)

β̄
− 1

)+

. (52)

With the test rates vi in (52) we find the average differences ∆e
i in (45) and then compare

them with ∆e
i in (46) when vi = 0. Due to the errors in the tests, ∆e

i in (46) with vi = 0
can be smaller than ∆e

i in (45) with the test rates vi found in (52). For these people, we
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choose index i where the difference between ∆e
i in (45) with the vi in (52) and ∆e

i in (46) is
the highest. Then, we take vi = 0 as applying no test to this person can further decrease ∆e

i .
For the remaining people, we solve the optimization problem in (48). After obtaining the
test rates for the remaining people, we again compare average differences ∆e

i with the test
rates in (52) and with no test and we choose vi = 0 for the person where ∆e

i can be further
decreased. We repeat these steps until all ∆e

i s with vi > 0 cannot be further decreased by
choosing vi = 0.

We note that the solution obtained in (52) has a threshold structure. As false-positive
and -negative test rates increase, the term 2(1−p−q)

β̄
in (52) becomes smaller. As a result,

some people with higher
√

(µi+λi)3

µiλi
may not be tested by the health care provider. Thus,

when p and q are high, a smaller portion of the population is tested with higher test rates
in order to combat the test errors.

6. Average Estimation Error with Dependent Infection Rates

In this section, we consider the case where we have two people whose infection rates
depend on each other. When these two people are healthy, they can be individually infected
with the virus after an exponential time with rate λ. When one of these two people is
infected and this has not been detected by the health care provider, this person can infect
the other healthy person after an exponential time with rate λ12 which has been illustrated
in Figure 5. Thus, when both of the people are healthy, their individual infection rate is
λ. However, when one of them is sick and this has not been detected by the health care
provider, the healthy person’s total infection rate is equal to λ + λ12. On the other hand, if
only one person is infected, i.e., xi(t) = 1, which has also been detected by the health care
provider, x̂i(t) = 1, then we assume that we isolate the infected person from the healthy
one, and thus, the healthy person’s infection rate remains as λ instead of λ + λ12. When
the people are infected, they recover from the disease after an exponential time with rate µ.

person 1 person 2

λ λ
λ12

Figure 5. The infection rates of two people where the individual infection rate is equal to λ. When
the infection has not been detected, these two people can infect each other with rate λ12.

When the health care provider believes that a person is healthy, i.e., x̂i(t) = 0, the next
test is applied to this person after an exponential time with rate s. When the health care
provider believes that a person is sick, i.e., x̂i(t) = 1, the next test applied to this person
after an exponential time with rate c. Here, we note that since the people are identical
in terms of their infection and recovery rates, the health care provider applies the same
test rates.

Similar to Section 5, we note that the states {x1(t), x̂1(t), x2(t), x̂2(t)} form a con-
tinuous time Markov chain where the unique stationary distribution is given by πd =
{πd

0000, πd
0001, . . . , πd

1111}. In order to find the stationary distribution, we write the local
balance equations as follows

2λπd
0000 =µπd

1000 + cπd
0100 + µπd

0010 + cπd
0001, (53)

(2λ + c)πd
0001 =µπd

0011 + cπd
0101 + µπd

1001, (54)

(λ + λ12 + µ + s)πd
0010 =cπd

0110 + µπd
1010 + λπd

0000, (55)

(λ + µ)πd
0011 =cπd

0111 + µπd
1011 + sπd

0010 + λπd
0001, (56)
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(2λ + c)πd
0100 =cπd

0101 + µπd
0110 + µπd

1100, (57)

(2λ + 2c)πd
0101 =µπd

0111 + µπd
1101, (58)

(λ + µ + s + c)πd
0110 =λπd

0100 + µπd
1110, (59)

(λ + µ + c)πd
0111 =sπd

0110 + λπd
0101 + µπd

1111, (60)

(λ + λ12 + µ + s)πd
1000 =λπd

0000 + cπd
1001 + µπd

1010, (61)

(λ + µ + s + c)πd
1001 =µπd

1011 + λπd
0001, (62)

(2µ + 2s)πd
1010 =(λ + λ12)π

d
1000 + (λ + λ12)π

d
0010, (63)

(2µ + s)πd
1011 =sπd

1010 + λπd
1001 + λπd

0011, (64)

(λ + µ)πd
1100 =sπd

1000 + λπd
0100 + cπd

1101 + µπd
1110, (65)

(λ + µ + c)πd
1101 =sπd

1001 + λπd
0101 + µπd

1111, (66)

(2µ + s)πd
1110 =λπd

1100 + sπd
1010 + λπd

0110, (67)

2µπd
1111 =sπd

1110 + λπd
1101 + sπd

1011 + λπd
0111. (68)

By using (53)–(68) and ∑2
j=1 ∑2

`=1 ∑2
m=1 ∑2

h=1 πd
j`mh = 1, we find the stationary distri-

bution πd. We denote the long-term average estimation error for person i as ∆d
i for i = 1, 2,

where the superscript d stands for “dependent”, which is given by

∆d
i = ∆d

i1 + ∆d
i2, (69)

where ∆d
i1 and ∆d

i2 follow from (13). Then, we have

∆d
11 =πd

1000 + πd
1001 + πd

1010 + πd
1011, (70)

∆d
12 =πd

0100 + πd
0101 + πd

0110 + πd
0111, (71)

∆d
21 =πd

0010 + πd
0110 + πd

1010 + πd
1110, (72)

∆d
22 =πd

0001 + πd
0101 + πd

1001 + πd
1101. (73)

In Section 8, for given infection, recovery and test rates, we numerically evaluate the
stationary distribution and find the average difference ∆d

i .

7. Age of Incorrect Information Based Error Metric

To date, we have considered an estimation error metric that takes the value 1 if the
actual infection status of a person is different than the real-time estimation at the health
care provider. Thus, the error metric takes values based on the information content. On
the other hand, the traditional age metric introduced in [1] considers only the time passed
since the most recently received status update packet is generated at the source. As a result,
the traditional age metric does not consider the information content and age alone may not
be a suitable performance metric for the problem considered in our work.

In the context of infection tracking, it is important to know how long the estimations
at the health care provider have been different from the actual infection status of the
people. However, the error metric that we have considered thus far does not have the time
component, i.e., it only takes value 1 independent of the time duration that it has been off
from the actual health status. Motivated by the AoII introduced in [51,102] which accounts
for both the time and the information content, in this section, we consider the following
error metric, where the superscript s stands for “synchronization” implied in AoII,

∆s
i = (t−Vi(t))1{x̂i(t) 6= xi(t)}, (74)
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where Vi(t) is the last time instant where the health care provider makes an accurate
estimation of the health status for the ith person, i.e., the last time instant when ∆s

i = 0.
Similarly, we define

∆s
i1 =(t−Vi1(t))max{xi(t)− x̂i(t), 0}, (75)

∆s
i2 =(t−Vi2(t))max{x̂i(t)− xi(t), 0}, (76)

where Vi1(t) and Vi2(t) are equal to the last time instants when ∆s
i1 and ∆s

i2 are equal to
0, respectively. A sample evolution of ∆s

i1 and ∆s
i2 is shown in Figure 6 and we note that

∆s
i (t) = ∆s

i1(t) + ∆s
i2(t).

t

∆
s

i1
(t)

1

Wi(1)Tm(i, 1) Wi(2) Tm(i, 2) Ri(1) Tu(i, 1) Ri(2) Tu(i, 2)

Ii1(1) Ii2(1)

Ii(1)

(a)

t

∆
s

i2
(t)

1

Wi(1)Tm(i, 1) Wi(2) Tm(i, 2) Ri(1) Tu(i, 1) Ri(2) Tu(i, 2)

Ii1(1) Ii2(1)

Ii(1)

(b)

Figure 6. A sample evolution of (a) ∆s
i1(t), and (b) ∆s

i2(t) in a typical update cycle.

Similar to Section 3, the infection and the recovery rates of the ith person are λi and
µi, respectively. In this section, the health care provider applies only one test rate for
each person denoted by wi. That is, we do not consider separate testing rates of si and
ci for healthy and infected people as we did previously, instead, here both si and ci are
equal o wi. We first consider the case where wi > 0. By following the steps in Section 3,
one can show that E[Ii1] =

1
wi

+ wi+µi
wiλi

and E[Ii2] =
1

wi
+ wi+λi

wiµi
which can be obtained by

substituting wi instead of si and ci in (10) and (12), respectively. Next, we denote the total

area when ∆s
i1(t) > 0 as Ae,1(i, j) during the jth cycle where Ae,1(i, j) = ∑K1

`=1
Tm(i,`)2

2 and K1

has a geometric distribution with success rate wi
µi+wi

. Then, we have E[Ae,1(i)] = 1
wi(wi+µi)

.
Similarly, we denote the total area when ∆s

i2(t) > 0 as Ae,2(i, j) during the jth cycle where

Ae,2(i, j) = ∑K2
`=1

Tu(i,`)2

2 and K2 has a geometric distribution with success rate wi
λi+wi

. Then,

we have E[Ae,2(i)] = 1
wi(wi+λi)

. By using ergodicity, the long-term average differences

become ∆s
i1 =

E[Ae,1(i)]
E[Ii1]+E[Ii2]

and ∆s
i2 =

E[Ae,2(i)]
E[Ii1]+E[Ii2]

which gives

∆s
i = ∆s

i1 + ∆s
i2 =

µiλi
µi + λi

2wi + µi + λi
(wi + µi + λi)(wi + µi)(wi + λi)

, (77)

when wi > 0. One can show that ∆s
i is a decreasing function of wi, i.e., ∂∆s

i
∂wi

< 0, and ∆s
i is a

convex function of wi, i.e., ∂2∆s
i

∂w2
i
> 0.

When wi = 0, we have E[Ii] =
µiλi

µi+λi
, i.e., E[Ii] is equal to the expected time of a

person’s healthy and sick states. Since the health care provider applies no tests to test
a person, it either estimates this person to be always sick (x̂i(t) = 1) or always healthy
(x̂i(t) = 0). When wi = 0 and x̂i(t) = 1, then ∆s

i = 1
µi

λi
µi+λi

. When wi = 0 and x̂i(t) = 1,

we have ∆s
i = 1

λi

µi
µi+λi

. If µi < λi, then the health care provider x̂i(t) = 1, and x̂i(t) = 0,

otherwise. Thus, when wi = 0, we have ∆s
i = min

{
1
µi

λi
µi+λi

, 1
λi

µi
µi+λi

}
.
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In order to find the optimal test rates, we formulate the following optimization problem

min
{wi}

n

∑
i=1

1{wi > 0} µiλi
µi + λi

2wi + µi + λi
(wi + µi + λi)(wi + µi)(wi + λi)

+ 1{wi = 0}min
{

1
µi

λi
µi + λi

,
1
λi

µi
µi + λi

}
s.t.

n

∑
i=1

wi ≤ C

wi ≥ 0, i = 1, . . . , n, (78)

where the objective function in (78) is equal to the summation of ∆s
i in (77) when wi > 0

and ∆s
i when wi = 0 over all people. In order to solve the problem in (78), we follow the

same greedy solution approach in Section 5. First, by assuming that wi > 0, and thus, the
average difference ∆s

i is given in (77), we solve the following optimization problem

min
{wi}

n

∑
i=1

µiλi
µi + λi

2wi + µi + λi
(wi + µi + λi)(wi + µi)(wi + λi)

s.t.
n

∑
i=1

wi ≤ C

wi ≥ 0, i = 1, . . . , n. (79)

Since the problem in (79) is a convex optimization problem, by defining Lagrangian function
and analyzing the KKT and the complementary slackness conditions, we can find the
optimal wi values. In order to avoid being repetitive, we skip these optimization steps.
Then, we compare ∆s

i in (77) with wi values found in (79) with min{ 1
µi

λi
µi+λi

, 1
λi

µi
µi+λi

}. If
we can reduce ∆s

i further, we choose wi = 0 for the person with the highest improvement.
Then, we solve the optimization problem in (79) for the remaining people. We repeat these
steps until there is no improvement in ∆s

i by choosing wi = 0.
In the next section, we provide extensive numerical results to evaluate optimal test

rates in various settings considered in this paper.

8. Numerical Results

In this section, we provide seven numerical results. For these examples, we take λi as

λi = ari, i = 1, . . . , n, (80)

where r = 0.9 and a is such that ∑n
i=1 λi = 6. Furthermore, we take µi as

µi = bqi, i = 1, . . . , n, (81)

where q = 1.1 and b is such that ∑n
i=1 µi = 4. Since λi in (80) decreases with i, people with

lower indices become infected more quickly compared to people with higher indices. Since
µi in (81) increases with i, people with higher indices recover more quickly compared to
people with lower indices. Thus, a person with a low index becomes infected quickly and
recovers slowly.

In the first example, we take the total number of people as n = 10, the total test rate as
C = 16, and θ = 0.5. We start with randomly chosen si and ci such that ∑n

i=1 si + ci = 16,
and apply the alternating minimization-based method proposed in Section 4. We repeat this
process for 30 different initial (si, ci) pairs and choose the solution that gives the smallest
∆. In Figure 7a, we observe that the first three people are never tested by the health care
provider. We note that si, which is the test rate when x̂i(t) = 0, initially increases with i
but then decreases with i. This means that people who become infected rarely are tested
less frequently when they are marked as healthy. Similarly, we observe in Figure 7a that
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ci, which is the test rate when x̂i(t) = 1, monotonically increases with i. In other words,
people who recover from the virus quickly are tested more frequently when they are
marked as infected.
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0

0.5

1

1.5

(a)

1 2 3 4 5 6 7 8 9 10

0

0.05

0.1

0.15

0.2

0.25

(b)

Figure 7. (a) Test rates si and ci, (b) corresponding average difference ∆i.

In Figure 7b, we plot ∆i resulting from the solution found from the proposed algorithm,
∆i when the health care provider applies tests to everyone in the population uniformly,
i.e., si = ci = C

2n for all i, and ∆i when the health care provider applies no tests, i.e.,

si = ci = 0 for all i. In the case of no tests, we have ∆i = min{ θλi
µi+λi

, (1−θ)µi
µi+λi

}. We observe
in Figure 7b that the health care provider applies tests on people whose ∆i can be reduced
the most as opposed to uniform testing where everyone is tested equally. Thus, the first
three people who have the smallest ∆i are not tested by the health care provider. With
the proposed solution, by not testing the first three people, ∆i are further reduced for the
remaining people compared to uniform testing. For the people who are not tested, the
health care provider chooses x̂i(t) = 1 all the time, i.e., marks these people always sick
as θλi

µi+λi
> (1−θ)µi

µi+λi
. This is expected as these people have high λi and low µi, i.e., they are

infected easily and they stay sick for a long time.
In the second example, we use the same set of variables except for the total test rate C.

We vary the total test rate C in between 5 and 20. We plot ∆ with respect to C in Figure 8.
We observe that ∆ decreases with C. Thus, with higher total test rates, the health care
provider can track the infection status of the population better as expected.

In the third example, we use the same set of variables except for the total number
of people n. In addition, we also use uniform infection and healing rates, i.e., λi = 6

n
and µi =

4
n for all i, for comparison with λi in (80) and µi in (81), while keeping the total

infection and healing rates the same, i.e., ∑n
i=1 λi = 6 and ∑n

i=1 µi = 4, for both cases. We
vary the number of people n from 2 to 30. We observe in Figure 9 that when the infection
and healing rates are uniform in the population, the health care provider can track the
infection status with the same efficiency, even though the population size increases (while
keeping the total infection and healing rates fixed). For the case of λi in (80) and µi in (81),
when we increase the population size, we increase the number of people who rarely become
sick, i.e., people with high i indices, and also people who rarely heal from the disease, i.e.,
people with small i indices. Thus, it becomes easier for the health care provider to track the
infection status of the people. This is why when we use λi in (80) and µi in (81), we observe
in Figure 9 that the health care provider can track the infection status of the people better,
even though the population size increases.
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Figure 8. The average difference ∆ with respect to total test rate C.
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Figure 9. The average difference ∆ with respect to number of people n. We use uniform infection and
healing rates, i.e., λi =

6
n and µi =

4
n for all i, and also λi in (80) and µi in (81) with ∑n

i=1 λi = 6 and
∑n

i=1 µi = 4.

In the fourth example, we employ the same set of variables as the first example except
for the importance factor θ. Here, we vary θ in between 0.2 and 0.7. We plot ∆ in (7), ∆̄1
which is ∆̄1 = 1

n ∑n
i=1 ∆i1, and ∆̄2 which is ∆̄2 = 1

n ∑n
i=1 ∆i2 in Figure 10a. Note that ∆̄1

represents the average difference when people are infected, but have not been detected
by the health care provider, and ∆̄2 represents the average difference when people have
recovered, but the health care provider still marks them as infected. Note that when θ
is high, we assign importance to minimization of ∆̄1, i.e., the early detection of people
with infection, and when θ is low, we give importance to minimization of ∆̄2, i.e., the early
detection of people who recovered from the disease. This is why we observe in Figure 10a
that ∆̄1 decreases with θ while ∆̄2 increases with θ.

We plot the total test rates ∑n
i=1 si and ∑n

i=1 ci in Figure 10b. We observe in Figure 10b
that if it is more important to detect the infected people, i.e., if θ is high, then the health
care provider should apply higher test rates to people who are marked as healthy. In other
words, ∑n

i=1 si increases with θ. Similarly, if it is more important to detect people who
recovered from the disease, then the health care provider should apply high test rates
to people who are marked as infected. That is, ∑n

i=1 ci is high when θ is low. Therefore,
depending on the priorities of the health care provider, a suitable θ needs to be chosen.
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In the fifth numerical result, we consider the case where there are errors in the test
measurements, i.e., the model in Section 5. We take the total test rate as C = 20, and vary
error rates in the test p = q = {0.1, 0.2, 0.4}. In Figure 11a, we provide the test rates vi that
we found as a result of our greedy policy in Section 5. When the error rates p and q are
low, i.e., when p = q = 0.1, we see that the health care provider applies tests to everyone
in the population and the corresponding ∆e

i is lower than applying no test as shown in
Figure 11b. As we increase the error rates, we observe that some people in the population
start to be not tested by the health care provider, see Figure 11a when p = q = {0.2, 0.4}. In
this case, the health care provider applies more tests to the remaining people to combat the
test errors. However, although it applies more tests to the remaining people, we observe in
Figure 11b that the achieved average difference ∆e

i becomes higher as error rates increase.
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Figure 10. (a) ∆ in (7), ∆̄1 which is 1
n ∑n

i=1 ∆i1, and ∆̄2 which is 1
n ∑n

i=1 ∆i2, (b) corresponding total
test rates ∑n

i=1 si and ∑n
i=1 ci.
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Figure 11. (a) Test rates vi, (b) corresponding average difference ∆e
i when there is error in the tests.

In the sixth numerical result, we consider the case where the infection status of the
people depend on each other. In other words, when one person is infected, they can infect
the other person with rate λ12 when they are not detected by the health care provider, i.e.,
the infection model in Section 6. For this example, first, we take µ = 5, λ = 2.5, s = c = C

4
and vary λ = {2, . . . , 200} and C = {20, 40, 60}. If λ12 = 0, i.e., if the infection status of
people are independent from each other, then the average time that person 1 or 2 is sick is
equal to λ

λ+µ = 1
3 . As we increase infection rate λ12 among the person 1 and 2, we see in

Figure 12a that the average time that person 1 is sick increases. However, we note that as we
increase the total test rate, the health care provider can detect a sick person more frequently,
and this explains why the average infected time is low in Figure 12a when the test rate is
high. Then, we consider λ12 = {5, 10, 15} and vary the total test rates λ = {2, . . . , 200}. We
plot the average time that both person 1 and 2 stay as sick in Figure 12b. As we increase the
total test rate, the health care provider detects the infected person more quickly, and thus,
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prohibits the infection from spreading. As a result, we observe that the average time that
both people are infected decreases in C in Figure 12b. Since both people can be infected
with the virus independent from each other with rate λ, the plots in Figure 12b do not drop
to 0.

0 50 100 150 200

0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

(a)

0 50 100 150 200

0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.2

0.21

0.22

(b)

Figure 12. (a) The percentage of the time that person 1 stays as infected while we increase λ12, (b) the
percentage of the time that both person 1 and 2 stay as infected while we increase the total test rate C.

In the last numerical result, we consider the age of incorrect information-based error
metric in Section 7. Here, the estimation error increases with the time that the health care
provider does not detect the changes in the infection status of the people. As a result, the
average difference expression given by ∆s

i in (77) is different than ∆e
i in (45) when p = q = 0.

For this example, we consider the total test rate C = 4 and compare the normalized average

differences given by ∆s
i

∑n
i=1 ∆s

i
, and ∆e

i
∑n

i=1 ∆e
i

and the corresponding test rates wi and vi. In
Figure 13b, depending on the error metric model, people who are tested by the health care
provider show considerable variation in their test rates. For example, with the error metric
∆s

i in (77), we apply tests to every third person while the same person is not tested with the
error metric ∆e

i in (45). In Figure 13a, we provide the normalized average difference values.
Here, the average normalized error for the tested people exhibit similar values whereas the
normalized difference may vary for the untested people. Thus, we should choose a suitable
error metric that satisfies the priorities of the health care provider as it greatly affects who
is tested and with which test rates.
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Figure 13. (a) The normalized average differences ∆s
i

∑n
i=1 ∆s

i
, and ∆e

i
∑n

i=1 ∆e
i
, and (b) the corresponding test

rates wi and vi.

9. Conclusions and Discussion

We considered the timely tracking of infection status of individuals in a population.
For exponential infection and healing processes with given rates, we determined the rates
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of exponential testing processes. We considered errors on the test measurements and
observed that in order to combat the test errors, a limited portion of the population may
be tested with higher test rates. Then, we studied a dependent infection spread model
for two people, where one infected person can spread the virus to the other if it has not
been detected by the health care provider. Finally, we studied an AoII-based error metric
where the error function linearly increases over time as the changes in the infection status
have not been detected by the health care provider. We observed in numerical results that
the test rates depend on the individuals’ infection and recovery rates, the individuals’ last
known state of being healthy or infected, as well as the health care provider’s priorities of
detecting infected people versus detecting recovered people more quickly.

In the literature, in order to model epidemics, population is partitioned into groups
called compartments. One such example is the SIR model used in [106] with the compart-
ments susceptible (S), infected (I), and recovered (R) which has been further developed
by adding the states hospitalized (H), and death (D) in [107]. In these epidemic models,
the transitions between the compartments are assumed to be Markovian. In [107], with
epidemiological data, the delay distributions for the infected (I) to hospitalized (H), and
infected (I) to death (D) are well approximated by exponential and gamma distributions,
respectively. However, due to the lack of data availability the delay distribution for infected
(I) to recovered (R) is modeled with gamma distribution with higher tolerance. In our
work, we modeled infection and recovery times, i.e., the delays between recovered (R) to
infected (I) and infected (I) to recovered (R) with exponential distributions. Therefore, more
realistic infection tracking models can be developed by considering gamma distributions
as observed in [107]. This more realistic model corresponds to the problem of real-time
timely tracking of a binary Markov source in a serially connected network. The serially
connected network model was studied in [8] with the traditional age of information metric.
We note that considering the same networking model with the AoII-based error metric to
track information dissemination of a binary Markov source represents a promising research
direction and has direct applications to the real-time tracking of epidemic spread models.
One can also study the extension of dependent infection spread model in Section 6 to n > 2
people as a future research direction.

Another interesting research direction could be to consider different kinds of tests
with different false-positive and false-negative test rates. Regarding this problem, instead
of having a total test rate capacity C, we may consider a total test budget K. Assuming that
each test bears a different cost, the goal might be to identify how many tests the health care
provider should obtain from each type. Here, one can study a trade-off between applying
fewer tests with a small probability of error versus applying more tests to individuals
with a high probability of error. Moreover, one can consider a scenario where the health
care provider may prefer to apply different test types to individuals depending on their
infection and recovery rates.
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