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Abstract: The univariate noncentral distributions can be derived by multiplying their central distri-
butions with translation factors. When constructed in terms of translated uniform distributions on
unit radius hyperspheres, these translation factors become generating functions for classical families
of orthogonal polynomials. The ultraspherical noncentral t , normal N, F, and χ2 distributions are
thus found to be associated with the Gegenbauer, Hermite, Jacobi, and Laguerre polynomial families,
respectively, with the corresponding central distributions standing for the polynomial family-defining
weights. Obtained through an unconstrained minimization of the Gibbs potential, Jaynes’ maximal
entropy priors are formally expressed in terms of the empirical densities’ entropic convex duals.
Expanding these duals on orthogonal polynomial bases allows for the expedient determination of
the Jaynes–Gibbs priors. Invoking the moment problem and the duality principle, modelization can
be reduced to the direct determination of the prior moments in parametric space in terms of the
Bayes factor’s orthogonal polynomial expansion coefficients in random variable space. Genomics
and geophysics examples are provided.

Keywords: noncentral distributions; orthogonal polynomials; Bayesian inference; Jaynes’ maximal
entropy principle; Gibbs prior; entropic convex dual

1. Introduction

We shall argue that the four noncentral univariates t, F, the normal N, and χ2 dis-
tributions ρ(r|ro), with r being the one-dimensional random space variable, and ro the
one-dimensional noncentrality parameter of the respective distributions, can all be con-
structed in a modular fashion by multiplying their central counterparts ρ(r| ro = 0) with a
factor T(r|ro) effecting a central distribution translation, that is,

ρ(r|ro) = T(r|ro) ρ(r|0).

In statistical parlance, the noncentral distributions are needed to estimate or modelize
effect sizes [1]. With the exception of the normal distribution, these translations are non-
shape-preserving. The derivation of the translation factors T(r|ro) can be carried out in
two manners, depending on whether primacy is put upon translated uniform density
distributions on unit radius hyperspheres, as is done in this manuscript, or on translated
normal distributions, as done classically. We shall review both derivations herein, with
emphasis on the hyperspherical distributions.

We choose to place primacy upon the simple uniform density distribution on the unit
radius hypersphere Sν, where ν stands for either the dimension of the hypersphere surface
Sν ∈ <ν+1, or, equivalently, the degrees of freedom (dof) of the specified distribution. It
is known that the projection of a unit radius uniform density hyperspherical distribution
on Sν on any given polar axis readily provides us with the central t distribution [2], and
that such a projection converges with the central normal distribution N(0, 1) with null
mean when ν tends to infinity [3] (p. 59). This observation provides us with the needed
building principle used throughout this manuscript: use the uniform density distribution
on the unit radius hypersphere Sν ∈ <ν+1 to derive modular expressions for the central
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and noncentral t, F, N, and χ2 distributions. In order to proceed, one needs to master some
very simple notions concerning the hypersphere geometry. The projection of a random unit
vector x on the unit radius hypersphere Sν2 on any given unit polar axis p naturally defines
a polar angle θ through the scalar product cos θ = x · p. As such, the central t distribution
with ν2 degrees of freedom can be drawn on the compact support −1 < cos θ < 1, on
which it acquires a simple expression in trigonometric terms: it is simply proportional
to sinν2−1 θ after integration of the azimuthal coordinates. See Saville and Wood [2] for
a very extensive digression on the subject. On the familiar sphere S2 ∈ <3, the latter
provides us with the well-known spherical surface element sin θ dθ after the integration of
the azimuthal coordinate. Similarly, the central F(ν1, ν2) distribution becomes proportional
to cosν1−1 θ sinν2−1 θ on the compact domain 0 ≤ cos θ < 1, where θ is the angle between a
random vector x on the hypersphere Sν1+ν2 and a secant hyperplane defining the subspace
Sν1 . In statistical parlance, the Sν1 and Sν2 subspaces refer to the between-class and
within-class variance spaces in an analysis variance (ANOVA), as reflected by the F-statistic
redefinition in trigonometric terms, found in Section 2. As it turns out, these two central
uniform hyperspherical distributions are all that is needed to proceed with the derivation
of all the univariate noncentral t, F, N, and χ2 distributions where, for uniformity of
designation, a normal distribution N(δ, 1) with non-vanishing mean δ and unit variance
will be simply referred to as the noncentral normal distribution. Finally, in the theory
of orthogonal polynomials, the designation ultraspherical polynomials—also known as
Gegenbauer polynomials [4]—has prevailed over that of hyperspherical polynomials, and
we shall abide by this nomenclature. In order to distinguish the ultraspherical t and F
distributions from the ones derived classically from the normal N and χ2 distributions,
we shall designate the former densities by the Greek letter υ (upsilon), as in υπερσφαίρα
(ypersfaíra or hypersphere in English), and the latter densities by the Greek letter ρ.

In Bayesian inference, the determination of the Bayes prior is referred to as an inverse
problem, and Jaynes’ data-constrained maximal entropy priors provide a principled so-
lution to this inverse problem [5–7]. The maximal entropy is reached by minimizing the
Gibbs potential, and the solution to this optimization problem requires the determination
of the empirical density entropic convex dual. See Le Blanc [8] for an extensive review on
the subject, with references. As derived from translated normal distributions, the classical
noncentral distributions all have a submodular decomposition for their translation factor
of the form

T(r|ro) = E(r|ro) e−r2
0/2,

with E(r|ro) being a generalized hypergeometric function, a decomposition which does not
readily provide regrouping of terms of similar order in the noncentrality parameter ro. Con-
versely, the translation factors for the noncentral t , the normal N, F, and χ2 distributions,
as derived from translated uniform distributions on unit radius hyperspheres, are found
to be generating functions for the Gegenbauer, Hermite, Laguerre, and Jacobi orthogonal
polynomial families {Pn}∞

n=0, respectively, and intrinsic properties of the orthogonal poly-
nomials [9] allow for regrouping all terms of similar order in the noncentrality parameter
ro, that is,

T(r|ro) =
∞

∑
n=0

cnPn(r)rn
o ,

with the constants cn provided hereafter. To the best of our knowledge, the derivation of
these translation factors and their identification as orthogonal polynomial family-generating
functions has not been carried out before. As a consequence, one can expand the entropic
convex duals on a generally small number of low-order orthogonal polynomials, an ap-
proach which greatly curtails the computational cost of determining the duals and, thus, the
Jaynes–Gibbs priors. To the best of our knowledge, the expansion and discretization of the
convex duals over orthogonal polynomial bases has not been proposed before. We adopt
in this manuscript the convention that the polynomial family-defining weight functions
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should be provided by the corresponding normalized central distributions, a convention
which results in much simplified expressions for the norm of the orthogonal polynomials.

In parametric Bayesian modeling, the translation factor T(r|ro) can be weighted by a
Bayesian prior π(ro) to obtain the Bayes factor

BF(r) =
∫

T(r|ro) π(ro) dro

for the generic superposition density

ρ(r) =
∫

ρ(r|ro) π(ro) dro =
∫

T(r|ro) ρ(r|0) π(ro) dro = BF(r) ρ(r|0).

We will, in this manuscript, identify the normalized central distribution ρ(r|0) with
the orthogonal polynomial family-defining weight w(r) ≡ ρ(r|0) [9], with, as a result, the
rewriting of any generic density ρ(r) as

ρ(r) = BF(r) w(r),

that is, the Bayes factor BF(r) can stand as a substitute to the generic density ρ(r). With
p(r) =

∫ r
ρ(r′|0)dr′ standing for the cumulative density function of the respective central

distributions ρ(r|0), or, equivalently, the p-value of the null hypothesis statistical testing
(NHST) procedure, we have that ρ(p) = BF(p). That is, the Bayes factor BF(p) stands for
the generally nonuniform p-value distribution ρ(p) of the above generic superposition
density (see Le Blanc [10] for details of a proof), to be contrasted with the NHST framework
which only considers the central distribution with its uninformative uniform p-value
distribution. Now, if one’s goal is only to model the density BF(p) or to compute the
associated local false discovery rate fdr(p) = 1/(1 + BF(p)) [11], one then only needs
prior moments to carry on with the modelization. Invoking the moment problem [12] and
the duality principle [13], prior moments in parametric space will be shown to be readily
provided by Bayes factor BF(r) orthogonal polynomial expansion coefficients in random
variable space—that is,∫

Ro
π(ro) rn

o dro =
1

cn‖Pn‖2

∫
R

Pn(r′) BF(r′) w(r′) dr′.

The paper is organized as follows. In Section 2, we review, for the sake of completeness,
the derivation of the classical univariate noncentral distributions as derived from translated
normal distributions. In Section 3, the univariate ultraspherical noncentral t, the normal
N, F, and χ2 distributions are derived from translated uniform density distributions on
unit radius hyperspheres, and are shown to be expressible as products of their central
distribution times specific generating functions for the Gegenbauer, Hermite, Jacobi, and
Laguerre orthogonal polynomial families, respectively. We argue, in Section 4, that the
determination of the Gibbs priors in terms of empirical densities’ entropic convex duals is
much simplified when these duals are expanded on a small number of low-order orthogonal
polynomials. We also discuss how prior moments in parametric space are directly provided
by the Bayes factor orthogonal polynomial expansion coefficients in random variable space.
Sections 5 and 6 are devoted to applications in genomics and geophysics, respectively.
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2. The Classical Noncentral Distributions

The four central F, χ2, t, and normal N distributions can be given by

υ
(ν1, ν2)
F (θ|0) = 2

Γ( ν1+ν2
2 )

Γ( ν1
2 )Γ(

ν2
2 )

cosν1−1 θ sinν2−1 θ, 0 ≤ cos θ < 1, (1a)

ρ
(ν1)
χ2 (r|0) = 1

2ν1/2Γ( ν1
2 )

r(ν1−2)/2e−r/2, 0 ≤ r < ∞, (1b)

ρ
(ν2)
t (θ|0) =

Γ( ν2+1
2 )

Γ( 1
2 )Γ(

ν2
2 )

sinν2−1 θ, −1 < cos θ < 1, (1c)

ρN(r|0) =
1√
2π

e−
1
2 r2

, −∞ < r < ∞, (1d)

respectively, where we have redefined the conventional t and F statistics so that

t =
√

ν2
cos θ

sin θ
, −1 < cos θ < 1, (2)

and

F =
ν2

ν1

cos2 θ

sin2 θ
, 0 ≤ cos θ < 1, (3)

so as to re-scale the corresponding t and F distributions on the specified finite compact
domains. As discussed in the Introduction, the above central t and F distributions are
projections of uniform distributions on the unit radius Sν2 and Sν1+ν2 hyperspheres, re-
spectively. The reasons for such rescaling will become apparent when we link in Section 3
the ultraspherical noncentral t and F distributions with the Gegenbauer and Jacobi orthog-
onal polynomial families, respectively, families which both have similar finite compact
support domains. It is straightforward to verify that the above central t and F distribu-
tions converge with the central normal N and χ2 distributions, respectively, in the limit
ν2 → ∞: see the discussions leading to Equations (19) and (36) below. In geometric terms,
the limit ν2 → ∞ allows one to restrict the study of the central t and F distributions on
a restricted domain around the angle θ = π/2, around which these distributions will
concentrate their respective distribution weights in concordance with the notion that a
high-dimensional hypersphere concentrates its surface on a narrow equatorial band at its
equator [3]. In this limit, with the respective variable substitutions r =

√
ν2 − 1 cos θ and

r = (ν2− 2) cos2 θ, the normal N and χ2 respective central distributions’ definition domains
consequently extend to infinity as cos θ → 1, as reflected by the respective distribution
domains provided above.

The noncentral t distribution has been classically derived by considering the ratio of a
random variable which distributes according to a noncentral normal distribution N(δ, 1)
with non-vanishing mean δ, over that of a random variable distributed according to a
central χν2 distribution with ν2 degrees of freedom. Similarly, the noncentral F distribution
is classically derived by considering the ratio of a noncentral χ2 random variable with non-
centrality parameter Λ and ν1 degrees of freedom over that of a central χ2 random variable
with ν2 degrees of freedom. See, for example, Walck et al. [14] for explicit steps for such
derivations. As a result, as discussed in the Introduction, the classical distributions have a
submodular decomposition for their translation factor of the form T(r|ro) = E(r|ro) e−r2

0/2,
with E(r|ro) being a generalized hypergeometric function [15]. Upon recalling that the F
and χ2 noncentral parameter Λ stands for the square of the noncentral parameter δ for the
noncentral t and normal distributions, we have that
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ρ
(ν1, ν2)
F (θ|Λ) = E(ν1, ν2)

F (θ|Λ) e−Λ/2 ρ
(ν1, ν2)
F (θ|0), 0 ≤ cos θ < 1, 0 ≤ Λ < ∞, (4a)

ρ
(ν1)
χ2 (r|Λ) = E(ν1)

χ2 (r|Λ) e−Λ/2 ρ
(ν1)
χ2 (r|0), 0 ≤ r < ∞, 0 ≤ Λ < ∞, (4b)

ρ
(ν2)
t (θ|δ) = E(ν2)

t (θ|δ) e−δ2/2 ρ
(ν2)
t (θ|0), −1 < cos θ < 1, −δ < δ < ∞, (4c)

ρN(r|δ) = EN(r|δ) e−δ2/2 ρN(r|0), −∞ < r < ∞, −δ < δ < ∞, (4d)

with the respective factors’ E(r|ro) McLaurin expansions — computed following the steps
elaborated by Walck et al. [14]—given by

E(ν1 ,ν2)
F (θ|Λ) =

Γ(ν1/2)
Γ(1/2)

∞

∑
j even ≥ 0

Γ((j + 1)/2)
Γ((j + ν1)/2)

Γ((j + ν1 + ν2)/2)
Γ((ν1 + ν2)/2)

(
√

2Λ cos θ)j

j!
(5a)

= 1F1

(
ν1 + ν2

2
;

ν1

2
;

Λ cos2 θ

2

)
, (5b)

E(ν1)

χ2 (r|Λ) =
Γ(ν1/2)
Γ(1/2)

∞

∑
j even ≥ 0

Γ((j + 1)/2)
Γ((j + ν1)/2)

(Λr)j/2

j!
= I (ν1−2)/2(Λr) (5c)

= 0F1

(
;

ν1

2
;

Λr
4

)
, (5d)

E(ν2)
t (θ|δ) =

∞

∑
j=0

Γ((j + 1 + ν2)/2)
Γ((1 + ν2)/2)

(
√

2δ cos θ)j

j!
(5e)

= 1F1

(
ν2 + 1

2
;

1
2

;
δ2 cos2 θ

2

)
+
√

2 δ cos θ
Γ( ν2+2

2 )

Γ( ν2+1
2 )

1F1

(
ν2 + 2

2
;

3
2

;
δ2 cos2 θ

2

)
,

EN(r|δ) =
∞

∑
j=0

(δr)j

j!
= 0F0(; ; r) = eδr (5f)

= 0F1

(
;

1
2

;
δ2r2

4

)
+ δr 0F1

(
;

3
2

;
δ2r2

4

)
= cosh δr + sinh δr = eδr , (5g)

where

pFq
(
a1, . . . , ap; b1, . . . , bq; x

)
=

∞

∑
n=0

(a1)n . . . (ap)n

(b1)n . . . (bq)n

xn

n!
. (6)

stands for the generalized hypergeometric function, and where I (ν1−2)/2(Λr) stands for
the normalized modified Bessel function [16]. The respective first expansions for the
multiplicative factors E are successively simpler versions of the Maclaurin expansion for
the noncentral F distribution multiplicative factor E(ν1,ν2)

F , such that

E(ν1)
χ2 ←−−−

ν2→∞
E(ν1,ν2)

F −−→
ν1=1

E(ν2)
t −−−→

ν2→∞
EN , (7)

with the understanding that the respective Maclaurin summations involve either only the
even integers for the F and χ2 cases, or both odd and even integers for the t and normal
cases. It is straightforward to verify that the classical noncentral t and F distributions
converge with the noncentral normal and χ2 distributions, respectively, in the limit ν2 → ∞.
The expressions for the classical noncentral distributions do not readily regroup terms of
similar order in their noncentrality parameter, contrarily to the ultraspherical noncentral
distributions, which do so, as is discussed next.

3. The Ultraspherical Noncentral Distributions

Using geometrical arguments, the ultraspherical noncentral t-distribution for the
t-statistic (2) on the hypersphere Sν2 was shown by Le Blanc [10] to be given by

υ
(ν2)
t (θ|δ) = T(ν2)

t (θ|δ) υ
(ν2)
t (θ|0), (8)
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where υ
(ν2)
t (θ|0) is identical to the central t-distribution ρ

(ν2)
t (θ|0) given in Equation (1),

where the multiplicative distribution translation factor T(ν2)
t (θ|δ) is given by

T(ν2)
t (θ|δ) = 1− cos θ cos θδ

[1− 2 cos θ cos θδ + cos2 θδ](ν2+1)/2
, (9)

and where

cos θδ =
δ/
√

ν2√
(δ/
√

ν2)2 + 1
=

δ√
δ2 + ν2

, 0 < θδ < π, (10)

in terms of the noncentrality parameter δ, −∞ < δ < ∞. As it turns out, the translation
term T(ν2)

t (θ|δ) is a generating function for the ultraspherical or, equivalently, Gegenbauer
polynomials: redefining the variables so that x = cos θ, z = cos θδ, and b = (ν2 − 1)/2, we
have that

T(b)
t (x|z) =

1− xz
[1− 2xz + z2]b+1 =

∞

∑
n=0

2b + n
2b

C(b)
n (x) zn (11)

= (1− xz)−(2b+1)
2F1

(
2b + 1

2
,

2b + 2
2

; b + 1
2 ;− (1− x2)z2

(1− xz)2

)
,

where C(b)
n (x) are Gegenbauer polynomials with the explicit representation [4]

C(b)
n (x) =

bn/2c

∑
k=0

(−1)k(b)n−k
k! (n− 2k)!

(2x)n−2k, (12)

where the Pochhammer symbol (x)n is defined by the equality

(x)n =
Γ(x + n)

Γ(x)
= x(x + 1)(x + 2) · · · (x + n− 1), (13)

where byc, the floor of y, is given by the lowest integer such that y− 1 < byc 5 y, and
where the last equality given in terms of the hypergeometric function 2F1 can be deduced
from Rainville [17] (Equation (144.8)). The Gegenbauer polynomials are orthogonal:∫ 1

x=−1
C(b)

m (x) C(b)
n (x) w(b)

t (x) dx = δm,n‖C(b)
n ‖2 (14)

with respect to the weight function

w(b)
t (x) =

Γ(b + 1)
Γ( 1

2 )Γ(b +
1
2 )

(1− x2)b−1/2, (15)

which is identical to the central t distribution (1), except for the change of the variable
x = cos θ. With this weight function normalization—which, note, differs from the usual
weight function for the Gegenbauer polynomials [4]—the norm of the Gegenbauer polyno-
mials simplifies to

‖C(b)
n ‖2 =

b
b + n

(2b)n

n!
, (16)

with, in particular, ‖C(b)
0 ‖2 = 1. Note also that Equation (11) could be used to define a

generalization T(b)
n (x) for the Chebyshev polynomials of the first kind, T(b=0)

n (x), with

1− xz
[1− 2xz + z2]b+1 =

∞

∑
n=0

T(b)
n (z) zn =

∞

∑
n=0

2b + n
2b

C(b)
n (x) zn, (17)
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which encompasses the defining equation

1− xz
[1− 2xz + z2]

=
∞

∑
n=0

T(0)
n (x) zn = lim

b→0

∞

∑
n=0

n
2b

C(∆)
n (x) zn (18)

for the Chebyshev polynomials of the first kind. Setting x = r/(2b)1/2 and z = δ/(2b)1/2,
the central t distribution converges with the normal central distribution

υN(r|0) =
1√
2π

e−
1
2 r2

(19)

in the limit b → ∞. Applying the same limit to the Gegenbauer polynomials and their
generating function (11), we have that

lim
b→∞

T(b)
t (x|z) = lim

b→∞

1− xz
[1− 2xz + z2]b+1

= lim
b→∞

∞

∑
n=0

2b + n
2b

C(b)
n

( r
(2b)1/2

) ( δ

(2b)1/2

)n

=
∞

∑
n=0

Hen(r)
δn

n!
= erδ−δ2/2 = TN(r|δ), (20)

where we have used the limit result [4]

lim
b→∞

1
(2b)n/2 C(b)

n

( r
(2b)1/2

)
=

Hen(r)
n!

. (21)

The multiplicative factor TN(r|δ) imparts a non-vanishing mean δ to the zero mean
normal distribution, since

TN(r|δ) υN(r|0) = eδr−δ2/2 1√
2π

e−
1
2 r2

=
1√
2π

e−
1
2 (r−δ)2

= υN(r|δ), (22)

where one recognizes the generating function eδr−δ2/2 for the Hermite polynomials Hen(r),
with the explicit representation [4]

Hen(r) = n!
bn/2c

∑
`=0

(−1)` rn−2`

2``! (n− 2`)!
. (23)

The latter are orthogonal with respect to their defining weight function

wN(r) = υN(r|0) =
1√
2π

e−
1
2 r2

, (24)

with norm ∫ ∞

r=−∞
Hem(r) Hen(r) wN(r) dr = δm,n n!, (25)

and with ‖He0‖2 = 1 in particular.
Using geometrical arguments, the ultraspherical noncentral F-distribution for the

F-statistic (3) was shown by Le Blanc [10] to be given by the integral representation

υ
(ν1, ν2)
F (θ|Λ) = T(ν1, ν2)

F (θ|Λ) υ
(ν1, ν2)
F (θ|0), (26)
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where υ
(ν1, ν2)
F (θ|0) is identical to the central F distribution ρ

(ν1, ν2)
F (θ|0) given in Equation (1),

where the multiplicative distribution translation factor T(ν1, ν2)
F (θ|Λ) is given by the integral

T(ν1, ν2)
F (θ|Λ) =

∫ π

ψ=0
T(ν1, ν2)

F (θ, ψ|Λ) dψ (27)

with integrand

T(ν1, ν2)
F (θ, ψ|Λ) =

(1− cos θ cos ψ cos θΛ)

[1− 2 cos θ cos ψ cos θΛ + cos2 θΛ](ν1+ν2)/2
υ
(ν1−1)
t (ψ|0), (28)

and where

cos θΛ =
√

Λ/(Λ + ν2), 0 ≤ Λ < ∞, 0 ≤ cos θΛ < 1, (29)

in terms of the noncentral parameter Λ. The special case ν1 = 1 is given by

υ
(ν1=1, ν2)
F (θ|Λ) = ∑

cos θ′=[cos θ,− cos θ]

1− cos θ′ cos θΛ

[1− 2 cos θ′ cos θΛ + cos2 θΛ](ν2+1)/2
υ
(ν2)
t (θ|0). (30)

Setting a = (ν1 − 2)/2, b = (ν2 − 2)/2, x = cos θ, ξ = cos ψ, z = cos θΛ, and making
use of the Gegenbauer polynomial-generating function expansion (11) together with the
corresponding polynomials’ explicit expression (12), the integration in (27) can be carried
out: we find

T(a,b)
F (x| z) =

∫ 1

ξ=−1

1− xξz
[1− 2xξz + z2]a+b+2 w(a)

t (ξ) dξ (31)

=
∞

∑
n=0

a + b + 1 + n
a + b + 1

F (a,b)
n (x2) z2n,

=
∞

∑
n=0

(−1)n (a + b + 2)n

(a + 1)n
P(a,b)

n (1− 2x2) z2n

= (1 + z2)−(a+b+2)
2F1

(
1
2 (a + b + 2), 1

2 (a + b + 3); a + 1;
4x2z2

(1 + z2)2

)
,

where the polynomials F (a,b)
n (x2) which one related to the Jacobi polynomials [4], through

F (a,b)
n (x2) = (−1)n (a + b + 1)n

(a + 1)n
P(a,b)

n (1− 2x2) (32)

are provided with the explicit representation

F (a,b)
n (x2) =

n

∑
k=0

(−1)k

k!
(a + b + 1)2n−k

(a + 1)n−k

(x2)n−k

(n− k)!
, (33)

and where the last equality—deduced from Rainville [17] (Equation (132.10))—provides us
with a generating function for the polynomials in terms of the hypergeometric function 2F1.
The F (a,b)

n (x2) polynomials are orthogonal with respect to the weight function

w(a,b)
F (x) = 2

Γ(a + b + 1)
Γ(a + 1)Γ(b)

(x2)a+ 1
2 (1− x2)b, 0 ≤ x ≤ 1, (34)



Entropy 2022, 24, 709 9 of 20

which is identical to the central F distribution (1), except for the change of the variable
x = cos θ, with norm

‖F (a,b)
n ‖2 =

a + b + 1
a + b + 1 + 2n

(a + b + 1)n(b + 1)n

(a + 1)n n!
, (35)

and with ‖F (a,b)
0 ‖2 = 1 in particular. Equation (31) can be verified to be valid for the special

case (30) with a = −1/2 (ν1 = 1). In the limit ν2 → ∞, the central F distribution converges
with the central χ2 distribution

υ
(ν1)
χ2 (r|0) = 1

2ν1/2Γ( ν1
2 )

r(ν1−2)/2e−r/2, 0 ≤ r < ∞, (36)

which, with a = (ν1 − 2)/2, can be used as a normalized defining weight function,

w(a)
χ2 (r) =

1
2a+1

1
Γ(a + 1)

rae−r/2, a > −1, (37)

for the Laguerre orthogonal polynomial family. The Laguerre polynomials can be given the
explicit representation [4]

L(a)
n (y) =

n

∑
`=0

(−1)`
(a + `+ 1)n−`

(n− `)!
y`

`!
, 0 ≤ y < ∞. (38)

Since Equation (32) provides the noncentral F distribution translation factor T(a,b)
F (x|z)

with an expansion in terms of the Jacobi polynomials P(a,b)
n (1− 2x2), and since the limit result

lim
b→∞

P(a,b)
n

(
1− 2y

b

)
= L(a)

n (y) (39)

holds [4], one verifies with x2 = r/2b and z2 = Λ/2b that

lim
b→∞

T(a,b)
F (x|z) = T(a)

χ2 (r|Λ) = I (a)(Λr) e−Λ/2 = 0F1

(
; a + 1;

Λr
4

)
e−Λ/2

=
∞

∑
n=0

(−1)n

(a + 1)n
L(a)

n (r/2) (Λ/2)n, (40)

which is a lesser-known expression for the noncentral χ2 distribution translation factor first
derived by Tiku [18]. Under normalization (37) for their defining weight factor, the norm
of the Laguerre polynomials L(a)

n (r/2) is given by∫ ∞

r=0
L(a)

m (r/2) L(a)
n (r/2) w(a)

χ2 (r) dr = δm,n ‖L(a)
n ‖2 δm,n =

(a + 1)n

n!
(41)

with, in particular, ‖L(a)
0 ‖2 = 1.

To summarize, the four ultraspherical noncentral F, χ2, t, and the normal N distribu-
tions are given by the product of translation factors T, which take the form of generating
functions for specific orthogonal polynomial families, times the corresponding normalized
central distributions which also stand for the corresponding polynomial family-defining
weight functions. Thus, we have that
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υ
(a,b)
F (x|z) = T(a,b)

F (x|z) w(a,b)
F (x), 0 ≤ x < 1, 0 ≤ z < 1, (42a)

υ
(a)
χ2 (r|Λ) = T(a)

χ2 (r|Λ) w(a)
χ2 (r), 0 ≤ r < ∞, 0 ≤ Λ < ∞, (42b)

υ
(b)
t (x|z) = T(b)

t (x|z) w(b)
t (x), −1 < x < 1, −1 < z < 1, (42c)

υN(r|δ) = TN(r|δ) wN(r), −∞ < r < ∞, −∞ < δ < ∞, (42d)

with the normalized central distributions

w(a,b)
F (x) = 2

Γ(a + b + 1)
Γ(a + 1)Γ(b)

(x2)a+ 1
2 (1− x2)b, (43a)

w(a)
χ2 (r) =

1
2a+1

1
Γ(a + 1)

rae−r/2, (43b)

w(b)
t (x) =

Γ(b + 1)
Γ( 1

2 )Γ(b +
1
2 )

(1− x2)b−1/2 (43c)

wN(r) = υN(r|0) =
1√
2π

e−
1
2 r2

, (43d)

providing the polynomial family-defining weights, and with the corresponding generating
functions and orthogonal polynomial expansions given by

T(a,b)
F (x|z) = (1 + z2)−(a+b+2)

2F1

(
1
2 (a + b + 2), 1

2 (a + b + 3); a + 1;
4x2z2

(1 + z2)2

)
(44a)

=
∞

∑
n=0

(−1)n (a + b + 2)n

(a + 1)n
P(a,b)

n (1− 2x2) z2n =
∞

∑
n=0

a + b + 1 + n
a + b + 1

F (a,b)
n (x2) z2n,

T(a)
χ2 (r|Λ) = 0F1

(
; a + 1;

Λr
4

)
e−Λ/2 = I (a)(Λr) e−Λ/2 =

∞

∑
n=0

(−1)n

(a + 1)n
L(a)

n (r/2) (Λ/2)n, (44b)

T(b)
t (x|z) = (1− xz)−(2b+1)

2F1

(
2b + 1

2
,

2b + 2
2

; b + 1
2 ;− (1− x2)z2

(1− xz)2

)
(44c)

=
1− xz

[1− 2xz + z2]b+1 =
∞

∑
n=0

2b + n
2b

C(b)
n (x) zn,

TN(r|δ) = 0F0(; ; δr)e−δ2/2 = erδ−δ2/2 =
∞

∑
n=0

Hen(r)
δn

n!
. (44d)

We conclude this section by stressing the fact that the random variable space for the
ultraspherical noncentral distributions are translated hyperspheres rather than translated
normal distributions, as is assumed for the classical noncentral distributions. The tide model
developed in Section 6 provides a concrete example of such a distribution on a translated
sphere. As more extensively argued in [15], the ultraspherical and classical noncentral F
and t distributions correspond to projections of translated hyperspheres and translated
normal distributions, respectively; are identical in their central distributions when their
noncentrality parameters are zero; and converge in high-dimensional spaces, but diverge
in low-dimension spaces and for large noncentrality parameters. See Figure 1. These
properties ultimately stem from the counterintuitive properties of the solid hypersphere
which concentrates its volume on a thin ultraspherical shell in high-dimensional spaces [3],
allowing one to use the ultraspherical distributions as surrogates for the classical noncentral
t and F distributions in high-dimensional spaces.
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Figure 1. Symmetrized Kullback–Leibler divergence (a) between the hyperspherical υ
(ν2)
t (θ|δ) and the

classical ρ
(ν2)
t (θ|δ) noncentral t—distributions in the upper-left-corner plot, and (b–f) between the hy-

perspherical υ
(ν1,ν2)
F (θ|Λ) and the classical ρ

(ν1,ν2)
F (θ|Λ) noncentral F distributions for ν1 = (2, . . . , 6),

respectively, for all the other plots. The ultraspherical and classical noncentral t and F distribu-
tions correspond to projections of translated uniform distributions on unit radius hyperspheres and
translated normal distributions, respectively; are identical in their central distributions when their
noncentrality parameters δ or Λ vanish; converge in high-dimensional (large degree-of-freedom ν2)
spaces, but diverge in low-dimension spaces and for large noncentrality δ or Λ parameters. The
ultraspherical noncentral distributions can be used as surrogates for the classical noncentral t and F
distributions in high-dimensional spaces. See the text for details.

4. Entropic Convex Duals Expansion in Terms of Orthogonal Polynomials

Bayes–Jaynes–Gibbs data-constrained maximal entropy priors—simply designated as
Gibbs priors in the following—can be objectively computed for dense datasets. See Le Blanc [8]
for an extensive review on the subject, from which we recall that the Bayes–Laplace prior and
posterior update rules are rooted in the convex geometry of Shannon’s entropy function, with
the Kullback–Leibler relative entropy being a Bregman divergence defined in terms of the
former. The Gibbs priors can be formally expressed as

π(ro) =
1

Z(λ)
exp

(∫
R

λ(r)υ(r|ro) dr
)

, (45)
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where the partition function Z(λ) is given by

Z(λ) =
∫
Ro

exp
(∫
R

λ(r)υ(r|ro) dr
)

dro, (46)

and where λ(r) is the entropic convex dual of the empirical density υ(r). The latter is
obtained through the unconstrained minimization of the Gibbs potential

inf
λ

Gρ(λ) = inf
λ

[
log Z(λ)−

∫
R

λ(r)υ(r) dr
]

, (47)

which, by convex duality, corresponds to Jaynes data-constrained maximal entropy. The
corresponding Gibbs–Jaynes model for a generic empirical density υ(r) is given by

υ(r) =
∫
Ro

υ(r|ro) π(ro) dro = υ(r|0)
∫
Ro

T(r|ro) π(ro) dro = υ(r|0) BF(r). (48)

As posed, solving for the entropic convex dual function λ(r) in (47) requires one to
compute its value across the entire support domain of the empirical distribution υ(r), a
task which can be expensive in computing terms. Now, since the ultraspherical noncentral
distribution translation factors T(r|ro) are generating functions for orthogonal polynomial
families, and since the corresponding central distributions υ(r|0) are the family-defining
weight functions w(r) ≡ υ(r|0), one can rewrite the unconstrained minimization problem
in simpler terms. Indeed, the exponentiated term in the partition function (46) can be
rewritten as

∫
R

λ(r) υ(r|ro) dr =
∫
R

λ(r) T(r|ro) w(r) dr =
∫
R

λ(r)

[
∞

∑
n=0

cnPn(r) rn
o

]
w(r) dr

=
∞

∑
n=0

cn

[∫
R

λ(r) Pn(r) w(r) dr
]

rn
o =

∞

∑
n=0

cnλn‖Pn‖2 rn
o

=
∞

∑
n=0

λ̃n rn
o with λ̃n = cnλn‖Pn‖2, (49)

where the polynomials Pn, with their respective multiplicative coefficients cn, are listed
in (44), and where the λn are the entropic convex dual expansion coefficients on family-wise
orthogonal polynomials that remain to be determined. Similarly, the additive constraint
term in (47) can be rewritten as∫

R
λ(r) υ(r) dr =

∞

∑
n=0

λn

∫
R

Pn(r) υ(r) dr =
∞

∑
n=0

λn

∫
R

Pn(r) BF(r) w(r) dr =
∞

∑
n=0

λ̃n β̃n, (50)

where υ(r) is the empirical density to be modeled, and where

β̃n =
1

cn‖Pn‖2

∫
R

Pn(r) BF(r) w(r) dr, (51)

with, in particular, β̃0 = 1. Within the division by the factor cn, the latter equality is the
Bayes factor BF(r) expansion on the orthogonal polynomials in random sample space. The
unconstrained optimization problem can thus be reformulated as

inf
{λ̃n}

[
log
( ∫
Ro

exp(
∞

∑
n=0

λ̃nrn
o ) dro

)
−

∞

∑
n=0

λ̃n β̃n

]
(52)

in terms of orthogonal polynomial expansion coefficient sets {λ̃n}∞
n=0 for the continuous

entropic convex dual function λ(r), sets which can be restricted to a small finite number of
coefficients, as can be assessed by the Kullback–Leibler divergence between the empirical
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density and its model in terms of orthogonal polynomials. At the minimum of the Gibbs
potential (52), one has the simple condition∫

Ro
exp(∑n λ̃nrn

o ) rn
o dro∫

Ro
exp(∑n λ̃nrn

o ) dro
=
∫
Ro

π(ro) rn
o dro = β̃n, (53)

which states that the nth moment of the noncentrality parameter ro, as weighted by the
Gibbs prior

π(ro) =
exp(∑n λ̃nrn

o )∫
Ro

exp(∑n λ̃nrn
o ) dro

, (54)

is, within the factor cn, equal to the nth coefficient of the Bayes factor expansion (51) on the
orthogonal polynomial basis in random sample space. In practical terms, the determination
of the Gibbs prior in terms of a small number of polynomial expansion coefficients λ̃n for
the entropic dual convex results in a substantial reduction in the computing time needed to
find the Gibbs potential minimum.

Once obtained, the Gibbs prior can be used to modelize the empirical density υ(r)
according to Equation (48), in which the central distribution υ(r|0) stands for the weight
function w(r) for the ultraspherical distributions listed in (42). A generic density υ(r) can
thus be expanded as

υ(r) =
∫
Ro

υ(r|ro) π(ro) dro = w(r)
∫
Ro

T(r|ro) π(ro) dro (55)

= w(r)
∫
Ro

[
∞

∑
n=0

cnPn(r) rn
o

]
π(ro) dro = w(r)

∞

∑
n=0

cn

[∫
Ro

rn
o π(ro) dro

]
Pn(r)

= w(r)
∞

∑
n=0

cn β̃nPn(r) = w(r)
∞

∑
n=0

[
1
‖Pn‖2

∫
R

Pn(r′) BF(r′) w(r′) dr′
]

Pn(r)

where we have invoked the optimality condition (53) in going from the second to the third
line. This sequence of equalities provides us with two alternative ways,

BF(r) =
υ(r)
w(r)

=
∫
Ro

T(r|ro) π(ro) dro (56a)

=
∞

∑
n=0

cn

[∫
Ro

rn
o π(ro) dro

]
Pn(r) =

∞

∑
n=0

[
1
‖Pn‖2

∫
R

Pn(r′) BF(r′) w(r′) dr′
]

Pn(r), (56b)

to model the Bayes factors and the empirical densities: either one determines the Gibbs
prior π(ro) via the optimization problem (52) and uses it to weigh the analytical orthogonal
polynomial-generating functions T(r|ro) listed in (44); or, one directly determines the prior
moments in parametric space in terms of the Bayes factor BF(r) expansion coefficients in
random variable space, as per the last equality above. The latter strategy amounts to the
construction of a probability distribution in terms of its moments [12]. In that respect, recall
the Hausdorff moment problem, which stipulates that the collection of all moments of a
probability distribution on a bounded interval uniquely determine the distribution [19],
and the Hamburger moment problem, which considers the uniqueness of solutions for the
same problem on the unbounded real line [20].

Numerical exploration indicates that the convergence of the polynomial expansion for
the ultraspherical noncentral t and F distributions’ generating functions is affected by the
Gibbs phenomenon at the extremities of their finite noncentrality parameter ranges [21].
For this reason, when considering the noncentral t and F distributions, one can either
solve for the Gibbs prior to weigh the corresponding analytic generating functions (44) in
constructing the models, or use the large b limit for the distributions which converge with
the noncentral normal N and χ2 distributions, respectively, together with the associated
Hermite and Laguerre orthogonal polynomial families, to directly compute the prior
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moments in parametric space in terms of the Bayes factor expansion coefficients in random
variable space, as according to (56). Both strategies are found to be unaffected by the Gibbs
effect, as exemplified in the next section.

5. Genomics Examples

We first revisit, in this section, the NCBI Gene Expression Omnibus head and neck
squamous cell carcinoma microarray dataset produced by [22], pertaining to 22 paired
samples (N = 44, ν2 = 42, b = 41/2) of normal versus cancerous tissues, and interrogating
11,302 genes via 2-sample t-tests. In Le Blanc [10], a maximal entropy prior equal to the
central ultraspherical t distribution (1) was postulated. In Le Blanc [8], the entropic dual
convex λ(x) was computed on the full random variable range −1 < x < 1. Here, the Bayes
factor is provided with two models. The first model υ(x) = wt(x)

∫
T(x|z)π(z)dz is given

in terms of the Gibbs prior π(z) (54) and the analytical Gegenbauer polynomial-generating
function T(x|z) (11). We assessed the computational gains in our determination of the
entropic convex dual λ(x) via Equation (52): with the empirical distribution υ(x) binned in
200 bins, and using the MATLAB® optimization subroutine fminunc in a 64-bit Windows
environment on a PC with an Intel(R) Core(TM) i9-9900K CPU @ 3.60 GHz processor and
64 GB of RAM, the determination times for the entropic convex dual λ(x) in terms of a
small number of Gegenbauer polynomial coefficients were curtailed by a factor ranging
from 100 to 1000, compared to previous determination times of λ(x) on the full random
variable range −1 < x < 1, with elapsed times as short as a few tenths of a second. In
the second model, according to (56) and with the Hermite polynomials standing for the
Gegenbauer polynomials in the large b limit, the Bayes factor BF(r) expansion in random
variable space on the Hermite polynomials provides us with the Gibbs prior moments∫

π(δ)δndδ in parametric space. As can be seen in Figure 2, the convergence of the two
models with the empirical distribution is rapidly achieved with ten coefficients or less.

Next, we study a genome-wide association study (GWAS) dataset. A GWAS is an
observational study assessing a genome-wide set of genetic variants in different individuals,
and seeking to identify statistically significant variant-trait associations. Such studies com-
monly focus on associations between single-nucleotide polymorphisms (SNPs) and traits.
We retrieved the GenoMICC EUR vs. UK biobank controls dataset from the GenOMICC
(Genetics Of Mortality In Critical Care) GWAS, comparing 2244 critically ill patients with
COVID-19 from UK intensive care units with European ancestry-matched control individ-
uals selected from the large population-based cohort of the UK Biobank [23]. A logistic
regression model was used for each of the 4,380,209 SNPs individually tested for statistical
significance. We computed the empirical density of all the statistical test-associated χ2

ν1=1
r-statistics, and used it to compute the first eight terms of the direct polynomial expan-
sion (56) on Laguerre polynomials for the Bayes Factor BF(p(r)). As illustrated in Figure 3,
the accrual of the successive polynomial expansion terms allows for an incrementally better
fit of the p-value empirical density, which strongly deviates from the NHST null hypothesis
U(0, 1) in the low p-value range where associations are detected. In the Bayesian frame-
work, NHST statistical significance is replaced by the strength of Bayesian evidence, as
assessed by magnitude of BF(p), which, in turn, allows for the computation of a local false
discovery rate [11]

fdr(p) = 1/(1 + BF(p)) (57)

as is also illustrated in Figure 3.
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Figure 2. Empirical random space densities and NHST p-value densities modelization for the
head and neck cancer dataset. The upper panels illustrate the Jaynes–Gibbs model υ(x) =

wt(x)
∫

T(x|z)π(z)dz, as provided by the Gibbs prior (54) and the analytical generating function (11)
for the Gegenbauer polynomials. (a) Upper left-hand panel: convergence of the Jaynes–Gibbs model
with the empirical density υ(x) = wt(x) BF(x). (b) Upper right-hand panel: corresponding NHST
t-test p-value model densities, as modeled by the Bayes factor BF(p). As can be observed, con-
vergence on the empirical densities is rapidly achieved with the expansion of the entropic convex
dual λ(x) on a small number n of Gegenbauer polynomials. In the lower panels, with the Hermite
polynomials standing for the Gegenbauer polynomials in the large b limit (21), the Bayes factor
BF(r) expansion coefficients in random variable space directly provides the Gibbs prior moments∫

π(δ)δndδ in parametric space, as according to (56). (c) Lower left-hand panel: cumulative orthogo-
nal polynomial expansion of the Bayes factor BF(r) in random variable space. (d) Lower right-hand
panel: corresponding NHST central normal distribution p-value densities as modeled by the Bayes
factor BF(p). As can be observed, convergence on the empirical densities is rapidly achieved with a
small number n of low-order Hermite polynomials.
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Figure 3. Bayes Factor BF(p) modeling a NHST p-value distribution from a genome-wide association
study (GWAS) dataset. The GWAS compared 2244 critically ill patients with COVID-19 with 3 times
as many ancestry-matched control individuals. The dataset comprises 4,380,209 χ2

ν1=1 r-statistics,
accounting for all the SNPs in the set, which have been modelized by a logistic regression model
and tested for statistical significance. (a) Left panel: Accrual of the successive Laguerre polynomial
expansion terms in Equation (56) for the Bayes factor demonstrating an incrementally better fit of
the p-value empirical density which strongly deviates from the NHST null hypothesis U(0, 1) in
the low p-value range. (b) Right panel: Local false discovery rate fdr(p) = 1/(1 + BF(p)). The
Bayesian-based fdr crosses the 0.01 threshold (i.e., a fdr of 1%) when the NHST p-value reaches
about 10−7 (− log10(p) = 7), in close concordance with the threshold of significance of 5× 10−8

(− log10(p) = 7.3) chosen by the authors.

6. Geophysics Examples

We begin this section by modeling, in Figure 4, Earth’s above-sea-level emerging
land/ice latitudinal density [24]. Because an ideal Earth surface can be described by the
sphere Sν2=2, we have that the parameter b = (ν2 − 1)/2 = 1/2, with the weight factor
w(1/2)

t (x) in (15) reducing to the constant 1/2. As a consequence, Equation (55) is equiva-

lent to a standard expansion on Legendre polynomials—equivalently, Gegenbauer C(1/2)
n

polynomials—except for the fact that our convention regarding the central distribution
normalization w(1/2)

t (x) = 1/2 (rather than the usual weight w(x) = 1) on the span [−1, 1]
ensures that expansion (55) defines a normalized density.
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Figure 4. Earth’s emerging land/ice latitudinal density. Orthogonal Legendre Pn polynomial (Gegen-

baeur C(1/2)
n polynomial) modeling of Earth’s emerging land/ice masses’ latitudinal density. (a) Left

panel: orthogonal Legendre Pn polynomial modeling (55) of Earth’s emerging land/ice latitudinal
density as expanded on the first 30 Legendre polynomials. (b) Right panel: Kullback–Leibler di-
vergence between the empirical density and the model as a function of the number of orthogonal
Legendre polynomials accrued.
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We conclude with an example in which the translating factor (9) for the ultraspherical
noncentral t distribution is kept as-is, instead of using its expansion (11) in terms of
Gegenbauer polynomials, to argue that the noncentral spherical t distribution (8) on S2

can be used to describe the geometry of the gravity forces of a simple tide model. Consider
Figure 5, which describes the gravitational pull of an ideal Moon of mass m on the thin
water layer covering an ideal Earth of mass M and radius R at distance D from the Moon.
The gravitational tidal force T per unit mass on point s on the Earth’s surface is given by

T =
Gm

(D− R cos θ)2 + R2 sin2 θ
=

Gm
D2 − 2DR cos θ + R2 . (58)

The horizontal and vertical components of that force are given by

Th = +
Gm

D2 − 2DR cos θ + R2 × cos ϕ = +Gm
D− R cos θ

[D2 − 2DR cos θ + R2]3/2 , (59)

Tv = − Gm
D2 − 2DR cos θ + R2 × sin ϕ = −Gm

R sin θ

[D2 − 2DR cos θ + R2]3/2 , (60)

respectively. Setting our physical units so that Gm/D2 = 1, and defining cos θδ = R/D, we
have that

Th =
1− cos θ cos θδ

[1− 2 cos θ cos θδ + cos2 θδ]3/2 = T(ν2=2)
t (θ|δ), (61)

Tv =
− sin θ

[1− 2 cos θ cos θδ + cos2 θδ]3/2 . (62)

D
3 '

R

s

m

M
Figure 5. Tide geometry. Idealized model describing the gravitational tidal pull of an ideal Moon of
mass m on a thin water layer covering an ideal Earth of mass M and radius R at distance D from the

Moon. The horizontal tidal force is given by the modular translation factor T(ν2=2)
t (θ|δ) (9), defining

on S2 the noncentral spherical distribution υ
(ν2=2)
t (θ|δ) (8) with cos θδ = R/D, minus a factor of one,

accounting for the centrifugal force induced by the Moon–Earth system revolving around its center of
gravity. The equatorial bulges are not symmetric in this purely geometrical model. The noncentrality
parameter cos θδ is set to an unrealistic value of 0.2 to enhance the visualization of the geometrical
distribution of the tidal forces.

The horizontal tidal force component Th is thus simply given by the noncentral spher-
ical t distribution translation factor T(ν2=2)

t (θ|δ), as provided by Equation (4). One can
integrate this horizontal tidal force over the entire spherical shell by weighing it with the
central spherical distribution υ

(ν2=2)
t (θ|0) to account for the spherical geometry of the Earth.

Since the integrand to this integral corresponds to the noncentral spherical t distribution
υ
(ν2=2)
t (θ|δ) = T(ν2=2)

t (θ|δ) υ
(ν2=2)
t (θ|0) on S2, the tidal force integrates to one in our unit

system. In order for the system to be stationary, an opposing force must be opposed to
this integrated tidal force of one. The inertial centrifugal force originating from the joint
rotation of the Moon and Earth around their center of mass plays such a role. It is evaluated
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to be given by −Gm/D2 = −1 in our unit system [25], which we add to the normalized
horizontal tidal force Th above. We have plotted the resulting force field in Figure 5, with
the noncentrality parameter cos θδ set to an unrealistic value of 0.2 to enhance the visu-
alization of the geometrical distribution of the tidal forces. Unlike most illustrative tide
diagrams with symmetrical bulges found in the literature, our tide diagram, together with
its unsymmetrical equatorial water bulges, provides a more accurate visual depiction of the
expected asymmetry of the tidal forces resulting from purely geometrical considerations.

7. Discussion

We have seen that the univariate noncentral distributions can be constructed in a
modular fashion by multiplying their central distributions with specific translation factors.
Using geometrical arguments, we have found that the translation factors for the ultras-
pherical noncentral t, normal, F, and χ2 distributions stand for generating functions for the
Gegenbauer, Hermite, Jacobi, and Laguerre polynomial families, respectively, with their
central distributions standing for the corresponding polynomial family-defining weights.
These developments clearly link four of the most important classical continuous probability
distributions with the powerful orthogonal polynomial formalism. To the best of our
knowledge, the derivation of these translation factors and their identification as orthogonal
polynomial family-generating functions has not been carried out before.

Jaynes’ maximal entropy prior is obtained through the unconstrained minimization
of the Gibbs potential. In parametric Bayesian inference, the formal expression for the
Gibbs potential comprises an integral of the product of the empirical distribution’s entropic
convex dual λ(r) times the parametric kernel, or, equivalently, the likelihood function
ρ(r|ro). In the case of the ultraspherical noncentral distributions, the latter integral yields
discretized expansion coefficients of the entropic convex duals on orthogonal polynomial
bases. The determination of the entropic convex duals is thus reduced to the much simpler
and computationally economical determination of a few low-order orthogonal polynomial
coefficients. By invoking the moment problem and the duality principle, prior moments in
parametric space are equated with Bayes factors expansion coefficients over orthogonal
polynomial bases in random variable space. To the best of our knowledge, the expan-
sion and discretization of convex duals over orthogonal polynomial bases has not been
proposed before. In an approach which bears some similarities to our work, Alibrandi
and Ricciardi [26] proposed a moment-based approach, the use of a discretized kernel
set {ρ(r|ri)}N

i=1, and the use of Jaynes’ maximal entropy principle to determine the set’s
weighting factors {πi | ∑N

i=1 πi = 1}. While their kernel discretization procedure is an
ad hoc procedure, our kernel discretization is principled since it is based on the powerful
orthogonal polynomial formalism.

The machine learning community has begun to exploit the classical orthogonal poly-
nomial formalism. A non-exhaustive review identifies the use of orthogonal polynomials in
optical character recognition [27], in support vector machine kernel construction [28], and
in polynomial-based iteration methods for symmetric linear systems [29,30]. In a similar
vein, we hope to contribute the present formalism to both the statistical and the machine
learning communities.
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Abbreviations

The following abbreviations are used in this manuscript:

ANOVA analysis of variance
dof degrees of freedom
FDR false discovery rate
GWAS genome-wide association study
NHST null-hypothesis statistical testing
SNP single-nucleotide polymorphism
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