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Abstract: We describe a model system—a thermodynamic state machine network—comprising a
network of probabilistic, stateful automata that equilibrate according to Boltzmann statistics, ex-
change codes over unweighted bi-directional edges, update a state transition memory to learn
transitions between network ground states, and minimize an action associated with fluctuation trajec-
tories. The model is grounded in four postulates concerning self-organizing, open thermodynamic
systems—transport-driven self-organization, scale-integration, input-functionalization, and active
equilibration. After sufficient exposure to periodically changing inputs, a diffusive-to-mechanistic
phase transition emerges in the network dynamics. The evolved networks show spatial and temporal
structures that look much like spiking neural networks, although no such structures were incorpo-
rated into the model. Our main contribution is the articulation of the postulates, the development of
a thermodynamically motivated methodology addressing them, and the resulting phase transition.
As with other machine learning methods, the model is limited by its scalability, generality, and tem-
porality. We use limitations to motivate the development of thermodynamic computers—engineered,
thermodynamically self-organizing systems—and comment on efforts to realize them in the context
of this work. We offer a different philosophical perspective, thermodynamicalism, addressing the
limitations of the model and machine learning in general.

Keywords: thermodynamic computing; thermodynamicalism; machine learning; scale integration;
input functionalization; active equilibration

1. Introduction

The remarkable progress in machine learning systems over the past decade has led to
an equally remarkable increase in the computational resources required to train them. One
recent report indicates that the number of computing resources used to train state-of-the-
art, large scale models has doubled every 3.4 months since 2012, as compared to a more
traditional 2-year doubling rate prior to 2012 [1]. Such trends suggest the consideration
of fundamentally new approaches to machine learning. We have previously outlined the
vision for such an approach, thermodynamic computing [2–4], which is motivated by the
hypothesis that the ubiquitous self-organization of the natural world is fundamentally
thermodynamic [5,6], and that this capacity can be incorporated into computing hardware.
In this work, we further articulate this hypothesis as four postulates concerning self-
organizing, open thermodynamic systems, and build a model system—the thermodynamic
state machine network (TSMN)—reflecting these postulates.

The TSMN is a machine learning model comprising a network of probabilistic, state-
ful automata that equilibrate according to Boltzmann statistics, exchange codes over un-
weighted bi-directional edges, update a state transition memory to learn transitions between
network ground states, and minimize an action associated with fluctuation trajectories.
The dynamics of the TSMN are governed by particle-like excitations whose motion is
easily visualized as videos. Unlike neural network-based machine learning models, which
learn long-term memory in weighted edges connecting nodes, the TSMN learns long-term
memory in state transition memories at each node. After sufficient exposure to periodically
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changing inputs, a diffusive-to-mechanistic phase transition emerges in the network dynam-
ics, and the evolved networks show spatial and temporal structures that look like a spiking
neural network, although no such structures were incorporated into the model. Before the
phase transition, the dynamics of the TSMN are diffusive, difficult to compute, and difficult
to describe using an algorithm; after the transition, the dynamics are mechanistic, easy to
compute, and easy to describe using an algorithm. Like other machine learning models,
the TSMN is limited in its ability to generalize, scale, and represent temporal processes.
We use these limitations as motivation for the development of thermodynamic computers.
We also discuss several published experimental efforts that address these motivations and
compare them to the postulates used to develop the TSMN.

The TSMN is inspired by theories of open thermodynamic systems. The non-equilibrium
fluctuation theorems of Jarzynski [7], and Crooks [8] and Still’s “thermodynamics of predic-
tion” [9], are the conceptual framework for the equilibration (Section 2.3) and adaptation
(Section 2.5) methodologies of the TSMN. Ideas on “active inference” [10] influenced the
inferencing methodology (Section 2.6), ideas on “dissipative adaptation” [11] influenced the
adaptation methodology (Section 2.5), and ideas on “causal entropic forces” [12] influenced
the state update methodology (Section 2.4). The TSMN is also inspired by other thermody-
namically grounded model systems, such as Ising models [13], Hopfield networks [14], and
Boltzmann machines [15], but is distinguished from them by the details of its composition
(e.g., code-transport, divergence-less node states, unweighted edges, and state transition
memory) and learning methodology. Like Ising models and related neural network models,
the TSMN is a distributed collection of autonomous nodes that collectively self-organize
through local interactions, but the TSMN is different from these models in that it has a
large degeneracy of stable ground states separated by particle-like excitations. The ground
state degeneracy means that there is more than one “solution” to any “problem” posed
by external inputs, and that the network is generally not frustrated. Other influences on
this work include “physical reservoir computers” [16] and related model systems such
as “liquid state machines” [17] and “echo state networks” [18]. The TSMN shares with
these approaches the goal of learning and predicting time-varying inputs, but the TSMN
integrates this ability in a single, recurrent, adaptive architecture. A machine-learning
method called “equilibrium propagation” [19] employs similar ideas as the TSMN but uses
different methodologies and addresses neural network models. The TSMN also builds
upon ideas and methods from our earlier work on a “thermodynamic neural network”
model [20].

Our contributions in this article include (1) an articulation of postulates concerning
the self-organization of complex, open, thermodynamic systems, (2) a new network model
and machine learning methodology for state machines addressing these postulates, (3) a
demonstration of a phase change in the dynamics of the TSMN when exposed to periodic
inputs, and (4) a consideration of classical and thermodynamic computing in the context
of the TSMN and its limitations. We hope as well that this work serves as a pedagogical
example of the emergence of computation from a thermodynamic, evolutionary process.

The paper is organized as follows. In Methods (Section 2) we summarize the model
approach, describe the Postulates (Section 2.1) that motivated its development, detail the
model equilibration and adaptation methodologies (Sections 2.2–2.6), and describe the Vi-
sualization (Section 2.7) of the model dynamics. In Results (Section 3) we show and analyze
the dynamics of networks without (Section 3.1) and with (Section 3.2) state transition mem-
ory. In Discussion (Section 4) we discuss the limitations of the model (Section 4.1) and use
these limitations to motivate Thermodynamic Computing (Section 4.2) and to compare re-
lated experimental efforts, offer an interpretation of Classical Computing (Section 4.3), and
speculate on a different philosophical perspective called Thermodynamicalism (Section 4.4).
As an appendix, we offer a conceptual circuit model for the TSMN (Appendix A: TSMN
Circuit Model).
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2. Methods

The TSMN is a bi-directional, unweighted network of probabilistic, stateful automata.
Figure 1 illustrates the basic network structure. We call cij the edge code sent from node i to
node j. The collection of edge codes from node i define its output yi, while the collection of
edge codes to node i define its input vi. cij “interacts” with edge code cji sent from node j
to node i along the same i↔ j edge, such that edges with complementary codes have low
energy and edges with like codes have high energy. The TSMN can be thought of a kind
of “Ising model” in which the interaction of the nodes is motivated by the transportation
of codes (or “charges”) through them. To effectively “move” these codes, the node must
configure its output to avoid a “build up” of like codes on its edges. Although more
complex networks are possible, here we consider only 2-dimensional, 4-nearest-neighbor
networks and binary edge codes cij ∈ {0, 1} because the dynamics are easy to visualize.
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Figure 1. Network structure, edge codes, node outputs and inputs. Nodes i and j exchange codes cij and
cji. The output yi/input vi of node i is the vector of its output/input edge codes. In sampling the
network evolution, the network is bi-partitioned in a checker-board pattern (salmon and blue nodes).
The inputs of one partition are the outputs of the other partition.

This section is organized as follows. Postulates (Section 2.1) explains the assumptions
behind the methods described in this section. A Node Interaction Model (Section 2.2) in-
cludes internal nodes, which conserve and transport edge codes, and external nodes, which
represent inputs from environmental potentials and act as sources and sinks of edge codes
to which the network must respond. An edge code interaction energy is defined such that
network configurations that more effectively transport edge codes have lower energy. In
simulation, the network is repeatedly sampled using a Large-Spatial-Scale, Short-Timescale
Equilibration Algorithm (Section 2.3). The node interaction model is then augmented
with a State Transition Memory (Section 2.4), which is accessed using a state-indexing
method, and incrementally updated with every network ground state transition using a
Small-Spatial-Scale, Long-Timescale Adaptation Algorithm (Section 2.5) that minimizes
the free energy of the network. A method for Inference of Dormant Inputs/Generation of
Outputs (Section 2.6) is also described. Methods for visualizing the dynamics implied by
Sections 2.2–2.6 are described in Visualization (Section 2.7).

2.1. Postulates

We have previously integrated the thermodynamic concepts of conservation, potentia-
tion, fluctuation, dissipation, and equilibration to create a thermodynamic neural network
model [20]. In this section we articulate the result of this integration as a set of postulates
concerning self-organizing, complex, open thermodynamic systems (see Figure 2). We will
use these postulates to motivate the detailed methodologies of the following sections.
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Figure 2. Illustration of postulates. An open thermodynamic system (red) equilibrates with an environ-
ment (blue) that provides a source of potential (upper left) and a reservoir of small-fast excitations,
or “heat bath” (lower right). The open system comprises the ability to equilibrate rapidly at a large
scale (upper right) and to adapt slowly at a small scale (lower left), integrated by a learning process.
To maintain homeostasis, conserved quantities (e.g., energy) taken from the environment by the open
system must be returned to it, which drives the learning process and integrates scales. If the open
system has functionalized input potentials from the environment, then it may also interact with the
environment by doing work on it to “retrieve” missing input potentials. The ability to do work on
the environment implies that the open system stores energy, and that its equilibration is active.

Scale-integration—The integrity of an open system depends on its ability to rapidly
change its internal, small-scale organization to address the external, large-scale changes of
the potentials in its environment. We call this alignment of large- and small-scale features
scale-integration, and the process of creating it is referred to as learning. In natural systems
(e.g., organisms), we suppose that scale-integration is a natural consequence of multi-scale
equilibration between an open system and its environment. In the TSMN, however, scale
integration is created using a two-piece equilibration algorithm—one piece providing
large-spatial-scale, short-timescale equilibration with an environment (Section 2.3), and
another piece providing small-spatial-scale, long-time scale internal parameter adaptation
(Section 2.5) that facilitates future equilibration. A familiar example of such two-piece
methodology is a forward-pass through an artificial neural network providing the large-
spatial-scale, short-timescale equilibration (measured as output “errors”) with a training
data set, and a backward-pass providing the small-spatial-scale, large-timescale internal
adaptation (typically as “weight updates”) to reduce future output/equilibration errors.

Transport-Driven Self-Organization—Any open system in homeostasis with its en-
vironment must return to the environment any conserved quantity that is taken from it.
Imbalances in the distribution of conserved quantities in the environment create thermo-
dynamic potentials (free energy) that can drive their transport through the open system,
thereby relieving those potentials and creating entropy in the environment. Sustained en-
tropy creation favors the evolution of organization within the open system that facilitates the
transport of these conserved quantities, while also stabilizing the associated organization.

Input Functionalization—If an open thermodynamic system evolves stable internal
organizations that efficiently transport conserved quantities in response to external input
potentials, then we say that the system has “functionalized” its inputs. Input functional-
ization enables the open system to “infer” or “predict” the existence of potentials that are
missing in the current context but were present during the learning process. For example, a
naïve artificial neural network is first trained on stimuli-label pairs (the input potentials
before functionalization) to develop its internal organization, such that the trained network
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can subsequently infer labels (the missing input potentials after functionalization) from
stimuli (the input potentials available after functionalization). In some cases, the missing,
inferred potentials are realized as “outputs” that prompt the environment to provide ad-
ditional inputs. A recursive exchange of such inputs and outputs is frequently called an
“interaction”. For example, an artificial neural network may be used to provide product
recommendations in response to a query by an online shopper. The recommendation
may prompt the shopper to provide additional input that may be used to provide a new
recommendation, and to improve training of the recommending system.

Active Equilibration—The capacity of an open system to interact with an environment
after it has functionalized its inputs requires that it store energy internally, i.e., that the
outputs supplied to its environment are themselves an aggregation of conserved quantities
constituting a thermodynamic potential to which the environment must respond. Similarly,
the ability of an open system to proactively change its internal organization in response to
changes in the potentials in its environment requires that it store energy. We call this ability
to store and use energy to interact with the environment to maintain homeostasis and to
proactively change internal organization active equilibration.

2.2. Node Interaction Model

To implement the idea of transport driven self-organization, internal nodes are re-
stricted to have “non-divergent” outputs: i.e., yi are restricted to having equivalent numbers
of 0 s and 1 s. Of the 24 = 16 possible outputs for a node with binary edge codes and
connections to four nearest neighbors, only 6 outputs satisfy this constraint. In particular,
any internal node output yi must be drawn from the set γi, where

γi = {[1, 1, 0, 0], [1, 0, 1, 0], [1, 0, 0, 1], [0, 0, 1, 1], [0, 1, 0, 1], [0, 1, 1, 0]}, yi ∈ γi. (1)

We note that the assumption of unweighted, unsigned edges, and the requirement of non-
divergent node outputs in the TSMN, excludes the use of binary node states commonly
found in Ising and neural network models.

External nodes source and sink codes to the network and are defined as having
maximal divergence. The corresponding output set is

γext
i = {[0, 0, 0, 0], [1, 1, 1, 1]}, yext

i ∈ γext
i . (2)

In the examples that follow, we constrain the use of external nodes such that their aggregate
output is non-divergent. Hence, for every external node with output [0, 0, 0, 0], there is a
complementary external node with output [1, 1, 1, 1].

We define an edge interaction energy matrix Kij as

Kij =
(

δcij ,cji − 1
)
= −δcij ,cji , (3)

where δ is the Kronecker delta function and cji is the complementary code to cji. By this
definition, the edge interaction energy is low (Kij = −1) when the edge codes are different,
and high (Kij = 0) when the edge codes are identical. We call edges with identical codes
edge-excitations. The energy Hi of node i is the sum over the energy of its edges.

Hi = ∑
j∈inn

Kij, (4)

where inn is the set of indices to the nearest neighbors of node i. A node achieves its lowest
energy configuration when its output edge codes complement its input edge codes on every
edge, cinn ,i = ci,inn , a condition that can be met only if its inputs also have no divergence
(i.e., vi ∈ γi). The energy ε of the network is the sum over the internal node energies,

ε =
n

∑
i=1

Hi, (5)
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where n is the number of internal nodes. A ground state of the network is obtained when
the codes are complemented on every edge, a non-trivial requirement given the constraints
of γi. Given the non-divergence of the internal nodes and maximal divergence of the
external nodes, low-energy network states can be thought of as “transporting” codes
between complementary external nodes. We note that the network ground states are highly
degenerate, which we will show to be an important feature in the network’s ability to
respond to inputs from external nodes and to learn a state transition memory. From the
perspective of automata theory, an internal node “accepts” inputs from its connected nodes
when those inputs allow a node ground state, and the network as a whole “accepts” inputs
from its external nodes when those inputs allow a network ground state. In Section 2.5 we
shall use these acceptance criteria as the keys to drive learning within the network, and in
Section 4.3 to discuss connections to classical computing.

2.3. Large-Spatial-Scale, Short-Timescale, Equilibration Algorithm

The probability P(y) of a particular network output state y = (y1, y2 . . . yn) is assumed
to be governed by a Boltzmann distribution at inverse temperature β and with partition
function Z as

P(y) = 1
Z ·exp(−βε(y)) = 1

Z ·∏
i

exp(−βHi(yi))

Z = ∑
y∈γ

exp(−βε(y)) = ∑
y∈γ

∏
i

exp(−βHi(yi)) = ∏
i

∑
yi∈γi

exp(−βHi(yi)),
(6)

where γ = (γ1, γ2 . . . γn) is the set of all possible node outputs. We employ a Markov Chain
Monte Carlo (MCMC)/Gibbs Sampling [21] algorithm that repeatedly samples Equation (6)
to generate the large-spatial-scale, short-timescale dynamics of the TSMN. The algorithm
partitions the nodes into two groups in a checkerboard pattern according to their placement
in the 2D network, such that the inputs to the nodes in one partition are the outputs from
the nodes in the opposite partition (Figure 1). We sample the two network partitions
alternately by holding the node outputs in one partition fixed, while sampling the node
outputs of the other partition. In this way, each node output can be sampled independently
using Equation (7).

P(yi|vi) =
1
Zi

exp(−βHi(yi|vi))

Zi = ∑
yi∈γi

exp(−βHi(yi|vi))
(7)

We refer to the evolution of the network as we repeatedly sample the partitions as its
“equilibration dynamics”. In the videos of the equilibration dynamics in Section 3, each
frame in the video represents the update of the nodes in one partition.

2.4. State Transition Memory

We augment the node interaction energy Hi of each internal node with a state transition
energy Ti and a weighting parameter σ, such that the total energy Ei of node i becomes

Ei(yi|vi, si) = Hi(yi|vi)− σ·Ti(yi|si). (8)

where si is an index specifying the node state, which we define as a temporal sequence or
“stack” of the last d outputs of node i at a network ground state. If we label the node output
associated with the most recent network ground state as ỹ1

i , the next most recent as ỹ2
i ,

etc., then
si =

[
ỹ1

i , ỹ2
i . . . ỹd

i

]
. (9)

We refer to d as the “depth” of the state-index. Every time the network reaches a new
ground state, each node updates its state-index by pushing its current output onto the
top of the stack and popping the oldest value off the bottom the stack. Hence, state-index
updates at each node are synchronized across the network because they only occur at
network (not node) ground states. Network dynamics between network ground states can
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be thought of as fluctuations, which explore the network output space but do not affect the
state of the network. The node output distribution of Equation (7) used by the MCMC
algorithm is modified as

P(yi|vi, si) =
1
Zi

exp(−βEi(yi|vi, si))

Zi = ∑
yi∈γi

exp(−βEi(yi|vi, si)),
(10)

We note that Ei comprises a component Hi, which is fundamentally spatial, and a compo-
nent Ti, which is fundamentally temporal. The addition of Ti also confers upon the TSMN
a “state-energy landscape”: the idea that a change in state modifies the energy landscape
and that a change in the energy landscape modifies the state in an iterative process that
breaks time-reversal symmetry.

2.5. Small-Spatial-Scale, Long-Timescale, Adaptation Algorithm

To construct the small-spatial-scale, long-timescale adaptation algorithm, we extend
the single-step (i.e., short-timescale) network energy ε of Equation (5) into multi-step (i.e.,
long-timescale) network action A as,

A
(

y0 → ym
)
=

ym

∑
y=y0

ε(y), (11)

which is the sum of the network energies over a sequence of network updates where
y0 → ym ≡

[
y0, y1 . . . ym] indicates a particular m-step trajectory between network outputs

y0 and ym. We weight the probability of these trajectories using a Boltzmann distribution as

P
(
y0 → ym) = 1

Z ·exp
(
−βA

(
y0 → ym))

Z = ∑
u∈{y0:ym}

exp(−βA(u)), (12)

where
{

y0 : ym} indicates the set of trajectories of any length beginning with y0 and
terminating with ym. Given any two endpoints and comparable ε at each step in the
trajectory, shorter trajectories will have smaller action and higher probability than longer
trajectories. The natural endpoints to consider for these trajectories are the network ground
states, as these are the points where the network drives the evolution to converge and
where automata theory indicates that the network has “accepted” its inputs (Section 2.2).
As is elucidated in Section 2.1, the small-spatial-scale, long-timescale adaptation of an
open system should facilitate its large-spatial-scale, short-timescale equilibration with its
environment. In the TSMN model we realize this by updating the state transition memory Ti
to facilitate transitions between network ground states that favor smaller action trajectories.

With these ideas in mind, at each network ground state and before the update of the
node state-indices, the memory elements Ti are updated as

Ti(γi|si)← Ti(γi|si)·(1− α·P(γi|ṽi, si)) (13)

Ti(γi|si)← Ti(γi|si) + α·P(γi|ṽi, si), (14)

where 0 < α < 1 is a learning rate parameter, ṽi is the node input at network ground state
(i.e., the complement of ỹi), and γi indicates that the update is over the set of all possible
node outputs. Note that the updates are at a small-spatial-scale because they are different
for each node i. The physical motivation for Equation (14) derives from the observation
that the negative gradient of the node free energy Fi = − log Zi with respect to Ti(yi|si) is
(see Equation (10))

−∂Fi
∂Ti(yi|si)

=
∂ log(Zi)

∂Ti(yi|si)
∼ P(yi|vi, si). (15)
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The update rule for the state transition memory Ti is therefore a regularized (Equation (13))
gradient descent (Equation (14)) of the free energy of the node over the state transition
memory elements conditioned on the current state and input, implemented whenever
a network ground state is obtained. Regularization bounds Ti such that for repeated
application of Equations (13) and (14) for the same ṽi and si, which we might expect if the
network experiences periodic inputs, Ti(ỹi|si)→ 1 and Ti(yi 6= ỹi|si)→ 0 , where ỹi is the
output of node i at the next network ground state given the current state si. Additionally, to
promote short trajectory dynamics, whenever a node receives an edge excitation, the state
transition memory of its last output is decayed as,

Ti(yi|si)← Ti(yi|si)·(1− α·P(yi|vi, si)), (16)

which prevents edge excitations from becoming “stuck” and the long trajectories associated
with these local minima. Equation (16) can be thought of as a “metabolic” cost that decays
internal organization linked to less-efficient behaviors.

Referring again to the postulates of Section 2.1, Equations (13), (14), and (16) are the
large-timescale, small-spatial-scale adaptation algorithm for the TSMN, and Equation (10)
and the MCMC algorithm are the short-timescale, large-spatial-scale equilibration algo-
rithm. Scale-integration results from the application of Equations (13) and (14) whenever
the MCMC algorithm finds a network ground state. Additionally, because the state transi-
tion memory updates happen before the state-index updates at each network ground state,
the energy of the network generally increases immediately after the state-index update,
reflecting the idea of active equilibration. The effect of this active equilibration is to bias the
network away from its current ground state and toward its next ground state.

2.6. Inference of Dormant Inputs/Generation of Outputs

Internal nodes infer missing or dormant inputs from connected external nodes using
a slight modification of the above methodology. We divide the input vector vi into two
components, vi →

(
va

i , vd
i

)
, where va

i and vd
i refer to the active and dormant components

of the input to node i. We modify Equation (10) as

P
(

yi, vd
i

∣∣∣va
i , si

)
= 1

Zi
exp
(
−βEi

(
yi, vd

i

∣∣∣va
i , si

))
Zi = ∑

yi ,vd
i

exp
(
−βEi

(
yi, vd

i

∣∣∣va
i , si

))
,

(17)

and infer both yi and vd
i by sampling Equation (17) over yi ∈ γi and vd

i ∈ {0, 1} for each
component of vd

i . By selection of its output yi, node i creates an output to the dormant exter-
nal nodes which can change the state of those external nodes and the larger environment of
which they are a part. After a network has learned to functionalize inputs (see Section 2.1),
these outputs can predict dormant inputs and be seen as functions of other, active inputs
(see Section 3.2).

2.7. Visualization

Figure 3 illustrates three different ways to visualize the network, which we will employ
in the videos of Section 3. Using a 3 × 3 array of nodes, the left-hand image shows the edge
codes associated with a particular configuration of node outputs, the central image colors
each node according to its output (red, green, blue, cyan, magenta, and yellow), and the
right image illustrates edge-excitations among the nodes. Edge-excitations—0-0 or 1-1 code
pairs—are illustrated by coloring the nodes attached to the edge in light magenta or light
green, respectively. As will become apparent in the videos that follow, the equilibration
dynamics of the network are most easily understood as the diffusion, annihilation, and
creation of edge-excitations. Figure 4 illustrates this annihilation and creation processes by
showing the underlying changes in the edge codes for an example excitation pair.
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of the lower left node output drives the creation of a pair of excited edges, which diffuse away from 

the site of their creation via the opposite sequence of node output changes. 

Figure 3. Three different network visualizations. On the left, an array of nine internal nodes with edge
codes illustrated as 1 s and 0 s. In the center, each of the 6 node outputs is associated with a different
color: red (not shown), green, blue, cyan, magenta, and yellow. On the right, edge-excitations are
visualized by coloring the nodes associated with the edge; 0-0 edges are colored light magenta, and
1-1 edges are colored light green.
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Figure 4. Pair annihilation/creation dynamics. From left to right, complementary excited edges
collide and annihilate via a sequence of node output changes. From right to left, a thermal excitation
of the lower left node output drives the creation of a pair of excited edges, which diffuse away from
the site of their creation via the opposite sequence of node output changes.

As illustrated in Figure 5, the edge excitation dynamics of naïve networks (i.e., net-
works without state transition memory) are diffusive because the energies associated with
node outputs are degenerate: a node with one edge excitation has three equally probable,
lowest-energy outputs. Repeated sampling of the network with the MCMC algorithm
randomly transfers edge excitations among adjacent nodes. By comparison, nodes re-
ceiving non-divergent inputs have a single, lowest-energy output, which makes network
ground states stable at low temperatures. To make these same points differently, edge
excitations represent an energy barrier separating network ground states. Updates to Ti
(Equations (13) and (14)) lift the energy degeneracy in Figure 5 and drive the network from
diffusive to mechanistic dynamics (see Section 3.2). Decay of Ti (Equation (16)) tends to
restore the degeneracy.
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Figure 5. Excited node output degeneracy and edge excitation diffusion in naïve networks. The
central node receives divergent inputs (three 1 s and one 0) and must select among three lowest-energy
outputs of the same energy illustrated in three separate images. Supposing that the image on the left
is the initial configuration, a sampling of the central node, resulting in the configuration of either the
central or the right image, means that the edge excitation that was previously associated with the
lower central node has “hopped” to another node. In this way, edge excitations diffuse randomly
through the network with repeated MCMC sampling of the checkerboard partitions (Figure 1).
State transition memory learning lifts this energy degeneracy (Section 2.5), making the dynamics
more mechanistic.

3. Results

We employ the methods of Section 2 to simulate the equilibration dynamics of the
TSMN, which we illustrate as a series of videos. We begin with simulations of naïve
networks to illustrate diffusive dynamics and the effect of temperature (Section 3.1). These
dynamics are characterized by low-energy excitations on a highly degenerate ground
state with qualitative resemblance to the “quasiparticles” of Fermi liquid theory. We then
simulate networks of increasing complexity that learn a state transition memory as they
are exposed to external inputs that are changing periodically in time (Section 3.2). In
these networks, a phase transition from diffusive to mechanistic dynamics emerges, after
which the inputs are functionalized, the network is scale-integrated, and the equilibration
dynamics are active. We show that the TSMN resembles a self-constructed “neural network”
after this phase transition.

3.1. Networks without Memory

Video 1 presents the equilibration dynamics of a naïve network comprising 400 (20 × 20)
internal nodes and periodic boundary conditions. Node outputs are randomized at the start
of the simulation and each time the network finds a ground state. Two visualizations—a
node output view and an edge-excitation view (see Section 2.7)—of the equilibration dy-
namics are shown side-by-side. The edge-excitation view of the network shows 1-1 and 0-0
edge excitations (created by the node output randomization at the beginning of each cycle)
diffusing, colliding, and annihilating each other. The node output view reveals a patchwork
of evolving domains. Although only briefly displayed (a single frame before the network is
randomized), the ground states in Video 1 are stable because the simulation temperature is
low. Note that the network naturally evolves to find a ground state, which motivated the
choice of ground states as the terminating points in the fluctuations considered in Equation
(12) and, thereby, the network adaptations of Equations (13) and (14). Video 2 shows the
same network as Video 1 at a higher temperature. As in Video 1, edge excitation pairs
spontaneously annihilate as they diffuse and collide within the network, but, unlike in
Video 1, they also spontaneously emerge from thermal excitations. Hence, there are no
long-lived ground states, and equilibrium is achieved when the annihilation and creation
rates are equal.
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Video 1. Closed-system equilibration at a low temperature. A naïve network of 400 internal nodes
with periodic boundary conditions and inverse temperature β = 16. The node outputs are random-
ized initially and each time the network reaches a ground state. On the left-hand side, complementary
edge excitations, created when the network is randomized, annihilate as the network evolves toward
a ground state. On the right-hand side, the node outputs organize into local domains that change as
the network evolves toward a ground state. This simulation shows the evolution to 4 different ground
states, each having the same energy. Video S1 and at https://youtu.be/bqn0qdvo4Kc (uploaded
5 October 2021).
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Video 2. Closed-system equilibration at a high temperature. A naïve network of 400 randomly
initialized internal nodes with periodic boundary conditions and inverse temperature β = 4.5. On
the left-hand side, complementary edge excitations are both annihilated by collisions and created
by thermal excitations. On the right-hand side, the local node output domains continuously evolve.
Unlike in Video 1, thermal excitations prevent the formation of stable ground states. Video S2 and at
https://youtu.be/cpt4Yi_3hEE (uploaded 5 October 2021).

For the remainder of this article, we consider only networks in which the temperature
is low enough to inhibit thermal pair creation, which is needed to connect the TSMN to
classical computing (Section 4.3). Classical computers operate in a domain where thermal
fluctuations are avoided and system states are stable unless intentionally perturbed; hence,
their temperature is also low.

https://youtu.be/bqn0qdvo4Kc
https://youtu.be/cpt4Yi_3hEE
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Video 3 illustrates the evolution a network like that of Video 1, except that the network
contains 2 pairs of randomly placed, complementary external nodes. Each time the network
finds a ground state, the “polarity” of the external nodes is inverted (0→ 1 and 1→ 0)
and the network evolves to find another ground state. The effect of external nodes on
the larger network can be thought of in three complementary ways: (1) as constraints
that the network must satisfy, (2) as sources and sinks of codes that the network must
transport, or (3) as sources of edge excitations that the network must annihilate. Given the
large degeneracy of ground states, there are many ways that the network may configure in
response to the external inputs to achieve a low energy state. If only a few ground states
existed, then the likelihood of escaping local minima to find a low energy configuration
would be very small—a problem that is common in some neural network and Ising models.
We emphasize that the dynamics of , , and are entirely diffusive and the equilibration times
are correspondingly long because there is no state transition memory and no learning to
break the node output energy degeneracy of Figure 5.
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Video 3. Open-system equilibration with periodic external inputs. A naïve network of 396 internal
nodes and 2 pairs of randomly placed, complementary external nodes with periodic boundary
conditions and inverse temperature β = 16. External nodes are labeled as 0 or 1 to indicate their
polarity. Each time the network reaches a ground state the polarity of the external nodes is reversed.
A total of four different ground states are found in this simulation. Ground states are stable because
the temperature is low. Video S3 and at https://youtu.be/SQLzvfKfLgs (uploaded 5 October 2021).

3.2. Networks with Memory

Video 4 repeats the simulation of Video 3 but includes learning of the state transition
memory. The initialization of the state transition memory is unbiased, Ti(yi|si) = 0 for all i,
yi, and si, so the network begins in a naïve state. As in Video 3, in the early stages of the
simulation the equilibration dynamics are slow and diffusive, but, as the state transition
memory is learned, a phase transition emerges, and the equilibration dynamics become fast
and mechanistic. To state this another way, the trajectories between network ground state
equilibrations change from being random and long to being regular and short. Additionally,
before the phase transition, the network dynamics cannot be described as a function, but
after the phase transition the network dynamics can be described by a function—namely,
as a network of (nearly) deterministic state machines.

https://youtu.be/SQLzvfKfLgs
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Video 4. Open system with periodic external inputs, illustrating a dynamical phase transition. A
network of 396 internal nodes and 2 pairs of complementary external nodes with periodic boundary
conditions, β = 16, and state transition learning with state depth d = 1. External nodes are labeled
as 0 or 1 to indicate their polarity. Each time the network reaches a ground state the polarity of the
external nodes is reversed. In the first segment of the video, the first two ground state equilibrations
of the network are shown, and the dynamics are diffusive and slow. In the second segment of the
video, after a gap of 300 additional ground state equilibrations (indicated as gray-colored frames
in the video) in which the state transition memory is learned, the dynamics between ground states
become fast and mechanistic. The central panel displays simulation parameters including the number
of simulation steps (“steps”), the number of ground state equilibrations (“equil”), the average number
of node states realized (“states”), the transition memory weighting parameter σ (“gain”), and the
learning rate α (“rate”). Video S4 and at https://youtu.be/7H0AdQ1PxsY (uploaded 5 October 2021).

Figure 6 shows the evolution of the average node energy and the number of ground
state equilibrations vs. simulation step for the network of Video 4. The rapid changes in
the node energy and equilibration rate around step 1500 indicate a phase transition from
diffusive to mechanistic dynamics. In this simple system, the phase transition emerges after
approximately eight equilibrations. A spike in the energy occurs after each ground state
equilibration, due both to an influx of new edge excitations from the external nodes and
to changes in the internal network state. At each new network ground state, an updated
state-index si addresses a new memory element Ti, which biases each node output toward
its output at the next network ground state, and which generally increases the energy of
the current node output (see Section 2.5). The size of these energy spikes increases as the
network learns (because Ti increases) but the overall network energy decreases at the same
time. In other words, the effect of Ti is to place the nodes in a metastable configuration
after each ground state transition that facilitates the next ground state transition while also
reducing the energy of the overall system. This storage and release of energy to equilibrate
with an environment corresponds to the active equilibration postulate of Section 2.1.

After the phase transition from diffusive to mechanistic dynamics, the TSMN displays
input functionalization (see Section 2.1), which we can illustrate by turning off inputs from
the external nodes in the network, and allowing the internal nodes connected to these
dormant external nodes to infer the missing inputs (Section 2.6). In Video 5, we explore
the effects of dormant external nodes and the weighting parameter σ on the same type of
network as in Video 4. As is evident in Video 5, the TSMN has functionalized its inputs
after the phase transition because it can infer missing inputs from dormant external nodes
and provide edge excitations as outputs to the dormant external nodes. The size of σ affects
the detailed dynamics significantly by specifying the degree to which the dynamics are

https://youtu.be/7H0AdQ1PxsY


Entropy 2022, 24, 744 14 of 25

internally generated by the state transition memory (i.e., Ti) versus externally stimulated
by the active inputs and communicated by the internal node interactions (i.e., Hi).

Video 6 shows the evolution of a network including 12 external nodes that change
polarity with 3 different periods, and a corresponding state depth d = 3 is assumed for
the state transition memory. Figure 7 captures network statics corresponding to Video 6.
Because the size of the state transition memory scales as a power law with exponent d, the
network of Video 6 undergoes a much larger number of ground state equilibrations before
undergoing a phase transition, as compared to Video 4 (compare Figures 6 and 7). As in
Video 5, various configurations of external node dormancy and state transition memory
weighting are explored to illustrate input functionalization. We note that some stochasticity
in the network dynamics remains even after the phase transition and that this stochasticity
increases as the number of dormant inputs increases. The complexity of the network
dynamics in Video 6 when all the external nodes are made dormant and σ = 1 suggests
a kind of “dreaming” or “thinking” about what has been experienced in the past—an
imperfect, somewhat stochastic version of that past. When the state transition memory
weighting is increased to σ = 2, the network displays rapid, mechanistic dynamics that
are independent of external node inputs, suggesting the ability to “think ahead” of the
dynamics that initially produced it.
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Video 5. Open system with periodic external inputs, illustrating a dynamical phase transition and
input functionalization. A network of 396 internal nodes and 2 pairs of complementary external
nodes with periodic boundary conditions, β = 16, and state transition learning with state depth
d = 1. External nodes are labeled as 0 or 1 to indicate their polarity. Each time the network reaches a
ground state the polarity of the external nodes is reversed. The first two ground state equilibrations
are shown, and the network dynamics are diffusive and slow. After a gap of 400 ground state
equilibrations, the equilibration dynamics are fast and mechanistic with σ = 1 (denoted as “gain”
in the central panel). From steps 5663–5960, two external nodes are made dormant—denoted by
the “X” labels—and the dynamics remain similar. From steps 5961–6441, σ = 0.5 and the dynamics
become feedforward propagation of edge excitations from active to dormant external nodes. From
steps 6442–6552, σ = 2 and the internal nodes spontaneously create edge excitation pairs that rapidly
annihilate with other pairs. From step 6553, all external nodes become dormant and the network
“makes its own dynamics” for σ = 1 and σ = 2. Video S5 and at https://youtu.be/T9tnIn-enFk
(uploaded 5 October 2021).
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Video 6. Open system with multi-periodic external inputs, illustrating a dynamical phase transition
and input functionalization. A network of 388 internal nodes and 3 groups of 2 pairs of comple-
mentary external nodes with β = 16 and d = 3. External nodes are labeled as 0 or 1 to indicate
their polarity. Each external node group changes polarity with a different period of ground state
equilibrations—the three external node groups are distinguished by the color (red, blue, green) of the
text indicating the polarity of the node. Each time the network reaches a ground state the polarities of
the external nodes are updated according to their period. The first two ground state equilibrations are
shown, and the network dynamics are diffusive and slow. After a gap of 3000 ground state equilibra-
tions (gray frames), the equilibration dynamics are fast and mechanistic. From steps 203545–203793
the network dynamics are visualized with σ = 1 (denoted as “gain” in the central panel). From
steps 203794–204092, six external nodes are made dormant (two per group)—denoted by the “X”
labels—and the dynamics remain similar. From steps 204093–204471, all 12 external nodes are made
dormant, and the network maintains similar dynamics, but with substantially greater stochasticity
in the trajectories of the particles. From steps 204093–204605, the transition memory weighting is
increased to σ = 2, and six external nodes are made dormant. The network spontaneously generates
internal excitation pairs that rapidly annihilate to attain ground states. From step 204606 forward, all
external nodes become dormant and the network effectively “makes its own dynamics”. Video S6
and at https://youtu.be/TypFJ5NQJZM (uploaded 5 October 2021).

Video 7 is an edge-excitation view of a somewhat larger network after the phase
transition, in which static nodes are colored gray to emphasize the structure of the network.
Interestingly, the spatial structure of the evolved network looks like a neural network in
which external nodes are connected by axon/dendrite-like channels communicating via
spike-like edge excitations. There is even the suggestion of “integration” of these spikes
before a neuron “fire”. When the external nodes are made dormant, the network dynamics
are more stochastic, but the underlying spatial organization remains. We note that the
ground state degeneracy and stochasticity inherent in the evolution of the TSMN means
that Video 7 illustrates one among many “phenotypes” that might have emerged.

https://youtu.be/TypFJ5NQJZM
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Figure 6. Network statistics for Video 4 illustrating a phase transition. Average node energy (left) and
number of ground state equilibrations (right) versus simulation step. A phase transition emerges
after approximately 1500 simulation steps and 8 ground state equilibrations, marking the transition
from diffusive to mechanistic dynamics. The emergence of the state transition memory is illustrated
in the reduction in energy as the simulation progresses. A spike in the energy occurs after each
ground state equilibration, owing to the introduction of new edge excitations from the external nodes
and to the change in the state transition memory. These energy spikes are dissipated as the edge
excitations propagate through the network and annihilate each other.
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Figure 7. Network statistics of Video 6, illustrating a phase transition. Average node energy (left) and
number of ground state equilibrations (right) versus simulation step. A phase transition emerges after
approximately 150,000 simulation steps and 300 ground state equilibrations, marking the transition
from diffusive to mechanistic dynamics. Each spike in the network energy corresponds to the
introduction of new edge excitations by the external nodes, and a change in the state transition
memory of the internal nodes after a ground state is achieved. The emergence of the state transition
memory is illustrated by the reduction in the overall network energy and an increase in energy spikes
as the simulation progresses. Although state transition memory decay (Equation (16)) is ongoing
throughout the simulation, a relatively long period without ground state equilibrations around step
130,000, where the network energy is increasing, highlights this decay and the escape from a local
minimum. The large change in energy at the end of the simulation is generated by a change in the
weighting of the state transition memory from σ = 1 to σ = 2.
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Video 7. Open system with multi-periodic external inputs, illustrating neural network structure
after a dynamical phase transition. A network of 892 internal nodes and 2 groups of 2 pairs of
complementary external nodes with β = 16 and d = 2. External nodes are labeled as 0 or 1 to indicate
their polarity. Each external node group changes polarity with a different period of ground state
equilibrations—the two external node groups are distinguished by the color (red, blue) of the text,
indicating the polarity of the node. Each time the network reaches a ground state, the polarities
of the external nodes are updated according to their period. After a gap of roughly 100 ground
state equilibrations (gray frames) in which the state transition memory is learned, the equilibration
dynamics are fast and mechanistic. Internal nodes that maintain fixed outputs are colored gray to
emphasize the underlying spatial structure of the evolved network. From steps 273,211–273,695
the external nodes are active and from 273,696–274,650 the external nodes are dormant. External
nodes resemble neurons connected by axon/dendrite-like channels communicating spike-like edge
excitations. Video S7 and at https://youtu.be/IGEdvnJM4oA (uploaded 31 October 2021).

4. Discussion

In this section, we discuss the limitations of the TSMN (Section 4.1), speculate on a
new approach—thermodynamic computing—to address these limitations (Section 4.2),
offer an interpretation of classical computing considering the ideas presented herein
(Section 4.3), and comment on an alternative philosophical perspective, thermodynamical-
ism (Section 4.4), addressing the concepts of the earlier sections.

4.1. Limitations of the TSMN

Generality—The TSMN has been carefully constructed such that the equilibration and
adaptation algorithms of the network model are computable (see Sections 2.3 and 2.5). In
particular, the ability to sample the node outputs independently (Equations (7) and (10)) is
critical. We emphasize that these algorithms, while motivated by generic thermodynamic
considerations, are in no way general—they work specifically for the purposes of the
TSMN. In this respect, the TSMN is just one among many machine learning methods,
each employing specialized algorithms of equilibration and adaptation (or, equivalently,
optimization and learning) directed toward a particular task. On the other hand, the
equilibration and adaptation of natural systems are seemingly not constrained by their
“computability” in the same way.

Scalability—In general, the number of possible network configurations in the TSMN
grows exponentially with the number of nodes, connections, edge codes, and state depth.
For example, even in the 400-node networks shown above, the total number of possible

https://youtu.be/IGEdvnJM4oA
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network outputs (6400 ∼= 10311) is staggering. The effect of this very large configuration
space on the computability of the TSMN is different, however, depending on whether a
phase transition in the dynamics has emerged. Before the diffusive-to-mechanistic phase
transition, the computational burden is large because the diffusive search for network
ground states must, in principle, address the entire configuration space, and because the
recursive structure of the TSMN makes the search non-deterministic. Powerful machine
learning models often avoid such difficulties by eliminating recursion in the network [22],
but computing resources needed to train state-of-the-art machine learning systems are still
doubling every 3.4 months according to a recent report [1]. We suspect that success in
finding the ground states in the examples above hinges on the relatively short diffusion dis-
tances in these small networks and the availability of many ground states ((3/2)400 ∼= 1070).
After the phase transition, however, the network dynamics become mechanistic, and the
combinatorics of the configuration space are largely irrelevant. In essence, the learning
process finds and memorizes an efficient short-cut through the large combinatorial space
(possible because the inputs driving it are periodic and predictable). In summary, the
equilibration algorithm of the TSMN scales poorly in the learning phase, but scales well
in the mechanistic phase. The same can be said of other machine learning models and
computing in general.

Temporality—The dynamics of the TSMN between ground state equilibrations are
nearly (Equation (16)) reversible fluctuations (Equation (10)) that do not affect the state of
the network. Irreversibility in the TSMN is introduced via the updates to the state indices
(Equation (9)) and learning of the state transition memory (Equations (13) and (14)) after
all edge-excitations are annihilated and a network ground state is obtained. After the
phase transition, this irreversibility manifests as mechanistic dynamics. Hence, the TSMN
connects energy dissipation to irreversibility to the emergence of mechanistic dynamics.
Additionally, the same equilibration algorithm drives both the diffusive and the mechanistic
dynamics in the TSMN—there is no need to invoke separate dynamical principles a priori.
Hence, the TSMN makes a clear connection between thermodynamics and temporality,
but, unlike natural systems, the TSMN model is still a collection of specialized methods
contrived to work well on a computer.

4.2. Thermodynamic Computing

Thermodynamic Computers (TCs) are technological systems built to address the
limitations of Section 4.1. With others, we have previously described the motivation and
vision for TCs [2–4]. The key hypothesis is that natural, multi-scale, thermodynamic self-
organization can be an integral part of computing system hardware. In this section, we
further suppose that TCs will address the postulates that motivated the TSMN (Section 2.1)
and comment on the published efforts that have a bearing on these hypotheses (summarized
in Table 1).

In a remarkably prescient but also very difficult exposition, Pask [23] describes most
of the core concepts of a thermodynamic computer with experiments on the evolution
of wires in ferrous sulfate solutions in response to external electrical potentials. Pask is
concerned with the evolution of structures in physical systems and their correspondence
to the evolution of concepts through “thinking”. He proposes several requirements for
such systems, including continuous state change, conservation of transported quantities
(charge), dynamic equilibrium with an environment, organizational degeneracy, extended
excited states, thermodynamic openness, component plasticity, decay of structure, and
non-mechanistic behavior. In describing resistor networks with a negative temperature
coefficient of resistance, he also anticipates some of the functionality of the resistive memory
elements described in the examples below.

Jun & Hübler [24] have shown collections of several hundred small steel balls in a dish
of castor oil, organizing in response to an electric field between the center and the periphery
of the dish. From various initial placements, when the electric field is applied, the balls
move to form branching networks. When one of these branches succeeds in creating a
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strong electrical connection between the electrodes, a phase transition in the ball dynamics
is observed. Comparing this to the idea of two-component scale-integration (Section 2.1),
the movement and organization of the balls plays the role of the small-spatial-scale, large-
timescale adaptation, and the electron transport through these balls plays the role of the
large-spatial-scale, short-timescale equilibration. The two are naturally integrated by the
charges that collect on and are transported through the steel balls, which organize the
collection of bearings as the system “learns”, resulting in a phase transition.

Table 1. Comparison of Thermodynamic Computing-related works.

Natural
Equilibration

Transport Driven
Self Organization

Input
Functionalization Scale Integration Active Dynamics

Ferrous sulphate
electrochemistry
(e.g., Pask 1958)

Yes Yes Yes Yes No

Steel bearing
electromigration
(e.g., Jun 2015)

Yes Yes Yes Yes No

FPGA evolution
(e.g., Thompson

1996)
No Maybe Yes Yes Yes

Atomic Switch
Networks (e.g.,

Sillin 2013)
Yes Yes Yes Yes No

Ising Machines
(see text) Yes, in some cases No No No Yes

Memcomputing
Machines (e.g.,
Traversa 2017)

Yes, in principle Maybe No Yes Yes

Chemical
Protocells (e.g.,

Pearce 2021)
Yes Partially Yes Yes Yes

Machine Learning
(e.g., TSMN

model)
No Yes Yes Yes Yes

Thompson [25] demonstrate on an FPGA the evolution of a circuit that discriminates
between two input frequencies (“tones”), which are much lower than the characteristic
frequency of communication within the FPGA. Using an external computer to evaluate a
fitness function over the FPGA output, and a genetic algorithm to sample FPGA configura-
tions creating this output, the system evolves the ability to effectively discriminate between
the tones using the underlying physics of the FPGA substrate. The method employs two
timescales of evolution—the rapid dynamics of the entire FPGA and the slower, local adap-
tation of the genetic algorithm. Additionally, the system can functionalize its inputs and
generate outputs corresponding to dormant inputs on which it was trained. Remarkably,
the evolved “solution” employs physics that is entirely outside the design domain of the
FPGA when used in a conventional sense.

Sillin [26] models a complex network of Ag nanowires with Ag2S junctions (“atomic
switch networks”) electrically biased by external electrodes in contact with a subset of
the nanowires. These models, which correspond well with experimental results, show
complex network dynamics driven by the coupling between electron conduction through
the network and Ag+ ion mobility within the Ag2S junctions. State-dependent memory
effects captured within the Ag2S junctions are also evident. In related work, some of
these same authors show memory and scale integration [27] as well as dynamical phase
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transitions [28] in networks of Ag nanowires with polymer junctions between nanowires.
Others show similar effects in networks of conducting nanoparticles near a percolation
threshold [29,30]. In the language of the TSMN, low-energy configurations in the atomic
switch networks are those that find strong conducting pathways through the network that
connects the external electrodes [31]. The finding of such pathways creates a large flow of
energy through the network, some portion of which changes the state of the Ag2S junctions.
Although these networks have been modeled for use as reservoir computers in temporal
prediction tasks [32,33], they have not been shown to directly infer or predict a missing
input. Perhaps a missing element within these systems as compared to the TSMN model is
the ability to access or store energy internally and, thereby, to create the active dynamics
needed to functionalize inputs. Another noteworthy effort [34] illustrates engineered,
multiscale adaptation in networks of diffusion dominated (“neurons”) and drift dominated
(“synapses”) memristive devices.

In other examples employing the physics of the computing substrate to accomplish
a task, an engineer defines a problem by encoding certain parameters (e.g., weights or
couplings) into (real or simulated) hardware, and the equilibration dynamics of the hard-
ware solve the problem by finding a low energy configuration. Often, the problems are
posed as an NP combinatorial problem, such as k-SAT, max-cut, or knapsack, which can
be mapped to an Ising model [35]. Examples include Ising machines realized in CMOS
annealers [36–38], coupled oscillator networks [39–41], noisy memristor crossbars [42], and
quantum annealers [43]. While emphasizing the use of probabilistic magnetic bits (“p-bits”)
as key enabling elements, [44–47] it is possible to extend these ideas to applications of
invertible logic and integer factorization in probabilistic analog hardware, digital hardware,
and simulation. Lee [48] explores more complex magnetic systems, which they call “mag-
netic thermodynamic cores”. The key task for all these Ising/Boltzmann Machines is to
rapidly equilibrate toward the ground state of an Ising model given a network of coupling
coefficients corresponding to a problem of interest. All these examples suffer from chal-
lenges with escaping local minima, device non-uniformity, and scaling to large networks.
Among these approaches, we note the “device/circuit-level” approaches where the physics
is relatively transparent, low-level hardware “computational” approaches where it is ob-
scured, and simulations where it is entirely modeled. Hence, these Ising machines illustrate
the tradeoffs associated with computation-based approaches, physics-based approaches,
and the messy area between them. While all these efforts share motivation with the TSMN,
they do not address the postulates of scale integration and input functionalization.

Traversa and Di Ventra [49] demonstrate the ability to evolve solutions to NP combina-
torial problems with polynomial resources using a network of “self-organizing logic gates”
called a “digital memcomputing machine.” Like the examples in the previous paragraph,
the problem to be solved is encoded by an engineer into the topology of a network, which
the authors describe as the “information overhead” of the network. These self-organizing
logic gates do not distinguish between inputs and outputs in the traditional sense; as
networks of these gates interact, conflicts between logical assertions at each gate terminal
are resolved, and an equilibrium state emerges that represents the solution to the problem
encoded in the network topology. These same authors [50] describe the function of these
networks in terms of dynamical systems theory, stress the intrinsic parallelism that it af-
fords, and interpret its ability to solve NP problems using polynomial resources in terms
of instantons that rapidly descend a hierarchy of critical points. Di Ventra et al. [51] gen-
eralize these ideas with a theory of topological symmetry breaking in dynamical systems.
The authors argue that digital mem-computing machines can be realized in hardware as
well as simulated as dynamical systems on a classical computing platform. The digital
mem-computing machine approach addresses the same problem sets as in the previous
paragraph and, like them, does not address all the postulates listed above. However, the
mem-computing approach details important concepts that are necessary for the realization
of a thermodynamic computer, including input-output equivalence, collective dynamics in
classical systems, spatial non-locality stored in local memory adaptation, the role of con-
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servation (Kirchhoff’s) laws, the emergence of instanton dynamics, the role of engineered
information overhead in defining a problem, and the need for intrinsic parallelism.

Given the central role of thermodynamics, chemical systems are a natural focus for
the development of thermodynamic computing systems and concepts. Turing [52] perhaps
anticipated this possibility in his work on pattern formation from homogeneous chemical
systems. More recently, Dueñas-Díez and Pérez-Mercader [53] have shown that chemical
systems can recognize words within context-sensitive languages, where the symbols in the
language correspond to the introduction of aliquots into a simple, one-pot reactor. With
this example, it is possible to consider any chemical reaction as a kind of thermodynamic
state machine, with reactants playing the role of the self-organizing node interactions
and catalysts playing the role of a state transition memory facilitating the approach to
equilibrium. If the massive “parallelism” afforded by an Avogadro’s number of reactants
can be configured into interacting “cells”, each with a much smaller number of molecules,
large networks of thermodynamic automata not unlike the TSMN might be achieved.
Researchers from this same group [54] have recently demonstrated important steps in this
direction in more complex photochemical systems, in which cell-like vesicles—“chemical
protocells”—spontaneously assemble, collapse, move, and interact with each other while
carrying internal chemistry unique to their history. The various evolutionary processes in
these systems naturally integrate scales and sample diverse configurations. The authors
are motivated to understand the origins of life, but the connections to computing systems
that organize themselves thermodynamically are a natural extension.

The approaches summarized above suggest that TCs can be constructed from hy-
brids of diverse electronic, electro-ionic, electro-mechanical, chemical, and electrochemical
components. The integration of their diverse spatial and temporal scales also suggests an
ability to create complex, evolving, self-organizing, technological systems such as the TCs
envisioned here.

4.3. Classical Computing

Every classical computer is realized on a physical substrate (e.g., semiconductor chip)
in which the transitions between states are driven by a changing energy landscape. With
each clock cycle, a classical computer equilibrates to a new ground state (typically referred
to as the computer’s “state”), which, like the TSMN, can be associated with the acceptance
of a “word” in the “language” of the computer. Like the TSMN, a classical computer has a
very large number of ground states, transitions between them are driven by the transport of
a conserved quantity (electric charge, typically), many different configurations can achieve
the same input–output function, and the dynamics are active. Unlike the TSMN, however,
the fluctuation dynamics in a classical computer are ignored: only the sequences of ground
state transitions of a classical computer are considered as its dynamics. Additionally, for
a classical computer, scale-integration is the result of painstaking hardware and software
engineering that effectively links enormous numbers of (very small) transistors to create
an output for rapid consumption by a (very large) human. Typically, this scale-integration
is facilitated via a hierarchy of abstraction, or “stack”, corresponding to various scales in
the integration process. In other words, scale-integration in a classical computer resides
within the evolutionary capacity of engineers working across many scales. With this in
mind, we can draw further correspondence between the TSMN model and a classical
computing system that includes its engineers. In particular, the phase transition in the
TSMN dynamics corresponds to engineers obtaining a desired input/output function
after an evolutionary, engineering process in which the design inputs are functionalized.
In summary, classical computing works because engineers are available to perform the
evolution required to integrate scales and functionalize inputs. Pablo Picasso was once
quoted as saying “computers are useless. They can only give you answers” [55]. In the
context argued here, we speculate that Picasso was commenting on the incompleteness of
computers—namely, their inability to perform the evolutionary processes needed to solve
problems or create works of art.
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4.4. Thermodynamicalism

We speculate here on a different philosophical perspective that summarizes the dis-
cussion of Sections 4.1–4.3 and builds upon the postulates of Section 2.1. We call this
perspective Thermodynamicalism and distinguish it from the perspective known as Computa-
tionalism, which dominates computing, engineering, and science today.

Thermodynamicalism is the philosophy that open thermodynamic systems equilibrating
with external potentials will self-organize into functional systems that are computable after
they have organized, but that the equilibrating, self-organizing process itself, which we call
thermodynamic evolution, is not computable in general.

By self-organization, we mean a dynamic process in which a system can store energy,
act upon its environment, and change its internal organization, such that equilibration with
external potentials is more efficient and entropy production in the environment is sustained,
even as the environment changes. By functional systems, we mean systems linking inputs
and outputs with some internal degrees of freedom that can be described by an algorithm
or mathematical function. By computable, we mean that the dynamics of the system can
be simulated using pragmatic computing resources. The qualifier in general allows that
certain model systems—e.g., the TSMN—have highly specialized, computable models
of their evolution, while stipulating that the evolution of real physical systems of any
meaningful scale is not computable. Stated differently, thermodynamicalism says variously
that there is no general equilibration algorithm, no general algorithm for the second
law of thermodynamics, or no general algorithm for evolution. These statements reflect
the limitations of the TSMN (Section 4.1), motivate the development of thermodynamic
computing (Section 4.2), and explain the incompleteness of classical computing (Section 4.3).
In a nutshell, thermodynamicalism supposes that algorithms, which are the unexplained
foundation of computationalism, are the artifacts of a thermodynamic, evolutionary process
that is not computable in general.

5. Conclusions

Employing four postulates concerning open thermodynamic systems—transport
driven self-organization, scale integration, input functionalization, and active
equilibration—we have elaborated a new methodology for a new network- and machine-
learning model, the Thermodynamic State Machine Network. The TSMN is a network of
probabilistic automata, exchanging conserved codes over unweighted bi-directional edges,
equilibrating according to Boltzmann statistics, and is characterized by a large degeneracy
of ground states separated by particle-like excitations. The TSMN includes a state transi-
tion memory that learns to minimize the action of fluctuation pathways between network
ground states. When exposed to periodic external inputs, the TSMN undergoes a phase
transition from diffusive to mechanistic dynamics. After the phase transition, the TSMN
can infer or predict missing inputs, and spontaneously generate internal dynamics repre-
sentative of inputs it has functionalized. Additionally, the dynamics of the TSMN resemble
those of spiking neural networks, although no such structures were incorporated into the
initial model. We consider the postulates used to construct the TSMN in the context of
thermodynamic computing systems and compare similarly motivated experimental efforts
in the literature. We suggest that thermodynamic computing can address the fundamental
limitations of the TSMN, other machine learning approaches, and classical computing in
general. Given prior art, we can see no fundamental reason that thermodynamic computing
systems cannot be developed. We offer speculation on a different philosophical perspective,
thermodynamicalism, to address the challenges of computationalism.
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Appendix A. TSMN Circuit Model

Figure A1 is a conceptual circuit for an implementation of a TSMN, showing a network,
node, and state transition memory. Each node is an array of four inverters, where each
inverter input is the sum of inputs from the three other inverters in the node, from the
inverter of a connected node, and from a state transition memory. The idea is to create
a competition among the inverters to satisfy the requirements of non-divergence, com-
plementary edge codes, and bias learned through prior state transitions. We note that
Figure A1 is not a computational substrate for the mathematical expressions above, rather,
it is a circuit that captures the physical ideas that motivated the TSMN. Although Figure A1
illustrates typical CMOS inverters, stochastic inverters, such as those employing magnetic
tunnel junctions [47], may be a better choice to achieve the diffusive behavior of the edge
excitations shown in Figure 5.
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