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Abstract: Preserving confidentiality of individuals in data disclosure is a prime concern for public and
private organizations. The main challenge in the data disclosure problem is to release data such that
misuse by intruders is avoided while providing useful information to legitimate users for analysis. We
propose an information theoretic architecture for the data disclosure problem. The proposed framework
consists of developing a maximum entropy (ME) model based on statistical information of the actual data,
testing the adequacy of the ME model, producing disclosure data from the ME model and quantifying
the discrepancy between the actual and the disclosure data. The architecture can be used both for
univariate and multivariate data disclosure. We illustrate the implementation of our approach using
financial data.

Keywords: data confidentiality; data utility; differential privacy; disclosure risk; Kullback–Leibler
information; maximum entropy

1. Introduction

Preserving confidentiality of individuals is an important issue for both public and
private agencies that have the responsibility to share data with the public. On one hand,
public agencies such as the Federal Housing Association (FHA) or private institutions such
as banks, hospitals, and insurance companies are expected to share the data they have for
the purposes of data analysis and research, but at the same time they are required to protect
the privacy of the individuals. Both the public and private agencies owning such data are
faced with the challenge of determining how to release them for public use. This problem
is referred to as the data disclosure problem.

The data disclosure problem is one aspect of the several issues of the general problem
of preserving confidentiality in data analysis. It comes about because in certain societies,
notably the U.S., data that is gathered using taxpayer resources has to be made available to
the public, but under the caveat that the released data does not betray public trust vis a vis
a compromise of confidentiality. As a consequence, government agencies strike a balance
by “masking” the data prior to its release, but in a manner that endeavors to preserve the
essential information that the data contains. This is because the released data is often used
to make public policy decisions in areas such as economics, finance, health, housing and
trade, to name a few. The driving motto here is that the released data should contain a
certain amount of the truth, but not the whole truth. The essence of the problem therefore
boils down to determining how much of the truth should be revealed and how the rest
should be concealed so that there is a fair balance between the data’s value (or utility) to a
legitimate user and the data’s confidentiality. These issues are not limited only to public
institutions but are also relevant for private organizations in financial, health and insurance
industries that deal with confidential data on a day-to-day basis. For example, Franconi
and Stander [1] and Ichim [2] discuss data disclosure issues for business microdata.
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To implement the paradigm of calculated disclosure, a plethora of approaches have
been proposed in literatures of various disciplines including computer science, statistical
science, management science and decision science. An overview of some of these literatures
is given in the sequel. By and large, many of the proposed approaches are, de facto, purely
statistical in nature, whereas a handful have a decision-theoretic character. Of the latter,
some have an information-theoretic basis and the focus of this paper falls in this general
category. A complete treatment of statistical confidentiality and related topics can be found
in the book by Duncan et al. [3]. Recent advances on data privacy and confidentiality are
discussed in the special issue edited by Liu et al. [4].

The main challenge in the data disclosure problem is to release data such as to avoid
misuse by intruders while providing useful information to legitimate users for analysis.
Duncan and Lambert [5] point out that disclosure can be of three types: Identity disclosure
(i.e., identifying a respondent from the released data), attribute disclosure (i.e., obtaining
information about a respondent from the released data), and inferential disclosure (i.e.,
deducing new information about a respondent from the released data). Thus, as noted by
Kadane et al. [6], an individual’s identity can be revealed by linking, matching or looking
for unique characteristics in the released data.

An approach to warding off the above obstacles is to mask the data before release.
Fienberg [7] characterizes data masking as “The disclosure limitation process of transform-
ing a data set when there is a functional relationship (possibly stochastic) between the
masked values and the original data”. Data masking strategies tend to be statistical, such
as releasing a sample of the data, including simulated data in the original data, exclud-
ing certain attributes, perturbing the data with noise, swapping the data, releasing only
simulated data, etc.; see for example, [8–15]. Fienberg [7] classifies the above methods as
suppression, recoding, sampling and simulation. A detailed review of these methods can
be found in [16] and a more recent discussion is given in [17].

Data masking cannot ensure confidentiality with certainty. As a consequence, “agen-
cies that release masked data try to maintain an acceptable disclosure risk level rather
than a zero risk” [5]. Thus, the focus of recent work is on developing methods for limiting
disclosure risk and balancing the trade-off between confidentiality and data utility. For
example, Hu et al. [18] considered utility-risk trade-off in the release of microdata. As a
result, a consideration of both the decision theoretic as well as the statistical approaches for
addressing the data disclosure problem have become germane. Since decision theoretic
procedures entail the use of utility functions, some of the literature in this area pertains to a
discussion of meaning of utility functions. For example, Karr et al. [19] define and compare
data utility in terms of the Kullback–Leibler (KL) divergence between the parametric em-
pirical distributions of the original and the released data. In others, such as the paper by
Keller-McNulty et al. [20], data utility is specified in terms of entropy. Sankar et al. [21] also
considered information theoretic measures to describe utility-risk trade-off.

Trottini [22,23] provided a comprehensive decision-theoretic approach for balancing
the trade-off between preserving confidentiality and data utility. In recognition of the fact
that maximizing confidentiality and maximizing data utility are conflicting objectives, the
author formalizes the problem using a multiattribute utility theory framework in the sense
of Keeney and Raiffa [24]. In so doing, he focuses on discrete tabular data and proposes a
decision-theoretic framework for developing data releasing strategies for different levels
of confidentiality and data utility. Trottini’s measure of data utility is the closeness of the
masked data to the original data and his approach for balancing the trade-off between
data utility and confidentiality entails a use of multiattribute utility theory. Trottini’s
work is conceptual; for example, there is no specification of the utility of confidentiality as
considered by Keller-McNulty et al. [20]. A detailed review on data utility and disclosure
risk is given by Cox et al. [25] where the authors point out the ambiguity involved in
definition of these two concepts as well as their measurement.

A concept related to disclosure risk is the differential privacy (DP) standard proposed
originally by Dwork [26] which has gained recent attention in the literature; see [27]. Dwork [26]
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defines DP as “. . . differential privacy ensures that the removal or addition of a single database
item does not (substantially) affect the outcome of any analysis”. As noted by Snoke and McKay-
Bowen [27], DP offers only a partial solution to the data disclosure problem; that is, it provides
a “rigorous definition of privacy loss”. As a result, the DP “methodology has drawbacks when
it comes to preserving the utility of the data or carrying out valid statistical inference”.

Polettini [28] describes a maximum entropy (ME) approach for arriving upon a distri-
bution from which the data to be released can be simulated. Polettini’s approach is geared
towards determining the ME distribution which retains the key information moment fea-
tures of the data. Polettini [28] does not include data on continuous variables and does not
address the issue of compatibility of the ME distribution with the actual data.

The present paper proposes an information architecture that provides a comprehensive
framework for the data disclosure problem. The main contribution of the paper is a novel
and systematic integration of some information-theoretic ideas that have appeared in the
data disclosure literature along with utilizing an Euclidean statistical measure which thus far
has not been used for the disclosure problem. The architecture extends: (a) Polettini’s [28]
work to the full force of ME modeling as is articulated in [29], (b) Karr et al.’s [19] use of the
Kullback–Leibler divergence between the multivariate normal models for the actual and
disclosure data to the full force of the information divergence between any pair of probability
distributions, and (c) Keller-McNulty et al.’s [20] idea of using an entropy-based measures
to describe data utility to the use of information divergence and Euclidean measures for
assessing the utility/risk of the data disclosure. The proposed approach addresses the utility-
risk trade-off inherent in the data disclosure without suffering from the drawbacks of the DP
based methods. Furthermore, the use of ME models, which are parametric, for generating
release data, enables us to avoid increased privacy risks associated with nonparametric
approaches; see Awan et al. [30]. However, we utilize parametric, semi-parametric and
nonparametric Euclidean measures for evaluating the chosen ME model and the generated
disclosure data. Step-by-step implementation of the proposed architecture is described and
illustrated by application to two financial data sets.

The paper is organized as follows. Section 2 describes the information architecture for
the data disclosure problem. Section 3 presents the essentials of ME modeling and measures
used for implementing the architecture. Section 4 illustrates the architecture using two
financial data sets, mortgage default data and bank accounts data. Concluding remarks
are given in Section 5. An Appendix A tabulates examples of univariate and bivariate ME
models and their information moments.

2. Information Architecture

The information architecture for data disclosure is based on the view that the data is
generated according to an unknown distribution. We denote the cumulative distribution
function (CDF) of the data-generating distribution by F, its probability density function
(PDF) relative to a measure ν by f and the associated random vector by X = (X1, . . . , Xp).
We assume minimal information about f in terms of the following class of distributions:

Ω = { f : E f [Tj(X)] = θj, j = 1, · · · , J}. (1)

The set of information moments, T = {T1, . . . , TJ}, are also unknown and has to be
explored from the data.

The architecture combines two basic elements of statistics with two basic elements of
information theory. The exploratory data analysis promoted by Tukey in 1970s uses statistical
graphics to summarize main characteristics of the data distribution. Probability models are
produced for the unknown data-generating distribution to infer about the reproducibility of
essentially similar data. The entropy of a probability distribution, information divergence
between probability distributions and distance between two data sets are three basic elements
of the proposed architecture. Combining the statistical and information-theoretic elements
serves the purpose of learning from data xi = (x1i, . . . , xpi), i = 1, . . . , n to produce a sample
of n secure data points for disclosure, x∗ = (x∗1i, . . . , x∗pi). For example, in our first application
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xi = (x1i, x2i) are data on two sensitive items, the amount of the mortgage loan and the income
of the borrower, which must be protected from intruders who want to identify individuals.

The architecture produces a statistical replica x∗ from a probability model F∗ for F
with PDF f ∗ and includes multiple inspections for checking accuracy of the model and
replica. The architecture aims to produce disclosure data with the following properties:

(a) The essential statistical aspects, such as underlying distribution and information
moments of the actual and disclosure data sets are about the same.

(b) The individual points in the actual and disclosure data sets are not similar.

Figure 1 depicts the plan of the information architecture with sixteen tasks which are
enumerated to be completed sequentially, and six decision points with “Yes” and “No”
outcomes are shown. Tasks in the upper panel are for developing a reliable ME model for
the data and those in the lower panel are for developing reliable disclosure data. Tasks
shown in the column under the node for data are for the ingredients of ME models and
producing disclosure data. All other tasks are for checking accuracy. Colors and shapes of
nodes group types of the tasks. Green rhombuses are decision nodes. Blue ellipses show the
actual and disclosure data. Blue rectangles are for information moments and data summaries
that provide ME models. The ME PDFs are highlighted in golden ellipses. Yellow rectangles
are tasks that provide materials for quality control which are shown in orange rectangles.

Decision Raw data Data information moments ME model Auxiliary task Inspection

Start
Data

yn×p = [yik]

1

Exploratory data analysis
Transformations, summaries, & plots

2

Select transformations xik = gk(yik)
xn×p = [xik]

3

11

12

4

Select information moments
T = {T1, . . . , TJ}

5

Compute Tj ∈ T
θj =

1
n ∑ Tj(xi)

7

8

14

Select a
nonparametric PDF f̃

6

Compute Tj ∈ T
θ̃j = Ẽ[Tj(X)]

7Inspect θ̃j

d(θj , θ̃j) ≤ εj?

No

Yes
f̃ reliable

9

Compute
ME PDF f ∗

9

16

Inspect PDF f ∗

D( f̃ : f ∗) ≤ κ?Yes

No

f ∗reliable

10

Generate
disclosure data

x∗

11 12

13

Inspect CDF F∗

E(x, x∗) ≤ κ?
Yes

x∗confirms
F∗

No

or

Inspect x∗

πd(xi , x∗h) < ε?

Yes

No

x∗reliable
Compute Tj ∈ T
θ∗j = 1

n ∑ Tj(x∗i )

15

14Inspect θ∗j
d(θj , θ∗j ) ≤ εj?

Yes

No

θ∗j reliable
Compute

ME PDF f ∗∗
16 Inspect f ∗∗

D( f ∗∗: f ∗) ≤ κ?
Yes

No

Release
x∗

End

Figure 1. Plan of the data disclosure; numbers indicate sequence of tasks; d is Euclidean distance; D
is information divergence; E is energy statistic; π is proportion of distances between all possible pairs
of points in the actual and disclosure data.
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Task 1 starts the process with an exploratory data analysis of the raw data. Various
distribution plots and scatter plots are produced for the following purposes.

(a) To explore the distributional features of the data that provide clues for
selecting a transformation for specifying the set of information moments T
for an ME model f ∗, as a parametric representation of f , which is used for
generating a replica for disclosure.

(b) To explore a suitable nonparametric PDF f̃ that represents f for checking
the adequacy of f ∗.

Task 2 specifies transformations of the original data y to x, where x = gk(y), hereafter
is called the actual data, k = 1, . . . , p are one-to-one functions on < which trans-
forms the coordinates of y. The identity function gk(yk) = yk is included when a
transformation is not needed.

Task 3 specifies the set of information moments for deriving the parametric ME model
f ∗ to represent f .

Task 4 provides a nonparametric PDF f̃ , for representing f . For continuous variables,
f̃ is a multivariate kernel density estimate or histogram. For the discrete and
categorical variables, f̃ is the distribution of relative frequencies. This distribution
serves as an intermediary for examining suitability of the information moments
for developing an ME model for the data. This mediation is necessary for the
continuous variables because the information moments of the raw data given
in (2) are based on the usual empirical distribution, which does not possess a
continuous PDF for confirming a continuous ME model.

Task 5 computes the specified moment information. For example, equal weights of data
points give

θj =
1
n

n

∑
i=1

Tj(xi), j = 1, . . . , J. (2)

These information moments can include usual moments such as various power
and cross-product moments, quantiles such as median where Tj(x) is an indicator
function, and/or more complex type such as those shown in Tables A1–A3 in the
Appendix A [29,31]. In the case of frequency tables, Tj(x), j = 1, . . . , J represent
univariate and multivariate marginal frequencies of contingency tables. The
information architecture for disclosure accomplishes data protection via creating
a statistical copy x∗ of x for disclosure, both of which possess approximately the
same information moments as the actual data.

Task 6 computes the information moments of f̃ given by

θ̃j =
∫

Tj(x) f̃ (x)dν(x), j = 1, . . . , J; (3)

for continuous variables dν(x) = dx and for discrete variables dν(x) = 1 and the
integral changes to summation. The idea is that if f̃ is a good representation of
the information characteristics of the data then its information moments should
be approximately the same as those given in (2).

Task 7 has two input links to inspect the Euclidean distance |θj − θ̃j| between each
information moment of the nonparametric PDF and the corresponding data
information moment. If any θ̃j is not confirmed, f̃ has to be revised and the
information moments of the revised f̃ should be examined. The revision can
include, for example, changing the grid used for computing the information
moments and the bandwidth of the kernel density, type of the kernel function, the
bins of histogram or the type of empirical PDF. If all individual θ̃j’s are confirmed,
then the empirical PDF is reliable for using to inspect the adequacy of the ME
model for the data. The first decision node shown at the right side of this node in
Figure 1) displays this conclusion.
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Task 8 computes the ME model for x, shown as f ∗, implied by the set of data information
moments {θj, j = 1, . . . , J}.

Task 9 has two input links to inspect the information divergence between the multi-
variate PDF of the ME model, f ∗ and the nonparametric PDF that represents
the data. The multivariate divergence examines entire set of moments T and
lower dimensional divergence measures examine respective subsets of marginal
information moments. This task serves two purposes.

(a) The information divergence measure between two distributions is inclusive
of all information moments of reflected of f̃ and f ∗, hence provides an
aggregate measure of discrepancy between their sets of moments.

(b) The information divergence examines the adequacy of the ME PDF for
representing the nonparametric PDF of the data.

If f ∗ is not confirmed, then selection of information moments has to be revised
for which revisiting data exploratory analysis becomes necessary. The revision
can include reexamining transformations, selection of the information moments
and the nonparametric PDF. Upon the revision, all preceding nodes have to be
revisited. If f ∗ is confirmed, the role of f̃ ends. We conclude that the information
moments {Tj, j = 1, . . . , J} represent the statistical characteristics of the data.
By the Entropy Concentration Theorem (Jaynes [32]), if the data generating
distribution is governed by the selected information moments, then the ME
distribution closely approximates types of distributions that satisfy the moments.
This property makes f ∗ reliable for inferential purposes. The second decision
node shown below ME model in Figure 1 displays this conclusion.
Then the process proceeds with using the ME model for generating disclo-
sure data.

Task 10 uses f ∗ to generate the statistical copy x∗ for disclosure, which will be subject to
four inspections for approval to release.

Task 11 uses x∗ to reaffirm the ME model via the energy statistic E(x, x∗) which measures
the difference between two distributions based on the pairwise Euclidean distance
on <p, defined by

d(xi, zh) = |xi − zh|, for all , i, h = 1, . . . , n. (4)

Distances between data points in the actual and disclosure data sets, d(xi, x∗h),
are assessed in terms of the difference between their average and the average of
distances within each data set d(xi, xh) and d(x∗i , x∗h). For measuring the model
fit E(x, x∗) should be low. If the value of E(x, x∗) is not negligible, a new set of
data has to be generated and reexamined. If regeneration does not produce a
satisfactory result, selection of information moments has to be revised for which
revisiting data exploratory analysis becomes necessary. Upon the revision, all
preceding nodes must be revisited. If the ME model is confirmed, the process
continues with further inspections of the disclosure data. The third decision node
shown below the disclosure data in Figure 1 displays this conclusion.

Task 12 inspects the proportion of distances between the points in the actual and disclo-
sure data,

πd(xi, x∗h) =
1
n2

n

∑
i=1

n

∑
h=1

I(d(xi, x∗h) ≤ d0) < ε, (5)

where I(A) is the indicator function of condition A. This measure is used for
controlling the disclosure risk of x∗. The disclosure data is synthetic, generated
from the ME model for the actual data. There is not a one-to-one correspondence
between the points in the two data sets. However, there still can be a disclosure
risk, for example, when each disclosure data point is very close to an actual
data point. If πd(xi, x∗h) does not produce a satisfactory result, a new set of
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disclosure data ought to be generated and reexamined. If x∗ is confirmed, the
fourth decision node reflects this conclusion and the process continues with the
information moments.

Task 13 computes the information moments Tj ∈ T of the disclosure data, denoted as θ∗j .
As noted before, T includes marginal and joint moments of various types.

Task 14 uses two input links for |θj − θ∗j | to inspect each information moment of the
release data with the corresponding information moment of the actual data.
If the closeness of the pairs of all information moments is not confirmed, a
new version of disclosure data has to be generated and reexamined through
Tasks 11–14. If θ∗j are confirmed individually, then the set of disclosure data
moments {θ∗j , j = 1, . . . , J} is reliable. The fifth decision node at the east of
this node in Figure 1 displays this conclusion and the process proceeds with
computation of the ME model for the disclosure data for further inspections.

Task 15 computes the ME model f ∗∗ implied by the set of data information moments
{θ∗j , j = 1, . . . , J} for the inspection the entire set as a whole.

Task 16 serves the purpose of examining the information discrepancy between f ∗∗ and
f ∗. The multivariate divergence examines entire T and the marginal divergence
measures examines subsets of marginal information moments. If the closeness of
the two ME models is not confirmed, a new set of data has to be generated and
reexamined through Tasks 11–16. With approval of f ∗∗ the sixth decision node in
southeast corner of Figure 1 displays the following conclusion: x∗ is a statistical
replica of x and ready for disclosure. Then the process ends.

3. Implementation of the Information Architecture
3.1. ME Information Moments

The exploratory data analysis task of the information architecture provides a variety of
plots and summary measures that reveal various distributional aspects of the data. These
tools provide evidence about specifying a set of potential information moments that lead to
a model for the data distribution.

The ME model in (1) is defined by f ∗ that maximizes Shannon entropy,

H(X) = H( f ) = −
∫

f (x) log f (x)dν(x), (6)

provided that the integral is finite. If f ∗ ∈ Ω exists, it is unique and is in the following form

f ∗(x) = C(λ)e−λ1T1(x)−···−λJ TJ(x), (7)

where the vector of natural parameters λ = (λ1, . . . , λJ) consists of the Lagrange multipliers
determined by the moment information constraints in (1) and

C(λ) =
[∫

e−λ1T1(x)−···−λJ TJ(x)dν(x)
]−1

(8)

is the normalizing factor of the PDF. The ME model exists if the integral in (8) is finite. The
entropy of the ME model (7) is

H( f ∗) = − log C(λ) +
J

∑
j=1

λjθj. (9)

Any distribution with finite entropy can be characterized as the ME model in a class
of distributions which can be identified by representing its density in the form of (7) [29].
These authors give an example which underscores the importance checking the finiteness
of H( f ). Several examples of ME models and information moments are listed in Table A1
of Appendix A.
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Transformation of data facilitate the search for information moments. In general, a
transformation decreases entropy [33]. In the discrete case, entropy is invariant under
one-to-one transformations, but the continuous entropy is not invariant under all one-to-
one transformations. Entropy transformation formula is available, see [29,34]. Aulogiaris
and Zografos [35] and Zografos [36] have used the relationship H(FY) = H(FX) + log |A|
for the affine transformation Y = AX + b, |A| 6= 0 to deduce the relationship between
characterizations of F∗Y and F∗X for some particular distributions. H(X) is invariant under
translation and under orthonormal transformation, H(AX) = H(X), where A is d × d
matrix with determinant |A| = 1. Ebrahimi et al. [29] provided a result for identifying the
class of distributions where the distribution of an arbitrary one-to-one transformation of X
is the ME model. Examples of transformations of several ME models included in Table A1
are shown in Table A2 of Appendix A. A formula for computing entropy of transformed
variable is available, see for example, [29].

Information measures are functional of PDFs which apply to the multivariate case
as well. Marginal distributions of a multivariate distribution can be in the same family
or in different families. Table A3 gives examples of varieties of bivariate ME models.
The bivariate normal, Pareto, Farlie-Gumbel-Morgenstern (F-G-M), Dirichlet distributions
extends to multivariate case. McKay’s bivariate gamma is an example where both marginal
distributions are gamma while the support of one is bounded below by the other. The
gamma–gamma distribution is an example where the marginal distributions are in a
different family.

More generally, univariate distributions in the same and different families can be joined
through various link functions to form multivariate distributions (see, for example, [37]). A
widely used such method is through a copula. The use of copula in data disclosure problem
is discussed in [38]. The copula of a bivariate distribution F is defined by

C(u1, u2) = F(F−1
1 (u1), F−1

2 (u2)), uk ∈ [0, 1], (10)

where fk(u) = 1. The CDFs of normal and F-G-M PDFs shown in Table A3 are well-known
as Gaussian and F-G-M copulas. The survival copula is defined similarly in terms of a
bivariate survival function. The survival function of Pareto PDF shown in Table A3 is
well-known as Clayton copula.

3.2. Discrepancy Measures

The information architecture depicted in Figure 1 uses the information divergence for
assessing model adequacy and Euclidean distance for the discrepancy between the actual
and disclosure data sets. Various discrepancy measures can be used for these purposes. We
describe our preferred measures.

3.2.1. Energy Statistic

The squared energy distance between the CDFs of the distribution that generated the
actual data x and the CDF of the ME distribution that we used to generate the disclosure
data x∗ is defined by

D2(X, X∗) = 2E|X − X∗| −E|X − Xc| −E|X∗ − X∗c | ≥ 0, (11)

where X and Xc are identically distributed as F; the inequality becomes an equality if and
only if F = F∗ The energy statistic is defined by the empirical version of (11); see Rizzo and
Székely [39] for a review of energy distance/statistic.

Baringhaus and Franz [40] proposed a nonparametric statistic in terms of the empirical
version of (11) for testing the equality of two CDFs. Their test for two sets of equal size n is
given by

E(x, x∗) =
1
n

(
n

∑
i=1

n

∑
h=1
|xi − x∗h| −

1
2

[
n

∑
i=1

n

∑
h=1
|xi − xh|+

n

∑
i=1

n

∑
h=1
|x∗i − x∗h|

])
≥ 0, (12)
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where the inequality becomes an equality if and only if F = F∗. This statistic measures the
discrepancy between two distributions by the average Euclidean distance between points
in the two samples as compared with the averages of distances between points within each
data set. As such, this test is analogous to the analysis of variance in statistics.

Baringhaus and Franz [40] called (12) Cramér statistic, apparently as a multivariate
extension of the Cramér-von Mises statistic. We call (12) as energy statistic due to the fact
that it is n/2 times the energy statistic between two equal size samples.

3.2.2. Kullback–Leibler Information Divergence

The basic information divergence between two distributions is the Kullback–Leibler
(KL) divergence (relative entropy) defined by

K( f1 : f2) =
∫

f1(x) log
f1(x)
f2(x)

dν(x) ≥ 0, (13)

provided that f2(x) = 0 only if f1(x) = 0 (absolute continuity condition). The inequality
becomes an equality if and only if f1(x) = f2(x), almost everywhere.

The statistical information aspect of K( f1 : f2) is rooted in Bayes theorem. Let M1 and
M2 be two models that specify f1(x) = f (x|M1) and f2(x) = f (x|M2) for the distribution
of X with prior probabilities P(M1) and P(M2). Then, by Bayes theorem, K( f1 : f2) is the
expected difference between the posterior and prior log-odds in favor of M1 against M2
(Kullback and Leibler [41]).

In the information architecture this measure serves for examining the discrepancy
between the nonparametric PDF f̃ and the ME PDF f ∗ (Task 9) and the discrepancy between
the PDF of the ME model for the data f ∗ and the PDF of the ME model for the disclosure
data f ∗∗ (Task 16). The KL divergence can be used for two multivariate PDFs, as well as
for the univariate case. K( f1 : f2) is not symmetric. However, symmetrized versions of it,
such as Jeffreys divergence, are available in the literature. An important property of the KL
divergence is invariance under the one-to-one transformations, allowing us to implement
inspections of the ME models in the information architecture in terms of xi = gk(yi).

The information index of two continuous PDFs is defined by the normalized informa-
tion measure,

δ(K) = 1− e−2K( f : f ∗), 0 ≤ δ2(K) ≤ 1, (14)

where values close to zero imply that the ME model provides a good fit f . McCulloch [42]
defined a calibration in terms of the difficulty of discrimination between a fair and a biased
coin with probability q ≥ 0.5, where

q(K) = 0.5[1 + δ2(K)1/2]. (15)

The independence between random variables is defined by the condition where their
joint distribution factors into the product of their marginal distributions. It is well known
that the association indices such as the product moment correlation, Spearman’s rank
correlation and Kendall’s tau fail to reveal various forms of dependence [43]. Dependence
is measured by the divergence between the joint distribution and the independent model.
In the information architecture dependence between variables is measured by the mutual
information defined by the KL divergence between the joint PDF and the product of
marginal PDFs. For a bivariate distribution f with marginals fk, k = 1, 2 the mutual
information is defined by

M( f ) = M(X1, X2) = K( f : f1 f2) (16)

= H( f1) + H( f2)− H( f ). (17)
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M(X1, X2) ≥ 0, where the equality holds if and only if the variables are independent.
The information index of dependence is

δ2(M) = 1− exp{−2M}. (18)

For a multivariate distribution, various mutual information measures of dependence
are available. For example,

M(X1, X2, X3) = H( f1) + H( f2) + H( f3)− H( f ) (19)

M[X1, (X2, X3)] = H( f1) + H( f23)− H( f ). (20)

3.3. Semi-Parametric Measures

Computations of the information moments of the nonparametric PDF f̃ and the
information divergence K( f̃ : f ∗) are based on numerical integration which is implemented
on a grid. Consider a bivariate application problem. Partition the support by a set of
grid points:

{(ξ1a, ξ2b)}, a = 0, . . . , A, b = 0, . . . , B, (21)

where (ξ10, ξ20) = inf{(x1, x2) : F(x1, x2) ≈ 0}, (ξ1A, ξ2B) = inf{(x1, x2) : F(x1, x2) ≈ 1}.
Let the increments for each variable remain constant denoted by w1 = ξ1(a+1) − ξ1a,
w2 = ξ2(b+1) − ξ2b, a = 0, . . . , A, b = 0, . . . , B. Then the trapezoid numerical integration of
the bivariate nonparametric density f̃ gives

P̃(X1 ∈ w1, X2 ∈ w2) ≈ f̃ (x1, x2)w1w2, (22)

which on a countable partition may not sum to one, exactly. The normalized probabilities
are obtained by

P̃ab ≈
f̃ (ξ1a, ξ2b)

A
∑

a=1

B
∑

b=1
f̃ (ξ1a, ξ2b)

. (23)

The information moments of f̃ are approximated by

θ̃j ≈
A

∑
a=1

B

∑
b=1

T(ξ1a, ξ2b)P̃ab. (24)

The approximate probability under f ∗, denoted by P∗ab, are computed similarly as
in (23) and the KL divergences between f̃ and f ∗ is computed on the grid as follows:

K( f̃ : f ∗) ≈
A

∑
a=1

B

∑
b=1

P̃ab log
P̃ab

P̃∗ab
(25)

The mutual information of a nonparametric PDF can be approximated either by (16) or
by approximating entropies in (17). The entropy of f̃ can be approximated by the histogram
entropy estimate of [44] given by

H( f̃ ) ≈ −
A

∑
a=1

B

∑
b=1

P̃ab log P̃ab + log(w1w2) (26)

The marginal entropies in (17) can be approximated using the marginal distributions
of the bivariate distribution P̃ = [P̃ab].

4. Disclosure of Financial Data

Financial data such as income, loan amount, bank account balance and deposits
provide highly sensitive information. The distributions of these variables are generally
skewed and in some cases are heavy tailed. The large values of these variables are easily
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identifiable. Addition of noise to the data retains these characteristics. In what follows, we
use two examples to illustrate applications of the proposed information architecture.

4.1. Mortgage Data

Soyer and Xu [45] considered mortgage default data provided by FHA. The data
consists of 400 observations on sensitive variables such as the income of the individual (Y1)
and the loan amount (Y2). These variables are important in modeling the time to default
of mortgages, but they also carry a risk of disclosure. Implementation of the information
architecture is as follows.

4.1.1. Exploratory Analysis

Our exploratory analysis of this data is depicted in Figure 2. The left panel shows
the scatter plot of the data with the marginal PDFs obtained by the kernel density es-
timate. A high-income data point is clearly identifiable and the marginal distributions
are highly skewed. The marginal and bivariate plots data suggest considering logarithm
transformation of the variables, which is common in analysis of financial data. The scatter
plot with the marginal PDFs for log transformed data are shown in the right panel of
Figure 2. This scatter plot is nearly elliptical, except for an outlying point and the PDFs are
nearly symmetric. These plots suggest considering the bivariate normal distribution for
(x1, x2) = (log y1, log y2).
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Figure 2. Plots of original and log transformed mortgage data.

4.1.2. Information Moments and ME Model

Table A3 gives the information moments as the first two marginal means and the
cross-product moment of the logarithm of the two variables. The selected information
moments are

µk =
∫

xk f (x)dx, k = 1, 2, (27)

σkh =
∫
(xk − µk)(xh − µh) f (x)dx, k, h = 1, 2. (28)

The ME model for the transformed variables is the bivariate normal with PDF f ∗(x) =
N(µ, Σ), where

µ =

[
µ1
µ2

]
, Σ =

[
σ11 ρσ1σ2

ρσ1σ2 σ22

]
, ρ =

σ12

σ1σ2
, σk =

√
σkk. (29)

Table 1 reports univariate and bivariate statistics for implementing the tasks shown in
the upper panel of Figure 1. The first column gives the information moments of the log-
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transformed data and the second column gives the corresponding parameters of the kernel
estimate. The corresponding measures are close. Theoretically, the mean of a kernel PDF
is the same as the sample mean, however the variance and covariance include correction
terms as follows:

σkj = vkj + hkhjκ2, (30)

where vkj is the sample moment estimate of the variance, hk and hh are bandwidths for the
variables and κ2 is the variance of the kernel function for each variable. We used the rule of
thumbs bandwidth, hk = 1.06σkn−1/5, k = 1, 2 and the product Gaussian kernel function
where κ2 = 1. The marginal and bivariate entropies of the ME model are computed using

H( f ∗) = 1 + log(2π) +
1
2

log |Σ|, (31)

where |Σ| is the determinant of the covariance matrix of f . The entropies for the kernel
PDF are obtained using the approximate formula (26) and the KL information divergence
shown in the table is computed using (25). From these results we can see that the normal
density is a reasonably good fit to the log transformed data.

Table 1. Information moments of log-transformed mortgage data and kernel PDF and information
divergence between the kernel and ME PDFs.

Information Moment Entropy KL Divergence K Index Coin
Actual Kernel H( f∗) H( f̃ ) K( f̃ : f∗) δ2(K) q(K)

Loan 0.563 0.564 0.009 0.017 0.565
Mean 11.117 11.111
Variance 0.180 0.189

Income 0.594 0.609 0.016 0.031 0.588
Mean 10.394 10.389
Variance 0.192 0.203

Bivariate 0.925 0.866 0.072 0.134 0.683
Covariance 0.123 0.118

4.1.3. Disclosure Data and Inspections

We generate 400 pairs of data points from the ME model for disclosure and proceed
with inspections to determine its quality as being a nontrivial replica of the actual data.
Table 2 reports univariate and bivariate statistics for implementing the tasks 10–13 in
Figure 1. The information moments of the two data sets are close to each other. Table 2
also gives the univariate and bivariate energy statistics and the fractions of univariate and
bivariate Euclidean distances which are below 0.01. The energy statistics are at acceptable
levels, according to 1000 simulations of the Cramér statistics [40]. Fractions of univariate
and bivariate Euclidean distances which are below 0.01 are negligible.

Table 2. Information moments and Euclidean measures for log-transformed mortgage data and
disclosure data.

Information Moment Energy Stat Euclidean Dist
Actual Disclosure E(x, x∗) πd(xi, x∗h) < 0.01

Loan 0.134 0.027
Mean 11.117 11.115
Variance 0.180 0.188

Income 0.065 0.026
Mean 10.394 10.397
Variance 0.192 0.191

Bivariate 0.201 <0.001
Covariance 0.123 0.119
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The left panel of Figure 3 shows the scatter plots of the actual and disclosure data,
with the respective regression lines. It can be seen that the mass of actual data is close to
the mass of the disclosure data, while there is not a one-to-one correspondence between the
two sets. The actual data point with the highest income disappears in the disclosure data.
The regression relationships, which are inclusive of all five information moments of the
two data sets, are about the same.
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Figure 3. Scatter plots and regression lines of the actual and information architecture disclosure
data with unadjusted and adjusted moments and disclosure data created by adding 100% noise and
adjusted moments.

Muralidhar et al. [13], in context of preserving confidentiality, considered including
noise in the actual data and stipulated that marginal and joint summary measures of
confidential attributes must be the same before and after perturbation. Moment adjustment
is straightforward for this case. The middle panel of Figure 3 shows the corresponding
plots for the moment-adjusted disclosure data. Features of this data are essentially the
same as the unadjusted data. The right panel of Figure 3 shows the corresponding plots
for the 100% noise disclosure data. While the mass of actual data is close to the mass of
disclosure data, the noisy point corresponding to the actual data point with the highest
income is clearly identifiable. (The noise added data shown here is chosen as a typical case
from several replications of the process). One may include stronger noise, which raises
the question of extensive noise domination. We should add that information moment-
preserving transformation is straightforward when T consists of mean and covariances.
This approach does not apply when T includes nonlinear functions or x is a nonlinear
transformation of the original data y. Furthermore, Muralidhar et al. [13] also stipulated
that confidential attributes must be the same before and after perturbation, but also noted
that this feature does not hold beyond the normal distribution case. These issues limit
applicability of this option to cases when the ME model is multivariate normal. We
should also add that the first and second moments may not be defined for some important
distributions like the Pareto distribution.

The information moments of disclosure data reported in Table 2 imply a bivariate
normal distribution for implementing the tasks 14–16 in Figure 1. Figure 4 shows plots of
the marginal CDFs of ME models for the actual data and the empirical CDFs of the actual
data for each variable. The three CDFs of each variable are hardly distinguishable. (We also
inspected the Kolmogorov–Smirnov distances between each pair of the respective variables
in the actual and disclosure data and found them to be negligible). Figure 5 shows plots of
the bivariate kernel PDF and bivariate PDFs for the two ME models. The kernel PDF looks
like a rough version of the ME PDF plots and the ME PDFs are hardly distinguishable from
each other.
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Figure 4. Empirical CDFs of the mortgage and disclosure data and the ME CDF of the actual data.
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Figure 5. Bivariate kernel and ME densities of log-loan and log-income.

Table 3 gives the results for the lower panel of Figure 1 which compare of the univariate
and bivariate ME distributions for the actual and disclosure data. These results are obtained
using known formulas for information measures of normal distribution. The mutual
information is computed using the entropy Formula (17). This measure for the bivariate
normal ME model can also be computed using the correlation coefficient

M(X1, X2) = −
1
2

log(1− ρ2), (32)

which gives the normalized index δ2(X1, X2) = ρ2. The divergence between the two
bivariate normal ME models is found by

K( f ∗∗ : f ∗) =
1
2
(µ1 − µ2)

′Σ−1
2 (µ1 − µ2) +

1
2

[
Tr
(
Σ1Σ−1

2
)
− log

∣∣Σ1Σ−1
2

∣∣− 2
]
, (33)

where the subscripts indicate the position of the PDFs in K(·, ·) and Tr(·) denotes the trace.
The results given in Table 3 suggest that the ME model for disclosure data preserves the
statistical characteristics of the original data.

By the invariance of the KL divergence under one-to-one transformations, the infor-
mation divergence and the mutual information measures reported in Table 3 apply to the
data in the original dollar scale. However, the entropies shown in the table require adjust-
ments according to entropy transformation formula. For xk = log yk, the transformation
formula gives

H(Yk) = H(Xk) + µk, k = 1, 2, (34)

H(Y1, Y2) = M(X1, X2) + H(X1, X2) + µ1 + µ2. (35)
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Table 3. Information measures of the ME models for the mortgage data and disclosure data.

Entropy KL Divergence K Index Coin
H( f∗) H( f∗∗) K( f∗∗ : f∗) δ2(K) q(K)

Loan 0.563 0.583 <0.001 0.001 0.514
Income 0.595 0.593 <0.001 <0.001 0.504
Bivariate 868 0.923 0.004 0.007 0.542
Mutual info 0.290 0.253
M index 0.440 0.397
Coin index 0.832 0.815

4.2. Bank Data

The data consists of sensitive variables such as the total amount of asset (Y1) and
the customer relationship score (Y2), of the individuals which are considered here. These
variables are important in financial modeling, but they also carry a risk of disclosure.
Implementation of the information architecture is as follows.

4.2.1. Exploratory Analysis

As in the previous example, our exploratory analysis of this data is depicted in Figure 6.
The left panel shows the scatter plot of the data with the marginal PDFs obtained by the
kernel density estimate. Mass of the data is concentrated near the origin and the marginal
distributions are highly skewed. Like the mortgage data case, the marginal and bivariate
plots of data suggest considering logarithm transformations of the variables. The scatter
plot with the marginal PDFs for log transformed data are shown in the right panel of
Figure 6. The PDFs of log transformed data are nearly symmetric, however, unlike the
mortgage data case, this scatter plot is not elliptical. These plots suggest considering a
non-elliptical bivariate distribution with symmetric marginals for the log transformed data
(x1, x2) = (log y1, log y2).
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Figure 6. Plots of original and log transformed Bank data.

4.2.2. Information Moments and ME Model

We consider a bivariate logistic model for the log transformed data which is the location-
scale transformation of the standard bivariate logistic distribution given in Table A3; the
location and scale parameters of the tabulated model are µk = 0 and λk = 1, k = 1, 2,
respectively. Table A3 gives the following information moments:∫

xk f (x)dx = 0, k = 1, 2, (36)∫ ∫
log(1 + e−x1 + e−x2) f (x1, x2)dx1dx2 = θ3. (37)
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We use the location-scale transformation of the standard logistic model and obtain its
information moments by applying the location-scale transformation shown in Table A2.

The data information moments are computed using the means of log-transformed
variables and the following relationship between the scale parameters and the standard
deviations σk of the logistic distribution:

sk =

√
3σk
π

, k = 1, 2. (38)

Using this relationship gives s1 = 1.045 and s2 = 0.798 for the log-transformed Asset
and Score, respectively. (The location and scale parameters can also be estimated by the
maximum likelihood method, which gives similar values).

Table 4 reports univariate and bivariate statistics for implementing the tasks shown
in the upper panel of Figure 1. The first column gives the information moments of the
log-transformed data and the second column gives the corresponding parameters of the
kernel estimate. The corresponding measures are close.

Table 4. Information moments of log-transformed bank data and kernel PDF and information
divergence between the kernel and ME PDFs.

Information Moment Entropy KL Divergence K Index Coin
Actual Kernel H( f∗) H( f̃ ) K( f̃ : f∗) δ2(K) q(K)

Asset 2.044 2.085 0.016 0.031 0.589
Mean 6.473 6.461

Score 1.774 1.787 0.014 0.027 0.582
Mean 5.470 5.457

Bivariate 3.625 3.766 0.283 0.432 0.828
Log-sum-expo 1.161 1.518

The marginal and bivariate entropies of the logistic ME model are obtained using

H(X1, X2) = 4.5 + log
s1s2

2
, H(Xk) = 2 + log xk, k = 1, 2. (39)

The entropies for the kernel PDF are computed using the approximate Formula (26)
and the KL information divergence shown in the table is computed using (25). From
these results we can see that the logistic density is a reasonably good fit to the log trans-
formed data.

4.2.3. Disclosure Data and Inspections

We generate 416 pairs of data points from the logistic ME model for disclosure and
proceed with inspections to determine its quality as being a nontrivial replica of the actual
data. Table 5 reports univariate and bivariate statistics for implementing the tasks 10–13
in Figure 1. The information moments of the two data sets are close to each other. In
addition, the logistic scale parameters of the disclosure data for the Asset and Score are
s1 = 1.126 and s2 = 0.908, respectively, which are close to their counterparts for the actual
data. Table 5 also gives the univariate and bivariate energy statistics and the fractions of
univariate and bivariate Euclidean distances which are all below 0.01. The energy statistics
are at acceptable levels and fractions of univariate and bivariate Euclidean distances which
are below 0.01 are all negligible.
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Table 5. Information moments and Euclidean measures for log-transformed bank data and disclo-
sure data.

Information Moment Energy Stat Euclidean Dist
Actual Disclosure E(x, x∗) πd(xi, x∗h) < 0.01

Asset 0.460 0.006
Mean 6.473 6.376

Score 0 .655 0.008
Mean 5.470 5.481

Bivariate 2.529 <0.001
Log-sum-expo 1.161 1.495

Figure 7 shows the scatter plots of the actual and disclosure data superimposed by
the regression function of the bivariate logistic distribution for each data set. It can be
seen that the mass of actual data is close to the mass of disclosure data, while there is not
a one-to-one correspondence between the two sets. The expression for the regression is
nonlinear, given as follows by Kotz et al. [46]:

E(Xk|xh) = µh + sh − sh log
(

1 + exp
{
− xk − µk

sk

})
. (40)

The plotted regression functions are inclusive of the three information moments and
two scale parameters for each data set. In each case, we assessed the regression fit by its
mean absolute error. This measure for the actual data is 1.817 and for the disclosure data is
1.486. In spite of the fact that the disclosure data is generated from the bivariate logistic
distribution, we can conclude that the fit of the regression for the actual data is satisfactory.
(We attempted implementing the nonlinear least squares function in R with the initial
values of four regression parameters a + b log(1 + exp{−(x− c)/d}) set as the actual data
location and scale parameters. It failed due to the gradient singularity).

Figure 8 shows plots of the marginal CDFs of ME models for the actual data and the
empirical CDFs of the actual data for each variable. The three CDFs of each variable are
hardly distinguishable. (We also inspected the Kolmogorov–Smirnov distances between
each pairs the respective variables in the actual and disclosure data and found them to be
negligible). Figure 9 shows plots of the bivariate kernel PDF and bivariate PDFs for the
two ME models. The kernel PDF seems a bumpy version of the ME PDF plots, as in our
previous example, and the ME PDFs are hardly distinguishable from each other.
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Figure 7. Scatter plots of the actual and disclosure data.



Entropy 2022, 24, 670 18 of 24

0.00

0.25

0.50

0.75

1.00

0 4 8 12
log score

Actual Disclosure ME Model

Empirical and ME CDFs

0.00

0.25

0.50

0.75

1.00

0 5 10
log asset

Actual Disclosure ME Model

Empirical and ME CDFs

Figure 8. Empirical CDFs of the bank and disclosure data and the ME CDF of the actual data.
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Figure 9. Bivariate kernel and ME densities of log-asset and log-score.

Table 6 gives the results for the lower panel of Figure 1 which compare of the univariate
and bivariate ME distributions for the actual and disclosure data. These results are obtained
using known formulas for information measures of logistic distribution. The mutual
information for the bivariate logistic ME model is given by

M(X1, X2) = log 2− 0.5. (41)

This constancy is due to the facts that this logistic distribution only includes the
parameters of marginal distributions and the mutual information is invariant under one-to-
one transformations of each variable, in particular, location-scale transformations, which
makes the logistic distribution free from the location and scale parameters. Under the
bivariate logistic distribution, dependence between X1 and X2 are imposed through the
bivariate information moment (37). (A more general version of bivariate logistic includes an
additional parameter. For the general logistic model the entropies and mutual information
are functions of the additional parameter. The more common logistic model used in this
paper is the special case of the general model with the additional parameter set to one).

Table 6. Information measures of the ME models for the bank data and disclosure data.

Entropy KL Divergence K Index Coin
H( f∗) H( f∗∗) K( f∗∗ : f∗) δ2(K) q(K)

Asset 2.044 2.119 0.005 0.010 0.550
Score 1.774 1.903 0.009 0.018 0.568
Bivariate 3.625 3.829 0.002 0.005 0.535
Mutual info 0.193 0.193
M index 0.320 0.320
Coin index 0.783 0.783
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Explicit expression for the KL divergence between two logistic distributions is not
available. The divergence in Table 6 is found by the approximate Formula (25). The
results in Table 6 suggest that the ME model for disclosure data preserves the statistical
characteristics of the original data.

5. Concluding Remarks

The information architecture for the data disclosure problem proposed in this paper
combines basic elements of statistics and information theory to produce statistical replicas
of the actual data for disclosure. The architecture begins with an exploratory data analysis
where statistical graphics and variable transformations summarize the statistical features
of the data distribution. The numerical summaries are formulated in terms of information
moments and a density plot is chosen as a graphical representation of the data. The
information-theoretic approach uses the numerical summaries as partial information to
provide the ME probability model for the unknown data-generating distribution. The
data density plot is used as an input to the Kullback–Leibler information divergence for
inspecting suitability of the information moments for representing the data-generating
probability distribution. Upon approval in this first inspection, the ME model is used to
generate statistical replicas of the actual data. Then the generated data is used to inspect
the compatibility of its empirical CDF with the empirical CDF of the actual data. Further
inspections include Euclidean distance measures between the disclosure and actual data
points, Euclidean distance measures between the disclosure and actual data information
moments and the Kullback–Leibler information divergence between the ME models for
the disclosure and actual data. Disclosure data is ready for release upon approval of all
inspections of the reliability of the disclosure data as a statistical replica of the actual data.

Implementation of the information architecture is illustrated using two financial data
sets: Mortgage data and bank account data. Two variables from each data set are selected
for illustrations. The distributions of variables in both data sets were highly skewed, which
suggested subjecting data to logarithm transformations. The scatter plot of the log trans-
formed mortgage variables was approximately elliptical. The KL information divergence
confirmed suitability of the ME bivariate normal model for the log transformed data (log-
normal model for the data), which was used to generate data for disclosure. Discrepancy
between the underlying distributions of actual and disclosure data was inspected using
energy statistic (a Euclidean distance-based measure) and information divergence. In
addition, pairwise Euclidean distances between disclosure data points and actual data
points were inspected for the disclosure risk.

Like the mortgage variables, log transformations of the variables in bank data induced
near symmetrical distributions for the variables. However, unlike the case of the mortgage
data, the scatter plot of the variables in bank data was not elliptical. These conditions
suggested a non-elliptical symmetric bivariate distribution. We considered the ME bivariate
logistic model for this data. The model and disclosure data were inspected according to the
proposed information architecture. This example illustrated that, like producing a portrait,
several attempts may be needed for generating a set of disclosure data for an acceptable
replica of the actual data.

Our illustrations were limited to two variables. Implementation of the information
architecture for cases where the data features suggest information moments for multivariate
ME models with all marginal distributions in the same family are rather straightforward.
Examples include the normal, logistic, Pareto and Dirichlet. In our bivariate examples
we started with the univariate cases and built up to the bivariate model and reported
inspection results for the univariate and bivariate models. This approach can be used in
higher dimensions. In Section 3, we noted that link functions such as copula can be used
for cases where the univariate marginal distributions are in different families.

The purpose of information moments and the implied ME model is to produce a
statistical copy of the actual data such that both data sets possess approximately the same
statistical information. A set of information moments can fail to accomplish the purpose.
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Jaynes [47] recalls a historical fact that the “seemingly ‘unsuccessful’ application of the
principle of maximum entropy” by Gibbs provided clues about development of new
theories in statistical mechanics and quantum physics. Using a combinatoric argument
and an asymptotic he shows that “the distribution predicted by maximum entropy can be
realized experimentally in overwhelmingly more ways than can any other” that satisfies
the information moment condition. He points out the following weaker implication:

“If the information incorporated into the maximum-entropy analysis includes all
the constraints actually operative in the random experiment, then the distribution
predicted by maximum entropy is overwhelmingly the most likely to be observed
experimentally, because it can be realized in overwhelmingly the greatest number
of ways.

Conversely, if the experiment fails to confirm the maximum-entropy prediction,
and this disagreement persists on indefinite repetition of the experiment, then we
will conclude that the physical mechanism of the experiment must contain addi-
tional constraints which were not taken into account in the maximum-entropy
calculations. The observed deviations then provide a clue as to the nature of these
new constraints.” (Jaynes [47])

In the context of information architecture, disagreement between the actual and
disclosure data sets is inspected multiple times. If disagreement between the two data
sets persists on repetitions of generating the statistical copy, then we conclude that the
distribution that generated the actual data must contain additional constraints which were
not taken into account in the calculation of the ME model.

In the proposed information architecture, the information is drawn through exploring
the distributional features of the data for application of the ME principle. Statistical model-
ing of data is said to involve a combination of art (visualizing information from the data)
and science (knowledge of data generating process, mathematical representation of data).
Selecting a set of information moments for consideration requires familiarity with proper-
ties of varieties of probability distributions. The data structures of our illustrative examples
enabled us to identify ME models rather easily. Identifying a known ME distribution for
data with more complex structures can be more difficult or impossible. For such cases,
new ME models that draw numerous information moments should be developed. For
example, Bajgiran et al. [31] showed that the ME model with a set of quantile information
in finite range is the piecewise uniform distribution (a histogram). To implement such a
basic model in the information architecture, quantile information for each variable can be
drawn from the data and combined by a link function, such as a copula, to obtain a model
for the entire data.

The information theoretic framework proposed here for the data disclosure problem
provides unique research opportunities to develop multivariate generalizations and statis-
tical inference procedures including Bayesian methods. Both entropy and Kullback–Leibler
information are instrumental in the proposed architecture and in our set-up we have con-
sidered the use of classical methods for estimation of these quantities as well as in the
implementation of the ME framework. The ME framework requires nonparametric esti-
mation of the data distribution and nonparametric Bayesian methods can be used for this
purpose. Earlier Bayesian works in this area include [48], who proposed the use of Dirichlet
process priors in estimation of nonparametric entropy and Kullback–Leibler information
in the ME framework. The development presented by these authors relies on a quantized
approximation of entropy for the univariate case. Extension of their methodology to the
multivariate case poses challenging methodological and computational issues.
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Appendix A

The following three tables list examples of univariate and bivariate ME entropy
distributions and their information moments.

Table A1. Examples of univariate maximum entropy models and information moments.

ME Model Density Information Moments

Generalized error, x ∈ <
(Laplace β = 1, Normal β = 2)

f (x) =
β

2σΓ(1/β)
e−|

x−µ
σ |

β
{

T1(x) = x,
T2(x) = |x− µ|β

Student-t, (Cauchy ν = 1), x ∈ <

f (x) =
Γ(ν/2 + 1/2)√

νπΓ(ν/2)

(
1 + x2

ν

)− ν+1
2 T(x) = log(ν + x2)

Logistic, x ∈ <

f (x) =
e−x

(1 + e−x)2

{
T1(x) = x,
T2(x) = log

(
1 + e−x)

Asymmetric Laplace, x ∈ <

f (x) =


λ

1/a + 1/b
e−λco(q−x) x ≤ q

λ

1/a + 1/b
e−λcu(x−q) x > q

{
a(q− x), x ≤ q
b(x− q), x > q,

Exponential [Exp(β)], x ≥ 0
f (x) = λe−λx T(x) = x

Pareto Type II [ParI I(α)], x ≥ 0

f (x) =
α

(1 + x)−α−1 T(x) = log(1 + x)

Gamma [G(α, β)], x ≥ 0

f (x) =
βα

Γ(α)
xα−1e−βx

{
T1(x) = x,
T2(x) = log x

Beta [Beta(α, β)], x ∈ [0, 1]

f (x) =
1

B(α, β)
xα−1(1− x)β−1

{
T1(x) = log x,
T2(x) = log(1− x)
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Table A2. Examples of univariate maximum entropy models obtained by transformation and
information moments.

Family and Transformation Density Information Moments

Location-scale transformation

Y = σX + µ fy(y) =
1
σ

fx

(
y− µ

σ

)
Tj(y) = Tjx

(
y− µ

σ

)
Log and exponential transformations

Logistic, y ∈ <
Y = − log X, X ∼ Par I I(1)

f (y) =
e−y

(1 + e−y)2

{
T1(y) = y,
T2(y) = log

(
1 + e−y)

Log-Gamma, y ∈ <, α, β > 0
Y = log X, X ∼ G(α, β)

f (y) =
βα

Γ(α)
eαye−βey

{
T1(y) = y,
T2(y) = ey

Lognormal, y > 0, , µ ∈ <, σ > 0
Y = eX , X ∼ N(µ, σ2)

f (y) =
1√

2πσy
e−

(log y−µ)2

2σ2

{
T1(y) = log y,
T2(y) = (log y− µ)2

Power transformations

Generalized Gamma, y > 0, α, τ, β > 0
Y = X1/τ , X ∼ G(α, β)
(Weibull α = 1, Half-normal α = 1/2, τ = 2),
Generalized normal τ = 2

f (y) =
βατ

Γ(α)
yατ−1e−(βy)τ

{
T1(y) = yτ ,
T2(y) = log y

Pareto Type IV, y ≥ 0, α, τ > 0
Y = X1/τ , X ∼ ParI I(α)
(α = 1 Pareto Type III)

f (y) =
ατyτ−1

(1 + yτ)α+1

{
T1(y) = log y,
T2(y) = log(1 + yτ)

Inverted beta, y ≥ 0, α, β > 0
Y = X−1, X ∼ Beta(α, β)

f (y) =
1

B(α, β)

yβ−1

(1 + y)α+β

{
T1(y) = log y,
T2(y) = log(1 + y)

Table A3. Examples of bivariate maximum entropy models and information moments.

ME Model Density Information Moments

Normal x ∈ <2

Xi ∼ N(µi, σ2
i ), (Similar multivariate case)

f (x) =
1

2π|Σ|1/2 exp
{
− 1

2 (x− µ)′Σ−1(x− µ)
} 

T1(x) = x1, T2(x) = x2
T3(x) = x2

1, T4(x) = x2
2

T5(x) = (x1 − µ1)(x2 − µ2)
Logistic xi ∈ <2

Xi ∼ Logist(0, 1), (Similar multivariate case)

f (x) =
2e−x1−x2

(1 + e−x1 + e−x2 )3

{
T1(x) = x1, T2(x) = x2
T3(x) = log(1 + x1 + x2)

Farlie-Gumbel-Morgenstern (F-G-M), xi ∈ [0, 1]
Xi ∼ Uni f orm, (Similar multivariate case)

f (x) = 1 + α(1− 2x1)(1− 2x2) T(x) = log[1 + α(1− 2x1)(1− 2x2)]
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Table A3. Cont.

ME Model Density Information Moments

Dirichlet x ∈ [0, 1]2, α1, α2, α3 > 0
Xi ∼ Beta(αi, αj + α3), (Similar multivariate case)

f (x) =
Γ(α1 + α2 + α3)

Γ(α1)Γ(α2)Γ(α3)
xα1−1

1 xα2−1
2 (1− x1 − x2)

α3−1
{

T1(x) = log yx, T2(x) = log x2
T3(x) = log(1− x1 − x2)

McKay’s bivariate gamma, 0 < x2 < x1, α, β, λ > 0
X1 ∼ G(α + β, λ), X2 ∼ G(α, λ)

f (x1, x2) =
λα+β

Γ(α)Γ(β)
xα−1

2 (x1 − x2)
β−1e−λx1

{
T1(x) = x1, T2(x) = log x2
T3(x) = log(x1 − x2)

Gamma–gamma mixture, x1, x2 ≥ 0, α, β, λ1, λ2 > 0
X1 ∼ G(α, λ1), X1X2 ∼ G(β, λ2), X2 ∼ IB(α, β, λ2/λ1)
(Gamma-exponential mixture, α = 1)

f (x1, x2) =
λα

1λ
β
2

Γ(α)Γ(β)
, xα+β−1

1 xβ−1
2 e−λ1x1−λ2x1x2


T1(x) = x1,
T2(x) = log x1, T3(x) = log x2,
T4(x) = x1x2

References
1. Franconi, L.; Stander, J. A Model-based method for disclosure limitation of business microdata. Statistician 2002, 51, 51–61.

[CrossRef]
2. Ichim, D. Disclosure control of business microdata: A density-based approach. Int. Stat. Rev. 2009, 77, 196–211. [CrossRef]
3. Duncan, G.T.; Elliot, M.; Salazar-Gonzales, J. Statistical Confidentiality: Principles and Practice; Springer: New York, NY, USA, 2011.
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