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Abstract: A new fixed-time adaptive neural network control strategy is designed for pure-feedback
non-affine nonlinear systems with state constraints according to the feedback signal of the error
system. Based on the adaptive backstepping technology, the Lyapunov function is designed for
each subsystem. The neural network is used to identify the unknown parameters of the system
in a fixed-time, and the designed control strategy makes the output signal of the system track the
expected signal in a fixed-time. Through the stability analysis, it is proved that the tracking error
converges in a fixed-time, and the design of the upper bound of the setting time of the error system
only needs to modify the parameters and adaptive law of the controlled system controller, which
does not depend on the initial conditions.

Keywords: adaptive control; neural network control; nonlinear constraint systems; non-affine nonlinear
systems; pure feedback

1. Introduction

In recent years, great breakthroughs have been made in the research of adaptive
trajectory tracking control for uncertain nonlinear systems [1–3]. When solving such
problems, neural network technology has become the key technology [4–6]. Combining
neural network technology with backstepping control and adaptive control, the results
have been widely used in different types of nonlinear systems such as strict feedback
and pure feedback [7–9]. With the development of increasing power integrators, great
progress has been made in the research of non-affine nonlinear systems. In recent years,
the problems studied include output feedback stability, state output constraints, etc. Many
methods have been introduced to solve these problems, such as backstepping technology,
adaptive technology, and neural network control [10–12]. For nonlinear systems with time
delays, the authors of reference [13] designed the control strategy by combining adaptive
neural network and backstepping technology, and then the neural network technology
based on adaptive backstepping was developed and applied [14–16].

With the development of society, the accuracy requirements of industrial control
systems for convergence time are increasing. For example, in antimissile control systems,
aircraft attitude control systems, and robot control systems, the purpose of controller
design is to realize the stability of the controlled system and maintain stability in finite
time (for example, in antimissile control systems, there is no need for control after missile
explosion). For nonlinear systems with uncertainties, researchers have combined fixed-
time controls with adaptive neural network technology to produce many excellent control
schemes [17–19].

Researchers combine neural networks with adaptive control for online identification
of complex nonlinear objects. In the design of these control systems, neural networks are
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generally used to approximate the uncertain nonlinear terms of the system, and neural
networks are effective in compact sets [20–22]. In recent years, some fixed-time control
methods based on the neural networks have been developed [23–25]. The author of
reference [26] studies the control method of unknown nonlinear systems based on free
model control. Based on Lyapunov functional and analysis technology, combined with
advanced control algorithms, sufficient conditions for the master–slave memristor systems
to realize timing synchronization are established. The authors of reference [27] extended
the method to time-varying delay discontinuous fuzzy inertial neural network fixed-time
synchronous control.

Although the research on fixed-time adaptive neural network control has produced
a series of research results, there are still many problems to be solved in the existing
control strategies, such as system constraints. In reference [28–30], the control problem of
constrained nonlinear systems is discussed. For the control problem of systems with state
constraints, the difficulty of constraints can be solved by using the boundary Lyapunov
function. However, for the control problem of constrained non-affine nonlinear systems,
the control strategies in the above literature cannot be used directly, and the research results
based on fixed-time control are relatively few.

In summary, when there are state constraints in non-affine nonlinear systems, how to
combine the adaptive neural network control and backstepping control to design effective
control strategies so that the system can achieve the expected performance in fixed time,
with the setting time not depending on the initial state of the system, is a problem. To
solve this problem, some control problems have not been solved, such as for pure-feedback
non-affine nonlinear systems, how to combine the backstepping method with Lyapunov
function theory to design a fixed-time adaptive neural network tracking control strategy, so
that the system output can track the desired signal and maintain fixed-time stability, the
control performance can be guaranteed without initial conditions, and all state variables
are bounded to a fixed region.

This article consists of the following parts. In Section 2, a constrained nonlinear system
mathematical description of the problem is presented. In Section 3, firstly, the novel fixed-
time stability theorem for constrained nonlinear systems is proposed, secondly, the adaptive
neural network fixed-time tracking control scheme for constrained nonlinear systems is
presented. In Section 4, the performances of the tracking control scheme are illustrated by a
simulation example. In Section 5, some conclusions of the article are summarized.

2. Problem Formation and Preliminaries

Based on backstepping technology, combined with an adaptive neural network and
fixed-time control, the tracking control of pure-feedback non-affine nonlinear intercon-
nected systems was studied. Consider pure-feedback nonlinear systems:

.
xi(t) = fi(xi+1(t)), i = 1, 2, . . . , n− 1

.
xn(t) = fn(xn(t), u(t))

y(t) = x1(t)
(1)

where x =
(

x1 x2 · · · xn
)T ∈ <n, u ∈ <, y ∈ <, indicate the state, control and

output, respectively, fi(·), i = 1, 2, . . . , n are nonlinear smooth functions, yd ∈ < is de-
sired trajectory.

Remark 1. Based on the existing algorithms, this article attempts to further design a novel neural
network adaptive control algorithm. The control objective of the algorithm is the output of the
pure-feedback non-affine nonlinear system that can track the desired signal and maintain fixed-time
stability. The designed upper bound of the setting time does not rely on the initial parameters, only
by adjusting the parameters of the controller.
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Lemma 1 [6]. For xi ∈ R and xi ≥ 0, i = 1, 2, · · · , n, 0 < p < 1, q > 1, then(
n

∑
i=1

xi

)p

≤
n

∑
i=1

xi
p ≤ n1−p

(
n

∑
i=1

xi

)p

(2)

n1−q

(
n

∑
i=1

xi

)q

≤
n

∑
i=1

xi
q ≤

(
n

∑
i=1

xi

)q

(3)

3. Main Results

The control algorithm was designed for the system (1). The objective of the control
was to propose a new adaptive fixed-time neural network tracking control algorithm for
the pure-feedback nonlinear system. Adaptive neural network technology is used to solve
the uncertainty of the unknown system. Under the proposed control scheme, through the
Lyapunov stability analysis, the closed system is fixed-time stability.

For a nonlinear system (1), combine homeomorphism mapping and backstepping
control to design constraint control, in the first step, consider system state

z1 = x1 − yd (4)

Design homeomorphism mapping

ξ1 = arctanh
(

z1

kb1

)
(5)

where kb1 > 0 is the bound of z1 and satisfy the |z1| < kb1, then the system can obtain

.
ξ1 = kb1

k2
b1−z2

1

.
z1

= kb1
k2

b1−z2
1

(
f1(x1, x2)−

.
yd
) (6)

Choose the NN to approximate the nonlinear system f1(x2),x2 ∈ Ω1 ⊂ <2 and Ω1 is
compact set

kb1

k2
b1 − z2

1

(
f1(x1, x2)−

.
yd
)
= WT∗

1 Ψ1(x2) + ε1 (7)

where
∥∥W∗1

∥∥ = θ1, θ̂1 is estimation of θ1 and θ̃1 = θ̂1 − θ1, then we have

W∗T1 Ψ1(x2) ≤ θ1‖Ψ1(x2)‖ (8)

Define a Lyapunov functional candidate as

V1 =
1
2

ξ2
1 +

1
2µ1

θ̃2
1 (9)

take the time derivative (9) along the trajectory of (6) as

.
V1 = ξ1

kb1
k2

b1−z2
1

(
f1(x1, x2)−

.
yd
)
+ 1

µ1
θ̃1

.
θ̂1

= ξ1
(
W∗T1 Ψ1(x2) + ε1

)
+ 1

µ1
θ̃1

.
θ̂1

(10)

Choose the virtual control law

ξ2 = k1ξ1 + kp1ξ
p
1 + kq1ξ

q
1 + sign(ξ1)θ̂1‖Ψ1(x2)‖ (11)



Entropy 2022, 24, 737 4 of 14

where k1 > 1
2 , kp1 > 0, kq1 > 0, 0 < p < 1, q > 1, based on homeomorphism mapping

z2 = kb2tanh(ξ2) (12)

where kb2 > 0 is the bound of z2 and satisfies the |z2| < kb2, and

α1 = x2 − z2 (13)

then we have
.

V1 = ξ1W∗T1 Ψ1(x2) + ξ1ε1 − k1ξ2
1 − kp1ξ

p+1
1 − kq1ξ

q+1
1

−θ̂1|ξ1|‖Ψ1(x2)‖+ ξ1ξ2 +
1

µ1
θ̃1

.
θ̂1

(14)

when
∥∥W∗1

∥∥ = θ1, we have

ξ1W∗T1 Ψ1(x2) ≤ θ1|ξ1|‖Ψ1(x2)‖ (15)

and
ξ1ε1 ≤

1
2

ξ2
1 +

1
2

ε2
1 (16)

then we have
.

V1 = −θ̃1|ξ1|‖Ψ1(x2)‖+ 1
2 ξ2

1 +
1
2 ε2

1 − k1ξ2
1 − kp1ξ

p+1
1 − kq1ξ

q+1
1

+ξ1ξ2 +
1

µ1
θ̃1

.
θ̂1

(17)

where
θ̃1 = θ̂1 − θ1 (18)

Choose the NN adaptive law as

.
θ̂1 = µ1

(
|ξ1|‖Ψ1(x2)‖ − ρp1θ̂

p
1 − ρq1θ̂

q
1

)
, θ̂1(0) = 0 (19)

where µ1 > 0, ρp1 > 0, ρq1 > 0, then we have

.
V1 = −θ̃1|ξ1|‖Ψ1(x2)‖+ 1

2 ξ2
1 +

1
2 ε2

1 − k1ξ2
1 − kp1ξ

p+1
1 − kq1ξ

q+1
1

+ξ1ξ2 + θ̃1

(
|ξ1|‖Ψ1(x2)‖ − ρp1θ̂

p
1 − ρq1θ̂

q
1

)
= −

(
k1 − 1

2

)
ξ2

1 − kp1ξ
p+1
1 − kq1ξ

q+1
1 + ξ1ξ2

−ρp1θ̃1θ̂
p
1 − ρq1θ̃1θ̂

q
1 +

1
2 ε2

1

(20)

based on inequalities from [7], the following hold:

−ρp1θ̃1θ̂
p
1 ≤ −ςp1θ̃

p+1
1 + υp1θ

p+1
1

−ρq1θ̃1θ̂
q
1 ≤ −ςq1θ̃

q+1
1 + υq1θ

q+1
1

(21)

where ρp1, ςp1, υp1, ρq1, ςq1, υq1 > 0, therefore, we have

.
V1 ≤ −

(
k1 − 1

2

)
ξ2

1 − kp1ξ
p+1
1 − kq1ξ

q+1
1 + ξ1ξ2 − ςp1θ̃

p+1
1 + υp1θ

p+1
1

−ςq1θ̃
q+1
1 + υq1θ

q+1
1 + 1

2 ε2
1

≤ −kp1ξ
p+1
1 − kq1ξ

q+1
1 − ςp1θ̃

p+1
1 − ςq1θ̃

q+1
1 + ξ1ξ2 + δ1

(22)

where
δ1 =

1
2

ε2
1 + υp1θ

p+1
1 + υq1θ

q+1
1 (23)
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The ith step 2 ≤ i ≤ n, consider system state

zi = xi − αi−1 (24)

Design homeomorphism mapping

ξi = arctanh
(

zi
kbi

)
(25)

where kbi > 0 is the bound of zi and satisfies the |zi| < kbi, then the system can obtain

.
ξ i = kbi

k2
bi−z2

i

.
zi

= kbi
k2

bi−z2
i

(
fi −

.
αi−1

) (26)

The neural network is constructed as fi,xi+1 ∈ Ωi ⊂ <i+1 and Ωi is compact set

kbi

k2
bi − z2

i

(
fi −

.
αi−1

)
= WT∗

i Ψi(xi+1) + εi (27)

where
∥∥W∗i

∥∥ = θi, θ̂i is estimation of θi and θ̃i = θ̂i − θi, then we have

W∗Ti Ψ1(xi+1) ≤ θi‖Ψi(xi+1)‖ (28)

Define a Lyapunov functional candidate as

Vi =
1
2

ξ2
i +

1
2µi

θ̃2
i (29)

Take the time derivative (29) along the trajectory of (26) as

.
Vi = ξi

kbi
1−z2

i

(
fi −

.
αi−1

)
+ 1

µi
θ̃i

.
θ̂i

= ξi
(
W∗Ti Ψi(xi+1) + εi

)
+ 1

µi
θ̃i

.
θ̂i

(30)

The virtual control signal is constructed as

ξi+1 = ξi−1 + kiξi + kpiξ
p
i + kqiξ

q
i + sign(ξi)θ̂i‖Ψi(xi+1)‖ (31)

where ki >
1
2 , kpi > 0, kqi > 0, 0 < p < 1, q > 1, based on homeomorphism mapping

zi+1 = kbi+1tanh(ξi+1) (32)

where kbi+1 > 0 is the bound of zi+1 and satisfies the |zi+1| < kbi+1 where

zi+1 = xi+1 − αi (33)

and assume xn+1 = u, then we have

.
Vi = ξiW∗Ti Ψi(xi+1) + ξiεi − ξi−1ξi − kiξ

2
i − kpiξ

p+1
i − kqiξ

q+1
i

−θ̂i|ξi|‖Ψi(xi+1)‖+ ξiξi+1 +
1
µi

θ̃i

.
θ̂i

(34)

when
∥∥W∗i

∥∥ = θi, we have

ξiW∗Ti Ψi(xi+1) ≤ θi|ξi|‖Ψi(xi+1)‖ (35)
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and
ξiεi ≤

1
2

ξ2
i +

1
2

ε2
i (36)

then we have
.

Vi = −θ̃i|ξi|‖Ψi(xi+1)‖+ 1
2 ξ2

i +
1
2 ε2

i − k1ξ2
i − kpiξ

p+1
i − kqiξ

q+1
i

−ξi−1ξi + ξiξi+1 +
1
µi

θ̃i

.
θ̂i

(37)

where
θ̃i = θ̂i − θi (38)

The NN adaptive signal is constructed as

.
θ̂i = µi

(
|ξi|‖Ψi(xi+1)‖ − ρpi θ̂

p
i − ρqi θ̂

q
i

)
, θ̂i(0) = 0 (39)

where µi > 0, ρpi > 0, ρqi > 0, then we have

.
Vi = −θ̃i|ξi|‖Ψi(xi+1)‖+ 1

2 ξ2
i +

1
2 ε2

i − kiξ
2
i − kpiξ

p+1
i − kqiξ

q+1
i

−ξi−1ξi + ξiξi+1 + θ̃i

(
|ξi|‖Ψi(xi+1)‖ − ρpi θ̂

p
i − ρqi θ̂

q
i

)
= −

(
ki − 1

2

)
ξ2

i − kpiξ
p+1
i − kqiξ

q+1
i − ξi−1ξi + ξiξi+1

−ρpi θ̃i θ̂
p
i − ρqi θ̃i θ̂

q
i +

1
2 ε2

i

(40)

Based on inequalities from [7], the following hold:

−ρpi θ̃i θ̂
p
i ≤ −ςpi θ̃

p+1
i + υpiθ

p+1
i

−ρqi θ̃i θ̂
q
i ≤ −ςqi θ̃

q+1
i + υqiθ

q+1
i

(41)

where ρpi, ςpi, υpi, ρqi, ςqi, υqi > 0, therefore we have

.
Vi ≤ −

(
ki − 1

2

)
ξ2

i − kpiξ
p+1
i − kqiξ

q+1
i − ξi−1ξi + ξiξi+1 − ςpi θ̃

p+1
i

+υpiθ
p+1
i − ςqi θ̃

q+1
i + υqiθ

q+1
i + 1

2 ε2
i

≤ −ξi−1ξi − kpiξ
p+1
i − kqiξ

q+1
i − ςpi θ̃

p+1
i − ςqi θ̃

q+1
i + ξiξi+1 + δi

(42)

where
δi =

1
2

ε2
i + υpiθ

p+1
i + υqiθ

q+1
i (43)

The n + 1th step, this is the most important step.

zn+1 = u− αn (44)

Based on system
.
zn+1 = v− .

αn (45)

Design homeomorphism mapping

ξn+1 = arctanh
(

zn+1

kbn+1

)
(46)

where kbn+1 > 0 is the bound of zn+1 and satisfies the |zn+1| < kbn+1, then the system
can obtain .

ξn+1 =
kbn+1

k2
bn+1−z2

n+1

.
zn+1

=
kbn+1

k2
bn+1−z2

n+1

(
v− .

αn
) (47)
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The neural network is constructed as
.
αn,xn+1 = (x, u) ∈ Ωn+1 ⊂ <n+1 and Ωn+1 is

compact set
kbn+1

k2
bn+1 − z2

n+1

.
αn = WT∗

n+1Ψn+1(xn+1) + εn+1 (48)

where
∥∥W∗n+1

∥∥ = θn+1, θ̂n+1 is an estimation of θn+1 and θ̃n+1 = θ̂n+1− θn+1, then we have

W∗Tn+1Ψn+1(xn+1) ≤ θn+1‖Ψn+1(xn+1)‖ (49)

Define a Lyapunov functional candidate as

Vn+1 =
1
2

ξ2
n+1 +

1
2µn+1

θ̃2
n+1 (50)

Take the time derivative (9) along the trajectory of (6) as

.
Vn+1 = ξn+1

kbn+1
k2

bn+1−z2
n+1

(
v− .

αi
)
+ 1

µn+1
θ̃n+1

.
θ̂n+1

= ξn+1
kbn+1

k2
bn+1−z2

n+1
v− ξn+1

(
W∗Tn+1Ψn+1(xn+1) + εn+1

)
+ 1

µn+1
θ̃n+1

.
θ̂n+1

(51)

Choose the control

v =
−ξn − kn+1ξn+1 − kpn+1ξ

p
n+1 − kqn+1ξ

q
n+1 − sign(ξn+1)θ̂n+1‖Ψn+1(xn+1)‖

kbn+1
k2

bn+1−z2
n+1

(52)

where kn+1 > 1
2 , kpn+1 > 0, kqn+1 > 0, 0 < p < 1, q > 1, then

.
Vn+1 = −ξn+1

(
W∗Tn+1Ψn+1(xn+1) + εn+1

)
+ 1

µn+1
θ̃n+1

.
θ̂n+1 − ξnξn+1 − kn+1ξ2

n+1

−kpn+1ξ
p+1
n+1 − kqn+1ξ

q+1
n+1 − θ̂n+1|ξn+1|‖Ψn+1(xn+1)‖

(53)

when
∥∥W∗n+1

∥∥ = θn+1, we have

ξn+1W∗Tn+1Ψn+1(xn+1) ≤ θn+1|ξn+1|‖Ψn+1(xn+1)‖ (54)

and
ξn+1εn+1 ≤

1
2

ξ2
n+1 +

1
2

ε2
n+1 (55)

then we have

.
Vn+1 = −θ̃n+1|ξn+1|‖Ψn+1(xn+1)‖+ 1

2 ξ2
n+1 +

1
2 ε2

n+1 +
1

µn+1
θ̃n+1

.
θ̂n+1

−ξnξn+1 − kn+1ξ2
n+1 − kpn+1ξ

p+1
n+1 − kqn+1ξ

q+1
n+1

(56)

where
θ̃n+1 = θ̂n+1 − θn+1 (57)

choose the NN adaptive law as

.
θ̂n+1 = µn+1

(
|ξn+1|‖Ψn+1(xn+1)‖ − ρpn+1θ̂

p
n+1 − ρqn+1θ̂

q
n+1

)
, θ̂n+1(0) = 0 (58)
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where µn+1 > 0, ρpn+1 > 0, ρqn+1 > 0, then we have

.
Vn+1 = −θ̃n+1|ξn+1|‖Ψn+1(xn+1)‖+ 1

2 ξ2
n+1 +

1
2 ε2

n+1

+θ̃n+1

(
|ξn+1|‖Ψn+1(xn+1)‖ − ρpn+1θ̂

p
n+1 − ρqn+1θ̂

q
n+1

)
−ξnξn+1 − kn+1ξ2

n+1 − kpn+1ξ
p+1
n+1 − kqn+1ξ

q+1
n+1

(59)

based on inequalities from [7], the following hold:

−ρpn+1θ̃n+1θ̂
p
n+1 ≤ −ςpn+1θ̃

p+1
n+1 + υpn+1θ

p+1
n+1

−ρqn+1θ̃n+1θ̂
q
n+1 ≤ −ςqn+1θ̃

q+1
n+1 + υqn+1θ

q+1
n+1

(60)

where ρpn+1, ςpn+1, υpn+1, ρqn+1, ςqn+1, υqn+1 > 0, therefore, we have

.
Vn+1 ≤ −

(
kn+1 − 1

2

)
ξ2

n+1 +
1
2 ε2

n+1 − ςpn+1θ̃
p+1
n+1 + υpn+1θ

p+1
n+1

−ςqn+1θ̃
q+1
n+1 + υqn+1θ

q+1
n+1 − ξnξn+1 − kpn+1ξ

p+1
n+1 − kqn+1ξ

q+1
n+1

≤ −ξnξn+1 − kpn+1ξ
p+1
n+1 − kqn+1ξ

q+1
n+1 − ςpn+1θ̃

p+1
n+1 − ςqn+1θ̃

q+1
n+1 + δn+1

(61)

where
δn+1 =

1
2

ε2
n+1 + υpn+1θ

p+1
n+1 + υqn+1θ

q+1
n+1 (62)

Theorem 1. Consider the non-affine pure-feedback nonlinear system (1), based on the homeomor-
phism mapping and adaptive fixed-time neural network control scheme, choose the virtual control
law as (8), (27), the adaptive fixed-time law (16) as (35), and the actual controller as (47). The
tracking error system is practical fixed-time stability, and the upper bound of the settling time T is
independent of the initial parameters. The settling time T satisfies

T ≤ Tmax =
2

3−p
2

kp(1− p)
+

2
kq(q− 1)

(63)

Proof. Select the following Lyapunov function

V =
n+1

∑
i=1

Vi (64)

then it has

.
V ≤ −

n+1

∑
i=1

(
kpiξ

p+1
i + ςpi θ̃

p+1
i

)
−

n+1

∑
i=1

(
kqiξ

q+1
i + ςqi θ̃

q+1
i

)
+

n+1

∑
i=1

δi (65)

Based on Lemma 1

n+1
∑

i=1

(
kpiξ

p+1
i + ςpi θ̃

p+1
i

)
≥ kp

(
n+1
∑

i=1

(
ξ2

i
2 + 1

2µi
θ̃2

i

)) p+1
2

n+1
∑

i=1

(
kqiξ

q+1
i + ςqi θ̃

q+1
i

)
≥ kq

(
n+1
∑

i=1

(
ξ2

i
2 + 1

2µi
θ̃2

i

)) p+1
2

(66)

where

kp = min
(

2
p+1

2 kpi, 2
p+1

2 µ
p+1

2
i ςpi

)
, i = 1, 2, 3 · · · n + 1

kq = min
(

2(n + 1)
1−q

2 kqi, 2(n + 1)
1−q

2 µ
q+1

2
i ςqi

)
, i = 1, 2, 3 · · · n + 1

δ =
n+1
∑

i=1
δi

(67)



Entropy 2022, 24, 737 9 of 14

.
V ≤ −kpV

p+1
2 − kqV

q+1
2 + δ (68)

based on Lemma in [6], the system is practically fixed-time stability. �

Remark 2. A new adaptive neural network control strategy is designed. The control objective is to
drive the output signal of the error system to track the expected signal in a fixed-time. The neural
network is used to approximate the unknown function of the system and design a fixed-time adaptive
law to update the weight of the neural network. Without considering the initial conditions, the
setting time can be designed by selecting the controller parameters. Based on the fixed-time stability
theory, it is proved that the controller can realize the fixed-time stability of the closed-loop system.

Remark 3. The control deviation is obtained from the given value and the actual output value of
the system, the fixed-time adaptive laws are designed by the homeomorphic mapping of the deviation,
and the neural network weights are trained through the adaptive rate to form the control signal, to
change the regulation quality of the system. This forms a fixed-time adaptive neural network control
system, and its control structure is shown in Figure 1.

Remark 4. Programming according to the control algorithm described in equation to Equations (4),
(23), (43) and the program block diagram is shown in Figure 2

Step 1: Calculate the control deviation zi by value and output value.
Step 2: Calculate ξi according to the principle of homeomorphic mapping.
Step 3: Design the fixed-time adaptive laws to train the weights of the neural network.
Step 4: Design the neural network to estimate the nonlinear system.
Step 5: Repeat Step 1 to Step 4 when i ≤ n + 1.
Step 6: The control variables are determined based on backstepping control.
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4. Numerical Examples

This section gives two examples to show the effectiveness of the proposed con-
trol scheme.

A. Mathematical example

The nonlinear dynamics is

.
x1 = x2 sin(x1) +

(
3 + x2

1
)(

x2 + x3
2
)

.
x2 = 2x1x2

(
sin(x1) + x2

2
)
+ x3 +

x3
3

7.
x3 = x1 + x1x2 + x3 + u

y = x1

(69)

Consider the system state
z1 = y− yd (70)

Choose the homeomorphism mapping

ξ1 = arctanh(z1) (71)

and adaptive functions have the following form:

ξ2 = ξ1 + ξ
3
5
1 + ξ

5
3
1 + sign(ξ1)θ̂1‖Ψ1(x2)‖ (72)

and controller has the following form:

u =
(

1− z2
3

)(
−ξ2 − ξ3 − ξ

3
5
3 − ξ

5
3
3 − sign(ξ3)θ̂3‖Ψ3(x3)‖

)
(73)

where yd = sin(t) being the desired signal. Select the initial parameters as x = (1, 0, 0)T ,
and the neural network parameters chosen zeros.
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The simulation results are shown in Figures 3–6. Figure 3 depicts the tracking curve of
the given value and output value. It can be seen from the figure that the tracking error can
be sufficiently small in fixed-time and the system output is bounded. Figure 4 shows that
the system state is bounded and can converge to zero in fixed time. Figure 5 depicts the
tracking errors’ tracking curve, which shows that the tracking errors are bounded. Because
tanh(ξi) = zi, i = 1, 2, 3, therefore, the system states zi, i = 1, 2, 3 are bounded with |zi| < 1.
Figure 6 shows the time response of the output, the output is bounded, and its value is
constant after a fixed time.
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B. Robot model

Consider a robot model [31] is

Mr
..
qr +

1
2

mrglr sin(qr) = τr (74)

where qr is angle displacement, g and Mr are the gravitational acceleration and moment
of inertia, respectively, and mr is the mass of link and lr represents its length, τr is the
considered input torque. If x1 = qr, x2 =

.
qr, and u = τr, the dynamic system can be

transformed as follows: { .
x1 = x2

.
x2 = −mglr

2Mr
sin(x1) +

1
Mr

u
(75)
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For simulation process, the neural networks adaptive fixed-time control, the yd = 0.1 sin(t)
being the desired signal.
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The simulation results are shown in Figures 7 and 8. Figure 7 depicts the tracking
curve of the given value and output value. It can be seen from the figure that the tracking
error can be sufficiently small in fixed-time and the system output is bounded. Figure 8
shows the time response of the control input.
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5. Conclusions

So far, great breakthroughs have been made in the research of adaptive neural network
tracking controls for nonlinear systems, but there are still some control problems to be
solved. In this paper, a new fixed-time adaptive neural network tracking control strategy
is designed for pure-feedback non-affine nonlinear constrained systems. Based on the
backstepping control technology, the fixed-time adaptive neural network function of the
error system is designed. The setting time by the control parameters and adaptive law gain
parameters, that is, the control performance can be guaranteed without initial conditions,
which is more practical than the control algorithm based on Lyapunov stability theory.
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