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Abstract: Quantum coherence is known as an important resource in many quantum information
tasks, which is a basis-dependent property of quantum states. In this paper, we discuss quantum
incoherence based simultaneously on k bases using Matrix Theory Method. First, by defining a
correlation function m(e, f ) of two orthonormal bases e and f , we investigate the relationships
between sets I(e) and I( f ) of incoherent states with respect to e and f . We prove that I(e) = I( f )
if and only if the rank-one projective measurements generated by e and f are identical. We give
a necessary and sufficient condition for the intersection I(e)⋂ I( f ) to include a state except the
maximally mixed state. Especially, if two bases e and f are mutually unbiased, then the intersection
has only the maximally mixed state. Secondly, we introduce the concepts of strong incoherence and
weak coherence of a quantum state with respect to a set B of k bases and propose a measure for the
weak coherence. In the two-qubit system, we prove that there exists a maximally coherent state with
respect to B when k = 2 and it is not the case for k = 3.

Keywords: strong incoherence; weak coherence; orthonormal basis; mutually unbiased basis

1. Introduction

Quantum coherence is not only a feature of quantum systems which arise due to
superposition principle, but also is a kind of fundamental resources in quantum information
and computation [1–8]. The resource theory of coherence is formulated with respect
to a distinguished basis of a Hilbert space, which defines free states as the states that
are diagonal in this basis [3]. Several important quantifiers of quantum coherence have
been introduced and assessed [9–19]. Recently, it is shown that quantum coherence can
be useful resource in quantum computation [20–24], quantum metrology [25], quantum
thermodynamics [26–31] and quantum biology [32–34].

Since the coherence of quantum states depends on the choice of the reference basis,
it is natural to study the relationship among the coherence with respect to different bases.
Cheng et al. [35] first studied the situation of two specific coherence measures under
mutual unbiased basis (MUB): `1 norm of coherence and relative entropy of coherence.
They proposed the complementary relationship of the two coherence measures under any
complete MUB set. Rastegin in [36] discussed the uncertainty relation for the geometric
measure of coherence under MUBs. Sheng et al. [37] further studied the realization of
quantum coherence through skewed information and the geometric measure under mutual
unbiased bases. Recently, considered the standard coherence (SC), the partial coherence
(PC) [38–40] and the block coherence (BC) [41,42] as variance of quantum states under some
quantum channel Φ, Zhang et al. [43] proposed the concept of channel-based coherence of
quantum states, called Φ-coherence, which contains the SC, PC and BC, but not contain the
POVM-based coherence [44,45], and obtained some interesting results.

Usually, the coherence of an individual quantum state is discussed only when referring
to a preferred basis. Considered sets of quantum states, Designolle et al. [46] introduced
the concept of set coherence for characterizing the coherence of a set of quantum states
in a basis-independent way. Followed a resource-theoretic approach, the authors of [46]
defined the free sets of states as sets Fn of groups of states ~ρ = {ρj}n

j=1 such that there
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exists a choice of basis (equivalently, a unitary U) for which all states UρjU† in the set
U~ρU† become diagonal. Clearly, ~ρ ∈ Fn if and only if {ρj}n

j=1 is a commutative family of
states, i.e., ρiρj = ρjρi for all i, j = 1, 2, . . . , n.

Different from the discussions above, in this paper, we focus on the quantum incoher-
ence based simultaneously on k bases; equivalently, the coherence of a quantum state with
respect to a basis contained in a given set B of k orthonormal bases. In Section 2, by defin-
ing the correlation function of two orthonormal bases e and f , we study the relationships
between two sets of incoherent states with respect to e and f , and investigate the maximally
coherent states with respect to e and f . In Section 3, we discuss the strong incoherence and
the weak coherence of a state with respect to a set of k orthonormal bases and introduce a
measure for the weak coherence. In Section 4, we give a summary of this paper.

2. Correlation Function of Two Bases and Quantum Coherence

Let us consider a quantum system X, which is described by a d-dimensional Hilbert
space H and let I denote the identity operator on H. We use B(H) and D(H) to denote
the sets of all linear operators and all density operators (mixed states) on H, respectively.
In quantum information theory, a positive operator valued measure (POVM) is a set
M = {Mi}m

i=1 of operators on H with 0 ≤ Mi ≤ I for all i = 1, 2, . . . , m and ∑m
i=1 Mi = I.

In particular, if M2
i = Mi for all i, then the POVM becomes a projective measurement

(PM). For a rank-one PM P, there exists an orthonormal basis e = {|ei〉}d
i=1 such that

P = {|ei〉〈ei|}d
i=1. In this case, we denote P = Pe = {|ei〉〈ei|}d

i=1. We use the notation z̄ or
z∗ to denote the conjugate of a complex number z.

For the fixed orthonormal basis e = {|ei〉}d
i=1 for H, I(e) denotes the set of incoherent

states on H w.r.t. e, i.e., ones that have diagonal matrix representation under the basis e. A
quantum operation Φ on B(H) is said to be an incoherent operation [3] w.r.t e if it admits
an incoherent Kraus decomposition, i.e.,

Φ(ρ) =
n

∑
i=1

KiρK†
i , ∀ρ ∈ B(H)

with
KiρK†

i ∈ tr(KiρK†
i )I(e), ∀ρ ∈ I(e), i = 1, 2, . . . , n.

We use IO(e) to denote the set of incoherent operations w.r.t e on B(H).
According to Ref. [3], a coherence measure with respect to e, called an e-coherence

measure, is a function C : D(H) 7→ R satisfying the following four conditions.
(1) Faithfulness: C(ρ) ≥ 0 for all ρ ∈ D(H); C(ρ) = 0 if and only if ρ ∈ I(e).
(2) Monotonicity: C(Φ(ρ)) ≤ C(ρ) for any Φ ∈ IO(e).
(3) Strong monotonicity: ∀ρ ∈ D(H), ∑n

i=1 piC(ρi) ≤ C(ρ) for all operators Ki in H
such that ∑n

i=1 K†
i Ki = I with KiI(e)K†

i ⊂ R+I(e), pi = tr(KiρK†
i ) and ρi = KiρK†

i /pi if
pi > 0; ρi =

1
d I if pi = 0.

(4) Convexity: C(∑n
i=1 piρi)) ≤ ∑n

i=1 piC(ρi) for any states ρi ∈ D(H)(i = 1, 2, . . . , n)
and any probability distribution {pi}n

i=1.
A usual `1-norm coherence measure [3] of a state ρ ∈ D(H) with respect to a basis e is

defined by
Ce,`1(ρ) = 2 ∑

1≤i<j≤n
|〈ei|ρ|ej〉|.

Clearly,

Ce,`1(ρ) =
n

∑
i,j=1
|〈ei|ρ|ej〉| − 1 ≤ d− 1. (1)

Especially, Ce,`1(ρ) = d− 1 if and only if |〈ei|ρ|ej〉| = 1
d for all i, j = 1, 2, . . . , d; in that case,

ρ is called a maximally coherent state with respect to e.
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From the review above, we find that quantum coherence relies on the choice of or-
thonormal bases. In what follows, we discuss the relationship between quantum coherence
based on different reference bases. To do this, we let e = {|ei〉}d

i=1 and f = {| f j〉}d
i=1 be two

orthonormal bases for H and define

m(e, f ) =
d

∑
i,j=1
|〈ei| f j〉| − d, (2)

called the correlation function between two bases e and f .
Recall that [35] two orthonormal bases e and f for H are said to be mutually unbiased

if |〈ei| f j〉| = 1√
d

for all i, j = 1, 2, . . . , d. Thus, when e and f for H are mutually unbiased, it

holds that m(e, f ) = d
3
2 − d. More properties of the correlation function are given in the

following theorem.

Theorem 1. Let e and f be two orthonormal bases for H. Then
(1) 0 ≤ m(e, f ) ≤ d

3
2 − d.

(2) m(e, f ) = 0 if and only if Pe = Pf if and only if I(e) = I( f ).

(3) m(e, f ) = d
3
2 − d if and only if e and f are mutually unbiased bases.

Proof. (1) Since 0 ≤ |〈ei| f j〉| ≤ 1, we get |〈ei| f j〉|2 ≤ |〈ei| f j〉| for all i, j = 1, 2, . . . , d. So,

d

∑
i,j=1
|〈ei| f j〉| ≥

d

∑
i,j=1
|〈ei| f j〉|2

=
d

∑
j=1

(
d

∑
i=1
|〈ei| f j〉|2

)

=
d

∑
j=1
‖ | f j〉 ‖2

= d.

This shows that m(e, f ) ≥ 0. Since e = {|ei〉}d
i=1 and f = {| f j〉}d

i=1 are two orthonormal
bases for H, there exists a d× d unitary matrix U = [λij] such that (|e1〉, |e2〉, . . . , |ed〉) =
U(| f1〉, | f2〉, . . . , | fd〉); equivalently,

|ei〉 =
d

∑
j=1

λij| f j〉, ∀i = 1, 2, . . . , d. (3)

Hence, λij = 〈 f j|ei〉, and using the Cauchy inequality yields that

d

∑
i,j=1
|〈ei| f j〉| =

d

∑
i,j=1
|λij|

=
d

∑
i=1

(
d

∑
j=1

1 · |λij|
)

≤
d

∑
i=1

√
d

√√√√ d

∑
j=1
|λij|2

= d
3
2 .

Consequently, m(e, f ) ≤ d
3
2 − d.
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(2) We see from Equation (2) that m(e, f ) = 0 if and only if for any i, there exists a
unique i′ such that |〈ei| fi′〉| = 1 and |〈ei| fk〉| = 0 for all k 6= i′ if and only if for any i, there
exists a unique i′ such that |ei〉 = eiθii′ | fi′〉, which is equivalent to Pe = Pf , i.e., I(e) = I( f ).

(3) From the proof of (1), we see that m(e, f ) = d
3
2 − d if and only if |λij| = 1√

d
(∀i, j),

that is, e and f are mutually unbiased bases.
Suppose that e and f are mutually unbiased bases, then the coefficients λij in (3) satisfy

|λij| = |〈 f j|ei〉| = 1√
d

for all i, j = 1, 2, . . . , d. Let ρ ∈ I(e) ∩ I( f ). Then it can be written as

ρ = ∑d
n=1 µn|en〉〈en| with µn ≥ 0 for all n = 1, 2, . . . , d, ∑d

n=1 µn = 1. Using Equation (3)
implies that

ρ =
d

∑
j,k=1

d

∑
n=1

µnλnjλnk| f j〉〈 fk|.

Since ρ ∈ I( f ) and ∑d
n=1 µn = 1, we see that

d

∑
n=1

µnλnjλnk =
1
d

δk,j, ∀k, j = 1, 2, . . . , d

that is,
λ11 λ21 · · · λd1
λ12 λ22 · · · λd2

...
...

. . .
...

λ1d λ2d · · · λdd




µ1 0 0 0
0 µ2 0 0
...

...
. . .

...
0 0 0 µd




λ11 λ12 · · · λ1d
λ21 λ22 · · · λ2d

...
...

. . .
...

λd1 λd2 · · · λdd

 =


1
d 0 0 0
0 1

d 0 0
...

...
. . .

...
0 0 0 1

d

.

Since U = [λij] is a d × d unitary matrix, we get µk = 1
d for all k = 1, 2, . . . , d, i.e.,

ρ = 1
d ∑d

j=1 | f j〉〈 f j| = 1
d I. Hence, I(e) ∩ I( f ) =

{
1
d I
}

.

Remark 1. Suppose that Pe 6= Pf , then there exists an i and j1, j2, . . . , jk(2 ≤ k ≤ d) such that
〈ei| f js〉 6= 0(s = 1, 2, . . . , k) and

|ei〉 =
k

∑
s=1
〈 f js |ei〉| f js〉.

Then |ei〉〈ei| ∈ I(e) and

|ei〉〈ei| =
k

∑
s=1,t=1

〈 f js |ei〉〈 f jt |ei〉| f js〉〈 f jt |.

Since 〈 f js |ei〉〈 f jt |ei〉 6= 0 for any s 6= t, we get that |ei〉〈ei| /∈ I( f ). This shows that there exists a
state ρ ∈ I(e) but ρ /∈ I( f ). Similarly, there also exists a state ρ′ ∈ I( f ) but ρ′ /∈ I(e).

From Theorem 1 and Remark 1, we get relationships between m(e, f ) and I(e)⋂ I( f )
as shown by the following Figure 1.

It is clear that 1
d I ∈ I(e)⋂ I( f ) for any bases e and f . Especially, I(e)⋂ I( f ) =

{
1
d I
}

if they are mutually unbiased. However, even though e and f are not a pair of mutually
unbiased bases, it is possible that I(e)⋂ I( f ) =

{
1
d I
}

, see the following example.
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Figure 1. Relationships between m(e, f ) and I(e)⋂ I( f ), where subfigures (a–c) correspond to the
cases that m(e, f ) = 0,m(e, f ) > 0 and m(e, f ) = d

3
2 − d, respectively.

Example 1. Let e = {|0〉, |1〉} and f = {| f0〉, | f1〉} be two orthonormal bases for H = C2 with

| f0〉 =
1√
3
|0〉+

√
2√
3
|1〉, | f1〉 = −

√
2√
3
|0〉+ 1√

3
|1〉.

Clearly, e and f are not a pair of mutually unbiased bases while I(e)⋂ I( f ) = { 1
2 I}.

This example leads us to study the relationship between two bases e and f for H
such that

I(e)
⋂
I( f ) =

{
1
d

I
}

.

To do this, we let e = {|ei〉}d
i=1 and f = {| fi〉}d

i=1 be two bases for H and ρ = ∑d
i=1 xi|ei〉〈ei| ∈

I(e) \ {I/d}. Since x1, . . . , xd are the eigenvalues of ρ, they can be rearranged as λ1, λ2, . . . , λd
in decreasing order, say, λ1 ≥ λ2 ≥ . . . ≥ λd. Thus, there exists a permutation matrix P1
such that

P1


x1
x2
...

xd

 =


λ1
λ2
...

λd

. (4)

Suppose that ρ ∈ I( f ). Then

ρ =
d

∑
j=1

yj| f j〉〈 f j|, (5)

where yj = 〈 f j|ρ| f j〉. Using Equation (5) implies that

xi = 〈ei|ρ|ei〉 =
d

∑
j=1
|〈ei| f j〉|2yj(i = 1, 2, . . . , d),

i.e., 
x1
x2
...

xd

 = C


y1
y2
...

yd

, (6)

where

C =


|〈e1| f1〉|2 |〈e1| f2〉|2 · · · |〈e1| fd〉|2
|〈e2| f1〉|2 |〈e2| f2〉|2 · · · |〈e2| fd〉|2

...
...

. . .
...

|〈ed| f1〉|2 |〈ed| f2〉|2 · · · |〈ed| fd〉|2

. (7)
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Since y1, . . . , yd are also the eigenvalues of ρ, they can be also rearranged as λ1, λ2, . . . , λd
in decreasing order. So, there exists a permutation matrix P2 such that

P2


y1
y2
...

yd

 =


λ1
λ2
...

λd

. (8)

Thus, 
λ1
λ2
...

λd

 = P1


x1
x2
...

xd

 = P1C


y1
y2
...

yd

 = P1CP2


λ1
λ2
...

λd

. (9)

Putting P1CP2 = [wij] yields that

λi =
d

∑
j=1

wijλj(i = 1, 2, . . . , d). (10)

Thus, when λ1 = λ2 = . . . = λr > λr+1 ≥ . . . ≥ λd, we see from Equation (10) that for
1 ≤ i ≤ r,

λi =

(
r

∑
j=1

wij

)
λi +

d

∑
j=r+1

wijλj

and so ∑r
j=1 wij = 1, wij = 0(1 ≤ i ≤ r, r < j ≤ d). Using Equation (10) again yields that

for 1 + r ≤ i ≤ d,

λi =

(
r

∑
j=1

wij

)
λ1 +

d

∑
j=r+1

wijλj

and so ∑r
j=1 wij = 0, implying that wij = 0(r < i ≤ d, 1 ≤ j ≤ r). Thus,

P1CP2 =


D1 0 . . . 0
0 D2 . . . 0
...

...
. . .

...
0 0 . . . Dk

, (11)

where k means the number of different eigenvalues µ1 > µ2 > . . . > µk of ρ and Di is an
ri × ri-doubly stochastic matrix, and ri denotes the multiplicity of the ith eigenvalue µi.

Conversely, suppose that there exist d× d permutation matrices P1 and P2 such that
P1CP2 is of the form (11) where k > 1. Since the matrix P1CP2 can be written as

P1CP2 =


|〈es1 | ft1〉|2 |〈es1 | ft2〉|2 · · · |〈es1 | ftd〉|2
|〈es2 | ft1〉|2 |〈es2 | ft2〉|2 · · · |〈es2 | ftd〉|2

...
...

. . .
...

|〈esd | ft1〉|2 |〈esd | ft2〉|2 · · · |〈esd | ftd〉|2

,

where 
s1
s2
...

sd

 = P1


1
2
...
d

,


t1
t2
...

td

 = P2


1
2
...
d

,
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we see from condition (11) that

〈esi | ftj〉 = 0(∀r1 < j ≤ d, 1 ≤ i ≤ r1), 〈esi | ftj〉 = 0(∀r1 < i ≤ d, 1 ≤ j ≤ r1). (12)

This implies that the subspaces generated by {|esi 〉}
r1
i=1 and {| ftj〉}

r1
j=1 are equal and so

ρ :=
1
r1

r1

∑
i=1
|esi 〉〈esi | =

1
r1

r1

∑
j=1
| ftj〉〈 ftj |,

Clearly, ρ ∈ I(e) ∩ I( f ) \ { 1
d I}.

As a conclusion, we arrive at the following.

Theorem 2. Let d ≥ 2, e = {|ei〉}d
i=1 and f = {| f j〉}d

j=1 be two orthonormal bases for H and set

C =
[
|〈ei| f j〉|2

]
. Then there exists a state ρ 6= 1

d I in I(e) ∩ I( f ) if and only if there exist two
d× d permutation matrices P1 and P2 such that the matrix P1CP2 is k× k block-diagonal for some
k > 1.

Example 2. Let d > 3, e = {|ei〉}d
i=1 and f = {| f j〉}d

j=1 be two orthonormal bases for H such that

|〈 fi|ej〉| =
1√
2
(i, j = 1, 2), |ei〉 = | fi〉(i = 3, 4, . . . , d).

Then

C =
[
|〈ei| f j〉|2

]
=


0.5 0.5 0 · · · 0
0.5 0.5 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 · · · 0 1

.

It follows from Theorem 2 that there exists a state ρ ∈ I(e)⋂ I( f ) \ {I/d}; for example,

ρ =
1

d− 2

d

∑
i=3
|ei〉〈ei|.

Remark 2. From Theorem 2, we know that whether I(e)⋂ I( f ) \ {I/d} 6= ∅ depends on the
structure of the matrix C given by Equation (7). Since this, we call C the correlation matrix of the
bases e and f and denote it by Ce, f . Clearly, it can be written as the Hardamard product of the
transition matrix Te, f from e to f and its conjugate matrix T∗e, f :

Ce, f = Te, f � T∗e, f ,

where

Te, f =


〈e1| f1〉 〈e1| f2〉 · · · 〈e1| fd〉
〈e2| f1〉 〈e2| f2〉 · · · 〈e2| fd〉

...
...

. . .
...

〈ed| f1〉 〈ed| f2〉 · · · 〈ed| fd〉

. (13)

Theorem 2 also tells us that when 〈ei| f j〉 6= 0 for all i, j, there do not exist per-
mutation matrices P1 and P2 such that P1CP2 is r × r(2 ≤ r ≤ d) block diagonal, so
I(e) ∩ I( f ) = {I/d}. Especially, for a pair of mutually unbiased bases e and f , when
ρ ∈ I(e) and ρ 6= 1

d I, we have ρ /∈ I( f ). Conversely, when ρ is a maximally coherent state
w.r.t. e, a question is: whether ρ is also maximally coherent w.r.t. f . The follow example
shows that the answer is negative.
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Example 3. Let e = {|0〉, |1〉} and f = {| f0〉, | f1〉} be a pair of mutually unbiased bases for
H = C2 where

| f0〉 =
1√
2
(|0〉+ |1〉), | f1〉 =

1√
2
(|0〉 − |1〉),

choose
ρ1 =

1
2
(| f0〉〈 f0|+ | f0〉〈 f1|+ | f1〉〈 f0|+ | f1〉〈 f1|) = |0〉〈0|.

Then ρ1 is maximally coherent with respect to f but is incoherent w.r.t. e, while for the state

ρ2 =
1
2
(| f0〉〈 f0|+ i| f0〉〈 f1| − i| f1〉〈 f0|+ | f1〉〈 f1|),

we have
Ce,`1(ρ2) = CPf ,`1(ρ2) = 1.

Therefore, ρ2 is both maximally coherent w.r.t. e and f .

The following theorem shows that there must exist a maximally coherent state w.r.t.
any two bases for C2.

Theorem 3. Let e = {|ei〉}2
i=1 and f = {| f j〉}2

j=1 be two orthonormal bases for C2. Then there
exists a state ρ ∈ D(C2) such that

Ce,`1(ρ) + C f ,`1(ρ) = 2.

Proof. First, we observe that Ce,`1(ρ) = 1 if and only if

ρ =
1
2
(|e1〉〈e1|+ eiα|e1〉〈e2|+ e−iα|e1〉〈e2|+ |e2〉〈e2|) (14)

and CPf ,`1(ρ) = 1 if and only if

ρ =
1
2
(| f1〉〈 f1|+ eiβ| f1〉〈 f2|+ e−iβ| f2〉〈 f1|+ | f2〉〈 f2|). (15)

Suppose that
| f1〉 = u11|e1〉+ u12|e2〉, | f2〉 = u21|e1〉+ u22|e2〉,

then U := [uij] is a unitary matrix, which is given.
For a state ρ of the form given by (14), then Ce,`1(ρ) = 1. We compute that

〈 f1|ρ| f1〉 = (u∗11〈e1|+ u∗12〈e2|)|ρ|(u11|e1〉+ u12|e2〉)

=
1
2
(|u11|2 + u∗11u12eiα + u11u∗12e−iα + |u12|2)

=
1
2
+ Re(u∗11u12eiα),

〈 f1|ρ| f2〉 = (u∗11〈e1|+ u∗12〈e2|)|ρ|(u21|e1〉+ u22|e2〉)

=
1
2
(u∗11u21 + u∗11u22eiα + u∗12u21e−iα + u∗12u22)

=
1
2
(u∗11u22eiα + u∗12u21e−iα),



Entropy 2022, 24, 659 9 of 14

〈 f2|ρ| f2〉 = (u∗21〈e1|+ u∗22〈e2|)|ρ|(u21|e1〉+ u22|e2〉)

=
1
2
(|u21|2 + u∗21u22eiα + u21u∗22e−iα + |u22|2)

=
1
2
+ Re(u∗21u22eiα).

Thus, C f ,`1(ρ) = 1 if and only if
Re(u∗11u12eiα) = 0;
u∗11u22eiα + u∗12u21e−iα = eiβ;
Re(u∗21u22eiα) = 0,

(16)

if and only if {
Re(u∗11u12eiα) = 0;
u∗11u22eiα + u∗12u21e−iα = eiβ (17)

since u∗11u12 = −u∗21u22.
Since U is a unitary matrix, it can be represented as

U =

(
u11 u12
u21 u22

)
=

(
reiθ1

√
1− r2eiθ2√

1− r2eiθ3 reiθ4

)

where 0 ≤ r ≤ 1, and θk ∈ R s.t. ei(θ1−θ3) + ei(θ2−θ4) = 0. The last condition implies
that −θ1 + θ2 + θ3 − θ4 = (2n + 1)π for some integer n. Taking α = (θ1 − θ2 + θ3 − θ4)/2
implies that |u∗11u22eiα + u∗12u21e−iα| = 1 and so there exists a real number β such that
second equation in (17) holds. Since −θ1 + θ2 + α = nπ + π/2, the first equation in (17)
holds too. Hence, C f ,`1(ρ) = 1.

This shows that the state ρ defined by Equation (14) with α = (θ1 − θ2 + θ3 − θ4)/2
satisfies

Ce,`1(ρ) = C f ,`1(ρ) = 1,

that is, Ce,`1(ρ) + C f ,`1(ρ) = 2.

3. Weak Coherence

In this section, we turn to discuss the weak coherence of quantum states. To this, we
use B to denote a set of k orthonormal bases e1, e2, . . . , ek for H, i.e., B = {e1, e2, . . . , ek}.

Definition 1. We say that ρ ∈ D(H) is strongly incoherent (S-incoherent) w.r.t. B if ρ is
incoherent w.r.t. any basis in B. Otherwise, we say that ρ is weakly coherent (W-coherent) w.r.t. B.

Denoted by SI(B) the set of all S-incoherent states of H w.r.t. B. Clearly,

1
d

I ∈ SI(B) =
k⋂

i=1

I(ei).

Definition 2. Let Φ be a quantum operation on B(H). Then Φ is said to be an S-incoherent
operation (SIO) w.r.t. B (or B-incoherent operation (BIO)) if Φ ∈ IO(ei) for all i = 1, 2, . . . , k,
that is, for each i = 1, 2, . . . , k, Φ has a family of Kraus operators {Ein}

mi
n=1 such that

Ein(I(ei))E†
in ⊂ R+I(ei), ∀n = 1, 2, . . . , mi.

Denoted by IO(B) the set of all SIOs w.r.t. B, then

IO(B) =
k⋂

i=1

OI(ei).
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Similar to the definition of the standard coherence measure, let us introduce the
concept of a B-coherence measure.

Definition 3. A function CB : D(H) → R is said to be a B-coherence measure if the following
four conditions are satisfied:

(1) Faithfulness: ∀ρ ∈ D(H), CB(ρ) ≥ 0; CB(ρ) = 0 if and only if ρ ∈ SI(B).
(2) Monotonicity: CB(Φ(ρ)) ≤ CB(ρ) for every Φ ∈ IO(B) and for every ρ ∈ D(H).
(3) Strong monotonicity: for each i = 1, 2, . . . , k, ∑mi

n=1 pinCB(ρin) ≤ CB(ρ) for every
ρ ∈ D(H) and every Φ ∈ IO(B) with a family Kraus operators {Ein}

mi
n=1, where pin =

tr(EinρE†
in) and ρin = 1

pin
EinρE†

in for pin > 0, and ρin = 1
d I for pin = 0.

(4) Convexity: CB(∑m
n=1 pnρn) ≤ ∑m

n=1 pnCB(ρn), where ρn ∈ D(H)(n = 1, 2, . . . , m)
and {pn}m

n=1 is a probability distribution.

The following theorem gives a method for constructing a B-coherence measure from k
ei-coherence measures (i = 1, 2, . . . , k).

Theorem 4. Let Cei (i = 1, 2, . . . , k) be ei-coherence measures. Then the function CB : D(H)→ R
defined by

CB(ρ) =
k

∑
i=1
Cei (ρ)(∀ρ ∈ D(H)) (18)

is a B-coherence measure.

Proof. (1) Let ρ ∈ D(H). Since Cei (ρ) ≥ 0 for all ei(i = 1, 2, . . . , k), we have CB(ρ) =

∑k
i=1 Cei (ρ) ≥ 0. Furthermore,

k

∑
i=1
Cei (ρ) = 0⇔ Cei (ρ) = 0(i = 1, 2, . . . , k)⇔ ρ ∈ SI(B).

(2) Let Φ ∈ IO(B). For each i = 1, 2 . . . , k, since Cei is an ei-coherence measure and
Φ ∈ IO(ei), we get

Cei (Φ(ρ)) ≤ Cei (ρ)

for all ρ ∈ D(H), and so

CB(Φ(ρ)) =
k

∑
i=1
Cei (Φ(ρ)) ≤

k

∑
i=1
Cei (ρ) = CB(ρ).

(3) Let ρ ∈ D(H), Φ ∈ IO(B) with families of Kraus operators {Ein}
mi
n=1(i =

1, 2, . . . , k). Put pin = tr(EinρE†
in) and ρin = 1

pin
EinρE†

in for pin > 0, and ρin = 1
d I for

pin = 0. For each j = 1, 2, . . . , k, since Cej is an ej-coherence measure and Φ ∈ IO(ej),
we get

mi

∑
n=1

pinCej(ρin) ≤ Cej(ρ)(i, j = 1, 2, . . . , k).

This implies that for each i = 1, 2, . . . , k,

mi

∑
n=1

pinCB(ρin) =
mi

∑
n=1

pin

 k

∑
j=1
Cej (ρin)

 =
k

∑
j=1

(
mi

∑
n=1

pinCej (ρin)

)
≤

k

∑
j=1
Cej (ρ) = CB(ρ).
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(4) Let ρn ∈ D(H)(n = 1, 2, . . . , m) and let {pn}m
n=1 be a probability distribution. Since

Cei is an ei-coherence measure, we have

m

∑
n=1

pnCei (ρn) ≥ Cei

(
m

∑
n=1

pnρn

)

for all i = 1, 2, . . . , k, and therefore,

m

∑
n=1

pnCB(ρn) =
k

∑
i=1

(
m

∑
n=1

pnCei (ρn)

)
≥

k

∑
i=1
Cei

(
m

∑
n=1

pnρn

)
= CB

(
m

∑
n=1

pnρn

)
.

Using Definition 3 yields that the function CB defined by Equation (18) becomes a B-
coherence measure.

Using Theorem 4 yields that the function CB : D(H)→ R defined by

CB,`1(ρ) =
k

∑
i=1
Cei ,`1

(ρ)(∀ρ ∈ D(H)) (19)

is a B-coherence measure. We see from property (1) that CB,`1(ρ) ≤ k(d− 1) for all states
ρ of the system. A state ρ is said to be maximally coherent w.r.t. CB,`1 if CB,`1(ρ) = k(d− 1).
Clearly, a state ρ is maximally coherent CB,`1 if and only if it is maximally coherent w.r.t.
each Cei ,`1

.

Remark 3. (1) I
d ∈ SI(B); Especially, if there exist two mutually unbiased bases in B, then

SI(B) = { I
d}, that is, CB,`1(ρ) = 0 if and only if ρ = I

d .
(2) Theorem 3 implies when d = 2 and B = {e, f }(e 6= f ), there exists a maximally coherent

state ρ w.r.t. CB,`1 , that is, CB,`1(ρ) = 2.
(3) The following theorem means that when d = 2 and B = {e, f , g} is a complete set of

mutually unbiased bases, there does not exist necessarily a maximally coherent state w.r.t. CB,`1 .

It was proved in [47] that the maximal number MUB(H) of mutually unbiased bases
for H is d + 1 if the dimension d of H is a prime-power. Thus, MUB(C2) = 3, i.e., there
exists a complete set of three mutually unbiased bases for C2.

Theorem 5. Let B = {e, f , g} where e = {|e1〉, |e2〉} be any orthonormal basis for C2, f =
{| f1〉, | f2〉} and g = {|g1〉, |g2〉} with

| f1〉 =
1√
2
(|e1〉+ |e2〉), | f2〉 =

1√
2
(|e1〉 − |e2〉),

|g1〉 =
1√
2
(|e1〉+ i|e2〉), | f2〉 =

1√
2
(|e1〉 − i|e2〉).

Then e, f and g are mutually unbiased bases pairwise for C2 and CB,`1(ρ) < 3 for all states ρ of C2,
that is, there does not exist a state ρ such that

Ce,`1(ρ) = C f ,`1(ρ) = Cg,`1(ρ) = 1. (20)

Proof. Obviously, e, f and g are mutually unbiased bases pairwise for C2. Suppose that
there exists a state ρ such that Equation (20) holds, i.e.,

|〈e1|ρ|e2〉| = |〈 f1|ρ| f2〉| = |〈g1|ρ|g2〉| =
1
2

. (21)
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Then under the three bases, we have

ρ = a|e1〉〈e1|+
1
2

eiθ1 |e1〉〈e2|+
1
2

e−iθ1 |e2〉〈e1|+ (1− a)|e2〉〈e2|, (22)

ρ = b| f1〉〈 f1|+
1
2

eiθ2 | f1〉〈 f2|+
1
2

e−iθ2 | f2〉〈 f1|+ (1− b)| f2〉〈 f2|, (23)

ρ = c|g1〉〈g1|+
1
2

eiθ3 |g1〉〈g2|+
1
2

e−iθ3 |g2〉〈g1|+ (1− c)|g2〉〈g2|, (24)

where a, b, c ∈ [0, 1], 0 ≤ θk < 2π(k = 1, 2, 3). Since ρ ≥ 0, we conclude from Equation (21)
that a = b = c = 1

2 . Substituting 2| fi〉〈 f j| in Equation (23) with

2| f1〉〈 f1| = |e1〉〈e1|+ |e1〉〈e2|+ |e2〉〈e1|+ |e2〉〈e2|,

2| f1〉〈 f2| = |e1〉〈e1| − |e1〉〈e2|+ |e2〉〈e1| − |e2〉〈e2|,

2| f2〉〈 f1| = |e1〉〈e1|+ |e1〉〈e2| − |e2〉〈e1| − |e2〉〈e2|,

2| f2〉〈 f2| = |e1〉〈e1| − |e1〉〈e2| − |e2〉〈e1|+ |e2〉〈e2|,

and comparing the coefficient of |e1〉〈e2| in Equations (22) and (23), we find that

eiθ1 = −i sin θ2 and so cos θ1 = 0. (25)

Similarly, substituting 2|gi〉〈gj| in Equation (24) with

2|g1〉〈g1| = |e1〉〈e1| − i|e1〉〈e2|+ |e2〉〈e1|+ i|e2〉〈e2|,

2|g1〉〈g2| = |e1〉〈e1|+ i|e1〉〈e2|+ i|e2〉〈e1| − |e2〉〈e2|,

2|g2〉〈g1| = |e1〉〈e1| − i|e1〉〈e2| − i|e2〉〈e1| − |e2〉〈e2|,

2|g2〉〈g2| = |e1〉〈e1|+ i|e1〉〈e2| − i|e2〉〈e1|+ |e2〉〈e2|,

and comparing the coefficient of |e1〉〈e2| in Equations (22) and (24), we find that

eiθ1 = − sin θ3 and so sin θ1 = 0. (26)

Combining Equations (25) and (26) yields that cos θ1 = sin θ1 = 0, a contradiction.

4. Conclusions

In this paper, we have introduced a correlation function m(e, f ) of two orthonormal
bases e and f with the property that 0 ≤ m(e, f ) ≤ d

3
2 − d, and proved that m(e, f ) = 0 if

and only if the rank-one projective measurements generated by e and f are identical if and
only if I(e) = I( f ), where I(e) and I( f ) denote the sets of incoherent states with respect
to e and f , respectively. We have also shown that m(e, f ) reaches the maximum d

3
2 − d if and

only if the bases e and f are mutually unbiased; in that case, the intersection I(e)⋂ I( f )
includes only the maximally mixed state. We have observed that even though two bases
e and f are not mutually unbiased, I(e)⋂ I( f ) may include only the maximally mixed
state. We have obtained a necessary and sufficient condition for I(e)⋂ I( f ) = I

d . We have
introduced the concepts of strong incoherence and weak coherence of a quantum state
w.r.t. a set B of k orthonormal bases and proposed a measure CB for the weak coherence.
In the two-qubit system, we have proved that there exists a maximally coherent state w.r.t.
the measure CB,`1 when B consists of any two bases and observed that there exist does not
a maximally coherent state w.r.t. the measure CB,`1 when B consists of some three mutually
unbiased bases.
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13. Pires, D.P.; Céleri, L.C.; Soares-Pinto, D.O. Geometric lower bound for a quantum coherence measure. Phys. Rev. A 2015,

91, 042330. [CrossRef]
14. Yao, Y.; Xiao, X.; Ge, L.; Sun, C.P. Quantum coherence in multipartite systems. Phys. Rev. A 2015, 92, 022112. [CrossRef]
15. Napoli, C.; Bromley, T.R.; Cianciaruso, M.; Piani, M.; Johnston N.; Adesso G. Robustness of coherence: An operational and

observable measure of quantum coherence. Phys. Rev. Lett. 2016, 116, 150502. [CrossRef]
16. Rana, S.; Parashar, P.; Lewenstein, M. Trace-distance measure of coherence. Phys. Rev. A 2016, 93, 012110. [CrossRef]
17. Rastegin, A.E. Quantum-coherence quantifiers based on the Tsallis relative α entropies. Phys. Rev. A 2016, 93, 032136. [CrossRef]
18. Luo, S.; Sun, Y. Quantum coherence versus quantum uncertainty. Phys. Rev. A 2017, 96, 022130. [CrossRef]
19. Xi, Z.J.; Hu, M.L.; Li, Y.M.; Fan, H. Entropic cohering power in quantum operations. Quantum Inf. Proc. 2018, 17, 34. [CrossRef]
20. Shi, H.L.; Liu, S.Y.; Wang, X.H.; Yang, W.L.; Yang, Z.Y.; Fan H. Coherence depletion in the Grover quantum search algorithm.

Phys. Rev. A 2017, 95, 032307. [CrossRef]
21. Anand, N.; Pati, A.K. Coherence and entanglement monogamy in the discrete analogue of analog grover search. arXiv 2016,

arXiv:1611.04542.
22. Rastegin, A.E. On the role of dealing with quantum coherence in amplitude amplification. Quantum Inf. Proc. 2018, 17, 179.

[CrossRef]
23. Hillery, M. Coherence as a resource in decision problems: The Deutsch-Jozsa algorithm and a variation. Phys. Rev. A 2016,

93, 012111. [CrossRef]
24. Matera, J.M.; Egloff, D.; Killoran, N.; Plenio, M.B. Coherent control of quantum systems as a resource theory. Quantum Sci. Technol.

2016, 1, 01LT01. [CrossRef]
25. Giovannetti, V.; Lloyd, S.; Maccone, L. Advances in quantum metrology. Nat. Photonics 2011, 5, 222–229. [CrossRef]
26. Rodríguez-Rosario, C.A.; Frauenheim, T.; Aspuru-Guzik, A. Thermodynamics of quantum coherence. arXiv 2013, arXiv:1308.1245.
27. Lostaglio, M.; Jennings, D.; Rudolph, T. Description of quantum coherence in thermodynamic processes requires constraints

beyond free energy. Nat. Commun. 2015, 6, 6383. [CrossRef]

http://doi.org/10.1103/PhysRevLett.113.140401
http://www.ncbi.nlm.nih.gov/pubmed/25325620
http://dx.doi.org/10.1103/RevModPhys.89.041003
http://dx.doi.org/10.1103/PhysRevLett.116.120404
http://dx.doi.org/10.1016/j.physrep.2018.07.004
http://dx.doi.org/10.1080/03081087.2021.1957759
http://dx.doi.org/10.1088/1751-8121/ab2267
http://dx.doi.org/10.1103/PhysRevLett.113.170401
http://dx.doi.org/10.1103/PhysRevLett.115.020403
http://dx.doi.org/10.1103/PhysRevX.5.021001
http://dx.doi.org/10.1103/PhysRevA.91.042120
http://dx.doi.org/10.1103/PhysRevA.91.042330
http://dx.doi.org/10.1103/PhysRevA.92.022112
http://dx.doi.org/10.1103/PhysRevLett.116.150502
http://dx.doi.org/10.1103/PhysRevA.93.012110
http://dx.doi.org/10.1103/PhysRevA.93.032136
http://dx.doi.org/10.1103/PhysRevA.96.022130
http://dx.doi.org/10.1007/s11128-017-1803-8
http://dx.doi.org/10.1103/PhysRevA.95.032307
http://dx.doi.org/10.1007/s11128-018-1946-2
http://dx.doi.org/10.1103/PhysRevA.93.012111
http://dx.doi.org/10.1088/2058-9565/1/1/01LT01
http://dx.doi.org/10.1038/nphoton.2011.35
http://dx.doi.org/10.1038/ncomms7383


Entropy 2022, 24, 659 14 of 14

28. Brandão, F.; Horodecki, M.; Ng, N.; Oppenheim J.; Wehner, S. The second laws of quantum thermodynamics. Proc. Natl. Acad. Sci.
USA 2015, 112, 3275. [CrossRef]

29. Narasimhachar, V.; Gour, G. Low-temperature thermodynamics with quantum coherence. Nat. Commun. 2015, 6, 7689. [CrossRef]
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