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Abstract: We study the steady-state thermodynamics of a cascaded collision model where two
subsystems S1 and S2 collide successively with an environment R in the cascaded fashion. We first
formulate general expressions of thermodynamics quantities and identify the nonlocal forms of work
and heat that result from cascaded interactions of the system with the common environment. Focusing
on a concrete system of two qubits, we then show that, to be able to unidirectionally influence the
thermodynamics of S2, the former interaction of S1 − R should not be energy conserving. We
finally demonstrate that the steady-state coherence generated in the cascaded model is a kind of
useful resource in extracting work, quantified by ergotropy, from the system. Our results provide a
comprehensive understanding on the thermodynamics of the cascaded model and a possible way to
achieve the unidirectional control on the thermodynamics process in the steady-state regime.

Keywords: collision model; quantum thermodynamics; cascaded model

1. Introduction

Recent years have seen increasing interests in the study of quantum thermodynamics
(QT) [1,2] which exploits an open quantum system [3] as a working substance to implement
thermodynamic tasks. The main purposes of QT are to examine fundamental laws of
classical thermodynamics in the quantum level and to reveal the influences of various
quantum resources and/or quantum effects on thermodynamics processes, among others.
The applications of quantum resources such as quantum coherence and correlation in QT
have attracted much attention since the pioneering work of Scully et al. [4]. In Ref. [4], by
conveying the atomic beam with coherence through the cavity field and interacting with
the field mode for a short duration, Scully et al. have shown that the field can arrive at
a larger temperature than the situation where the atoms are prepared in regular thermal
states. As a result, the efficiency of the photonic Carnot engine driven by a coherent bath
can outperform its classical counterpart [4]. Subsequently, the effects of quantum coherence
and correlation have been applied to improve the performance of thermal machines [5–14],
enhance the extraction of work [15–17], and increase the thermalization temperature of a
quantum system [18–20].

Apart from specific quantum resources and quantum effects, researchers also try to
explore quantum thermodynamics by engineering the couplings of a quantum system with
external environments. The simultaneous couplings of several systems with a common
environment lead to the noise-induced interference, which proves to be useful in enhancing
the thermodynamics tasks [21–24]. Manzano et al. show that it is possible to improve
the machine performance by virtue of common noise sources [22]. Albeit surrounded by
a common environment, unidirectional (one-way) influence of two systems, say, S1 and
S2, can be achieved by the so-called cascaded model [25–29]. In this model, S1 and S2
successively interact with the common environment R in such a way that the interaction of
S1− R takes place first, which is then followed by S2− R resulting in the one-way influence
of S1 to the dynamics of S2. The cascaded model is an efficient tool to depict the ordered
interactions of individual subsystems with a common environment. For instance, in the
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cavity QED, the unidirectional exchange of information (energy) between a linear array of
cavities and the successively injected atoms can be described by this framework [26]. The
cascaded fashion of interaction is also applied in QT to study the dynamics of heat current
[25,28,29]. In Ref. [25], Lorenzo et al. explore the non-Markovian dynamics of heat current
and the effects of quantum correlations in dissipative cascaded systems. It turns out that,
in clear contrast to the configuration with each subsystem being independently coupled to
the reservoir, the heat flow under the cascaded interaction exhibits a non-exponential time
behavior [25]. In these studies of the cascaded model [25–29], the system–environment
interactions are assumed to be energy conserving so that all the energy changes are
accounted for by heat without the contribution of work. In this paper, we relax the
assumption of energy conservation of the system–environment interaction to make a
comprehensive exploration on the thermodynamics of cascaded model involving both heat
and work.

The quantum master equation (QME) is the most popular tool in the study of the
dynamics of an open quantum system even with several approximations. Since QME cannot
capture information about the global state of the system and environment, applications of
QME in dealing with QT in some cases might lead to the occurrence of thermodynamic
inconsistencies [30–41]. In Ref. [41], Levy and Kosloff have considered a model consisting of
two subsystems embedded in two independent thermal reservoirs with different temperatures.
It is found that the heat flows automatically from cold to hot reservoirs, i.e., the second
law of thermodynamics is violated, if the local QME is used to describe the system’s
dynamics [41]. A possible way to overcome this weakness is the collision model (CM) [42]
where the environment is modeled as a collection of identically prepared ancillas and at
each time step the system interacts/collides with a fresh ancilla. The CM has been used as an
alternative tool in the study of dynamics of an open quantum system [43–50] for a long time.
In particular, the CM is more efficient in the simulation of non-Markovian dynamics through
several strategies, such as the introduction of either initial correlations between ancillas
or ancilla–ancilla collisions between two successive system–ancilla collisions [51–61]. An
advantage of the CM over the QME is that it can track the information of environment.
In the field of QT [62–74], CM resolves some thermodynamics inconsistencies and makes
the most fundamental definitions of thermodynamic quantities, such as heat and work,
possible. It has been recognized that, in the CM, a certain amount of work should be
supplied to maintain the successive collisions of the system and environment [62]. By
taking the extra work cost of maintaining the successive collisions into account, the local
QME is shown to comply again with thermodynamics [63]. By means of CM, the effects
of non-Markovianity on the laws of thermodynamics and on the performances of thermal
machines have also been studied [28,75–79].

In this work, we address the thermodynamics of a cascaded model where two
subsystems S1 and S2 collide successively with an environment R. Thanks to the framework
of CM, we can construct general formulations of thermodynamics quantities from the
most fundamental definitions. Nonlocal forms of work and heat are identified as a
result of cascaded interaction of the subsystems with the common environment. We then
demonstrate the features of steady-state thermodynamics concentrating on a two-qubit
system. It turns out that, only when the interaction of S1 − R does not satisfy strict energy
conservation, can it have a one-way effect on the thermodynamics regarding S2. We also
show that the cascaded interaction leads to steady-state coherence of the system, which can
be recognized as a kind of resource in extracting useful work from the system.

2. The Model and Master Equation

We consider that the system S consists of two uncoupled subsystems S1 and S2 with
the free Hamiltonian ĤSi (i = 1, 2). In terms of CM, the environment R is modeled as
a series of identical ancillas described by the Hamiltonian ĤR. Note that we use ĤR to
represent both the environment and ancillas therein. The system–environment interactions
adopt the cascaded manner in such a way that at each time step S1 collides with an ancilla
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for a short duration τ, which is followed by another collision of S2 with that ancilla for
the same time τ, as depicted in Figure 1. The environment is assumed to be sufficiently
large so that the system never collides twice with the same ancilla. Although there is no
direct coupling between these two subsystems, the cascaded model results in unidirectional
influences of S1 to S2 but no backward actions.

Figure 1. Schematic diagram of the cascaded model. The system consists of two subsystems S1 and
S2, while the environment is modeled as a collection of ancillas with the nth one being labeled as
An. In the nth round of the collision, S1 collides with An for a duration τ, which is then followed by
another collision of S2 with An for the same duration.

The total Hamiltonian of the system plus environment can be expressed as

Ĥtot(t) = ĤS + ĤR +
2

∑
i=1

λi(t)Ĥ(i)
int (1)

where ĤS = ∑2
i=1 ĤSi , Ĥ(i)

int ≡ V̂(i)
int /
√

τ is the interaction Hamiltonian of Si with R and we
have scaled it by the interaction time τ for the convenience of taking continuous time limit
although not necessary. The step function λi(t) in Equation (1) denotes the time-dependence of
the system–environment collisions and has the value 1 when t ∈ [(n− 2 + i)τ, (n− 1 + i)τ]
with n ≥ 1 the number of collisions and zero otherwise. After a round of collision, the state
ρS of the system at time t will be transformed to ρ′S at time t + 2τ as

ρ′S = trR

{
Û2(τ)Û1(τ)ρS ⊗ ρth

R Û†
1 (τ)Û

†
2 (τ)

}
, (2)

in which Ûi(τ) = e−iτ(ĤSi
+ĤR+Ĥ(i)

int) is the unitary time evolution operator and
ρth

R = e−βR ĤR /ZR is the initial state of the environment, which has been assumed to

be prepared in the thermal state at inverse temperature βR with ZR = tr
{

e−βR ĤR
}

as the
corresponding partition function. We set h̄ = kB = 1 here and throughout the paper. By
expanding Ûi(τ) to the second order of τ, we derive the master equation governing the
system’s dynamics as

ρ̇S = lim
τ→0

(
ρ′S − ρS

)
/τ

= −i
[
ĤS, ρS

]
+

2

∑
i=1
Li(ρS) +D12(ρS), (3)
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where
Li(ρS) = −

1
2

trR

{[
V̂(i)

int ,
[
V̂(i)

int , ρS ⊗ ρth
R

]]}
(4)

stands for the local dissipation of Si being consistent with the situation when only Si exists
without the involvement of other subsystems, and

D12(ρS) = −trR

{[
V̂(2)

int ,
[
V̂(1)

int , ρS ⊗ ρth
R

]]}
(5)

characterizes the collective actions of the environment on the two subsystems owning to
the cascaded interactions.

3. Thermodynamic Quantities of the Cascaded Model

In quantum thermodynamics, the work is generally defined as the change of energy
induced by the change of the time-dependent Hamiltonian of the total system. In the CM,
the successive couplings and decouplings of the system with the environment lead to the
time dependence of the interaction Hamiltonian, as shown in Equation (1); therefore, the
energetic cost of sustaining such successive collisions is supplied in the form of work. In
a round of collisions started from t to t + 2τ, the work performed on the system can be
formulated as

∆W = trSR
{

Ĥtot(t + 2τ)ρ′SR
}
− trSR

{
Ĥtot(t)ρSR

}
=

∫ t+2τ

t
ds

∂

∂s
trSR

{
Ĥtot(s)ρSR

}
=

∫ t+2τ

t
dstrSR

{
∂Ĥtot(s)

∂s
ρSR

}
+
∫ t+2τ

t
dstrSR

{
Ĥtot(s)

∂ρSR
∂s

}
, (6)

in which ρSR = ρS ⊗ ρth
R and ρ′SR = Û2(τ)Û1(τ)ρSRÛ†

1 (τ)Û
†
2 (τ) are the total state of the

system and environment at time t and t + 2τ, respectively. Since trSR

{
Ĥtot(s)

∂ρSR
∂s

}
= 0,

the formulation (6) is further reduced to

∆W =
∫ t+2τ

t

〈
∂Ĥtot(s)

∂s

〉
ρSR

ds

=
∫ t+τ

t

∂λ1(s)
∂s

〈
Ĥ(1)

int

〉
ρSR

ds +
∫ t+2τ

t+τ

∂λ2(s)
∂s

〈
Ĥ(2)

int

〉
ρSR

ds

≡
2

∑
i=1

∆Wi + ∆W12, (7)

where 〈·〉$ ≡ tr{·$} and the two components ∆Wi and ∆W12 constituting the total work
∆W can be formulated as

∆Wi =
τ2

2
trSR

{[
Ĥ(i)

int,
[

ĤSi + ĤR, Ĥ(i)
int

]]
ρS ⊗ ρth

R

}
(8)

and
∆W12 = τ2trSR

{[
Ĥ(1)

int ,
[

ĤS2 + ĤR, Ĥ(2)
int

]]
ρS ⊗ ρth

R

}
. (9)

We thus identify two types of work, i.e., the local one ∆Wi and nonlocal one ∆W12,
which sustain the local collisions of Si with R and the cascaded collisions of S1 and S2 with
R, respectively. Although ∆Wi can be formally derived by the collision model as if only Si
exists in the absence of the other one, ∆W12 embodies the unique one-way influence of the
cascaded model.
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By means of Equations (7)–(9) and after taking the continuous time limit, we obtain
the current of work as

Ẇ = lim
τ→0

∆W
τ

=
2

∑
i=1

Ẇi + Ẇ12 (10)

with
Ẇi =

1
2

trSR

{[
V̂(i)

int ,
[

ĤSi + ĤR, V̂(i)
int

]]
ρS ⊗ ρth

R

}
(11)

and
Ẇ12 = trSR

{[
V̂(1)

int ,
[

ĤS2 + ĤR, V̂(2)
int

]]
ρS ⊗ ρth

R

}
. (12)

The heat in a collision can be unambiguously defined as the change in the energy of
environment being of the form

∆Q = trSR
{

ĤR
(
ρ′SR − ρSR

)}
=

2

∑
i=1

∆Qi + ∆Q12 (13)

with

∆Qi =
τ2

2
trSR

{[
Ĥ(i)

int,
[

ĤR, Ĥ(i)
int

]]
ρS ⊗ ρth

R

}
(14)

and
∆Q12 = τ2trSR

{[
Ĥ(1)

int ,
[

ĤR, Ĥ(2)
int

]]
ρS ⊗ ρth

R

}
. (15)

Obviously, the total heat ∆Q can be divided into local heat ∆Qi and nonlocal heat
∆Q12, which are related to the local collision of Si with R and the nonlocal collision of
S1 and S2 with R. Though ∆Q12 is generated by the collective collisions, it completely
contributes to the heat of S2 due to the unidirectional effect of the cascaded model [25].

By taking continuous time limit, the heat current can be derived as

Q̇ = lim
τ→0

∆Q
τ

=
2

∑
i=1

Q̇i + Q̇12 (16)

where
Q̇i =

1
2

trSR

{[
V̂(i)

int ,
[

ĤR, V̂(i)
int

]]
ρS ⊗ ρth

R

}
(17)

and
Q̇12 = trSR

{[
V̂(1)

int ,
[

ĤR, V̂(2)
int

]]
ρS ⊗ ρth

R

}
. (18)

With the expression of internal energy of the system

∆U = trSR
{

ĤS
(
ρ′SR − ρSR

)}
=

τ2

2

2

∑
i

trSR

{[
Ĥ(i)

int,
[

ĤSi , Ĥ(i)
int

]]
ρS ⊗ ρth

R

}
+τ2trSR

{[
Ĥ(1)

int ,
[

ĤS2 , Ĥ(2)
int

]]
ρS ⊗ ρth

R

}
, (19)

we can confirm that the derived thermodynamics quantities fulfill the first law of
thermodynamics, i.e., ∆U = ∆W − ∆Q. Note that, by definition, the negative ∆Q means
the heat flowing from the environment to the system.

4. Demonstration by Two-Level System

In order to demonstrate our results, we consider a fundamental configuration that both
the system and ancillas are two-level systems (qubits) described by the free Hamiltonians
ĤSi =

ωi
2 σ̂z

Si
and ĤR = ωR

2 σ̂z
R, respectively, with ωi (ωR) the frequency of subsystem Si

(ancilla R). The interaction between Si and R is given as
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Ĥ(i)
int =

1√
τ

V̂(i)
int

=
1√
τ
(Jx

i σ̂x
Si
⊗ σ̂x

R + Jy
i σ̂

y
Si
⊗ σ̂

y
R), (20)

where σ̂z
A, σ̂x

A and σ̂
y
A are the usual Pauli operators acting on A.

The system’s dynamics is governed by the master Equation (3) with the dissipation
terms being of the forms

Li(ρS) = (Jx
i )

2
(

σ̂x
Si

ρSσ̂x
Si
− 1

2

[
ρS, σ̂x

Si
σ̂x

Si

]
+

)
+
(

Jy
i

)2
(

σ̂
y
Si

ρSσ̂
y
Si
− 1

2

[
ρS, σ̂

y
Si

σ̂
y
Si

]
+

)
−i Jx

i Jy
i 〈σ̂

z
R〉ρR

(
σ̂x

Si
ρSσ̂

y
Si
− 1

2

[
ρS, σ̂

y
Si

σ̂x
Si

]
+

)
+i Jy

i Jx
i 〈σ̂z

R〉ρR

(
σ̂

y
Si

ρSσ̂x
Si
− 1

2

[
ρS, σ̂x

Si
σ̂

y
Si

]
+

)
(21)

and

D12(ρS) = i〈σ̂z
R〉ρR

(
Jx
1 Jy

2

[
σ̂

y
S2

, ρSσ̂x
S1

]
+ Jy

1 Jx
2

[
σ̂

y
S1

, ρSσ̂x
S2

])
−i〈σ̂z

R〉ρR

(
Jy
1 Jx

2

[
σ̂x

S2
, ρSσ̂

y
S1

]
+ Jx

1 Jy
2

[
σ̂x

S1
, ρSσ̂

y
S2

])
+Jx

1 Jx
2

[
σ̂x

S2
,
[
ρS, σ̂x

S1

]]
+ Jy

1 Jy
2

[
σ̂

y
S2

,
[
ρS, σ̂

y
S1

]]
. (22)

The currents of local and nonlocal heat are derived as

Q̇i = ωR

(
2Jx

i Jy
i

〈
σz

Si

〉
ρS
−
(
(Jx

i )
2 + (Jy

i )
2
)
〈σz

R〉ρR

)
, (23)

and

Q̇12 = −2ωR〈σz
R〉ρR

(
Jx
1 Jx

2

〈
σx

S1
σx

S2

〉
ρS

+ Jy
1 Jy

2

〈
σ

y
S1

σ
y
S2

〉
ρS

)
, (24)

while the currents of local and nonlocal work are expressed as

Ẇi = ωi

(
2Jx

i Jy
i 〈σ

z
R〉ρR

−
(
(Jx

i )
2 + (Jy

i )
2
)〈

σz
Si

〉
ρS

)
+ωR

(
2Jx

i Jy
i

〈
σz

Si

〉
ρS
−
(
(Jx

i )
2 + (Jy

i )
2
)
〈σz

R〉ρR

)
(25)

and

Ẇ12 = 2Jx
1

(
ω2 Jy

2 −ωR Jx
2

)〈
σx

S1
σx

S2

〉
ρS
〈σz

R〉ρR

+2Jy
1

(
ω2 Jx

2 −ωR Jy
2

)〈
σ

y
S1

σ
y
S2

〉
ρS
〈σz

R〉ρR
. (26)

From the expressions of local currents of heat and work, i.e., Q̇i in Equation (23) and Ẇi
in (25), we can see that the prior interaction of S1 − R will exert a one-way influence on the
local currents of S2 if any, through affecting the reduced state of S2 and eventually the term〈

σz
S2

〉
ρS

. The condition for the disappearance of Q̇i is Jx
i = Jy

i and meanwhile ωiβi = ωRβR

(i.e.,
〈

σz
Si

〉
ρS

=
〈
σz

R
〉

ρR
) with βi the steady-state inverse temperature of Si. As for Ẇi, it will

vanish when the interaction of Si − R satisfies strict energy conservation, namely, ωi = ωR
and Jx

i = Jy
i . From Equations (24) and (26), we can see that the nonlocal currents of heat and
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work are closely related to the establishment of correlations between S1 and S2 in terms of〈
σ

x(y)
S1

σ
x(y)
S2

〉
ρS

. Moreover, the formulation of (26) indicates that the nonlocal work current

Ẇ12 is bound to vanish if ω2 = ωR and Jx
2 = Jy

2 , i.e., Ẇ2 = 0; however, this does not imply
that Ẇ12 is only determined by the interaction of S2 − R since even when Ẇ2 6= 0, a finite
nonzero nonlocal work current Ẇ12 requires the existence of correlations of S1 and S2.

In the following, we shall demonstrate the behaviors of steady-state currents of heat
and work in detail by considering whether the interactions of S1 − R and S2 − R satisfy
energy conservation or not. A simple situation is that both interactions of S1− R and S2− R
are energy preserving in the sense that Jx

i = Jy
i and ωi = ωR for i = 1, 2. The system will

then relax towards the equilibrium stationary state (ESS) [25]

ρS(∞) =
e−βR ĤS1

Z1
⊗ e−βR ĤS2

Z2
, (27)

so that both the currents of heat and work vanish in the stationary regime. Albeit the
steady-state feature in this case is trivial, the memory effects on the dynamics of heat
current exhibit rich phenomenons as discussed in Ref. [25].

If the interaction of S1 − R is energy preserving with Jx
1 = Jy

1 and ω1 = ωR, we find
that apart from the vanishing currents of work and heat regarding S1, i.e., Ẇ1 = Q̇1 = 0,
the nonlocal currents also become zero, i.e., Ẇ12 = Q̇12 = 0 as no correlations can be
constructed in this case. Moreover, the prior interaction of S1 − R does not exert any
influences on S2 in other words, the steady-state currents of S2 are not influenced by S1
manifesting behaviors as if the interaction of S1 − R does not exist; therefore, only the
energy conservation of S1 − R does not hold, as it has an impact on S2, which is to be
discussed in the following.

4.1. The Interaction of S2 − R Is Energy-Preserving

We first consider the situation that the interaction of S1 − R is not energy-conserving,
while the interaction of S2 − R still satisfies strict energy conservation with Jx

2 = Jy
2 and

ω2 = ωR. In this case, the steady-state correlation between S1 and S2 can be established,
which makes S2 fail to reach ESS although the interaction of S2 − R is energy-conserving.
Eventually, both S1 and S2 reach NESS with effective inverse temperatures βe f f 1 and
βe f f 2 that could deviate from βR of the environment to different extents. The effective
temperature of Si can be defined as Te f f i = 1/βe f f i = ωi/ ln(pg

i /pe
i ) with pg

i (pe
i ) being

the stationary population of the ground (excited) state of the subsystem Si. As shown in
Equations (25) and (26), the strict energy conservation of the interaction of S2 − R means
Ẇ2 = Ẇ12 = 0, namely, no work is provided through the interaction of S2 − R; therefore,
the NESS of S2, alternatively speaking, the total NESS of S1 and S2 is sustained by the
work invested via S1. We also note that in this case Q̇2 6= 0; nevertheless, the nonlocal
heat current Q̇12 = −Q̇2 so that the total heat current associated with S2 stays zero, being
consistent with the vanishing Ẇ2 and Ẇ12.

In Figure 2a,b, we illustrate deviations of effective inverse temperatures of S1 and S2
from that of the environment in terms of the ratios βe f f 1/βR and βe f f 2/βR. A comparison
between βe f f 1/βR and βe f f 2/βR in Figure 2a,b shows that S1 can reach ESS with βe f f 1 = βR

only at the point of Jx
1 = Jy

1 and the negative temperatures are achieved when Jy
1 /Jx

1 < 0,
whereas S2 can arrive at ESS with βe f f 2 = βR at the two points of Jx

1 = ±Jy
1 . The

nonconservation of energy for S1 − R induces steady-state correlations between S1 and
S2, which is quantified by the l1−norm of coherence defined as C = ∑l 6=m|ρlm| with ρlm
the matrix elements of density operator ρ [80]. Apart from the effective temperature, the
existence of correlation is also a signature of the system reaching NESS. The coherence of
S1 and S2 as a function of Jy

1 /Jx
1 is demonstrated in Figure 2c. By comparing Figure 2a, 2b,

and 2c, we observe that the farther the individual subsystem Si (i = 1, 2) deviates from
equilibrium, i.e., the smaller the ratios |βe f f i/β| < 1, the larger the coherence. We also note
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that the lower the temperature of environment, the larger the coherence. The NESS of the
total system, which is characterized now by both the effective temperatures of individual
subsystems and the coherence, should be sustained by the work current supplied by an
external agent. In Figure 2d, our displays of the work current show that the work cost is
consistent with the extent of the system deviating from the ESS, namely, the smaller the
ratio |βe f f i/βR| and the larger the coherence, the more the work current.
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Figure 2. The ratios of effective inverse temperatures βe f f 1 and βe f f 2 of S1 (a) and S2 (b) to that of
environment βR, the coherence of the system (c), and the work current (d) as a function of Jy

1 /Jx
1 for

different βR. We set Jy
2 = Jx

2 = ω and ω1 = ω2 = ωR = ω.

4.2. Both the Interactions of S1 − R and S2 − R Are Not Energy-Preserving

We finally consider the scenario where both the interactions of S1 − R and S2 − R are
not energy-preserving, for which the nonlocal steady-state currents of work and heat might
appear as indicated in Equations (24) and (26). Here, we are interested in the one-way
influences of the interaction of S1 − R on the steady-state currents of S2. For this purpose,
we demonstrate in Figure 3a the local and nonlocal currents regarding both S1 and S2
against the interaction of S1 − R in terms of Jy

1 /Jx
1 . We can clearly observe the variations

of Ẇ2 and Ẇ12 with respect to Jy
1 /Jx

1 implying influences of the interaction of S1 − R on
the work currents of S2. Moreover, the nonlocal current Ẇ12 can be transformed between
positive and negative values, which means that the interaction of S1 − R is able to control
the direction of Ẇ12. The currents of heat exhibit similar behaviors to that of the work,
which is not shown here. We also note that the symmetric interactions of S1 − R and S2 − R
with Jx

1 = Jx
2 = Jx and Jy

1 = Jy
2 = Jy can lead to Ẇ1 = Ẇ2 and Q̇1 = Q̇2, as demonstrate

in Figure 3b. This implies that the local currents of work and heat for the symmetric
interactions are the same as that would be obtained in the independent interactions for
each subsystem with the environment. Since in this case the nonlocal current of work Ẇ12
always take opposite directions to the local ones, the total cost of work in the presence
of cascaded interactions, i.e., Ẇcas

tot = Ẇ1 + Ẇ2 + Ẇ12, are always less than that with only
independent interactions, i.e., Ẇind

tot = Ẇ1 + Ẇ2, in the sense that Ẇcas
tot < Ẇind

tot .
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Figure 3. (a) The work currents against Jy
1 /Jx

1 for Jx
2 = 0.6ω, Jy

2 = 1.2ω. (b) The currents of heat and
work against Jy/Jx for the symmetric couplings of S1− R and S2− R with Jx

2 = Jx
1 = Jx, Jy

2 = Jy
1 = Jy.

We set ω1 = ω2 = ωR = ω and βR = ω.

5. The Extractable Work in Cascaded Model

From above discussions, we recognize that steady-state coherence of the system can
be available due to cascaded interactions of subsystems with the common environment,
exhibiting striking contrast to the situation of independent interactions where no any
coherence can be generated; therefore, it is interesting to study the role of coherence
in extracting useful work from the system. The maximum work that can be extracted
from a quantum system via cyclic and unitary operations is quantified by the so-called
ergotropy [81], which is given as the difference between the energy of the initial state
and that of the final state with the minimum average energy through all possible unitary
operations. For a quantum system described by Hamiltonian Ĥ = ∑d

k=1 εk|εk〉〈εk| and
density operator ρ = ∑d

l=1 rl |rl〉〈rl | such that εk ≤ εk+1 and rl ≥ rl+1, the ergotropy can be
defined as

E(ρ) = Tr
{

Ĥρ
}
− Tr

{
ĤÛminρÛ†

min

}
= Tr

{
Ĥ(ρ− Pρ)

}
(28)

where Pρ = ∑l rl |ε l〉〈ε l | is called the passive state. By plugging the explicit form of Pρ in
(28), we obtain the well-known expression of ergotropy as

E(ρ) = ∑
k,l

rlεk

(
|〈rl |εk〉|2 − δkl

)
. (29)

Here, we make a comparison for the ergotropy in two configurations, namely, the
cascaded interactions and the independent interactions of S1 and S2 with R. For this
purpose, we consider the symmetric interactions of S1 and S2 with R with Jx

1 = Jx
2 = Jx

and Jy
1 = Jy

2 = Jy. Moreover, for the independent interactions, we define the total ergotropy
as E ind(ρ) = E(ρS1) + E(ρS2) with ρSi (i = 1, 2) the state of Si. The behavior of ergotropy is
illustrated in Figure 4a for different temperatures of the environment. We observe that at the
region of Jy/Jx < 0 a finite nonzero ergotropy appears for both cascaded and independent
interactions of S1 − R and S2 − R with magnitude of the former case is always larger than
that of the latter case. By contrast, for the region of Jy/Jx > 0, the ergotropy retains a
nonzero value only for the cascaded interactions. The results can be understood by recalling
that the ergotropy under independent interactions is contributed totally by the population
inversions of the subsystems with negative effective temperatures, which can occur only
in the region of Jy/Jx < 0 (cf. Figure 2a). By contrast, the ergotropy under cascaded
interactions is contributed by both the population inversions of individual subsystems and
the coherence of the total system. As a result, the ergotropy of cascaded interactions in the
region of Jy/Jx < 0 is always larger than that of independent interactions and arises also
in the region of Jy/Jx > 0 where the correlations can be established. To have a visualized
picture, we plot the coherence of system under the cascaded interaction in Figure 4b. A
comparison between Figure 4a and Figure 4b actually confirms our explanations according
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to the following observations. At the point of Jy/Jx = −1, the coherence becomes zero so
that the ergotropy in cascaded and independent interactions coincide with each other. In the
region of Jy/Jx > 0, the ergotropy is completely contributed by the coherence and the larger
the coherence with the lower temperature of the environment, the larger the ergotropy. At
the point of Jy/Jx = 1, the zero coherence leads to vanishing ergotropy. Moreover, the
larger the coherence-based ergotropy, the greater the difference for the ergotropy in these
two configurations, as shown in the region of Jy/Jx < 0.
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Figure 4. (a) The ergotropy for cascaded interactions (solid lines) and independent interactions
(dashed lines) of S1 and S2 with R against Jy/Jx. (b) The corresponding coherence of the system
under cascaded interactions. We set symmetric couplings of S1 − R and S2 − R with Jx

1 = Jx
2 = Jx

and Jy
1 = Jy

2 = Jy. The other parameters are set as βR = 9ω (black lines), βR = 3ω (red lines), βR = ω

(blue lines), and ω1 = ω2 = ωR = ω.

6. Conclusions

In conclusion, by virtue of collision model, we have studied the thermodynamics
of a bipartite system with subsystems S1 and S2 interacting with an environment R in
the cascaded fashion, namely, the environment R collides/interacts firstly with S1 and
subsequently with S2. Thanks to the framework of the collision model, we have constructed
the general forms of work and heat of the system in both discrete steps and continuous time
limit from their most fundamental definitions. The constructed formulations allow us to
identify the local and nonlocal components of the work and heat and discuss their features
due to the cascaded interactions. Focusing on the two-qubit system and concrete form
of system–environment interactions, we have demonstrated our results and revealed the
necessary condition for the unidirectional influence of the prior interaction of S1 − R to the
thermodynamics of S2 in the steady-state regime. It turns out that the one-way influence
occurs only when the interaction of S1 − R does not fulfill energy conservation. With the
influence of prior interaction, subsystem S2 cannot arrive at ESS even when the interaction
of S2 − R satisfies strict energy conservation. In case the interaction of S2 − R does not
satisfy energy conservation at the same time, the interaction of S1 − R will have an impact
on both the local work regarding S2 and nonlocal work. We also show that the steady-state
coherence generated by the cascaded interaction is a useful resource in extracting work in
terms of ergotropy from the system. Our results thus reveal the unique thermodynamics
features in the cascaded model and particularly provide a possible way to achieve the
one-way control on the thermodynamics process in the steady-state regime.
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