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Abstract: Poker has been considered a challenging problem in both artificial intelligence and game
theory because poker is characterized by imperfect information and uncertainty, which are similar
to many realistic problems like auctioning, pricing, cyber security, and operations. However, it is
not clear that playing an equilibrium policy in multi-player games would be wise so far, and it is
infeasible to theoretically validate whether a policy is optimal. Therefore, designing an effective
optimal policy learning method has more realistic significance. This paper proposes an optimal
policy learning method for multi-player poker games based on Actor-Critic reinforcement learning.
Firstly, this paper builds the Actor network to make decisions with imperfect information and the
Critic network to evaluate policies with perfect information. Secondly, this paper proposes a novel
multi-player poker policy update method: asynchronous policy update algorithm (APU) and dual-
network asynchronous policy update algorithm (Dual-APU) for multi-player multi-policy scenarios
and multi-player sharing-policy scenarios, respectively. Finally, this paper takes the most popular
six-player Texas hold ‘em poker to validate the performance of the proposed optimal policy learning
method. The experiments demonstrate the policies learned by the proposed methods perform well
and gain steadily compared with the existing approaches. In sum, the policy learning methods of
imperfect information games based on Actor-Critic reinforcement learning perform well on poker and
can be transferred to other imperfect information games. Such training with perfect information and
testing with imperfect information models show an effective and explainable approach to learning an
approximately optimal policy.

Keywords: multi-agent; reinforcement learning; Actor-Critic; poker; multi-player; optimal policy

1. Introduction

Many games have been solved by artificial intelligence in the last decades, such as
checkers [1], chess [2], Go [3,4], etc. However, all these games belong to perfect information
games where all the information in the game process can be observed by players. By
contrast, it is because poker is characterized by imperfect information and uncertainty,
which are similar to many realistic problems, like auctioning, pricing, cyber security,
and operations, that poker has been considered a challenging problem in both artificial
intelligence and game theory [5].

In game theory, the optimal policy of a game refers to a policy that cannot be exploited
by an opponent. On the contrary, the best policy of a game refers to the most profitable
policy against certain opponents. The best policy exploits certain opponents by aiming at
their weaknesses and habits. A best policy against certain opponents is condemned to be
exploited by another policy, such as the best policy against itself. By contrast, the optimal
policy ensures not being exploited by an opponent, while not profiting the highest at the
same time.

Recently, limit and no-limit poker games of two players have achieved expert levels.
For example, [6] solves the heads-up limit hold ‘em first, and [7,8] solves heads-up no-limit
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Texas hold “em concurrently. These works utilize counterfactual regret minimization to
search the game tree, which requires massive computing resources for real-time solving. To
enhance the real-time response ability and the decision intelligence, [9-13] utilize reinforce-
ment learning in the simplified variant of two-player poker games. However, two-player
poker is identified as a two-player zero-sum game where one player benefits from the
other player’s loss. Theoretically, the optimal policy of a two-player zero-sum game has
been proved as the Nash equilibrium policy (or approximate e-Nash equilibrium policy in
practice). Therefore, the crucial point in solving a two-player zero-sum game is to calculate
or approximate the Nash equilibrium policy explicitly.

However, it is not clear that playing an equilibrium policy would be wise in multi-
player games so far [14]. Specifically, there may be many or even infinite equilibria in
each state of a multi-player game. On the one hand, computing every Nash equilibrium
and contrasting their performances are prohibitive for each step. On the other hand,
even though each player could compute the equilibrium efficiently, the combination of
all the players’ actions could not be an equilibrium if each player computes equilibrium
independently, such as in the Lemonade Stand Game [15]. Therefore, since it is infeasible
to prove an optimal policy theoretically, designing an effective optimal policy learning
method has more realistic significance.

Multi-agent reinforcement learning (MARL) is a technique introducing reinforcement
learning (RL) into the multi-agent system, which brings intelligence to the agents [16].
MARL achieves the cooperation or competition of agents by modeling each player as
an RL agent and setting the rewards for their actions. Multi-agent intelligence evolves
through the exploration and exploitation of RL agents. RL usually consists of value-
based methods and policy-based methods. The valued-based methods approximate value
functions with tabular charts and neural networks, typically like DON [17], Dueling-
DQON [18], and Double DQN [19]. The value-based Q-learning will explode when the
space dimension increases. The policy-based methods optimize the policy by explicitly
minimizing the gradient of the reward sum and action parameters, such as TRPO [20] and
PPO [21]. However, the policy-based algorithms are less efficient at optimizing policy due
to the policy update based on episodes. Among common RL methods, the Actor-Critic
architecture combines the policy-based Actor and the value-based Critic and shows power
for many complicated tasks [22]. Additionally, the Actor-Critic architecture is suitable to
solve imperfect information problems as the Actor network can be trained to decide with
partial observations and the Critic network, providing training aids for the Actor network,
can be trained to judge from global observations.

Based on Actor-Critic reinforcement learning, this paper proposes an optimal policy
learning method for multi-player poker games. The RL agents can learn from self-play from
scratch without any game data or expert skills. This paper will illustrate how Actor-Critic
reinforcement learning is applied to multi-player poker games and the according multi-
agent policy update methods. The main contributions of this paper are as follows: firstly,
this paper builds the Actor network to make decisions with imperfect information and the
Critic network to evaluate policies with perfect information; secondly, this paper proposes
a novel multi-player poker policy update method: APU and Dual-APU for multi-player
multi-policy scenario and multi-player sharing-policy scenario, respectively; finally, this
paper takes the most popular six-player Texas hold ‘em poker to validate the performance
of the proposed optimal policy learning method for multi-player poker games.

The structure of this paper is as follows: firstly, Section 2 introduces the current devel-
opment of poker algorithms; secondly, Section 3 introduces the modeling of multi-player
poker and the fundamentals of multi-agent reinforcement learning; thirdly, Section 4 clari-
fies the optimal policy learning method based on Actor-Critic reinforcement learning, the
network structure for poker learning tasks, and the multi-player policy update method;
next, Section 5 designs experiments to evaluate the performance of the proposed meth-
ods with existing approaches; and then, Section 6 discusses the results of the preceding
experiments; finally, Section 7 concludes this paper.
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2. Related Work

Taxes hold "em poker is one of the most popular variants of poker and has been of
concern to researchers for a long time. Counterfactual regret minimization (CFR) has
been regarded as a method for making decisions in lots of games, based on the virtual
traverse and simulation of the decision tree. CFR+, a variant of CFR, is proposed by [6]
to relieve the massive memory and computing request of CFR and reports to solve the
Heads-up limit hold "em first. The DeepStack system utilizes a deep neural network to
approximate the counterfactual value function and solves heads-up no-limit Texas hold ‘em
with continual re-solving [7]. Concurrently, the Libratus system proposes game-abstraction,
subgame-solving, and self-improver to solve heads-up no-limit poker [8]. This research
models poker games as an extensive form of the game tree, traverse all the branches of the
game tree, and iterate the policies of game. Additionally, these methods and practices all
focus on two-player poker games.

The Pluribus system claims to solve the multi-player poker problem [14]. Pluribus
utilizes Monte Carlo CFR (MCCEFR) to solve the problem of multi-player optimization: after
each round of the game, one player, chosen as a traverser, reviews all the decision nodes in
this round, extends the other choices of each node, and calculates the CFR value to optimize
the policy of this player. This method assumes each agent knows about the policy of other
agents so that they can simulate the counterfactual extended nodes. Additionally, these
CFR methods usually require seconds to search on the game tree in real-time response,
which is relatively slow.

As deep reinforcement learning solves perfect information games successively, lots of
research utilizes reinforcement learning in imperfect games such as poker. Neural fictitious
self-play, proposed by [9], combines fictitious self-play and deep reinforcement learning
to approximate Nash equilibrium in Limit Texas Hold ‘em. Joint-policy correlation archi-
tecture into Leduc Poker is proposed by [10], Ref. [11] proposes Actor-Critic architecture
for Kuhn and Leduc Poker, Ref. [12] takes Monte Carlo sampling as state evaluation of
reinforcement learning for heads-up No-Limit Texas Hold ‘em poker, and Ref. [13] utilizes
Bayes method to estimate the hand cards of opponents, tuning imperfect information to
perfect information, and solves 16-cards Rhode Island Hold ‘em poker with reinforcement
learning. The aforesaid research that utilizes reinforcement learning into poker only fo-
cuses on two-player zero-sum games, and how multi-player poker games learn an optimal
policy with reinforcement learning is still scarce until now, which is also the motivation of
our work.

3. Preliminary
3.1. Multi-Player Poker

In this section, we will introduce the fundamental concepts and common terms in
multi-player poker for modelling and analyzing. In this paper, we focus on multi-player
Texas Hold ‘em poker.

Multi-player Texas Hold ‘em poker is usually participated by 2-12 players and the
most commonly played format is six-player poker. There are 52 cards in a deck of Texas
Hold ‘em. At the beginning of a board, each player is dealt two hole cards, which only can
be seen by themselves. Meanwhile, five community cards are dealt onto the board, faced
down initially. Each board of poker designates a player as Button, and players to the left
of Button are Small Blind, Big Blind, and Under The Gun, as shown in Figure 1. Big Blind
and Small Blind are forced to wager initially, where Big Blind usually bets twice as much as
Small Blind does.

There are four rounds in a board of Taxes hold “em: Pre-flop, Flop, Turn, and River.
In the Pre-flop round, players declare their intentions from Under The Gun sequentially
in clockwise order. The declaration starts from Small Blind in the Flop, Turn, and River
rounds. The intentions of poker players usually include three types:
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Figure 1. The modelling of multi-player Taxes hold ‘em poker: the positions, hole cards, community
cards, and the policies of players.

Fold: Fold represents the player forfeiting this board out of the following rounds and
declarations. The chips already wagered into the pot will not be returned and his hole
cards are faced down without showing.

Call: Call means that the player would wager chips up to the most amount of chips
wagered by other players currently. If the player himself has already been the one who
wagered most, this intention is also called Check.

Bet: Bet means that the player would wager more chips into the pot, which will
aggrandize the most amount of chips wagered. If a player bets before and this player
chooses to bet, this intention is also called Raise.

In each round, players declare their intentions in a clockwise direction until the last bet
is called by all players unless they have folded. The flow of rounds is shown in Algorithm
Al. Apparently, such declarations result in the uncertain length of each round. Moreover,
in each new round, part of the community cards is turned over: the first three cards in Flop,
the fourth card in Turn, and the fifth card in River.

As for the rules of winning, if there is only one player who has not folded and others
all folded in any round, this player will win explicitly. If there is more than one player
remaining after four rounds, these players are confirmed as winning or losing through
Showdown. In Showdown, each player should choose five cards from seven cards, two
hole cards, and five community cards, as they draw cards. The draw cards determine
which player wins this pot, and the categories, and ranks of which are shown in Table A1.
The winning player will gain all the chips in the pot or share the pot with all winners.

In multi-player poker, we classify the information as follows. The personal information
includes the hole cards with ranks and suits. The public static information includes the
community cards, the chips each player has, and the amount of chips each player has
wagered into the pot. The public dynamic information includes all the action sequences
of all players on this board. The abovementioned three kinds of information are the
observations of reinforcement learning agents, upon which the agents base their actions.
Section 4.3 will clarify the observation modelling in detail.

3.2. Multi-Agent Decision Environment

In this paper, a multi-agent decision environment includes N agents, where i denotes
the ith agent and —i denotes other agents except i. In imperfect information games or
partial observable stochastic games, the world state w denotes the global information of the
environment. As for the agent i, its observation is O; = O;(w) and its action a; = 7;(O;)
is based on its policy 7;. Furthermore, in simultaneous games (A simultaneous game or
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static game is a game where each player chooses their action without knowledge of the
actions chosen by other players.), the new world state w’ = W(w, a) is dependent on the
original world state and the joint action a = (a3, 4y, ...,ay). However, in poker, such a
typical sequential game (A sequential game is a game where one player chooses their
action before the others choose theirs.), if it is the ith agent’s turn to decide, the new world
state w’ = W(w, a;) is dependent on the original world state and this agent’s action. Since
this paper specifically aims at multi-player poker, which belongs to sequential games, the
following paper will only discuss the methods and practice on sequential games.

The history (also called trajectory) of a game is the sequence of a multi-agent’s actions

and world states, h = (wy, ai, w}, a},w}, ..., al, wk;, a},w?,...), where a; denotes the jth

action of the agent 7, w{ denotes the world state after the agent i executes its jth action aé, and
wo denotes the initial state. Since there is no stochastic influence from the players’ actions
in poker, the history of actions h; = (wo, a%, a%, een, a}\j, u%, .. ) has the same information as
the history h. Explicitly, the history of actions /, is a datum of undefined length. We refer
to it as public dynamic information, mentioned in Section 3.1, which inspired the design of
the network structure in Section 4.2.

4. Methods
4.1. Multi-Player Poker Policy Learning via Actor-Critic RL

In this paper, the multi-agent reinforcement learning for multi-player poker policy
learning is based on one of Actor-Critic (AC) reinforcement learning architecture, and the
Deep Deterministic Policy Gradient [22]. The Actor and Critic part of multi-agents are
shown in Figure 2. On the one hand, given the world state w, the Actor part of the agent i
inputs its observation O;(w) and outputs its decision action a; = 77;(O;). On the other hand,
the Critic part of the agent i could obtain the world state (includes information of other
agents) and its action a; from its Actor part, and outputs Q;(w, a;). Q;(w, a;) represents the
evaluated value of choosing action 4; under the world state w.

Q Action Q Action
Agent 1 Agent N 1

. N 4 )

Critic Network Critic Network

i1

Actor Network Actor Network

(S J (S J
Observation Observation

World State

Figure 2. Actor-Critic reinforcement learning architecture of N agents.

The merit of such Actor-Critic architecture is that multi-agents can train with perfect
information and execute with imperfect information. In the training procedure, the Critic
part, with global information, is brought in to direct the Actor part training its policy. While,
in the executing procedure, the Actor part could take its action on the partial observations.
Therefore, the Critic provides training assists for the Actor, and after the training of the
Actor is finished, the Actor could make the decision independently. In this way, the
well-trained Actor part can output the policy under imperfect information.
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In this paper, we conduct experiments under two typical scenarios. In the stage
of multi-player poker, each player is supposed to maintain an Actor-Critic architecture.
Namely, each player makes a decision based on its own Actor part (policy), which is
directed by its own Critic part (policy evaluation), denoted as a multi-agent multi-policy
scenario. Moreover, since all the poker players, or the RL agents, have the same functions
and structures, multi-player pokers could share one set of Actor-Critic architecture for
decision. This is the multi-agent sharing-policy scenario, contrary to the above-mentioned
multi-agent multi-policy scenario.

4.2. Network Structure of Reinforcement Learning

In this section, we will clarify the architecture of multi-player poker policy learning
and the network structure of Actor-Critic, as shown in Figure 3. For the multi-player poker
task, this paper divides the observations of agents into public information and personal
information. The personal information consists of the ranks and suits of their own hole
cards. The public information involves the suits and ranks of public cards, the chips of all
the players, the chips each player has wagered (or the amount of pot), and last but not least,
the history of the players’ actions. Specifically, the history of the players” actions keeps
accumulating during the poker game and it is apparently of undefined length, which is
denoted as public dynamic information. Other public information has defined length and
is denoted as static public information.

Q
( N
Fully Connected Layers
Critic 7
Network p—-
Fully Connected Layers LSTM Layers
& J
. Lo A
Action Probability Distribution
( L B
Concat
Fully Connected Layers
Actor
Network | Concat |
Fully Connected Layers LSTM Layers
\ J
Concat
Static Public Information Dynamic Public Information
kConcat b
l |
Hole Cards of All Players Community Cards Chips of Players Chips in Pot Hole Cards of Player i History Information

Figure 3. Network structure of Actor-Critic in multi-player poker.

For the Actor network, it aims at calculating the action probability distribution, based
on the observation of the reinforcement learning agent. When the static public information
and personal information are received, which are of definite length, the Actor extracts fea-
tures with a network of full-connected layers. The Actor employs Long Short-Term Memory
(LSTM) layers to extract features from the dynamic public information, which involves
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sequential implication and of indefinite length. Then, full-connected layers synthesize the
outputs of these two feature extractions and export the action probability distribution in a
certain format.

For the Critic network, the function of the Critic part is to evaluate whether it is wise
to make this decision under the state of this agent. Therefore, the Critic network requires
all personal information of all players and public information. Similar to Actor, the Critic
network builds fully-connected layers to extract features of personal information and static
public information and LSTM layers to model the history of actions. Finally, Q;(O;, a;|w)
is outputted after the full-connected layers.

In the network training, the optimization direction of the Actor network is to maximize
Qi(w,a). However, it is prohibitive to obtain a precise Q; and the output of the Critic
network Qi(w, a), the estimation of Q;, is taken as optimization substitution. The Critic
network is to minimize the deviation between the prediction estimation Q;(w,a) and the
true value Q;(w, a). After iteratively calculating, given the reward r of this action, we have
Qi(w,a) = E[r+ Q;(w',a)]~ E[r + Q;(w',a')]. Hence, the Critic network is to minimize
loss L = [Q;(w,a) — (r+ Qi(w',a"))] ? Such optimization of Q value is the same as deep
Q-learning, where Q network and target network could stabilize optimization [23]. The
reward modeling will be introduced in the next section.

4.3. Observation and Reward Modeling

For each agent i, the information state infostate, also called an Action-Observation History
(AOH), is the sequence of its observations and actions s; = (O}7,al, O},...,0%7, a2,0%,...).
Specifically, Of ~ denotes the observation of agent i before its action j, where we have

aé = 71;( Of ). O{ denotes the observation of agent i after its action j, i.e., O{ = O(w{)
For the reinforcement learning of the agent i, the agent i obtains its observation O; "
at the world state w and chooses its action a; = 7;(O; ) according to its policy 7;. After
that, the world state transits to w; and the environment feedbacks the reward r; = R(w, a;),
based on the world state before and the action. The reward of reinforcement learning agents
affects the performance of learned agents and we set the reward function of multi-player

poker task as following;:

0 if Fold
—the chips required commiting if Call/Bet 1)

2
the pot . .
(the number of winners) lf Win

This reward function ensures that when agents wager chips, they get equal punish-
ment. A squared encouragement is given when they win the pot. This would help the
agents wager chips to participate in this board or appeal other agents to wager more,
where the final winning gain will compensate for the early investment. The whole target of
reinforcement learning agents is to obtain higher }_;_q y'rf, where -y denotes attenuation
term. If y is closer to 1, the agent is more farsighted and more nearsighted if <y is closer to 0.
In the multi-player poker task, we believe every decision is equally significant, therefore,
we take v = 1.

ri =

4.4. Experience Modeling

After each decision, reinforcement learning could accumulate the decision experience
for off-line learning. The experience of reinforcement learning agents usually includes
the original state (or observation), action, new state (or observation), reward, whether the
task is finished, etc. [22]. In multi-agent reinforcement learning for simultaneous games,
the state transits before and after the multi-agent joint action. Therefore, experience in
simultaneous games includes the state before and after the joint action, the action of one
agent or the joint action, the reward, whether they have finished or not, etc. However, in
sequential games, the state transits when each agent takes their actions sequentially. There
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is no explicit principle to choose a new state (or observation) for experience in multi-agent

sequential games. Here we show the process of multi-agent sequential games as follows.
For the action j and the action j + 1 of the agent i in a game process:

jt+1

a a]:tl i a;
Lol S @, ofttys @

(W, 0" )5 wl, o) .. W k1,

i—17

The original observation of the action a? is definitely O{ ~, with reward rf. Yet, either
Olor O] "1~ could be the new observation of its action, to some degree. On the one hand,

taking Of as the new observation of this experience means this experience observes the
state right before and after this action. In this way, the experience contains no decisions
of other agents and is kind of stable for the agent. On the other hand, the agent observes
before the moment it makes two adjacent actions and therefore the experience contains the
actions of other agents, which records the aftereffect of this action. We conclude the two
kinds of experience as:

Short experience ego; = ( Of o, ai, Of, rf) The experience is collected before and

J

after the action a -

Long experience €;y,,o = ( Of -, aé, O{H -, r{) The experience is collected before the
jth action and the (j + 1)th action.

The authors in [9] describe the experience as, quote, experience in the form of transition
tuples, (s¢, at, 1141, St+1), where s; is the state at time ¢, a; is the action chosen in that state,
7¢11 the reward received thereafter, and s; 1 the next state that the agent transitioned to.
Here this experience seems to be a short experience. Yet in the following description, quote,
the sequence of his information states and actions, s}, a}, 51-2, a}, s, sf, is more likely to be
long experience. How the experience is constructed for agents has great influence on the
performance in multi-player games. Since the early research has not pointed a definite way,
we take long experience in this paper, because the experience could be iterated, i.e., the

new observation of this piece of experience will be the original observation of the next one.

4.5. Multi-Player Poker Policy Update

In the process of multi-player policy learning, how to update the policies of multi-
agent is another crucial problem. The most explicit way is to maintain N reinforcement
learning networks for each agent, and they learn from each other in the random interaction.
However, that agents learn independently and that multi-agents choose their own opti-
mization directions will result in higher indeterminacy of other agents’ policies observed.
Therefore, each agent finds it hard to identify the best policy gradient direction, and the
whole crowd may fail to increase their intelligence. Such a problem is not notable in two-
player games, since the indeterminacy each agent observed is only from the other agent so
the indeterminacy space is explorable. However, taking the six-player Texas hold ‘em poker
as an example, the dynamic public information is informed by other agents” actions and
the state space is exponential to the number of agents and their policy types. When every
agent keeps changing its policy, therefore giving different actions in similar circumstances,
the difficulty of reinforcement learning convergence increases remarkably.

To overcome this problem, this paper proposes a multi-agent asynchronous policy
update algorithm (APU) for multi-player poker, shown in Algorithm 1. In the learning pro-
cedure of multi-agent reinforcement learning, each agent maintains and optimizes its own
policy. However, different from traditional policy optimizing parallelly, the APU chooses
one reinforcement learning agent to learn and optimize in a period (AGENT_PERIOD).
Every agent is sequentially chosen to optimize its policy. In the APU method, only one
agent is optimizing its policy once a time while others remain static, which makes the
optimizing direction of this agent more explicit.



Entropy 2022, 24, 774

90f18

Algorithm 1: Multi-Agent Asynchronous Policy Update Algorithm (APU) for Multi-player Poker

Initialize Actor-Critic network for each player
for episode < 1 to EPISODE
for button < 1t0 Npyjgyer
Play a board of Texas hold ‘em as Algorithm A1
end for
if episode mod AGENT_PERIOD ==0:
shift to another training_agent sequentially
end for
if episode mod TRAINING_PERIOD ==0:
update Actor-Critic network of training_agent
end if
end for

UGN
D 200Nk N =

—
N

On the other hand, considering the homogeneity of multi-agents in the multi-player
poker games, it is unnecessary for multi-agents to learn their policies repetitively. The
authors of [24] have shown parameter sharing among cooperative agents to improve
training efficiency. Multi-agents sharing one set of network parameters could decrease
the memory space and training cost. However, when all the agents share one policy, the
policy network may converge to a local minimum rather than the global optimal policy. In
this regard, [25] proposes fictitious self-play and proves the self-play method could reach
the Nash equilibrium in two-player zero-sum games. Inspired by this idea, this paper
proposes the dual-network multi-agent asynchronous policy update algorithm (Dual-APU)
for multi-player poker, shown in Algorithm 2.

Algorithm 2: Dual-Network Multi-Agent Asynchronous Policy Update Algorithm (Dual-APU)
for Multi-Player Poker

Initialize an online Actor-Critic network
Initialize a target Actor-Critic network
for episode < 0 to EPISODE
for button <— 1t0 Npyjgyer
Play a board of Texas hold ‘em as Algorithm A1, where player 1 acts via online
network and other players act via target network
end for
if episode mod UPDATE_PERIOD ==0:
update online Actor-Critic network to target Actor-Critic network
end for
if episode mod TRAINING_PERIOD ==0:
update online Actor-Critic network
end if
end for

[EEY
N N . N N N

—
W N

In order to avoid the sharing network converging to a local minimum, the Dual-APU
is proposed. Generally, the Dual-APU maintains two sets of policy networks: the online
network and the target network. Specifically, the online network serves a certain agent
and optimizes its policy based on the experience of this agent fighting with opponents of
the target network. The target network is called by all except one of the multi-agents to
choose actions and is not optimized by the system. After a period (UPDATE_PERIOD) of
optimization, the parameter of the online network is updated to the target network, so
that the policies of other agents are upgraded as well. Moreover, due to the homogeneity
of agents in multi-player poker tasks, the Dual-APU takes agent 1 as the one who uses
the online network to make decisions (line 5 in Dual-APU), without a loss of generality.
This training process ensures the other five agents make decisions with the updated policy
while unchanged and one agent keeps learning and optimizing their policy during the
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interactions and competitions with these opponents. Every once in a while, the newly
learned policy will update the policy of the opponents and therefore the online network
and the target network keep improving together.

5. Results

In this section, the policies of multi-player poker learned from multi-agent reinforce-
ment learning will be compared with existing policies or policies learned in different
settings. Since multi-player poker is a typical multi-agent game problem, we take six-player
Texas hold ‘em to evaluate the performances. To contrast explicitly any two policies, the
experiments in this section obey the following regulations.

(1) 1versus5 games. When contrasting the performance between two policies, one player
employs the policy to be evaluated as the experimental group and five other players
employ the other policy as the control group;

(2) Random positions. The six players are distributed to random positions at the begin-
ning of each board. On each board, every player will be designated as Button once
by turns;

(8) The mean gains of 1000 boards. The six players play 1000 boards (6000 hands) and the
mean gains are calculated. Here we calculate the small bets per hand (sb/h), where
the total number of small bets won or lost is divided by the total hands played.

In multi-player Texas hold ‘em poker, the performances or gains of policies are highly
relevant to the policies composition and the positions of players. Therefore, on the one
hand, that one player from the experimental group and six players from the control group
is an approach to evaluate the experimental policy against the other policy independently,
which avoids collusion between two players of the same policy. On the other hand, random
positions of the 1000 boards and that all the players play as Button by turn decreases
the influence of players’ positions and the positions relevant to the Button. Finally, the
influence of randomness from Texas hold ‘em poker is analyzed statistically in the mean
gains of the 1000 boards.

The experiments are deployed on the Ubuntu 18.04 (Linux version 5.4.0-58-generic),
with CPU: Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz and GPU: NVIDIA GeForce RTX
2080. The codes are implemented by Python 3.7.4 and TensorFlow 2.3.1.

5.1. Contrast with Existing Policies

In this section, we contrast the poker policy learned from multi-agent reinforcement
learning with existing policies. The existing policies are as follows:

(1) Policy based on Sklansky hand ranking

David Sklansky classified the hands of poker into different categories according to his
poker experience and the winning rate of all-in in the Pre-flop round [26]. These categories
are arranged with ranking in Table A2. With no regard for bluff, the policy tends to bet or
call if the hand is strong while it tends to call or fold if the hand is weak.

(2) Policy based on Bill Chen hand estimation

Noted Texas poker player Bill Chen provided Chen Formula to estimate the strength
of hands [27]. In this way, the estimation comprehends the suits, ranks, pairs or not, etc., to
quantify the scores of hands. Similarly, this policy tends to bet or call if the score is high.
The Bill Chen hand estimation is shown in Algorithm A2.

(3) Policy based on rules

The above-mentioned two policies are based on the hands of players, with no regard
for the coupling relationship of hole cards and community cards. Therefore, this paper
utilizes a policy based on self-made rules, according to the same rank, same suit, or straight
of hole cards and community cards to make decisions. Generally, this policy still tends to
bet if the hand strength is strong.
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(4) Policy based on Monte Carlo Tree Search

Monte Carlo Tree Search (MCTS) is a widespread game tree search method [28]. MCTS
models a game process as a game tree according to the decision sequence. When MCTS
extends a new node of the game tree, the MCTS simulates the node and its successor nodes
based on the policies of all players. Simulation demonstrates the value of this node, and
the value is updated to the preorder pathways. Additionally, the MCTS utilizes the Monte
Carlo ideology to judge the decision value of every node in the game tree, based on which
the MCTS policy can make decisions.

This section will contrast the policy learned from the APU and Dual-APU. Such
two policies are contrasted with the above-mentioned policies, respectively. The gains of
1000-board games are as Table 1.

Table 1. The contrast gains of APU and Dual-APU against the existing policies.

Sklansky Bill Chen Rule-Based MCTS
APU 4.083\—4.083 0.957\—0.957 3.265\—3.265 3.895\—3.895
Dual-APU 1.833\—1.833 0.542\ —0.542 2.167\—2.167 3.376\—3.376

Note: The X\Y in the table represents the gain of the row policy is X and the gain of the column policy is Y. The
units in the table are all sb/h (small bets per hand).

5.2. The Effect of Asynchronous Policy Update

As reported in Section 4.5, this paper proposes the asynchronous policy update meth-
ods, i.e., Dual-APU and Dual-APU, applied to the multi-player multi-policy scenario
and the multi-player sharing-policy scenario, respectively. To validate the effect of the
asynchronous policy update methods, we design the following contrast experiments.

(1) Multi-player multi-policy scenario

In the multi-player multi-policy scenario, the most explicit policy update way is that
each reinforcement learning agent maintains a policy network, accumulates its experience
into an experience set, and trains its own policy network based on its experience. Such an
independent way gets the policy denoted as APU-Ctrl, the process of which is shown in
Algorithm A3.

(2) Multi-player sharing-policy scenario

In the multi-player sharing-policy scenario, multi-agents share one policy network,
accumulate experience into the sharing experience set, and train the sharing policy network
based on the sharing experience. When it is time for an agent to act, the agent could call
the sharing policy network to make decisions. The process of the sharing policy is shown
in Algorithm A4, upon which the policy is denoted Dual-APU-Ctrl.

In this section, we take two basic learning methods (APU-Ctrl/Dual-APU-Ctrl) as the
control group and APU/Dual-APU as the experimental group to conduct contrast valida-
tion. The APU/Dual-APU are contrasted with APU-Ctrl/Dual-APU-Ctrl, respectively. The
results are shown in Table 2.

Table 2. Contrast gains of APU and Dual-APU against the control group, respectively.

APU\APU-Ctrl Dual-APU\ Dual-APU-Ctrl

Gain 0.031\—0.031 0.003\ —0.003
Note: The units in the table are all sb/h (small bets per hand).

Additionally, the APU-Ctrl and Dual-APU-Ctrl are contrasted with the existing policies
mentioned in Section 5.1. The results are shown in Table 3. In conclusion, the multi-agent re-
inforcement learning methods perform well in multi-player poker games and the proposed
asynchronous policy update methods could enhance the ability of learning policies.
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Table 3. The contrast gains of APU-Ctr]l and Dual-APU-Ctrl and the existing policies.

Sklansky Bill Chen Rule-Based MCTS
APU-Ctrl 2.275\—2.275 0.676\—0.676 2.726\—2.726 1.303\ —1.303
Dual-APU-Ctrl 1.981\—1.981 0.607\—0.607 2.882\—2.882 1.804\—1.804

Note: The X\Y in the table represents the gain of the row policy is X and the gain of the column policy is Y. The
units in the table are all sb/h (small bets per hand).

5.3. The Effect of Dynamic Public Information

In the multi-player poker policy learning method based on Actor-Critic architecture,
the network builds specific layers and structures to perceive and analyze the information
of multi-player poker. Specifically, in Section 4.2 (or Figure 3), we utilize the full-connected
layers to extract features from the information of definite length, and LSTM layers to
extract features from the dynamic public information (history of actions). To validate the
distinct processes for different input information, we design the ablation experiments to
demonstrate the effect of dynamic public information. The two benchmarks are described
as follows:

(1) None of dynamic public information (None)

Explicitly, this setting keeps the parameters of LSTM layers in the Actor and Critic
network as zero. Then the output of the dynamic public information after LSTM layers will
be a series of zeros. This will certainly shield the dynamic public information and eliminate
the effect of the dynamic public information.

(2) Full-connected (FC)

In this setting, we replace the LSTM layers in the Actor and Critic network as full-
connected layers. In this way, the network structure retains the perception and the feature
extraction ability of the dynamic public information, only to use full-connected layers
instead of LSTM. This experiment could validate the feature extraction ability of LSTM for
the dynamic public information.

This section takes these two settings into the APU and Dual-APU and contrasts the
gains to validate the effects of different network structures. The results are shown in
Tables 4 and 5.

Table 4. The gain contrast of different settings in APU.

APU-None APU-FC

APU-1 9.728\—9.728 1.251\—1.251
Note: The units in the table are all sb/h (small bets per hand).

Table 5. The gain contrast of different settings in Dual-APU.

Dual-APU-None Dual-APU-FC

Dual-APU 0.918\—0.918 0.672\ —0.672
Note: The units in the table are all sb/h (small bets per hand).

6. Discussion
6.1. RL Poker Policy Performs Well

In experiment 5.1, the proposed multi-player poker policy learned by multi-agent
reinforcement learning (the APU and Dual-APU) performs well in the games against
existing policies. Additionally, the learned policies could gain steadily against policy based
on hands (Sklansky, Bill Chen), policy based on rules, and MCTS policy. Therefore, it
is demonstrated that the policy learned by RL approximates the optimal policy in the
statistical significance.

Specifically, the multi-player poker policy learning methods based on RL aim at
learning a sufficiently approximate optimal policy of multi-player poker. The optimal
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policy denotes the policy not being exploited by facing any opponents. On the contrary,
the best policy denotes the policy profits the highest against certain opponents. Therefore,
the best policy is relevant to opponents and must counter the drawback and styles of
the opponents. Meanwhile, since the best policy can exploit certain opponents, it will
definitely be exploited by the best policy against itself. Hence, the best policy has quite
a little generalization, while the optimal policy ensures not being exploited all the time
though not profiting most in some time either.

Aiming at the optimal policy, the multi-player poker policy learning method utilizes
only self-play to train themselves. Six players’ policies or the sharing poker policy of Texas
hold "em poker are all initialized randomly and learned from scratch. The policies are
optimized gradually in the self-play poker games and finally reach the convergence of the
policy network. To validate whether the policy learned plays well when the policy network
converges, the experiments of learned policies against other policies are conducted, which
verify the multi-player poker policy by RL performs well and stably.

6.2. Multi-Agent Asynchronous Policy Update Performs Stably

In Section 5.2, we contrast the policy learned by the proposed multi-agent asyn-
chronous policy update algorithm (the APU and Dual-APU) with the policy learned by
independent optimization. The results demonstrate that the APU and Dual-APU perform
well and stably.

In the multi-player multi-policy scenario, the proposed APU has superiority over
independent optimization. This is because when multi-agent optimizes their own policy,
each agent calculates their optimization directions according to their own experience, which
results in the police vibrations of all agents. Moreover, if an agent has a poor policy, all the
other agents will keep exploiting it and cannot learn preferable policies, which will affect
the total optimization performances. However, in the APU, when each agent optimizes its
policy, the policies of other agents remain invariable, as shown in Figure 4. Then only one
agent modifies its policy against its opponents at any time. This method ensures the crowd
intelligence promoting stably.

P Loss of Multi-agent Q Loss of Multi-agent
6,000
—— P_Loss of Agent 0 —— Q_Loss of Agent 0

P_Loss of Agent 1 Q_Loss of Agent 1
P_Loss of Agent 2 5.000 1 Q_Loss of Agent 2
P_Loss of Agent 3 Q_Loss of Agent 3
P_Loss of Agent 4 4,000 + Q_Loss of Agent 4
P_Loss of Agent 5 Q_Loss of Agent 5

6x107 4

5x107 4

4x107 4 _—
3,000 A

% 3%107 a
S g 2,000
2x107 1,000 -
1x107 04
\—\l -1,000 -

0-
0 5,000 10,000 15,000 20,000 25,000 30,000 0 5,000 10,000 15,000 20,000 25000 30,000
Training Time Training Time
(a) (b)

Figure 4. The loss curves of the Actor and Critic network in the asynchronous policy update algorithm
(APU). (a) The P Loss represents the loss of the Actor network (left). (b) The Q Loss represents the
loss of Critic network (right).

In the multi-player sharing-policy scenario, the Dual-APU has more promotion than
common policy sharing. In common policy sharing, all the agents accumulate their ex-
perience into sharing set, which is used to optimize the sharing policy network. Such an
approach enlarges the available experience set, which will enhance the generalization of
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the sharing policy. On the contrary, the Dual-APU, based on the self-play ideology, main-
tains one agent optimizing its policy (online policy) while other agents make a decision
according to the previous policy (target policy), as shown in Figure 5. After a period of
time, the online policy will update to the target policy. In such an approach, the experience
for online policy training is only from one agent and this constrains the optimization
speed in part. Therefore, a slight improvement has been achieved for the multi-player
sharing-policy scenario.

P Loss of Multi-agent Q Loss of Multi-agent
5,000

—— P_Loss of Agent —— Q_Loss of Agent

8x10° 4

4,000 A
6x10° -

" 3,000 |
@
39 4x10° o 9
g
2,000 A
2x106 1
1,000
0_
0 5000 10,000 15,000 20,000 25,000 30,000
Training Time 0 5,000 10,000 15,000 20,000 25000 30,000
Training Time
(@) (b)

Figure 5. The loss curves of the Actor and Critic network in the dual-network asynchronous policy
update algorithm (Dual-APU). (a) The P Loss represents the loss of the Actor network. (b) The Q
Loss represents the loss of the Critic network.

6.3. Dynamic Public Information Is Helpful

In experiment 5.3, we validate the feature extraction effect of the LSTM layers. The re-
sults demonstrate that the LSTM structure has apparent improvements for fully-connected
structures, both in multi-player multi-policy and multi-player sharing-policy scenarios.
This proves that the LSTM network structure is more powerful at extracting features of
dynamic public information, a kind of temporal information.

Further, the LSTM and the fully-connected structure perform better than none of the
dynamic public information, which proves the crucial significance of the dynamic public
information in multi-player poker games. The dynamic public information includes the
history of all players’” actions on this board and is valuable for reference when agents act.

Based on the above-mentioned ablation experiments, we draw the conclusion that the
dynamic public information is helpful for the multi-player poker games and the LSTM network
structure has positive effects on extracting features from the dynamic public information.

6.4. Real-Time Response in Poker Games

The purpose of the multi-player poker policy method based on multi-agent reinforce-
ment learning is to generate an optimal multi-player poker policy. Therefore, the ability
of the real-time response is necessary for such a policy system. In the test procedure after
training, the proposed APU and Dual-APU are able to make decisions in 7.3 ms on average,
which is definitely a real-time level.

Compared with the rapid response in the test procedure, the APU and Dual-APU
spend computing resources on the training of multi-player poker policies. In the training
procedure, the network is trained for 20,000 episodes with each player being Button once in
each episode, and the APU consumes 12.5 h and the Dual-APU consumes 7.6 h. Generally,
such methods consume lots of computing resources to optimize the policy during the
training procedure, while the testing and calling are rapidly responded to without a large
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amount of consumption. This ideology that separates the policy learning and policy
application meet the demand of policy response in real-time.

7. Conclusions

Poker has been considered a challenging problem in both artificial intelligence and
game theory because poker is characterized by imperfect information and uncertainty,
which are similar to many realistic problems like auction, pricing, cyber security, and
operations. However, it is not clear that playing an equilibrium policy in multi-player
games would be wise so far. Since it is impossible to prove an optimal policy theoretically,
designing an effective optimal policy learning method has more realistic significance. This
paper proposes an optimal policy learning method for multi-player poker games, based on
Actor-Critic reinforcement learning. The reinforcement learning of multi-agents leads the
policy evolution procedure to self-play from scratch without any game data or expert skills.

This paper proposes an optimal policy learning method for multi-player poker games,
based on Actor-Critic architecture. Firstly, this paper builds the Actor network to make
decisions with imperfect information and the Critic network to evaluate policies with
perfect information, where the Actor-Critic architecture trains with perfect information and
executes with imperfect information. Secondly, this paper designs network structures for
Actor-Critic reinforcement learning, the full-connected layers, and LSTM layers to extract
features from observations of definite length and the history of actions, respectively. Finally,
this paper proposes the multi-player poker policy update methods: asynchronous policy
update algorithm (APU) and dual-network asynchronous policy update algorithm (Dual-
APU) for multi-player multi-policy scenarios and multi-player sharing-policy scenarios.
These multi-agent policy update methods solve the problem of mutual interference in
independent optimizations.

This paper takes the most popular six-player Texas hold ‘em poker to validate the
performance of the proposed optimal policy learning method for multi-player games. The
experiments demonstrate the policies learned by the proposed methods perform well and
gain steadily with the policy based on hand strength, the policy based on rules, and the
MCTS policy. The contrasting experiments validate that the proposed APU and Dual-
APU have more stable training procedures and better performance than independent
optimizations. Further, the ablation experiments show that the network structure designed
for Actor-Critic is effective. Finally, the multi-player poker policy learned by multi-agent
reinforcement learning can respond in real-time.

Last but not least, the policy learning methods of imperfect information games based
on Actor-Critic reinforcement learning can be transferred to other imperfect information
games more than poker. Such training with perfect information and testing with an im-
perfect information model shows an effective and explainable approach to learning an
approximately optimal policy. Meanwhile, the current work cannot exploit certain oppo-
nents with specific playing styles and improve the profit against an acquainted opponent.
This will also be our future work in the next stage.
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Appendix A

Algorithm A1: Texas Hold "Em Process

1 Choose a player as Button

2 for round in ["Pre-Flop’, ‘Flop’, ‘Turn’, ‘River’]
3 if round="Pre-Flop’

4 head < button+3

5 else

6 head < button+1

7 end if

8 tail < head+Npjqyer-1

9 while head<=tail

10 player < head mod Npqyer
11 if player has folded

12 head < head+1

13 continue

14 end if

15 player chooses his action
16 if action is BET

17 tail < head+Npjqyer-1
18 end if

19 head < head+1

20 end while

16 end for

Table Al. Hand-ranking categories of Texas hold ‘em poker.

Hand-Ranking Categories Example

Straight flush QV ¥ (¥ ¥ 3@

Four of a kind 9% 94 9¢ 99 J@

Full house 3 34 3¢ 6% 6
Flush K& 10 7 66 4

Straight 7% 60 54 49 39

Three of a kind 2020 2& Kb 69

Two pair 49 46 Kb 104 56

One pair 6469 QWA 2&
High card QW 104676 54 2V

Table A2. The hand range categories by David Sklansky.

Hand Range Category
Very high(3%) AA-J] and AK
Tight(5%) AA-99 and AK-AQ
Average(10%) AA-77, AK-AT, and KQ
Loose(25%) AA-22, AK-A5 Any two cards T or higher(e.g., QT), and k9s-T9s
Very loose(50%) AA-22, AK-A2, Any cards 7 or higher(e.g., T7), K6-K4, and K3s-K2s
Any two(100%) Everything

Algorithm A2: Chen Formula for Hand Rankings

Based on the highest card, assign points as follows:

1 Ace =10 points, K = 8 points, Q = 7 points, ] = 6 points. 10 through 2, half of face value
(10 = 5 points, 9 = 4.5 points, etc.)
2 For pairs, multiply the points by 2 (AA =20, KK = 16, etc.), with a minimum of 5 points

for any pair. 55 is given an extra point (i.e., 6).
Add 2 points for suited cards.
Subtract 1 point for 1 gappers (AQ, J9)
4 2 points for 2 gappers (J8, A]).
4 points for 3 gappers (J7, 73).
5 points for larger gappers, including A2 A3 A4
5 Add an extra point if connected or 1-gap and your highest card is lower than Q
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Algorithm A3: APU-Ctrl: Independent Policy Update Algorithm

Initialize Actor-Critic network for each player
for episode < 1 to EPISODE
for button < 1t0 Nyjgye
Play a board of Texas hold ‘em as Algorithm A1
end for
if episode mod TRAINING_PERIOD ==0:
update Actor-Critic network of all agents
end if
end for

OO UITH= WIN -

Algorithm A4: Dual-APU-Ctrl: Sharing Policy Algorithm

Initialize an online Actor-Critic network
Initialize a target Actor-Critic network
for episode < 0 to EPISODE
for button < 1to Npiayer
Play a board of Texas hold ‘em as Algorithm A1, where all players act via sharing
network
end for
if episode mod TRAINING_PERIOD ==0:
update sharing Actor-Critic network
end if
end for
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