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Abstract: In the last decade, much attention has been focused on examining the nonlocality of various
quantum networks, which are fundamental for long-distance quantum communications. In this
paper, we consider the nonlocality of any forked tree-shaped network, where each node, respectively,
shares arbitrary number of bipartite sources with other nodes in the next “layer”. The Bell-type
inequalities for such quantum networks are obtained, which are, respectively, satisfied by all (¢, — 1)-
local correlations and all local correlations, where t,; denotes the total number of nodes in the network.
The maximal quantum violations of these inequalities and the robustness to noise in these networks
are also discussed. Our network can be seen as a generalization of some known quantum networks.

Keywords: quantum correlation; nonlocality; Bell inequality; quantum network

1. Introduction

Quantum correlation is one of the main characteristics that distinguishes quantum
mechanics from classical mechanics. In the last few decades, quantum nonlocality has been
studied extensively both in theory [1-3] and experiment [4—6]. It is found that quantum
nonlocality is a powerful resource in quantum information science, such as secure cryptog-
raphy [7,8], quantum key distribution [9], randomness certification [10], and distributed
computing [11]. Bell inequalities are often used to detect quantum nonlocality [12-14].
Violations of Bell inequalities imply the existence of nonlocal correlations.

Different from the usual Bell nonlocality, where entanglement is distributed from one
common source, the multi-locality in quantum networks features several independent
sources. By performing joint measurements, this leads to stronger correlations throughout
the whole network [15], which is fundamental for long-distance quantum communications.
Nonlocality of correlations generated in such networks was first observed in a bilocal
network [16-18]. Later, the authors in [18] obtained the bilocal inequalities for bilocal
networks, and the scholars in [19] explicitly examined quantum violations of the bilocal
inequalities for pure states and mixed states, respectively. Since then, the nonlocality of var-
ious quantum networks were explored, including chain-shaped networks [20], star-shaped
networks [21-23], triangle networks [24], and other networks in [25-32]. Furthermore,
stronger forms of network nonlocality were examined in [33-35].

The tree-tensor networks are also important quantum networks. They have wide
applications, such as in quantum simulations [36-39], entanglement transitions [40], and
quantum-assisted machine learning [41]. Recently, nonlocal correlations of a special class
of tree-tensor networks, so-called “two-forked” tree-shaped networks were studied in [42].
In this network, there are (2" — 1) parties (nodes) distributed in n “layers” (n > 2), where
each layer k (1 < k < n) has 25~ parties, and each party in the layer k shares a source with
another party in the layer k — 1 and with other two parties in the layer k + 1. Thus, this
network is a (2" — 1)-partite system with (2" — 2) independent sources.

The purpose of the present paper is to consider the nonlocality of any forked tree-
shaped network. In this tree-shaped network, t, parties are arranged in an n “layer”
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scenario (n > 2), and the (k, j) party in the layer k, respectively, shares a source with another
party in the layer k — 1 and with other lkj — lk(j—l) parties in the layer k+1(2 <k <n—1,
j = 1), where [y = 0 and Iy — lyj_1) is an arbitrary positive integer. Denote the total
number of parties in layer k by px (k = 1,2,---,n), satisfying p1 = 1. Write t, = p; +
-+ -+ pn. Thus, the whole network is a t,-partite system with (¢, — 1) independent sources.
In particular, if ly; — Ij_1) = 2 for all (k,j), this tree-shaped network reduces to the
network in [42].

The rest of this paper is organized as follows. In Section 2, we discuss any forked tree-
shaped network with t,, parties and (¢, — 1) independent sources. We explicitly examine the
nonlocality of the network for the case of n = 3 and generalize the results to arbitrary n > 3.
Moreover, the (t, — 1)-loca1 inequalities of the networks and quantum violations of the
corresponding inequalities for pure states and mixed states are obtained. Besides, we also
compare this network with some known quantum network scenarios. Some conclusions are
presented in Section 3. The detailed proofs of the main results are provided in Appendix A.

2. Nonlocality in Any Forked Tree-Shaped Network Scenario

In this section, we consider the nonlocality of a general tree-shaped network; see
Figure 1.

Figure 1. The general any forked tree-shaped network consists of ,, parties (AH, A2l .. AZp2 ASD
<o, A3 AM ... A"Pr) and t, — 1independent sources Sy, - - -, S; _1. Denote by x; and a; the
input and output of each party A’ (i = 11,21, - - -, npy), respectively.

This general tree-shaped network has n “layers” (n > 2), where each layer k has p;
parties (nodes) with p; = 1, say Alice k1 (A1), -- -, Alice kpy (A*Px), 1 < k < n; each
party A¥ in the layer k shares one source with another party in the layer k — 1 and with
lkj — Ix(j—1) parties in the layer k + 1, where Iy — ;1) is an arbitrary positive integer,
except that l11 = po > 1,1 < j < p, 2 <k <n-1,and [y = 0. It is clear that
lkpk = prr1, k=12,---,n—1. Write t;, = p; + p2 + -+ + pu. Thus, this general tree-
shaped quantum network concerns a f,-partite system with t, — 1 independent sources. In
addition, the t,;, — 1 independent sources Sy, - - - ,S;, 1 are characterized by independent
hidden variables Ay, - - - , A4, _1, respectively. Denote by x; and 4; the input and output of
party A’ (i = 11,21, - -, npy), respectively.

We say that the correlations in the tree-shaped network of Figure 1 are local if the joint
probability distribution satisfies

P(ay, a2, - rA(n—1)p,_q7Anls " Snp, | %11, %21, - 1 X(n—1)py_yr Xnls " + Xnp,)

= [ [P, A ) [P(arn|xan, Ay oo, Apy ) P2t X1, A, Apy it Apy4,)
o P(a(n_l)pn—l |x(n_1)pn—1'/\tnfl*l’/\t1171+l(n—1)(pn71—1)’ A1)
'P(an1|xn1/ /\t,,,l) ce P(ﬂnpﬂ |xnpy,//\t,ﬁl)]d)\l e 'd)‘tnfl}

(1)
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and moreover, if P(Aq,- -+, Ay, 1) in Equation (1) can be decomposed into
P(Ay, - Ap,—1) = Pr(M) - Py, —1(Ag,—1) with /Pi(Ai)dAi =1, i=12-,t, -1, (2)

then we say that the correlations in the tree-shaped network of Figure 1 are (t, — 1)-
local. Under the source independence restriction Equation (2), correlations that cannot be
decomposed into Equation (1) are said to be non-(t, — 1)-local.

2.1. (t3 — 1)-Local Network Scenario
If n = 3 in Figure 1, then it reduces to the network of Figure 2.

S /] \ Spty "z*'n*‘ S ety Sogar 7 L\ N Spen,
[\
[\
.- LI
Xy 8y Xary Qi X0 3,00 Ko, 8oty Ml X3p, 85,
Figure 2. For the case of n = 3, the any forked tree-shaped network consists of t3 par-

ties (A1, A2L, ..., AZr2 A8l ... A33) and (t3 — 1) independent sources Sy, - - - ,St,—1. Let
X11,%21, "+, X2p,, X31,*  * , X3py and a11,421, -+ ,a2p,,431, * -, A3p, be the corresponding input and
output of each party, respectively.

The network of Figure 2 is a f3-partite system with t3 — 1 independent sources, where
party Al shares p2 sources with parties A2 AZZ L AZP2; party A% shares 12]- — lz(]'_1) +1

sources with parties Al AS(IZ(J'—UH), s, A312f, wherej = 1,2,--- ,pp and Ipg = 0. Let
by, = p3, and then, t3 = 1+ p2 + p3.

To illustrate Figure 2, we give a concrete example. Let p, = 2, p3 = I = 7, and
Iy = 3. Then, we obtain the network of Figure 3, which is a 10-partite system with nine
independent sources.

For the case n = 3, the correlations obtained in the network of Figure 2 are called local
if the probability distribution can be decomposed as

P(a111a21/ e /a2p2/a31/ e 1a3p3|x111x21/ e 1x2p21x31/ e /x3p3)
= [ fdAr---dA 1 P(Ar, o Apo1) [Plann]xan, A, Ap,)
'P(a21 |x21//\1/Ap2+1/ o /Ap2+121) e P(a2pz|x2p2/)\r72/ /\P2+lz(p2—1)+l’ e //\t371)

3)
P(az1|x31,Ap, 1) - P(azp, |x3p,, Aty 1)1,

and are called (t3 — 1)-local if they have a decomposition form of Equation (3) with the
additional restriction

P(Ay, A2, A1) = Pr(A1)Pa(A2) - Pry—1(Ay—1)- (4)

Here, the output of every party depends on the corresponding input and all connected
sources. Correlations that do not meet Equations (3) and (4) are said to be non-(f3 — 1)-local.
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Figure 3. A tree-shaped network involves 10 parties, AN AZL A22 A3 ... A% and 9 sources, Sy,
-+, Sg. Denote by x11, xp1, X22, 31, - - -, X37 and a11, ap1, ayp, a3y, - - -, azy the input and output of
each party, respectively. Here, I11 =2,1p1 =3,Ip =7and pp =2, p3 =7,t; =1, tp =3, t3 = 10.

2.1.1. (t3 — 1)-Locality Inequality

In what follows, we consider the case that each party Al (i =11,21,---,3p3) has
binary input x;(€ {0,1}) with binary output a;(€ {0,1}), respectively. We develop in-
equalities that are fulfilled by all probability distributions satisfying Equations (3) and (4),
but which may be violated by measuring quantum states distributed in the tree-shaped
network of Figure 2.

Theorem 1. Any (t3 — 1)-local correlation in the tree-shaped network of Figure 2 must satisfy the
following inequalities:

L L . . .
|Ii1,“‘,it2,0| 3+ |Ij],"‘,jt2,1|p3 S ]-r Vlll T /ltzr]lr e r]tz € {011}/ (5)
where
1 Ky g1 a21 2 431 3p3
Iil(jl)""'itz(jfz)'k = o Z (=1) <Ai1(il)Ai2(jz) . 'Ai: (jit )Ax31 o AX3P3>’
X31,0 X3p, 22
11 421 ... A2P2 431 ... A3P3
<AX11 Ale Ax2p2 AX31 AX3P3 >
= Z (—1)’”P(u11,1121, T /a2p2/a31/ o /a3p3|x111x21/ T /x2p2/x31/ T /x3p3)/
11,821, A2py s
31, A3p,

ke {0,1},1 =Xx31+- X3y, m=ay+ax + - +agy, +an+- - +azp, A}c}l denotes the
observable for binary inputs x11 of party A, and A%l, e A,ch’z, A;gl, e, Aig; are similarly
defined.

Note that the subscript t, in Inegs. (5) indicates the total number of parties A1,
A%, ..., A2 By Theorem 1, we see that violation of Inegs. (5) for at least one possi-
ble (i1, ,it,, j1, - - - , jt,) guaranteeing the non-(t3 — 1)-local nature of the correlations
generated by the network of Figure 2. Besides, each of the above 222 inequalities is tight.

To see this, we give an explicit (3 — 1)-local decomposition, which is able to saturate
the bound. Consider the following strategy:

1, ifall :)Ll@"‘@/\pzr

P(ay|x11,A1, -+, Ap,) = {0 .
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1 ifay = (A @ Appr1 @@ /\P2+l21*1)/\102+’21’

P(a21|X21, /\l/ )\pz-‘rl!' o r/\p2+121) = {O, else,

P(”2Pz|x2pzf/\Pz')‘riﬁlz(pz—l)“' A1)
= 1, if A2p, = (/\Pz ® /\P2+lz(pz*1>+1 S At3_2)At3*l’
0, else,

1, ifﬂ3':/\ '@Tg,'x:),‘, .
P(as:|x3:, A Tai) = ] p2+j 9] Vi=1,2,---,ps.
(a35]x3j, Ap, 1, T37) {0, else, J p3
Here, A, are hidden variables of shared sources S, with Py (A, = 0) = 1 (m =

1,2,---,t3 —1),and T3; are sources of local randomness for party A% with Pj(T3j =0)=r
and Pi(3j =1) =1-r,r€[0,1] (j=1,2, -+, p3). A simple calculation gives I

i, ity 0 =

1
rP3 and Ly o iy 1 = (1 —r)Ps forany iy, ,it,, j1,- - ,jt, € {0,1}. Hence, |1 o7 +

1
|Ij1,-~,jt2,1 |’s =1, reaching the bound for all iy, - - - i, j1,- -, ji, € {0,1}.
As for the nonlocality correlations in the network of Figure 2, we give a set of Bell-

type inequalities.

i1, ity

Theorem 2. Every local correlation in the tree-shaped network of Figure 2 satisfies the following inequalities:

|I

v ing O ey 1l S 1 Vi o i iy € 40,15, (6)

where Iilr"'/it2/0 and Ijl/"‘/jtzzl are defined as in Theorem 1.

By Theorem 2, the violation of at least one of the 22 Ineqs.(6) guarantees that the
corresponding correlations generated by the network are nonlocal. Apparently, the set
of (t3 — 1)-local correlations is a subset of the set of local correlations in the network of
Figure 2.

For the proofs of Theorems 1 and 2, see Appendix A.

2.1.2. Quantum Violations of (t3 — 1)-Local Inequalities

Now, we consider the network of Figure 2 involving (t3 — 1) independent quantum
sources, each generating a bipartite quantum state. Then, the overall quantum state of this
network has the form

P=Papan By 2 OPa2gn B B gy @ B

A3P3
l2py ~la(pp—1) 1

with state space H = Hy 1 @ Hyzt @ -+ - @ H y2p, ® Hps1 @ - -+ ® H 4355, where Hyn =
HA%l ®---®HA% and H i = HA%,-®---®HA2,- 1,1’ = 1,---,p2. For simplicity,

bi=hi_1y+
we write

P=pPa11421 Q- QP 4114200 @ PA231 & -+ @ P 421 431 @ = QP 42p5 433

Once each party receives particles from its all-connecting sources, it performs suitable
measurement. The resulting joint probability distribution has the form

P(ay1, a1, -+ ,82p,, 831, -+, A3ps|X11, X201, * -, X2py, X31, 7+ + , X3p5)
= tr[(Mllll‘Xll ® Mﬂ21|JC21 ® e ® Mﬂ3p3‘X3p3)(pA11A21 ® pAllAZZ ® U ® pA2P2A3V3>]’
where M, |, denotes the specific measurement operator of party A corresponding to
the measurement choice x11 with the outcome 411, and other measurement operators have
similar meanings.
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In what follows, we examine quantum violations of the (t3 — 1)-local inequalities (5)
from pure states and mixed states, respectively.

Non-(t3-1)-local correlations from pure states: Firstly, let all (t3 — 1) sources pro-
duce any pure entangled states. Then, p 411421 can be written in the Schmidt basis as
Panipn = | P11 421) (P11 421 ] With |11 421) = b19|00) + bq1|11) and byp, by > 0, the nor-
malized two-qubit pure state shared by the parties A'! and A?!. Likewise, write p 411 42i =
|¢A11A2f><¢A11A2f|fVi €{2,-- pr}/ P 2 35 = |IPA2jA3kj>< A2i a3k ]| vje {12, /pZ}/kf €
{la(j—1) 1, Ipj}, where [t 411 420) = bjo|00) +bia[11) and [, 3} = ck0[00) + cx1[11)
are also written in the Schmidt basis with the corresponding positive coefficients

For party A!l, take the measurement A}! = ® 10 and A}l = ® X, for parties
- . N l 1 +1
A¥(i=1,--, pz) the corresponding measurement choices are A2’ = ®k2 1 2T ok and
bi—lyi 1
A%’ = ®k2 ' 1 21+ k . Here, Uk = 0y and 0’ = 0y for all k are Pauli matrices. Let the settings

of all parties A% (q =1,---,p3) correspond to any projective measurements in the Z-X
plane of the Bloch sphere. Thus, each measurement can be characterized by an angle. Write
the observables of A37 by qu = (sinay,0,cosay) - 7, Ai’q = (sin 041’7,0, Cos a;) - 0, where
¢ = (0x,0y,02) is the vector of Pauli matrices and ag, a € [0,27] forallg € {1,---, p3}.
Note that, if the above Schmidt bases differ from the computational basis, then it would be
sufficient to add local unitary rotations to recover the case we discuss here. Then, we have

2 3
<A61A%l . AOPZAgl L. A0P3> .
= tr{[® (@)@ (=0 Af)®- @ (00 A)")]
(panpgn ® - @ P11 4200 D P 21431 & -+ ®pA2p2A3p3)}

3
— sz tr[(U’z ® U'Z)pAqui]tr[(U'z ® Agl)pAzlAm] . ~tr[(0’z X A0p3)pAzp2A3p3]
— COSKxq1COSip---COS ap3.

For any x31,x32, -+, X3p; € {0,1}, we can follow similar calculations as above for
(ANAZ - AP A3 A3”3 )and (ATAZ ... AT AL - AT ). Therefore,
2 3
Io,.00 = 55 L (AJLAZY - AP A3L - Ax§;3>

X31,°* /X3pg

2 3 3
<A11A21 ”AOPZ(A81+A%1)"'(AOP3 +A1P3)>

T
2% (cosay +cosay) - - - (cosap, +cosay,)
and ) s
_ 1 X313y, (411 421 P2 431 p3
h,.a1= 2P3 Z (_1) " <A1 Al o 'A Ax31 o 'AX3V3>
X310 X3pg

2 3 3
= gelAl' AT AP (AT - AT (A - A

= 21 A(sinag —sina}) - - - (sinay, —sina

where A = bW ... pP2)cW) .. c(r3) > 0, b)) = 2bybyy, i € {1,---,pa}, @ = 2cq0Cq1,
g€ {1,---,ps}. Consequently,

P3>

a1
Stts—1)—tocal = o, 0017 + [l 11 1
= %|(cosay +cosaj) - (cosap, +cosay, )| 73
+3|A(siny —sinaf) - - - (sinay, — sinaj, )|73.

Write S, _1)_jocat = f(&1,47, -+, &ps, &}, ). To derive the maximum of differentiable
function f(aq, oc’l, S, zxps,vc;%), we calculate all the partial derivatives aTJ; =0, % =0 for
i=1,2,---,ps. It follows that the extremal points of f must satisfy the conditions &; = —a!

| = AVrs (j = - _ no_ 1
and [tang;| = A (i =1,2,---,p3). These force |cosw;| = |cosaj| = N and

1/p .
AT i=1,2,--

i : pu— i / = —
|sina;| = |sina| NS

-, p3. Therefore, the value of f at these extremal
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points is | cos ay| + A/P3| sinay| = /1 + A2/Ps. Comparing this value with the values of f
at all boundary points, it is easily seen that the maximum of S, _1)_jocal 18

St1)—tocal = V1+ 4713 > 1. (7)

Notice that tr[(c; ® o )p;] = tr[(ox ® az)pl] 0 hold for all i = A1A?L,...  A2P2A3ps,
1

1
P 4|1 ]], 73 are|Ip,... o,

Thus, other possible nonzero terms for |I;, ... ; 10 g L

|l 10 z il %, and | ... ,1,0|% + o, 01|73 P However, by similar discussions to
the above, one can obtain that these three values are less than 1.

Hence, if all (3 — 1) sources in the network of Figure 2 emit pure entangled states,
they necessarily violate the (t3 — 1)-local inequalities (5) and, thus, generate non-(t3 — 1)-
local correlations.

Non-(t3-1)-local correlations from mixed states: Now, we consider the case that all
the sources in the network of Figure 2 produce any mixed states.

Assume that the state p 411 421 shared by the parties Al! and A?! is a mixed state. Then,
it has the following form:

I@I4+74m - 0QI+1IR 7z - U—FZtA A 1’®(f]’),
ij

N

PA11 421 =

where ¢ = (0, 0y,02), 7 4u (7421) represents the Bloch vector of the reduced state of sub-
system Al (A2), and TATAT = (tlf?nAﬂ) with i,j € {x,y,z} is the correlation matrix.
TA]]AZ] TAHAZl _

By the polar decomposition, the correlation matrix can be written as

11 421 11 421 11 421 . . . 11 421
uA" A" RA" A7 where U4 4" is a unitary matrix and R4 47 = \/(TA“AH)JFTAHA21 > 0.

Denote by \/ TlAHAZl > \/ T2A11A21 > \/ T:{‘HAZI > 0 the three non-negative eigenvalues of
R All A21 )

For the other mixed states p 411 422, * =+, 0 411 g2, 0421431, " * = , 0 g20; 43p3, Shared by the
corresponding parties, they also have similar expressions to that of p 411 421, and the corre-
sponding matrices and the eigenvalues are, respectively, represented as

RA“A” _ \/(TAllAZi)+TA11A2i, \/TlAllAZi > \/T2A11A2i > \/Téanzi >0,

i 43k; . . . . . 3k . 3k . 3k
RAGA™NI _ \/(TAZJA3k/ )tTAZJAsk], \/TlAZfA > \/T2A21A > \/TéquA >0,
wherei € {1,2,-- ,po}, kj € {lyj_1y +1,--- ,Ipj},and j € {1,2,- -+, pa}.
Suppose that party Al performs measurements A}! = ®2 of, Al = @72 ok, We
consider the Z and X Bloch directions (on the first subsystem of party AH, connected to the
first subsystem of party A!) given by the eigenvectors of the matrix RA" 4% corresponding

to the two largest eigenvalues \/ AUAZ and \/ T respectively [19]. Similarly, we

use RA" A for aligning the ith subsystem of A'!, connected to the first subsystem of A%,
i=2,---,p2. Note that the Z and X axes used by the parties A and A% (i =1,---,p2)
may be different from each other. In this case, party A!! can perform different unitary
transformations to the p, qubits she/he shares with A?!, - - -, A%P2 before performing the
measurements. Likewise, we may assume the party A% (i=1,---,p>) has measurement

, Li—Ly; 141 byi—ly; 41
choices A3 = ®k2' 12 V7 ok and A% = ®k2 1 U6k For party AYM (g = 1,---,p3),
he/she performs projective measurements on the Z and X Bloch directions, which are
.
composed of the two eigenvectors with largest eigenvalues of the connected matrix RA™ A%

—/

(}/ < jq‘ < /Pz)- The:t is, Aglq = ¢;- ¢ and A?q = ¢; -0, where ¢; = (sinfg,0,cos ),
& = (smﬁq,O,cos ﬁq), Ba, By € [0,27].
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Now, we have

I()... _ % Z <A(1)1A%l L. A2P2A3l . _A3p3

X531, X3py 31 x3f’3>
_ T<AllAz1 __AZPz(A31 A31) ~~(A3p3+A?p3)>
1 1 Iy, —1 +1 . . .
= #((®2 1‘7)®(®1<2]J1r )@ ®(®kp21 ey @ (G +a) d]e-

®[(0p3 +Cp3 ") d))

= Htr{[(®2(F @)@ (2@ (1 +&") F) @ & (0z ® (s + ) - T)]
(a2 @ - @ P 411 429, D P2 31 @ @ P 429, p3p3) }

= 2%3’“[(‘72 ® ‘TZ)PAllAZl] e tr[(0z @ 02)p g1 g2 JtE[(02 @ (G +G) - F)p g2 4]

o tl‘[(U’Z ® (C;3 + C;3/) ’ &)pA2P2A3P3]

o

=
|
N

P3
_ 1 All A21 A11A2p2 A21 A31 Asz A3p3 ’
= VT T T S 1(C05/5]+C05,5)
j=
and
_ 1 X31 -+t 11 521 2p2 431 3p3
L..11= 5% Y  (-1)™ 3p3 <A1 A7 ...A Ax31 . ..Ax3p3>
X31,7 X3pg
_ 11 421 2p2 1 231 31 3p3 3p3
- 2P3<A A "A1 (AO _A1)"'(Ao _Al )>
P3
11 221 11 A2p: 21 431 2py A3p . .
= [T T AT ] (s sin ),
j=1
and so
1 1
S(t3—1)—local = ‘IO,'”,O,O 1|73
_ 1 A11A21 A11A2p2 A21A31 A2p2A P3
= 2(f T & T )2”3| n(cos/3]+cos/3 )I”S

]_

1 1
_‘_%(TZAHAH o T2A11A2P2T2A21A31 L T2AZP2A3P3)ZP3 | I—Il(Slnﬁ] _ sinlgﬂps .
j=

A calculation gives the maximum

2 1

max _ AITA2L  _ATIAZP2 _A21A31  _A2P2 ABP3 N 3o

(t3—1)—local — ) (7 T T T )73 (8)
i=1

The detailed proof for Equation (8) is in Appendix A.
It is easily verified that the above Equation (8) reduces to Equation (7) for the case

. . 11 21
of pure states discussed in the above. In fact, for pure states, we have {1 4~ = ... =
11 42pp 21 431 2py A3p3 11 421 11 42py
T{q A = T{A‘ A = ... = T{q A = 1 and TiA A = (b(l))2, cee, TiA A = (b(pz))zl

172"121‘431 = (cM)2,..., TZAZPZ A3 _ (c(P3))2, which implies that Equation (8) can be reduced
to Equation (7).

From Equation (8), ST (e ax 1)—local = 1 implies that these states violate the (3 — 1)-locality
inequalities (5). Since all these eigenvalues TZ.AHAH, . lAZf’z A3P3 (i =1,2) belong to [0, 1]

([23] Lemma 3), by [21] Lemma 1, Equation (8) implies

1
max A11A21 LU ATARY _ANABL AP ABP3 N G
(t3—1)—local < \/Z L T T ) 2

11 p21 11 p21 11 A2p: 11 A2p 21 A31 21 731
(A 4 AT [ A g fA
1
.\/TlA2p2A3P3 +TA2P2A3P3 )p2+p3

KR ( max . .., cmax max .. gmax
Allp21 AL A2P2° A21 431 ° A2P2 A3P3

IN

) Pz}rps
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where the expressions SP* = /7Y 4+ 7Y represent the maximal CHSH value for the
corresponding state pxy by the Horodecki criterion in [43]. From the above inequality, we
know that once the states altogether violate the (3 — 1)-locality inequalities, at least one
of these states necessarily violates the CHSH inequality. However, for each state violating
the CHSH inequality, this does not imply that it necessarily violates the (f3 — 1)-locality
inequalities. We illustrate this case by the specific network of Figure 3. For example, let
nine sources in Figure 3 all produce the following state:

0.05 0 0 0
0 045 =035 O
0 —-035 045 0 !
0 .0

0 0 0.05

o= 31+ 59wt + ) =

where |pF) = (|01) £]10))/+/2. Tt is easily obtained that 7y = 0.64 and 7, = 0.49. For this
single state, the maximal CHSH value is S™** ~ 1.06 > 1. However, through distributing
nine copies of this state in the network of Figure 3, the maximal value of the corresponding

nine-local inequality is Sg*% | ~ 0.98 < 1.

Remark 1. To achieve the maximal quantum violation of the (t3 — 1)-local correlation inequalities
(5), all possible quantum measurements should be considered. However, this is almost impossible
because the calculation is very difficult and complicated. Therefore, for the network of Figure 2,
we take separable measurements for parties AV and A% and any measurements for parties A%,
In this quantum strategy, the maximal violation Sﬁ‘:ﬁl)ilocal is obtained, which gives a sufficient
condition that Sl(lt‘:fl)_local > 1 ensures that the state p violates the inequality (5) and, thus,
is non-(t3 — 1)-local. Of course, there are other strategies of the measurement choices that are
computable, and some of them may be better than our strategy, though we have not discovered them
yet. This is an interesting problem that is worth being explored later.

2.1.3. Resistance to White Noise
Now, suppose that each source S; (i = 1,-- - ,t3 — 1) in Figure 2 produces Bell state

|¢F) = (|00) + |11))/+/2 with white noise of probability 1 — v;. Then, the state it actually
produces is the Werner state of the form

piler) = o9 ) (97| + (1 —oi) .

Let the input of party Al be {A}! = ®I2 of, Al = ®2 0k} For party A% (j =

bj=hj-+1
Oy C’x}'

Suppose the inputs of each party A% (g = 1,2, - - -, p3) are measurements {A3q = (o +
0x)/V?2, Aiq = (02 — 0x)/V/2}. Denoting by V = Hfi}l v; as the overall visibility, we

obtain ... g0 = (%)%V, L..11= (%)pﬂ/, and so,

. 2i lyi—=lyi_1y+1 2i
1,---, p2), the measurement choices are {A0] = ®k2]: 1 20-1 (f;‘, A1] =

o 1
\o,... 0,073 4 |I1,... 11|73 = V2vi/ps,

That is to say, V > (\%)VS implies non-(t3 — 1)-local correlations. Assuming that all

the (t3 — 1) sources emit states with the same noise parameter v; = v, we thus see that a

1

7 for

r3
single source necessarily satisfies v > (%) -1, which is a little greater than v/ >
the Werner state to violate the CHSH inequality.

2.2. (ty — 1)-Local Network Scenario

In this subsection, we consider the nonlocality of the general tree-shaped network of
Figure 1. With similar arguments, if each party A’ (i = 11,21, - - - ,np,) has binary input
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x;(€ {0,1}) with binary output a;(€ {0,1}), then we obtain the following results for any
n>2.

Theorem 3. All (t, — 1)-local correlations generated by the tree-shaped network of Figure 1
necessarily satisfy the following inequalities:

|1i

i, 40

Pn _l_l ]1, 1|Pn < ]' Vl1,- t /itn_lljl/' t ’jtn—l S {0/1}/ (9)

Aty

and the corresponding local correlations satisfy the following inequalities:

|Ii1/'“rif i | < ]' vlll e ’itn—lljll e ’jtn—l € {0/1} (10)
where for k € {0,1},
Iil(jl),"',itn_l (jtn—l)’k
— 1 _ k-(x,,1+~~~+xnp ) 11 (” 1)l7n 1 nl . . A”Pn
2 xnl,»;xnpn( 1) " <A11 (1) Azt” 1(]fn 1)Ax"] ann>l
<A11 A .A(”*llpn—lAnl . .A”Pn >
X11 x(nfl)pn71 Xn1 Xnpn
- Z (_1)mp(all/ tt /a(}’lfl)pn_llal’lll Tt /ai’lpn |x]]/ tt /x(n—l)pn_llxnl/ e /xl’lpn )/
a11, Anpy

m = ap + -+ anp,, and A;]_ denotes the observable for binary inputs x; of party Al, i =
11,21,22,- - -, npy.

Note that the subscript t,,_1 in Inegs. (9) and (10) represents the total number of
parties Al A2l A L AL A=Dpu1 n particular, if n = 3, then
Inequalities (9) and (10) reduce to Inequalities (5) and (6), respectively. By Theorem 3,
violating Inequalities (9) for at least one possible (i, -+, ity 1 J1s jtn—i) implies the
non-(t, — 1)-local nature of the general tree-shaped networks in Figure 1. The proof of
Theorem 3 is provided in Appendix A.

Next, assume that all sources in Figure 1 produce pure entangled states |¢;) (1],
|pi) = bjp|00) + bll |11), written in the Schmidt basis, with positive coefficients by and

bp,i=1,2,--- — 1. Let the measurements of A1l be {A11 = ® k A11 Pz k}
For parties A’/ w1th i=23,---,n—1landj=1,2,---,p; they have the same measure-
Lii—1; +l Lii—lii +l
ment choices { A = ® TV ok Al] ®, """ ok}. Here, o = 0, and 0¥ = 0 for
any k. For the partles AM (g = 1 2 -, Pn), they perform projective measurements
denoted by {Ap? = (sinay,0,cosa,) -77, ALl = (sinag,0,cosag) - 7}, where ag, a; €
[0, 277]. With similar arguments to that of Equation (7), one obtams Iy... 00 = 2,1,n (cosaq +
cosay) - (cosap, +cosap, ) and .11 = sA(sinag — sina) - - - (sinay, — sin ay.),
where

A =bWp@ . pltn—1) 5 o

1
+

pli) = 2bjobi,i=1,2,--- ,t, — 1. Therefore, the maximum of S(tn—l)—local = |Ip,... 0,

L,
|, 1] P ds
SI(I;:?Xl —local = Vv 14 A2/ > 1. (11)

That is to say, all pure entangled states distributed in the network of Figure 1 indicate
the non-(t, — 1)-local correlations.

Finally, we consider that all sources in Figure 1 produce any mixed states p;, i =

1,2,-- —1. Let T' be the correlation matrix of p; and ’L’l( ), 2( i) the two larger non-negative

eigenvalues of (THT!,i=1,2,- — 1. Let party Al perform measurements { A}l =
li'_li 1 /7

@2 ok, Al = @7 1(7"} party A¥f perform measurements {A] = ®, """ of, A =

l l-

i(j—

1
®k,1 nt k} (i=23--,n—-1,j=1,2,--,p;); and party A" have measurement
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choices {A;" = (sinBy,0,cos By) - 7, A7 = (sin By, 0,cos By) - 7} with Bg, B € [0,27]
(9 =1,2,---,pu). By calculations, we obtain

1 )
Io,. .00 = 55 GRS R RRTEE A q(cosﬁi + cos ;)
1=
and )
1 — n . )
L,.11= 2Pn T2(1)72(2)Tz(3) : "Tzw 1)1_[(51“/31' — sin ;).

i=1
Following the analogous proof process of Equation (8), we have that the maximal

1 1
pn |IL...,1’1|”" is

value of S(t,,fl)flocal = |IO,"'/0,0

B -toet = V(1T 00+ (@D D, (1)
When n = 3, Equations (11) and (12) reduce to Equations (7) and (8). By Equation (12),

max | > 1implies the non-(t, — 1)-local correlations.

S
(tn—1)—loca

Besides, if all sources in Figure 1, respectively, distribute Werner states with visibilities

01,0, , 04,1, then we take the inputs of At {All = ®£2:10’§, Al = ®52:10’§}; the inputs
L 17 li'_li 1 17 l,“—li 1 . .

of AT {A] = & V"V ok Al =@V ek (=23 ,n—1,j=12,p);

and the inputs of A" {Ay" = (0= +0x) /2, A} = (02 — 0x) /V/2}. Let the overall visibility

beV = Hfgl v;. A calculation gives I ... 09 = (%)P”V and ;... 11 = (%)p” V, and so,

= 2V,

1
Lo, o0l P + |1, 11

Hence, if V > (\%)P", then the inequalities (9) will be violated, demonstrating non-
(tn — 1)-local correlations in Figure 1.

2.3. Comparing Any Forked Tree-Shaped Network with Other Networks

In this subsection, we discuss the relationships of multi-local inequalities between
any forked tree-shaped network of Figure 1 and a bilocal network, chain-shaped network,
star-shaped network, and two-forked tree-shaped network.

In fact, when n = 2 and p; = 2, the network of Figure 1 reduces to a bilocal network and
the (t,-1)-local Ineq. (5) reduces to the bilocal Ineq. (20) in [18]. When py = --- = p, =2,
the network of Figure 1 reduces to the chain-shaped network and Ineq. (5) reduces to the
(2n—2)-local Ineq. (16) in [20]. When n = 2, the network of Figure 1 reduces to a star-shaped
network and Ineq. (5) reduces to the py-local Ineq. (7) in [21]. Moreover, if [; — lk(j—l) =2
holds for any (k, j), then the network of Figure 1 reduces to a two-forked tree-shaped
network and Ineq. (5) reduces to the (2" — 2)-local Ineq. (16) in [42]. See Table 1. Therefore,
from this point of view, any forked tree-shaped network can be seen as a generalization of
these networks.
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Table 1. Comparison of multi-local inequalities between any forked tree-shaped network and
other networks.

Networks Multi-Local Inequalities Relations
1
I . 4
any forked tree-shaped I, ’l'"*l'OL
|Iflr"‘/ft,,,1:1|p” <1
. 1 1
bilocal [Li 0|2 + |1j1,1‘§ <1 n=2,pp=2
1
I L 2
chain-shaped I, ’12”’3’01 o P2 = =pn=2
‘Ijlr'l"/]‘Zn—S:l 2 1§ 1
star-shaped L, 0|72 + |1].]/1 |2 <1 n=2
1
two-forked tree-shaped liyeipa 10 . I — Ik(j—1) =2
|Ij1 N — 177 <1
’ 7jon —17

3. Discussions

In this work, we discussed the nonlocality of a kind of important quantum network:
any forked tree-shaped network, in which each node, respectively, shares an arbitrary
number of bipartite sources with other nodes in the next “layer”. This network contains
(tn — 1) independent bipartite sources and t, noninteracting parties (n > 2). The “two-
forked” tree-shaped networks discussed in [42] are special tree-shaped networks. In
addition, if n = 2, the networks are in fact the py-local star networks introduced in [21].
If pp = - - - = py = 2, the networks are reduced to the chain networks introduced in [20].
We gave a detailed discussion for the case of n = 3, i.e., a tree-shaped network scenario
with t3 particles and (t3 — 1) independent sources. Concretely, we gave the inequalities
satisfied by all (t3 — 1)-local correlations, proved that all pure entangled states violate
these (f3 — 1)-local inequalities, obtained a necessary condition for mixed states to violate
these inequalities, and explored the relation between the (t3 — 1)-locality correlation and
locality correlation in this quantum network. Finally, we generalized these results to the
general t,-partite tree-shaped networks. Note that the tree-shaped networks examined
here just involve bipartite quantum states. The nonlocality of tree-shaped networks with
multipartite states deserves further research.
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ysis, L.Y.; writing—original draft preparation, L.Y.; writing—review and editing, X.Q. and J.H.;
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(12171290, 12071336) and Fund Program for the Scientific Activities of Selected Returned Overseas
Professionals in Shanxi Province (20200011).
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Appendix A

To prove Theorem 1, the following lemma is needed.

Lemma A1 ([21] Lemma 1). Assume that xff are non-negative real numbers, i =1,2,--- ,n, and
k=1,2,---,m. Then,

i(ﬁx?)l/n < ﬁ(z x{g)l/n‘

k=1 i=1 i=1 k=1
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Proof of Theorem 1. By the assumption, all joint probability distributions have a (t3 — 1)-
local decomposition form satisfying Equations (3) and (4). Firstly, take iy = - -+ = is, =
j1=-++=jt, = 0. Then,

IO _ - E <A(1)1A%l . A2P2A31 L. A3P3

X31 X3p3 >
X317 X3pg

and

1 2 3
oo =gy B (1 AR AT AY, AT,

X31,7 X3pg

Write
<A}C}l>)‘1/"'r)\p2 = 2<_1>”11P(a11|x11,/\1, e //\pz)/

a1

<AJZC;1>/\1r)‘pz+1r“‘f)‘p = Z(—l)”le(a21|x21,/\1,)\p2+1, T ’AP2+121)’
a

2+

2
<Ax§1§2>)‘P2'/\p2+lz(p271)+1""r)‘tg—l = Z (—1)“21”2 P(azr’z|x2P2’/\pz’)\lﬂzﬁ-lz(pz,l)-&-l; e ,/\t3—1)/

%2p,

x3] Appti — Z a3]P a3]|x3], P2+]) Vi=1,---,ps.

113]
~ 11 21
By quuatlons (3) and (4) and the facts that | (A )A],A..,;\p2| <1,[(A§ >A1,Ap2+1,~-,7\p2+121| <
P
1, (A 2>Ap2,A,,2+,2( 1)+1,<-~,A,3_1| < 1, we have
o, 00l = | [+ [PLAM) - Pyt (A —1) (AT DAL 2y (AT MMy 1 Ay, T
2p P33 3j
{4 2>’\P2’)‘P2+’2(nz—1)+1""”\‘3’1 j1;11(<A0 Mgy F AT IA, ) dAL - d A
< g5 [P(M) Ptrl(/\trl)|<A61>A1,...,Apz||<A21>A1,Ap2+1,m Apytigg |7
2p P 3
1{4q 2>’\l’2')‘vz+72(p2—1)“' iyl jl;Il (A0 A0+ <A N ApyajldAL A
1 P3 3j
< o[ [ Pi(M) o Pyoa(Ag 1) H (A A, T (AV) ApysjldAL -+ dAy
_ B S Pyt DA 2, AV p2+,|dAp2+j
= 2 )

j=1

Similarly, one has

3j 3j
Ap e iAo — (AT |dA, L
" 1| < H 2+] P2+])|< 0 > po+i < 1 > p2+]| p2tj ]

2
By Lemma A1, we can obtain
1
o, 00l " + [lo,... 0,117 , , |
2 (A My A ML A A, =, | L
< H [ Ppytj(Apyij)( ey 2 4 L #uz) )dAp, 4173

|-

y
f z+] p2+] ) max{|(A >Ap2+j‘r|<A1]>Ap2+]-|}d}\p2+j] <L

With similar discussions, Inequality (5) also holds for any other values of iy, - - -, it,, j1,
o jn(€{0,1}). O
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Proof of Theorem 2. Forany iy, - - ,it,, j1, -+ ,jt, € {0,1}, we can obtain

1 2 3 3
Ii1,~~~,it2,0 = 2%<A}11A1221 ... AitZZ(Agl + A“;’l) - (A0P3 + A1P3)>

and
1 11 421 2p2 231 31 3p 3p
Ij1,~~',]}2,1 = <Aj1 A]-2 .. .A],tZZ(AO — A7) - (A P —A7)).

Here, we use similar symbols as those in the proof of Theorem 1. Note that | <A}11(].1))

21 2p2
/\1""'/\m| =1 ‘<Ai2(f2)>’\1'/\r72+1""’/\Pz+121| =L |< itz(ftz)>)‘P2’)‘Pz+’2(pzfl)“’m’A’S*l|

< 1. By Equation (3) and a similar discussion to that in the proof of Theorem 1, we have

1 P3 3 3
S 2% / e /P(All e //\t371)j];{|<AO]>/\p2+j =+ <A1]>)Lp2+j|d)\1 e d)\t?),l

|1;

1 ity 0

and

1 S 3j
Gy il < 2%/.../p(;\l,... /Afs—l)l—!KAO Ve — (AT 1dAL - dAy, .
/:

Consequently,

|Ii1,~~,1}2/0| + |I/'1,“'/]}2/1|

A [ [P(Ay - A ) TT((AY AV AY —(AY

ws [ [P trl)l_[l(|< 0 Mgy T AT DA, 1+ (A, — (AT, 1)
=

N

dAy - dAy
p3 3i 3i
[ JP(A - //\t3—1)jl;IlmaX{KAo]))npzﬂ-L (AT )n,, ,; [FdAL - dA 1 < 1.

O

Proof of Equation (8). Note that

1
P3

1
[T, o0l 73 + [T, 11

S(t3—l)—local =

11 421 11 42 21 431 2p5 43p3\ s 3 1
= (A AT R 25 T] (cos  + cos )|
]:
1 P3 1
—‘-%(TZAHAH ~«-T2AHA2P2T2AZlA31 ...TZAZF,2A3P3)2P3 | ITl(Slnﬁ]—slnﬁ”pS
]:

For convenience, write f(B1,B7, -, Bps, ﬁlps) = S(t3-1)—local- 10 maximize the func-
tion f, calculating all the partial derivatives dg f = dg f = 0 for j, i €{1,2,---,p3}, one
j

obtains that the extreme points of f must satisfy

11 221 11 42 21 431 2py A3p3 \ 5o
( AVA ”'TZA APZTZA A ...721‘\’”2Ap3)2n3

T
/ 2 .
B; = —pB; and |tanB;| = Vi=1,---,ps.
] ﬁ] ] B > 3 1 ’ s
All A21 L AL A%P2 __A21 p31 . A2P2 A3P3\ 3
(7§ T Gt Gt RE
These imply
11 421 11 42 21 431 2py A3p3\ L
L (1AA TlA A’”ZTlAA ...7114"2Ap3)n3
| cos Bj| = 1

2 All 421 A1l A2P) __ A21 A31 A2P2 A3P3 N 52
iil(Ti ...Ti Ti ...Ti )P3
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and

1
All A2l AN A%P2 A1 431 A%P2 ABP3 \ py
(2 ...Tz TZ ...Tz )P3

1
2 All A21 AL A2 421 A31 A2P2 A3P3 N 1o
Ei:1(Ti TZ Ti ...Ti )P?,

|sin B;| =

Hence, the corresponding function value of these extreme points is

2 1
11 21 11 42 21 431 2py A3
§ (TZA A TZA A”ZTiA A “.TIAPZA%);@'
i=1

V=1,

/P3-

By comparing this function value with those of all endpoints, it follows that the

maximum of f = Sy, _1)_jocal 18

2 1

max o All A21 A1 A2P2 __A21 A31 A2P2 A3P3N 1o

(t3—1)—local — Z(Ti B T T )pS ’
i=1

O

Proof of Theorem 3. Assume that Equation (1) holds. Write

<A}C}1>)\1/"'z)\p2 = Z(_l)allp(a11|x11r/\l/ o /)\pz)/

a1

< (n=1)py—1 >
*(n-1)p,_q tnfl_I’At1171+l(n—l)(pn71—l)/”.’At”_l

_ _1\*n-1)p,_
= X ()P, 4 X n-1)p, oy A1 A,y

Pp_1-1)7
An-1)p,_4 !

c.. /At,,—l)/

<AZ1]1(k>/\tn7171+k = Z(_l)ankp(ank|xnk/ Aty,,lflJrk)r Vk=1,--- s Pn.

Ak

By Equation (1), for any i1, - - - , i, ,,j1,- - ,ji, , € {0,1}, we have

—1)p,— B
iy, iy 0l = EoEE <Al111...A(n Pu-t gnl | pMP )|

it Xn1 Xnpy
Xnl, " Xnpy n—1

L Y (=n)mtet o [ [ P(Ay, e, Ay, —1)[P(a11]in, Ag, -

Sty B11,-
Plagu1yp, lit A1 At g,y A1) P (@01, Ag, ) -
“Planp, |xnp,, At,—1)]dAy - - dAy, 1]

e L [ JPO e A ) (A A,

St
'<A§:j)p"4> R YV T (AR A, - (AR A, dAr - d
= ge [ PO, Ay (A DA,
A ey (A DA, (AT, )

(A" a1+ (AP, )dA - dAy, |

)

A1l

S 2% { o )f P(All Tt //\tnfl)‘<A1111>/\1,"',)\p2‘ e
n—1)pu— 1 1
| <Al'¢"71 1> tn—l*1’)\%—1”(;«,71)(?}171,1)/"'f)\fnfl ‘ | <A8 >Atn—1 + <A‘711 >/\f”71 | e
| <A(y)lpn>)\ty,—1 + <A;lflpn>/\tn71 |d/\1 U d/\t,,—l
npy, npn
< g [ PO A ) AGY A, (AT, AT L+ (AT,

WAy e-dAy
Pn
= 2% f T f P(Alf T '/\fnfl) kljl ‘<A8k>)\;n7171+k + <A111k>)\1"7171+k|d)‘1 o 'd)‘tn*l
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and
e 71 n— n
|1j1'.“’j“n—1'1‘ - |2% X, Zx (71)"”1* o <A]111 o A]({’ 1 U 1A¥z}1 T Aanan
nl, " Xnpy n—
_ |2% 2 (_1)Xn1+'-.+XV1pn 2 (_1)ﬂ11+'-4+ﬂﬂﬂn f - fp()\l, - r/\ty,fl)
xnl/"'/xrzpy, all/‘“/anpn
[Planljn Ao Ap) - Plag—yp, it A1 Ay, oy M)
Plan|xm, At, ) - Planp,|Xnp,, A, —1)]dA1 - - dAg, 1]
= |211m . ;xw (—1)%m e+, f . fp(/\ll. .. r)\tn—1)<A}11>)\1,..-,A,,2 ..
(”*1)15’ - 1 Npn
.<Ajtn,1 ' 1> [»1—1’1’/\%—1“(”71)(””71,1)/"'//\tn—l <A2nl>/\in,] T <Axnpn >/\fnfldA1 T dAtnfl‘
= lgw [ JPA A ) (A,
(n=1)pu- 1 1
'<A]'r,171 ") ’nfl’1’A'Mfl“(nfl)(p,l,l—l)""’/\t”ﬂ ((Ag >)ltn71 - <A? >/\¢,,71) T
(A" Y a, = (ATP) A, )dAy - dAy, |
< g [ JPO A DA
(n—=1)pu—
| <Aft,,,1 1>)‘tn—l71’/\’71—1+I(n—1)(pn7171),“. At |
npy npn
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as desired.
Moreover, if Equation (2) also holds, we have
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that is, Inequality (9) holds. [
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