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Abstract: Software security is a very important aspect for software development organizations who
wish to provide high-quality and dependable software to their consumers. A crucial part of software
security is the early detection of software vulnerabilities. Vulnerability prediction is a mechanism
that facilitates the identification (and, in turn, the mitigation) of vulnerabilities early enough during
the software development cycle. The scientific community has recently focused a lot of attention
on developing Deep Learning models using text mining techniques for predicting the existence
of vulnerabilities in software components. However, there are also studies that examine whether
the utilization of statically extracted software metrics can lead to adequate Vulnerability Prediction
Models. In this paper, both software metrics- and text mining-based Vulnerability Prediction Models
are constructed and compared. A combination of software metrics and text tokens using deep-
learning models is examined as well in order to investigate if a combined model can lead to more
accurate vulnerability prediction. For the purposes of the present study, a vulnerability dataset
containing vulnerabilities from real-world software products is utilized and extended. The results of
our analysis indicate that text mining-based models outperform software metrics-based models with
respect to their F2-score, whereas enriching the text mining-based models with software metrics was
not found to provide any added value to their predictive performance.

Keywords: vulnerability prediction; dataset extension; software metrics; text mining; machine
learning; deep learning; ensemble learning

1. Introduction

Modern software programs are typically large, complicated, and interconnected. To
design secure software, it is vital to follow secure and good programming methods. As
a result, strategies and approaches that can offer developers with indicative information
on how secure their software is are needed to help them improve their security level.
Vulnerability prediction techniques may provide reliable information regarding software’s
vulnerable hotspots and assist developers in prioritizing testing and inspection efforts by
assigning limited testing resources to potentially vulnerable areas. Vulnerability Prediction
Models (VPMs) are often created using Machine Learning (ML) approaches that utilize
software features as input to differentiate between vulnerable and clean (or neutral) soft-
ware components. Several VPMs have been developed throughout the years, each of which
uses a different set of software features as inputs to anticipate the presence of vulnerable
components (e.g., software metrics [1–3], text features [4,5], static analysis alerts [6,7], etc.).

More specifically, the initial attempts in the field of software vulnerability prediction
investigated the ability of software metrics to indicate vulnerability existence in software,
paying more focus on cohesion, coupling, and complexity metrics [1–3]. They utilized ML
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algorithms to classify software components as vulnerable or not. Text mining approaches,
where researchers tried to extract text patterns from the source code utilizing Deep Learn-
ing (DL) models, were also examined [4,5,8,9], and demonstrated promising results in
vulnerability prediction. Although both approaches have been studied individually, and
there are several claims that text mining-based approaches lead to better vulnerability
prediction models, to the best of our knowledge, apart from [10,11], there is a lack of studies
that directly compare text mining-based with software metrics-based vulnerability models
or studies that examine the combination of text features and software metrics as indicators
of vulnerability.

The aforementioned research challenges, which constitute the main focus of the present
work, can be formally expressed in the following Research Questions (RQ):

• RQ-1: Are text mining-based models better in vulnerability prediction than those
utilizing software metrics?

• RQ-2: Can the combination of text features and software metrics lead to more accurate
vulnerability prediction models?

More specifically, in the present paper, we investigate whether using text mining-
extracted features can lead to adequate vulnerability prediction performance and we
compare the resulting models to software metrics-based models. We also investigate
whether combining software metrics with text features could result in more accurate
vulnerability prediction models. To achieve this, we utilize a vulnerability dataset provided
by Ferenc et al. [12] containing vulnerabilities from real-world open-source software
applications, and extend it by adding additional features extracted through text mining
(e.g., BoW and token sequences). Then, we replicate the work provided by Ferenc et al. [12]
in which the authors used the aforementioned dataset and ML models in order to predict
vulnerable functions, based on software metrics. Subsequently, we build our own DL
models based on text mining and compare their predictive performance with the software
metrics-based models. Finally, we attempt to combine these two kinds of inputs and train
an Ensemble learning classifier [13], in order to examine whether the combination of text
features and software metrics can lead to more accurate vulnerability prediction models.

The rest of the paper is structured as follows. In Section 2, the necessary theoretical
background is provided in order to familiarize the reader with the main concepts of the
present work. In Section 3, the related work in the field of Vulnerability Prediction in
software systems is presented. Section 4 provides information about the adopted method-
ology. Section 5 discusses the results of our analysis and Section 7 concludes the paper also
providing a discussion of potential future research directions.

2. Theoretical Background

In this section, we present the theoretical background of vulnerability prediction in
general and the specific technologies that we have used as part of the work that is described
in the present paper. This information is critical for familiarizing the reader with the
concepts of Vulnerability Prediction, both text mining-based and software metrics-based.
The ensemble learning background is described as well.

2.1. Vulnerability Prediction

The purpose of Vulnerability Prediction is to identify software hotspots (i.e., software
artefacts) that are more likely to contain software vulnerabilities. These hotspots are
actually parts of the source code that require more attention by the software developers and
engineers from a security viewpoint. Vulnerability Prediction Models (VPMs) are models
able to detect software components that are likely to contain vulnerabilities. These models
are normally built based on Machine Learning (ML) and are used in practice for prioritizing
testing and inspection efforts, by allocating limited test resources to potentially vulnerable
parts. For better understanding, the general structure of a Vulnerability Prediction Model
is depicted in Figure 1.
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Figure 1. The basic concept of vulnerability prediction.

As can be seen by Figure 1, the core element of vulnerability prediction is a vulner-
ability predictor, a model that is used to decide whether a given source code file (i.e.,
software component) is potentially vulnerable or not. The first step of the process is the
construction of the vulnerability predictor. In order to construct the vulnerability predictor,
a repository of clean and vulnerable software components (e.g., classes, functions, etc.)
is initially constructed. Subsequently, appropriate mechanisms are employed in order to
extract attributes from the source code (e.g., software metrics, static analysis alerts, text
features, etc.), which are collected in order to construct the dataset that will be used for
training and evaluating vulnerability prediction models. Then several VPMs are generated
and the one demonstrating the best predictive performance is selected as the final vulnera-
bility predictor. During the execution of the model in practice, when a new source code file
arrives to the system, its attributes are extracted and provided as input to the vulnerability
predictor, which, in turn, evaluates whether it is vulnerable or not.

The selection of the type of the attributes that will be provided as input to the generated
VPMs is an important design decision in Vulnerability Prediction. The main VPMs that can
be found in the literature are based on software attributes extracted from the source code
either through static analysis (e.g., such as software metrics) [1–3] and text mining (e.g.,
bag of words, sequences of tokens, etc.) [4,5,9].

Software metrics-based VPMs: When the VPMs utilize software metrics, they are
trained on numerical features that describe some characteristics of the source code (e.g.,
complexity, lines of code, etc.). These metrics are commonly extracted through static
analysis and can provide quantitative information about quality attributes of the source
code, such as the number of function calls and the number of linearly independent paths
through a program’s source code. Popular metric suites that are used in practice are the
Chidamber & Kemerer (CK) Metrics [14] and Quality Model for Object Oriented Design
(QMOOD) [15] metric suites. Several open- and closed-source tools are available for
their calculation, such as the (Chidamber & Kemerer Java Metrics) CKJM Extended (http:
//gromit.iiar.pwr.wroc.pl/p_inf/ckjm/, accessed on 2 January 2022), and the Understand
(https://en.wikipedia.org/wiki/Understand_(software), accessed on 2 January 2022) tools.

http://gromit.iiar.pwr.wroc.pl/p_inf/ckjm/
http://gromit.iiar.pwr.wroc.pl/p_inf/ckjm/
https://en.wikipedia.org/wiki/Understand_(software)
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Text mining-based VPMs: On the other hand, text mining-based VPMs are trained
on datasets made up of text tokens retrieved from the source code. The simplest text
mining approach is Bag of Words (BoW). The code in BoW is separated into text tokens,
each of which has a count of how many times it appears in the source code. As a result,
each word represents a feature, and the frequency of that feature in a component equals
the feature’s value in that component. Apart from BoW, a more complex text mining
approach involves the transformation of the source code into a list of token sequences
that can be fed into Deep Learning (DL) models that can parse sequential data (e.g.,
recurrent neural networks). The token sequences are the input to the DL models, which
try to capture the syntactic information in the source code during the training phase and
anticipate the presence of vulnerabilities in software components during the execution
phase. To extract semantic information from tokens, text mining-based methods also
employ Natural Language Processing (NLP) techniques including token encoding with
word2vec (https://radimrehurek.com/gensim/models/word2vec.html, accessed on 10
December 2021) embedding vectors. Word embedding methods learn a real-valued vector
representation for a predetermined fixed-sized vocabulary from a corpus of text [16]. On a
given natural language processing task, such as document classification, an embedding
layer is a word embedding trained in combination with a neural network. It needs cleaning
and preparing the document text in order for each word to be encoded in a one-hot vector.
The size of the vector space is determined by the model. Small random numbers are used
to seed the vectors. The embedding layer is utilized at the front end of a neural network
and is fitted using the Backpropagation method in a supervised way.

2.2. Ensemble Learning

The ensemble learning [13] is a machine learning meta method that aims to improve
predictive performance by integrating predictions from various models. It is actually
an ML technique that combines numerous base models to build a single best-predicting
model. The core premise of ensemble learning is that by merging many models, the
faults of a single model will most likely be compensated by other models, resulting in the
ensemble’s total prediction performance being better than that of a single model. The most
common ensemble methods are divided into three categories, namely bagging, boosting,
and stacking.

Bagging [17,18] is a technique used to reduce prediction variance by fitting each
base classifier on a random subset of the original dataset and subsequently combining
their individual predictions (either by voting or average) to generate a final prediction.
Boosting [18] is an ensemble modeling strategy that aims to create a strong classifier out of
a large number of weak ones. It is accomplished by constructing a model from a sequence
of weak models. To begin, a model is created using the training data. The second model
is then created, which attempts to correct the faults in the first model. This approach is
repeated until either the entire training data set is properly predicted or the maximum
number of models has been added.

In this study, the stacking classifier is employed (see Section 4.3). Stacking (https://to
wardsdatascience.com/stacking-classifiers-for-higher-predictive-performance-566f963e484
0, accessed on 2 January 2022) is a technique for bringing together models. It is made up
of two-layer estimators. The baseline models that are used to forecast the outcomes on
the validation datasets make up the first layer, while the meta-classifier constitutes the
second layer, which takes all of the baseline model predictions as input and generates new
predictions, as can be seen in the Figure 2.

https://radimrehurek.com/gensim/models/word2vec.html
https://towardsdatascience.com/stacking-classifiers-for-higher-predictive-performance-566f963e4840
https://towardsdatascience.com/stacking-classifiers-for-higher-predictive-performance-566f963e4840
https://towardsdatascience.com/stacking-classifiers-for-higher-predictive-performance-566f963e4840
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Figure 2. The architecture of the Stacking classifier.

3. Related Work

Vulnerability prediction is a relatively new research topic in software security that
seeks to predict which software components are likely to have vulnerabilities. Its goal
is to find algorithms that can be used as indicators of software security vulnerabilities,
identifying components as either potentially vulnerable or neutral. Vulnerability predic-
tion models (VPMs) are created for this purpose using machine learning techniques and
software properties as input. Using static analysis metrics [1–3] and/or text mining [4,5]
are widespread techniques to build VPMs.

Software metrics-based Vulnerability Prediction: Shin and Williams [1,2] were the first
researchers to look into the capacity of software metrics, particularly complexity metrics, to
predict vulnerabilities in software products. To distinguish vulnerable from non-vulnerable
functions, several regression models were created. According to their findings (which
were based on the Mozilla JavaScript Engine), complexity measurements are only good
indicators of software vulnerabilities. Chowdhury and Zulkernine [3] proposed a paradigm
for predicting vulnerabilities based on CCC metrics (complexity, coupling, and cohesion).
They compared the predictions of four distinct algorithms—Decision Tree, Random Forest
(RF), Logistic Regression, and Naive-Bayes—using 52 versions of Mozilla Firefox. They
came to the conclusion that structural data from non-security domains such as CCC is
valuable in vulnerability prediction.

Kalouptsoglou et al. evaluated if combining artificial neural networks with software
measurements could lead to more accurate cross-project vulnerability prediction [19]. On
the basis of a dataset of well-known PHP products, several machine learning (including
deep learning) models were built, assessed, and compared. Aiming to see if feature selec-
tion has an effect on cross-project prediction, feature selection is also used. They noticed
that models that were constructed based on a certain set of software projects seem to
deliver superior results when applied to new software projects that demonstrate similar-
ities with respect to the significance of their features to the occurrence of vulnerabilities.
Moshtari et al. [20] investigated the potential of software complexity to predict vulnerabili-
ties across several software projects (i.e., cross-project prediction). They also compared the
predictive value of complexity and coupling in cross-project prediction [21]. The results
showed that complexity metrics had better discriminative ability in cross-project prediction
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than coupling metrics, and that combining traditional complexity measurements with a
newly proposed set of coupling metrics improved the recall of the best complexity-based
VPM built in this study.

Text mining-based Vulnerability Prediction: In text mining approaches, the source code
of software components is parsed and represented as a set of code-tokens, which are then
used to train predictors. Vulture [8], a VPM that predicted vulnerabilities based on import
statements and function calls that are more common in vulnerable components, was the first
framework to be suggested. Vulture was tested on Mozilla Firefox and Thunderbird code,
and the findings were positive. Hovsepyan et al. [9] proposed a more comprehensive text
mining-based prediction technique. They parsed the source code of software components
to extract text items and their frequencies, which they used as predictive features (i.e., Bag
of Words). An empirical study of their technique on 19 versions of a large-scale Android
application found that it could be useful for vulnerability prediction, since the derived
predictors had appropriate precision and recall.

Instead of employing raw text features, Pang et al. [4] used N-Gram analysis (https://
towardsdatascience.com/understanding-word-n-grams-and-n-gram-probability-in-natu
ral-language-processing-9d9eef0fa058, accessed on 1 January 2022) to describe source code
as continuous token sequences. They used a deep neural network to identify vulnerable
software components and integrated N-gram analysis and statistical feature selection for
building features, evaluating their findings on a number of Java Android programs. The re-
sults of the evaluation demonstrated that the approach can deliver high precision, accuracy,
and recall ideas with high precision, accuracy, and recall. However, because the evaluation
was based on a small dataset, additional analysis would be required to determine that the
findings were generalizable. Li et al. introduced a deep learning model for vulnerability
detection in their paper VulDeePecker [5]. They divided the original code into a number of
semantically linked lines of code, which they subsequently converted into vectors using
the word2vec program. They developed a Bidirectional LSTM (BLSTM) model to detect
library/API function calls linked to known flaws.

Vulnerability Prediction using both software metrics and text features: In terms of
combining software metrics and text mining, no advanced models have been provided
in the literature that can integrate text tokens with knowledge acquired from software
metrics. Zhang et al. proposed VULPREDICTOR [11], an approach that investigates
whether a combination of text and software metrics could lead to superior results. The
evaluation results suggest that the combination of software metrics with text mining may
be promising for vulnerability prediction, as they outperformed the results produced by
Walden et al. [10], who used software metrics or text mining separately. In [22], the authors
proposed an approach called HARMLESS, which employs a semi-supervised model to
predict the remaining vulnerabilities in a code base using a Support Vector Machine (SVM)
prediction model with undersampled training data. HARMLESS identifies which source
code files are most likely to have flaws. In their case study, they also used Mozilla’s code
base, with three different feature sets; metrics, text, and a combination of text mining and
crash features, which actually describe the number of times the source code file has crashed.

Open Issues and Potential Contributions: As regards the comparison between text
mining and software metrics as indicators for vulnerability existence, a limited number
of attempts can be found in the literature. Walden et al. [10] compared text mining-
based vulnerability prediction models to models that used software metrics as predictors.
Their analysis was based on a dataset including 223 vulnerabilities discovered in three
web applications for this purpose (i.e., Drupal, Moodle, and PHPMyAdmin). Random
Forest models were trained to predict vulnerable and clean PHP files in their study. The
findings revealed that text mining outperforms software metrics when it comes to project-
specific vulnerability prediction, but it falls short in cross-project vulnerability prediction,
where software metrics perform better. The results of this analysis do not clearly indicate
which approach is superior and also it is based on a limited number of vulnerabilities
and programming languages. Furthermore, to the best of our knowledge, apart from

https://towardsdatascience.com/understanding-word-n-grams-and-n-gram-probability-in-natural-language-processing-9d9eef0fa058
https://towardsdatascience.com/understanding-word-n-grams-and-n-gram-probability-in-natural-language-processing-9d9eef0fa058
https://towardsdatascience.com/understanding-word-n-grams-and-n-gram-probability-in-natural-language-processing-9d9eef0fa058
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VULPREDICTOR [11] and HARMLESS [22], there are no other studies examining the
benefits of combining software metrics and text features. There is a need for further research
in this direction in order to enhance the generalizability of the outcomes of these studies.

In the present work, we attempt to address these open issues through an empirical
analysis. In particular, we utilize text mining in order to build vulnerability prediction mod-
els and examine whether they indeed lead to highly accurate predictive performance using
a real-world dataset constructed by Ferenc et al. [12], which we extended appropriately for
the purposes of the present work. For the construction of the text mining-based models we
utilize popular word embedding vector algorithms, namely word2vec and fastText, along
with Deep Learning algorithms. Apart from text mining, we also investigate whether the
utilization of software metrics could lead to sufficient vulnerability prediction performance,
and we compare the produced models with text mining-based models. Finally, we examine
whether the combination of software metrics with text features could lead to more accurate
unified vulnerability prediction models, either by jointly building models that combine
both types of features or by combining the outputs of independent software metrics-based
and text mining-based models through a meta-classifier based on the voting and stacking
ML paradigms.

4. Materials and Methods

In this section, the overall methodology that we adopted for building (i) the individual
text mining-based and software metric-based models, and (ii) the combinatorial model that
considers both text mining features and software metrics is described. More specifically, we
initially provide a description of the vulnerability dataset that we utilized for the purposes
of the present work. Then, we describe the generated VPMs, both software metrics-based
and text mining-based ones, as well as some models that combine these two features.

4.1. Dataset

For the purposes of training and evaluating our models, we utilized a dataset pro-
vided by Ferenc et al. [12] that consists of multiple source code files written in JavaScript
programming language retrieved from real-world open-source software projects that are
available on the GitHub repository. As already mentioned, this dataset was utilized in [12]
in order to build software metrics-based vulnerability prediction models. The authors
of [12] collected vulnerabilities from two publicly available vulnerability databases, the
Node Security Platform (NSP) (https://github.com/nodesecurity/nsp, accessed on 2 De-
cember 2021) and the Snyk Vulnerability Database (https://security.snyk.io/, accessed
on 5 January 2022). Both projects try to look for insecure third-party module usages in
programs. They provide command-line and web-based interfaces that can scan any Node.js
module for external dependencies that are known to be vulnerable. To do so, they use a list
of known vulnerabilities to search for security flaws in the version of an external module
that the programs rely on.

Through this process, a list of files, which contain vulnerabilities, was obtained. For
each file with vulnerabilities, they kept their GitHub Uniform Resource Locator (URL)
and by traversing these URLs, they derived a set of fixing commits. Using these commits,
they gathered all the code changes into a single patch file that comprised all the fixes from
the repairing commits. They obtained these data with the help of the GitHub API (https:
//docs.github.com/en/rest, accessed on 10 March 2022). Furthermore, they recognized
the parent commit of the first commit in time associated with each system’s vulnerability
fix. All the functions of parent commit that were affected by the fixing modifications were
considered as vulnerable, whereas the functions that were not included in the code changes
were considered as non-vulnerable.

Then they employed two static code analyzers, namely escomplex (https://github.c
om/escomplex/, accessed on 10 March 2022) and OpenStaticAnalyzer (https://github.com
/sed-inf-u-szeged/OpenStaticAnalyzer, accessed on 10 March 2022) in order to generate
static software metrics. The list of the produced metrics can be seen in Table 1.

https://github.com/nodesecurity/nsp
https://security.snyk.io/
https://docs.github.com/en/rest
https://docs.github.com/en/rest
https://github.com/escomplex/
https://github.com/escomplex/
https://github.com/sed-inf-u-szeged/OpenStaticAnalyzer
https://github.com/sed-inf-u-szeged/OpenStaticAnalyzer
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Table 1. The statically extracted software metrics.

Metric Description

CC Clone Coverage
CCL Clone Classes
CCO Clone Complexity
CI Clone Instances
CLC Clone Line Coverage
LDC Lines of Duplicated Code
McCC, CYCL Cyclomatic Complexity
NL Nesting Level
NLE Nesting Level without else-if
CD, TCD (Total) Comment Density
CLOC, TCLOC (Total) Comments Lines of Code
DLOC Documentation Lines of Code
LLOC, TLLOC (Total) Logical Lines of Code
LOC ,TLOC (Total) Lines of Code
NOS, TNOS (Total) Number of Statements
NUMPAR, PARAMS Number of Parameters
HOR_D NR. Of Distinct Halstead Operators
HOR_T Nr of Total Halstead Operators
HON_D NR. Of Distinct Halstead Operands
HON_T Nr of Total Halstead Operands
HLEN Halstead Length
HVOC Halstead Vocabulary Size
HDIFF Halstead Difficulty
HVOL Halstead Volume
HEFF Halstead Effort
BUGS Halstead Bugs
HTIME Halstead Time
CYCL_DENS Cyclomatic Density

The provided dataset (http://www.inf.u-szeged.hu/ferenc/papers/JSVulnerabilityD
ataSet/, accessed on 5 November 2021) is structured in the format of a Comma-Separated
Values (CSV) file, where each line corresponds to a JavaScript function. The columns
contain information about the function name, its full path, the GitHub URL of the file
where it is included and there are also 35 columns with the values of the aforementioned
software metrics. There is also one last column, which is the vulnerability class (equal to
one for vulnerable methods, equal to zero for non-vulnerable ones).

In order to validate the contents of the dataset, we randomly chose and examined
several samples of the dataset manually. Our evaluation procedure was based on the
search of the packages of the dataset samples in the Snyk Vulnerability Database using
its web-based interface. We provide an example based on the “actionhero” package, in
order to allow the reader understand the procedure that we followed for verifying man-
ually the correctness of samples of the dataset. The file “initFileServer.js”, provided by
the “actionhero”, was searched in the Snyk’s web interface with the keyword “action-
hero”. The interface returned two vulnerabilities, one Cross-Site Scripting (XSS) (CWE-
79 (https://cwe.mitre.org/data/definitions/79.html, accessed on 10 March 2022)) and
one Directory Traversal (CWE-22 (https://cwe.mitre.org/data/definitions/22.html, ac-
cessed on 10 March 2022). Subsequently, we searched the XSS vulnerability on “action-
hero” and we navigated to the GitHub commit that is provided as a reference (https:
//security.snyk.io/vuln/npm:actionhero:20161027, https://github.com/actionhero/acti
onhero/commit/f9f5d92f7c50a6dad38f558bd0a207b18e3580c1, accessed on 15 March 2022).
We notice that e.g., the dataset’s functions “servers/web.js” and “config/errors.js” are
included in the list of changed files in the vulnerability–fixing commit, as can be seen in
Figure 3.

http://www.inf.u-szeged.hu/ ferenc/papers/JSVulnerabilityDataSet/
http://www.inf.u-szeged.hu/ ferenc/papers/JSVulnerabilityDataSet/
https://cwe.mitre.org/data/definitions/79.html
https://cwe.mitre.org/data/definitions/22.html
https://security.snyk.io/vuln/npm:actionhero:20161027
https://security.snyk.io/vuln/npm:actionhero:20161027
https://github.com/actionhero/actionhero/commit/f9f5d92f7c50a6dad38f558bd0a207b18e3580c1
https://github.com/actionhero/actionhero/commit/f9f5d92f7c50a6dad38f558bd0a207b18e3580c1
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Figure 3. The diff file of the Cross-Site Scripting fixing commit of actionhero’s config/errors.js and
servers/web.js.

For the purposes of the present analysis apart from the computed software metrics,
we also need the actual source code of the functions, in order to extract text features that
are necessary for building the text mining-based models. Although the dataset contains
the GitHub URLs of the source code files and the names of the analyzed functions along
with their extracted metrics, the actual source code was not readily available. To this end,
we processed this CSV file and making use of the GitHub URL of each file we fetched the
corresponding source code from GitHub. Utilizing the information about the start and end
lines of every method, we managed to detach the source code of the methods.

The overall process that we followed for extending the original dataset provided by
Ferenc et al. [12] (i.e., for fetching the actual source code and extracting new text features)
is illustrated in Figure 4. As can be seen by Figure 4, after downloading the dataset in
CSV format provided by Ferenc et al. [12], the first step was to gather all the URLs of the
function components. Then we fetched the JavaScript files’ source code from GitHub using
these URLs. Subsequently, from each file we cut off the code of the functions included
utilizing the start and end lines that are contained in the CSV. Every function was tokenized
to construct a list of tokens per method (i.e., function). We employed two text mining
techniques to extract text features, namely (i) the Bag of Words, and (ii) the Sequences
of tokens. Hence, we came up with a repository of all methods’ source code, a CSV file
containing the software metrics that Ferenc et al. [12] extracted, the sequences of tokens of
each method and the BoW format of each method. It should be noted that all the comments
were removed and also all the numbers and the strings were replaced by two unique
identifiers, <numId$> and <strId$> respectively, in order to increase the generalizability of
type-specific tokens [23,24]. The method’s code, along with the rest of the dataset columns
of the CSV, constitute our updated dataset, which consists of 12,106 JavaScript functions,
from which 1493 are vulnerable.
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Figure 4. The process of constructing the overall dataset of the proposed approaches.

The final extended vulnerability dataset that contains the actual source code of the
analyzed functions, their software metrics, and their text mining-based features (i.e., BoW
and sequences of tokens), is made publicly available on the website with the supporting
material of the present work (https://sites.google.com/view/vulnerability-prediction-
data/home, accessed on 10 March 2022), along with the scripts that were utilized for
extending the dataset (i.e., for fetching the actual source code and extracting the text
mining-features). This will enable the replication and additional evaluation of our work,
while it is also expected to facilitate future research endeavors, as researchers interested
in the field of vulnerability prediction could use the dataset for building other software
metric-based and text mining-based models, or further extend the dataset by extracting
new features from the source code.

4.2. Model Construction
4.2.1. Software Metrics-Based Models

As a first step in our analysis, we tried to replicate the analysis conducted by
Ferenc et al. [12]. This would allow us to ensure that we are comparing against reli-
able results and will also allow us to utilize the dataset correctly. For this purpose, we
used the dataset described in the Section 4.1, utilizing only the software metrics that were
previously computed by Ferenc et al. [12] and not the textual features extracted by us.
We utilized scikit-learn (https://scikit-learn.org/stable/accessed on 10 March 2022) and
TensorFlow (https://www.tensorflow.org/, accessed on 10 March 2022) in order to develop
ML models in Python. We trained the Decision Trees, Random Forest, Naïve Bayes, Support
Vector Machine, K-Nearest Neighbors, and Deep Neural Network models because as a
first step we tried to replicate the analysis conducted by Ferenc et al. [12]. Therefore, we
chose the same algorithms with Ferenc et al. [12] in order to be able to compare our results
directly with theirs. The descriptions of these models are listed below.

• Decision Trees: A decision tree is a decision-making algorithm that employs a tree-like
model of decisions and their potential consequences, such as chance event outcomes,
resource costs, and utility. It is one approach to show an algorithm made up entirely
of conditional control statements.

• Random Forest (RF): Random Forest is a classification algorithm that is built from
several decision trees. The new instance (i.e., input vector) is provided as input
to each one of the decision trees, which predict its class. The Random Forest then
gathers all of the predictions generated by each of the decision trees that belong to the
Random Forest and offers a final classification. We used a 100-tree Random Forest for
our studies.

• Naïve Bayes: A probabilistic classifier, the Naive Bayes classification technique is used.
It is based on probability models with strong independence assumptions built in. In

https://sites.google.com/view/vulnerability-prediction-data/home
https://sites.google.com/view/vulnerability-prediction-data/home
https://scikit-learn.org/stable/
https://www.tensorflow.org/
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most cases, independence assumptions have no effect on reality. As a result, they are
characterized as naive.

• Support Vector Machine (SVM): SVM is a classifier that attempts to find the best
N-dimensional hyperplane (i.e., support vectors) for maximizing the margin between
data points and therefore distinguishing them. To accomplish this, it aims to learn
a nonlinear function by linearly mapping data points into a high-dimensional fea-
ture space.

• K-Nearest Neighbors (KNN): The outcome of k-NN classification is a class member-
ship. An object is categorized by a majority vote of its neighbors, with the object
allocated to the most common class among its k closest neighbors. If k = 1, the object
is simply assigned to that single nearest neighbor’s class.

• Deep Neural Network (i.e., Multi-Layer Perceptron): A multilayer perceptron (MLP)
is a type of feed-forward artificial neural network (ANN) that has multiple layers
of perceptrons. MLPs are frequently used in deep learning, particularly in the con-
struction of Deep Neural Networks (DNNs), which are ANNs with a large number
of hidden layers between the input and output layers. The values of some specific
variables called hyper-parameters affect the entire training process of an ANN, and
hence of a DNN.

Hyper-parameter tuning was performed to determine the best hyper-parameters
values for the construction of each model. We employed the Grid-search approach [25],
which is often used to determine the best hyper-parameters for a model by conducting an
exhaustive search through a set of hyper-parameter values for every estimator.

As already stated in Section 4.1, the dataset contains 1493 vulnerable functions in
more than 12,000 functions. Hence, it is a highly imbalanced dataset, and this fact could
be a barrier for the prediction task. To eliminate the risk of bias to the majority class, we
examined sampling approaches to make the training set balanced. It is worth noting that
sampling is only used on the training set, because re-sampling on test data introduces bias
into the results. We repeated the training and the evaluation of our models implementing
over-sampling until the percentage of the minority class instances was equal to the 50%
of the majority class samples (similarly with Ferenc et al. [12]). We also performed under-
sampling until the percentage of the samples of the majority class was equal with the ones
of the 50% of the minority class. The over/under sampling technique that we utilized is the
random sampling algorithm provided by imblearn (https://imbalanced-learn.org/stable/,
accessed on 10 March 2022) library. Random re-sampling provides a naive technique for re-
balancing the class distribution for an imbalanced dataset. It is a simple duplication (in case
of over-sampling) or removal (in case of under-sampling) of some of the dataset’s samples.

The choice of independent input variables (i.e., features) is often crucial in the de-
velopment of ML algorithms. Each extra feature adds a new dimension to the model,
making it more complex. The “curse of dimensionality” [26], a phenomenon in which the
model’s efficiency suffers as the number of input variables grows, can be triggered by a
large number of input variables. Feature selection is a powerful tool for dealing with the
curse of dimensionality, as it minimizes both the computational cost of modeling and the
time it takes to train. In many circumstances, feature selection can even increase the model’s
efficacy, as irrelevant features can have a negative impact on the model’s performance.

We used a method called Point-BiSerial Correlation (PBSC) [27,28] to investigate
the statistical significance of each function-level software metric over the occurrence of
vulnerabilities. PBSC can compute the correlation between a continuous and a dichotomous
(i.e., binary) variable, which in this case is the existence of vulnerabilities. As we had to
compare numerical variables (i.e., software metrics) with a dichotomous dependent variable
(i.e., existence of vulnerabilities), we could not utilize Spearman or Pearson correlation
coefficients that measure the strength of the linear relationship between variables with
numerical values. We applied the PBSC method on the feature set of our dataset, and then
we ranked the 35 features described in Section 4.1, in accordance with their correlation.
Subsequently we filtered out the features that had a p-value greater than 0.05, as they do

https://imbalanced-learn.org/stable/
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not have a statistically significant correlation within the 95% confidence interval [28]. Only
six out of the 35 software metrics of the dataset were not observed to have a statistically
significant correlation with the class attribute, and therefore they have been eliminated from
the produced models. These six software metrics are Clone Instances, Lines of Duplicated
Code, Comment Density, Documentation Lines of Code, Halstead Effort, and Halstead
Time. It should be noted that during the training procedure, we gradually evaluated our
models with fewer features without succeeding any improvement in the evaluation metrics,
so we decided to use all the 29 features approved by the PBSC method.

4.2.2. Text Mining-Based Models

In this section, we present a text mining-based approach. For this purpose, we used
the dataset described in the Section 4.1, utilizing only the source code retrieved by GitHub
and not the software metrics. We developed ML and DL models following two approaches:

• Bag of Words (BoW);
• Sequences of text tokens.

Bag of Words

In the BoW approach, a set of all the words found in the source code are considered as
features used by our predictors. Each evaluated software function is represented by a list
of code tokens and their associated number of occurrences in the source code. Furthermore,
prediction is performed via ML models. We applied the Random Forest (RF) algorithm,
which appears to be the most suitable one based on the bibliography [10,11,29], and also
a DL method called Multi-Layer Perceptron (MLP) for reasons of completeness. In our
BoW approach, the features that will constitute the input of the RF and MLP models are
the tokens (i.e., words) that appear in the source code. More specifically, firstly, we create
the vocabulary of our analysis, which actually is a list of all the tokens found in our dataset.
Subsequently, we assign to each function of the dataset the number of occurrences of each
token in the specific function. Hence, a table is formatted, having as lines the functions
and as columns the vocabulary list. Every token that does not appear in a function gets
the zero value for the specific function. A subset of a BoW dataset can be seen in Table 2.
The columns of Table 2 represent some tokens of our vocabulary, while lines of Table 2
represent the name of the files in the dataset. For instance, the file initFileServer contains
seventeen instances of the token ‘null’, zero instances of the token ‘this’, nine instances of
the token ‘function’, and four instances of the token ‘push’.

Table 2. A Bag of Words (BoW) subset of the dataset.

Function Name Null This Function Push

initFileServer 17 0 9 4
api.sendFile 0 0 1 0

<anonymous>.followFileToServe 2 0 3 0
<anonymous>.sendFile 6 0 3 3

The dataset consists of 12,942 unique tokens (i.e, a vocabulary of 12,942 tokens). The
average occurrence of a token is about 1023 times. The most common term is ‘a’, with
1,159,023 occurrences, while there are several terms, such as ‘userConfig’ and ‘invalidJson’,
which appear only once.

Sequences of Text Tokens

In the approach of sequential text tokens, each software function represents a token
sequence. Each sequence includes the token in the order they appear in the source code. We
feed the DL model with these sequences of tokens representing each token with a vector,
which is called embedding. These embedding vector representations can be generated by
several ways (see Section 2.1). In this case, the dataset’s sequences serve as the corpus for
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the training of the embedding vectors. We examined two sophisticated algorithms, namely
word2vec and fastText, which are capable of capturing syntactic and semantic relationships
between code tokens and placing these tokens in the vector space by considering their
syntactic and semantic similarity. After training these embedding vectors for the vocabulary
words, they can be saved for future usage, which saves time throughout the training process.

We utilized word embeddings because they convert words to vectors in a manner that
vectors that are in close proximity in the vector space, correspond to words that are in close
proximity in the actual source code. We also combined them with DL algorithms because
they are well suited with the NLP tasks and are capable of learning sequences [24,30].

For each dataset’s function, we define a sequence of tokens and then these tokens
correspond to a unique integer. Each integer is transformed to an embedding vector using
a sophisticated algorithm such as word2vec. Hence, the dataset is transformed to a list of
sequences of embeddings and these embeddings serve as the numerical input to the ML
model. The embedding vectors are fed into the Embedding Layer of the neural network
(CNN) and finally the output layer classifies the functions as vulnerable or not, providing
also the sigmoid output that indicates the confidence of the model for every prediction. An
overview of the whole process is illustrated in Figure 5.

Figure 5. The overview of the sequences of text tokens approach.

As regards to the designing of the model, a DL model was preferred and specifically
the Convolutional Neural Network (CNN) that according with the experiments in [30]
proved to be the most efficient and the least time intensive among the DL algorithms that
can manage sequential data (i.e., LSTMs, GRUs, BiLSTMs). The CNN’s hyper-parameters
were selected through extensive tuning using the Grid-search method [25] and can be found
in Table 3.

Table 3. The chosen Hyper-parameters of the Convolutional Neural Network (CNN) model.

Hyper-Parameter Name Hyper-Parameter Value

Number of Layers 3 (Embedding-Convolutional-Dense)
Number of Convolutional Layers 1 (1D CNN)
Embedding Size 300
Number of Filters 128
Kernel Size 5
Pooling Global Max Pooling
Weight Initialization Technique Glorot Uniform (Xavier)
Learning Rate 0.01
Gradient Descent Optimizer Adam
Batch Size 64
Activation Function Relu
Output Activation Function Sigmoid
Loss Function Binary cross entropy
Maximum Epochs 100
Early Stopping Patience 10
Monitoring Metric Recall

4.3. Combination of Software Metrics and Text Mining-Based Models

As already said, one interesting research question to examine is whether the combina-
tion of software metrics and text features can lead to vulnerability prediction models with
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better predictive performance compared to models that focus solely on software metrics or
text features (RQ2). To this end, in this section, we present the methodology of combining
software metrics and text features in order to predict vulnerable software components. We
attempted to design combined models by four different ways:

1. Combine software metrics with BoW features. In this approach, the occurrences of
each token in any function are considered as additional features to the code metrics of
the corresponding function.

2. Combine software metrics with token sequences. For this purpose, we utilized the
Keras functional API (https://keras.io/guides/functional_api/, accessed on 10 Febru-
ary 2022), which allows us to combine different kinds of input in different layers.

3. Apply a Majority Voting approach. For each instance, the output of the text mining-
based model (either BoW or sequences) was compared with the output of the software
metrics-based model, and the output with the biggest probability was qualified.

4. Apply a Stacking ensemble method. The predicted probabilities of both the software
metrics-based models and the two text mining-based models were used as input for
another estimator called meta-classifier that is described in the Section 5.2.2.

5. Results & Discussion

The results of our analysis and the results of the experiments are presented in this
section. All the experiments with neural networks were carried out on an NVIDIA GeForce
GTX 1660 GPU running on the CUDA platform (https://developer.nvidia.com/cuda-tool
kit, accessed on 10 Janury 2022). For the ML models training, we used an i5-9600K CPU at
3.70 GHz with 16 GB RAM. For the evaluation of the models, 10-fold Cross-Validation (CV)
was performed. During a 10-fold CV, the overall training dataset is divided into 10 parts,
from which the 9 constitute the training set and the left one constitutes the validation test.
At the end of each training process, we evaluated our models based on the prediction on
the validation set. In VP, the most important goal is to identify as many vulnerable software
components as possible, so the Recall should be as high as possible. On the other hand, it is
essential to reduce the number of FP and consequently to increase the Precision in order to
make the model usable in practice. The F2-score is a weighted average of Precision and
Recall, with Recall being more important than Precision. Hence, we have put particular
focus on the F2-score. F2-score is equal to:

F2 =
5 × precision × recall
4 × precision + recall

(1)

5.1. Comparison between Text Mining-Based and Software Metrics-Based Vulnerability
Prediction Models

In this section, we focus on the first Research Question (RQ1) and we compare the
utilization of software metrics and text features in Vulnerability Prediction. We present the
results of our analysis and we discuss the results of each approach.

5.1.1. Software Metrics Evaluation

As already stated, the first step of our experimental analysis is the replication of the
work provided by Ferenc et al. [12]. Table 4 reports the evaluation results of the ML models
that were built based on the software metrics that Ferenc et al. [12] statically extracted from
the source code. This table sums up the results of six different algorithms regarding their
accuracy, precision, recall, F1-score and F2-score with the latest to be the most critical for
the vulnerability prediction case.

https://keras.io/guides/functional_api/
https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cuda-toolkit
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Table 4. Evaluation results of software metrics based models.

Evaluation Metric KNN RF Decision
Trees SVM Naive

Bayes ANN

Accuracy (%) 93.10 95.16 93.19 94.34 84.40 91.72
Precision (%) 72.85 90.42 73.10 94.62 23.75 73.65
Recall (%) 70.60 68.05 71.07 57.40 12.06 54.06
F1-score (%) 71.66 77.62 72.04 71.43 15.92 61.24
F2-score (%) 71.01 71.58 71.45 62.29 13.35 56.62

Table 5 presents the results produced by Ferenc et al. [12] as regarding the F1-score.

Table 5. Evaluation results of software metrics-based models according to Ferenc et al.

Evaluation Metric KNN RF Decision
Trees SVM Naive

Bayes ANN

F1-score (%) 76 71 72 67 15 71

By comparing the results reported in Tables 4 and 5, one can identify the convergence
in the F1-score between our analysis and Ferenc et al. evaluation. In both cases, F-measures
of Decision Trees are 72%, SVMs are close to 70%, both Naïve Bayes scores are 15%, and
although Neural Network, KNN, and RF approaches have slight differences, they are close
enough and most importantly, the best model produced F1-score close is equal to 77.62% in
our case and 76% in their case. Hence, we can conclude that the software metrics-based
approach using different ML models catches maximum value close to 78% with this dataset.
It should be noted that none of the over/under sampling techniques that we attempted
managed to provide any benefit.

The above analysis indicates that the adoption of software metrics may be a promising
solution for conducting vulnerability prediction, as in all cases the F2-score was found
to be above 70%. In our analysis, it seems that the Random Forest with 100 trees is the
best approach, as apart from the relatively high F1 and F2 scores it also demonstrates high
Precision (above 90%). This indicates that the model treats the problem of the many False
Positives sufficiently, dealing with a well-known problem in the literature that hinders the
practicality of the produced models. More specifically, low values of precision indicate that
the model produces a large number of False Positives, which means that the developer
would have to focus on components (e.g., functions) that are marked as vulnerable by the
model but are in fact clean. In addition to this, the developer would also have to triage a
large number of actually clean functions in order to spot a vulnerable one. This obviously
leads to a waste of valuable resources, expressed in terms of time and effort required to
spend in order to spot a vulnerability.

5.1.2. Text Mining Evaluation

Subsequently, we trained and evaluated through 10-fold CV our proposed text mining
based models. As regard the BoW method, the results both the prevailing Random Forest
(RF) with 100 trees and the Multi-Layer Perceptron (MLP) models are reported in the Table 6:

Table 6. Evaluation results of BoW models.

Evaluation Metric RF MLP

Accuracy (%) 96.64 94.13
Precision (%) 93.16 77.82
Recall (%) 78.57 82.65
F1-score (%) 85.20 79.03
F2-score (%) 81.08 80.76
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From Tables 4 and 6, it is clear that text mining is very beneficial to the VP task. Best
BoW model succeeds almost 8% and 10% higher F1-score and F2-score respectively, in
contrast with the software metrics approach, which constitutes a significant improvement.
Moreover, the RF model seems to be a slightly better option than the MLP, since it overcomes
MLP in both F1 and F2 scores. This is in line with the majority of the research work in the
field of vulnerability prediction utilizing BoW, in which also Random Forest was found to
be the best model [10,29].

In Table 7, the evaluation metrics of the sequences of tokens-based models are presented:

Table 7. Evaluation results of models that are based on sequences of tokens.

Evaluation Metric CNN with Word2Vec Embeddings CNN with FastText Embeddings

Accuracy (%) 96.48 92.94
Precision (%) 86.12 66.64
Recall (%) 85.60 88.08
F1-score (%) 85.73 75.66
F2-score (%) 85.62 82.58

Based on Table 7, we could argue that the employment of DL to predict vulnerabilities,
specifically using Convolutional Neural Networks (CNN), can constitute a promising
method. We examined two different embedding methods, namely word2vec and FastText
(https://radimrehurek.com/gensim/models/fasttext.html, accessed on 10 March 2022)
algorithms. The results obtained show that the model built utilizing embedding vectors
trained with word2vec are better in vulnerability prediction with respect to their F1-score
and F2-score, compared to the model built utilizing embedding vectors that were trained
with the FastText algorithm.

In comparison with the software metrics approach, it can be seen that the sequence-
based CNN models outperform the software metrics-based models. In particular, the best
CNN model (as can be seen by Table 7) achieves an F1-score of 85.73% and an F2-score
of 85.62%, which is 8% and 14% higher than the F1-score and F2-score respectively of
the best software metrics-based model reported in Table 4. In comparison with the BoW
approach (see Table 6), the sequence-based models still demonstrate better predictive
performance; however, the difference in the performance is much smaller compared to
the metrics-based models, at least with respect to their F1-score and F2-score. This could
be expected by the fact that those approaches are similar in nature (i.e., they are both text
mining approaches), and their difference lies in the way how the text tokens are represented.
In fact, the improvement that the sequence-based models introduce is that instead of taking
as input the occurrences of the tokens in the code, they take as input their sequence inside
the source code, potentially allowing them to detect more complex code patterns, and,
thus, this improvement in the predictive performance could be attributed to those complex
patterns. In general, from the above analysis one can notice that text mining-based models
(either based on BoW or on the sequences of tokens) provide better results in vulnerability
prediction than the software metrics-based models.

In answering to the RQ1, both text mining-based and software metrics-based models
demonstrate sufficient performance in predicting the existence of vulnerabilities in software
functions. However, text mining-based models outperform software metrics-based models
in vulnerability prediction.

To gather it altogether, we present the Tables 8 and 9. The Table 8 contains the different
characteristics of the text mining–based and the software metrics–based models. The Table 9
includes the results of the two approaches altogether. Both tables refer to the best models
of each method, based on our experiments.

https://radimrehurek.com/gensim/models/fasttext.html
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Table 8. A table with the characteristics of both text mining–based and software metrics–based models.

Sequences of
Tokens Bag of Words Software

Metrics

Machine/Deep Learning (ML/DL) DL ML ML
Type of model Neural network Random Forest Random Forest

Type of input Embedded
Sequences

Tokens
occurrences Numerical values

Particular features Convolutional 100 trees 100 trees

Table 9. A table with the evaluation scores of both text mining–based and software metrics–based models.

Evaluation Metric Sequences of Tokens Bag of Words Software Metrics

Accuracy (%) 96.48 96.64 95.16
Precision (%) 86.12 93.16 90.42
Recall (%) 85.60 78.57 68.05
F1-score (%) 85.73 85.20 77.62
F2-score (%) 85.62 81.08 71.58

In the Figure 6, the results of the token sequences, Bag of Words, and software metrics
approaches are illustrated in the format of bar charts. In the Figure 6, it seems that the
Software Metrics approach, though it turned out to be the less reliable one, it demonstrates
very high precision. This implies that the model adequately addresses the problem of many
False Positives, a well-known issue in the literature that impedes the practicality of the
developed models. However, this may actually be due to the fact that the model favors
reducing False Positives over False Negatives. This way the number of False Negatives
increases, while the most important goal in the Vulnerability Prediction is to reduce the
False Negatives and identify as many True Positives as possible.

Figure 6. Bar chart with the evaluation metrics of the sequences of tokens, BoW and software metrics
approaches.

5.2. Combination of Text Mining and Software Metrics in Vulnerability Prediction

In this section we focus on the second Research Question (RQ2) and we examine
whether the combination of software metrics and text features in a unified model could lead
to better predictive performance compared to the individual models focusing on a certain
type of features that we have examined so far. A positive answer to this question would
indicate that existing text mining-based vulnerability prediction models could benefit from
the complementary utilization of selected software metrics. As already stated, we follow
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two broader approaches: (i) we attempt to combine text features and software metrics into
a unified model, and (ii) we attempt to combine individual text mining-based and software
metrics-based models through ensemble learning.

5.2.1. Combining Text Mining Features and Software Metrics into a Unified Model

In this section, we attempt to combine the two aforementioned vulnerability indicators
(i.e., code metrics and text features) into a unified model. Firstly, we combined the software
metrics and the text mining technique called BoW, in order to build a model that combines
both types of features to generate its decision. This process requires a simple concatenation
of the software metrics with the BoW’s text tokens for each function of the dataset, and
utilization of the concatenated set of features to build the model. We used the RF algorithm
as predictor for the combined model, as it proved to be the most trusted one for each one of
the individual approaches. An overview of this approach can be found in Figure 7.

Figure 7. The overview of the approach combining BoW and software metrics.

Subsequently, we attempted to combine the software metrics with our second text
mining technique that uses sequences of tokens. For this purpose, we utilized the Keras
Functional API (https://keras.io/guides/functional_api/, accessed on 10 March 2022),
which provides the capability of designing models with different inputs and outputs. Using
this API, we managed to use a CNN layer along with an embedding layer in order to extract
features from the sequences of tokens, then to concatenate the extracted features with the
software metrics, and finally to add one feed-forward layer to receive the concatenated
set of features. An overview of this method is illustrated in Figure 8. Table 10 reports the
related results.

Figure 8. The overview of the approach combining sequences of tokens and software metrics.

https://keras.io/guides/functional_api/
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Table 10. Combination of text mining and software metrics.

Evaluation Metric Software Metrics and BoW Software Metrics and Token
Sequences

Accuracy (%) 96.32 72.88
Precision (%) 93.55 30.57
Recall (%) 75.35 68.68
F1-score (%) 83.43 40.84
F2-score (%) 78.38 52.85

As can be seen in Table 10, no improvement in the predictive performance (compared
to the performance of the best model presented in Section 5.1.2) is observed from the
combination of these features. Actually, in the case of software metrics and token sequences
combined, the performance is very poor, and this is why we resorted to the approach of
ensemble learning (see Section 2.2).

5.2.2. Combining Different Models with Ensemble Learning

As already stated in Section 4.3, we also applied two ensemble learning techniques,
namely the voting and the stacking. By employing ensemble classifiers, we aim to reduce
the error of the individual classifiers by counterbalancing their predictions. As regards the
voting, we adopted the soft voting (https://machinelearningmastery.com/voting-ensemb
les-with-python/, accessed on 10 March 2022) technique. In a soft voting ensemble, the
predicted probabilities for class labels are added up and the class label with the highest
sum probability is predicted. Hence, for each function, from the two applied models’ (i.e.,
text mining and software metrics-based) predictions the one with the higher probability is
qualified (see Figure 9). Table 11 summarizes the outcome of this approach.

Figure 9. The overview of the voting approach between text mining and software metrics.

Table 11. Voting classification between text mining and software metrics based models.

Evaluation Metric Voting-Soft. Metrics and BoW Voting-Soft. Metrics and Tokens

Accuracy (%) 96.23 95.93
Precision (%) 94.54 88.42
Recall (%) 73.75 77.09
F1-score (%) 82.81 82.32
F2-score (%) 77.11 79.09

However, similarly to the previous experiment, voting does not improve the evaluation
metrics. It seems that, in this specific dataset, the software metrics-based classifier cannot
identify a relevant number of vulnerabilities which are not specified by the text mining
model. We reached the same conclusion after applying the stacking classifier.

https://machinelearningmastery.com/voting-ensembles-with-python/
https://machinelearningmastery.com/voting-ensembles-with-python/


Entropy 2022, 24, 651 20 of 23

We repeatedly trained four classifiers in nine folds of the dataset, two of them are based
on software metrics (SVM, RF), and two are based on text mining (i.e., BoW, sequences
of tokens). Then we made predictions with each classifier, and we saved the predicted
probabilities. These probabilities constituted the input of the meta-classifier. We selected RF
as a meta-classifier algorithm, based on experiments. This meta-classifier was trained on
the output of the first ones, and it was evaluated in a second CV loop. Figure 10 illustrates
the overview of this approach, while Table 12 presents the produced results.

Figure 10. The overview of the stacking approach between text mining and software metrics.

Table 12. Stacking classifier evaluation.

Evaluation Metric Stacking-Software Metrics and Text Mining

Accuracy (%) 96.78
Precision (%) 90.75
Recall (%) 82.31
F1-score (%) 86.29
F2-score (%) 83.86

Although this approach provided better results compared to the combination of fea-
tures and the voting that are presented in Tables 10 and 11 respectively, it still reaches 2%
lower F2-score than the higher F2-score reached when using text-mining based CNN with
word2vec embeddings (i.e., 85.62%). In simple words, the combination of statically ex-
tracted code metrics and text features (either BoW or sequences of tokens) did not manage
to surpass the text mining approach, at least on this specific dataset. The fact that the en-
semble learning classifiers did not produce better results leads to the conclusion that almost
all the right predictions of the software metrics-based models are included in the right
decisions of the text mining-based model and so, there are no errors to be compensated.

In answering the RQ2, the combination of software metrics and text features led to
vulnerability prediction models with sufficient predictive performance. However, the
produced models did not provide better results than the models that are based solely on
text features. This suggests that, at least for the given dataset, text mining-based models,
and especially those built using word embedding vectors, constitute the most accurate
approach, compared to software metrics-based models and models that combine software
metrics and text features.

6. Limitations and Threats to Validity

In this section, we discuss the limitations and validity threats of this empirical study.
We discuss about both internal and external validity, but also about construct and reliability
threats. The ability to generalize results is known as external validity. Because the applica-
bility of ML models to predict vulnerabilities is investigated on a specific JavaScript dataset,
the study’s findings are sensitive to external validity risks. It is always likely that a different
collection of data will lead to different results. However, the chosen approaches are lan-
guage agnostic, allowing developers to use them in other datasets of different programming
languages. Another threat to external validity is the validity of the utilized dataset, as we
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cannot be sure about the validity of the labeling of the source code functions as vulnerable
or not. To eliminate this risk, we performed a manual investigation on randomly selected
data samples, as described thoroughly in Section 4.1. Concerning the internal validity,
which refers to a study’s ability to accurately measure a causal effect in the context under
investigation, the hyper-parameters chosen for the models could be biased by the dataset
that was used for training. In order to address this risk, techniques for avoiding over-fitting,
such as Early Stopping, were used. We also performed our evaluation process based on the
Cross-Validation method in order to avoid the bias on a specific test subset.

As regards the construct validity of the experimented prediction models, we employed
the scikit-learn library’s implementation of machine learning techniques, which is widely
regarded as a dependable tool. For the purposes of the DL models, we utilized the provided
by TensorFlow Keras framework, which is a highly reliable and very popular framework.

Finally, the prospect of replicating this study poses a risk of reliability. We give an
experimental package containing both the dataset and the scripts that were utilized for our
analysis and the vulnerability prediction models creation to make replication studies easier.
This information can be accessed online (https://sites.google.com/view/vulnerability-pr
ediction-data/home, accessed on 10 March 2022).

7. Conclusions

In the present paper, we evaluated the predictive performance of text mining-based
and software metric-based vulnerability prediction models. We also examined whether
the combination of software metrics and text features could lead to better vulnerability
prediction models, as opposed to models built solely on text mining features or software
metrics. More specifically, for the purposes of the present study, we utilized and extended
a vulnerability dataset constructed by Ferenc et al. [12], labeled with vulnerabilities in
function level, in order to investigate mainly, whether the adoption of text mining surpasses
the software metrics approach (adopted by Ferenc et al. [12]) and subsequently, whether
the combination of these kinds of features could be proved beneficial. We evaluated our
approach using 10-fold cross validation focusing chiefly on the F2-score. Our analysis led
to the conclusion that text mining is an effective solution for vulnerability prediction, while
it is superior to software metrics utilization. More specifically, both Bag of Words and token
sequences approaches provided better results than the software metrics-based models.
Another interesting observation that was made by our analysis is that the combination of
software metrics with text features did not lead to more accurate vulnerability prediction
models. Although their predictive performance was found to be sufficient, it did not
manage to surpass the predictive performance of the already strong text mining-based
vulnerability prediction models. In particular, neither the simple concatenation nor the
more sophisticated ensemble learning techniques (i.e., voting, stacking) managed to sur-
pass the text mining-based models, and especially those built using sequences of word
embedding vectors.

Several directions for future work can be identified. Firstly, since there is always the
threat of generalizability, the present analysis needs to be repeated in the future, utilizing
different datasets preferably of different programming languages, in order to investigate
whether this observation is general or holds only for a specific language or dataset. Different
DL architectures may also prove to be beneficial to our attempt to capture patterns in the
source code that are indicative of vulnerability existence. In the present paper, we utilized
popular word embedding algorithms (i.e., word2vec and fastText) for the representation of
the text tokens. However, different embedding architectures could provide better results.
For this purpose, it would be an interesting topic to examine transformer-based pre-trained
models such as BERT and codeBERT [31]. Additional software metrics or textual features
could be also examined.

As regards the broader Vulnerability Prediction field, there are many open challenges
that we could examine. It is critical to increase the performance of existing VPMs so they
can predict vulnerability hotspots in software projects they have never seen before. It is
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important to study the ability of recent approaches based on abstract syntax trees [32,33] to
achieve high-accurate cross-project performance. Furthermore, previously underexplored
software-related characteristics could be evaluated for their relevance to software security
and their ability to detect software flaws. The newly discovered characteristics could be
used to improve vulnerability prediction models’ predictive performance. Another very
interesting open challenge is also the explainability of the behavior of the ML models
and the investigation of which features and tokens affect more the decision making of the
models. We could examine whether the models generalize or they learn something specific
to the training dataset, with a view to the cross-project vulnerability prediction.
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