
����������
�������

Citation: Almaraz Luengo, E.;

Cerna, M.B.L.; Villalba, L.J.G.;

Hernandez-Castro, J.; Hurley-Smith, D.

Critical Analysis of Hypothesis Tests

in Federal Information Processing

Standard (140-2). Entropy 2022, 24,

613. https://doi.org/10.3390/

e24050613

Academic Editor: Hector Zenil

Received: 16 March 2022

Accepted: 22 April 2022

Published: 27 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Critical Analysis of Hypothesis Tests in Federal Information
Processing Standard (140-2)
Elena Almaraz Luengo 1 , Marcos Brian Leiva Cerna 1, Luis Javier García Villalba 1,∗ ,
Julio Hernandez-Castro 2 and Darren Hurley-Smith 3

1 Group of Analysis, Security and Systems (GASS), Universidad Complutense de Madrid, 28040 Madrid, Spain;
ealmaraz@ucm.es (E.A.L.); marcolei@ucm.es (M.B.L.C.)

2 School of Computing, University of Kent, Canterbury CT2 7NZ, UK; jch27@kent.ac.uk
3 Information Security Group, Royal Holloway University of London, Egham TW20 0EX, UK;

darren.hurley-smith@rhul.ac.uk
* Correspondence: javiergv@fdi.ucm.es

Abstract: This work presents an analysis of the existing dependencies between the tests of the FIPS
140-2 battery. Two main analytical approaches are utilized, the first being a study of correlations
through the Pearson’s correlation coefficient that detects linear dependencies, and the second one
being a novel application of the mutual information measure that allows detecting possible non-linear
relationships. In order to carry out this study, the FIPS 140-2 battery is reimplemented to allow the
user to obtain p-values and statistics that are essential for more rigorous end-user analysis of random
number generators (RNG).

Keywords: correlation; Dieharder; ENT; FIPS 140-2; independence; mutual information; NIST SP 800-22;
p-value; randomness; statistic; TestU01

1. Introduction

The generation of random or pseudo-random sequences is crucial for scientific, cryp-
tographic, and even entertainment purposes; from the generation of random variables [1,2],
for mathematical or analytical purposes (for example, [3–6], and others) to applications
in information and communication technologies [7–9], and image encryption [10] in
medicine [11] among others.

The degree of randomness required by a given application can vary. Sequences may
need to be reproducible (seeded RNGs produce these for simulations) or ‘truly’ random
(e.g., cryptographic keys). The shared requirement is that one has some way of verifying
that a RNG is sufficiently random for the target application. For the purpose of verifying
the goodness of generated sequences, different statistical tests are used, which, to a given
degree of confidence (α level), inform users whether the sequences can be used in such
systems. Such tests may also be used to profile RNGs so that their flaws may be identified,
reported, and rectified. Statistical tests of randomness are implemented in a variety of
software languages, with some (FIPS 140-2 in particular) implemented in both FPGA and
ASIC to provide rapid in-line testing of the RNG ouput (e.g., so-called total failure tests in
hardware RNGs). Some of the best-known batteries in the literature are NIST SP 800-22 [12],
TestU01 [13], Dieharder [14], ENT [15], and FIPS 140-2 [16] among others [17].

To successfully use a statistical test (especially a group of them, or battery), one
must be aware of the attributes tested, rigor, and duration of the tests. The applica-
tion of many different hypothesis tests, to ensure a thorough analysis of various traits
of a sequence (such as independent and identical distribution if such is desired), may
take significant computational time: hours or possibly days, even on high-end systems
(e.g., 64-bit 3.6 GHz+ 8-core CPU 32 GB RAM DDR4 3066 MHz+, for the context of high-
end at the time of writing). For this reason, one of the current lines of research is the

Entropy 2022, 24, 613. https://doi.org/10.3390/e24050613 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e24050613
https://doi.org/10.3390/e24050613
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0002-5591-4550
https://orcid.org/0000-0001-7573-6272
https://orcid.org/0000-0002-9896-9308
https://doi.org/10.3390/e24050613
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e24050613?type=check_update&version=3

Entropy 2022, 24, 613 2 of 16

analysis of the interrelationship that may exist between the different tests that make up the
batteries in order to, if there is one, discard any of the tests which duplicate results with little
additional value. One of the most widely used approaches is the analysis of linear correla-
tions between the different obtained p-values ([18–20], among others) or even between the
statistics directly (see, for example, the reasoning about this issue in [21]). The most popular
correlation measure used in this approach is Pearson’s correlation coefficient. Given two
random variables X and Y, this coefficient is defined as

ρX,Y =
cov(X, Y)

σXσY

where σX and σY are the standard deviations of X and Y, and cov(X, Y) is the covariance
between them. Its value belongs to the interval [−1, 1] and if |ρ| has a value close to 1, it
indicates a high linear dependence, and the sign informs if the dependence is direct or
inverse. If |ρ| has a value close to zero, it indicates the lower (linear) dependence between
the variables. For random samples X = {x1, . . . , xn} and Y = {y1, . . . , yn}, the sample
correlation rX,Y is defined as

rX,Y =
∑n

i=1(xi − x̄)(yi − ȳ)√
∑n

i=1(xi − x̄)2
√

∑n
i=1(yi − ȳ)2

where x̄ and ȳ are the arithmetic means of X and Y, respectively. The drawback of this
approach is that the analysis focuses only on the study of linear relationships, omitting
other possible (non-linear) relationships. Because of this, the analysis of interrelationships
through mutual information (MI) [22] was recently proposed, as this measure allows for
the detection of non-linear relationships between variables. Mutual information is always
used to evaluate the “amount of information" obtained about one random variable when
given the other random variable. If X and Y are continuous random variables with values
in Sx and Sy, MI is defined as

MI =
∫

Sx

∫
Sy

p(x, y) log
(

p(x, y)
p(x)p(y)

)
dxdy

where p(x, y) is the joint distribution of X and Y. If X and Y were discrete, then:

MI =
n

∑
i=1

m

∑
j=1

p(xi, yj) log

(
p(xi, yj)

p(xi)p(yj)

)
where p(x, y) is the discrete joint distribution of X and Y. Some of the areas in which MI has
been applied are, for example, in lip reading [23], medical image segmentation [24], signal
analysis [25], information theory [26] or clustering analysis [27], among others. For more
details about mutual information, see [28].

In this research, we analyze the FIPS battery in detail. The design of this test battery,
in terms of its output and analytical value, is one of the main issues when considering
FIPS 140-2 as a means of determining whether an RNG is appropriate or safe to use in a
given context. In this case, in contrast to NIST SP 800-22, for example, the implementation
only provides the user with information on whether or not a sequence passes the applied
test, but does not give more details. This prevents users from making judgments based
on the statistical data generated by those tests, reducing a complex analysis to a Boolean
pass/fail parameter that defies analysis without the use of more verbose tests. In this
research, the battery is re-implemented to provide the user with a wider range of statistics,
and the results are analyzed both from the point of view of Pearson’s correlation and from
the point of view of the mutual information measure.

With the new implementation (whose code we present in this paper), the user can
apply the battery to real data and obtain the p-values associated to the different tests
that form the battery. This allows the user to check the sequences obtained by different

Entropy 2022, 24, 613 3 of 16

generators and to decide if the generated sequences can be considered of good quality or
if they need to be improved. The presentation of the p-values allows the user to have a
statistical measure of the result obtained with each of the tests and to perform more in-
depth studies related to the threshold that could be considered for the α level of a test that
would change, for example, from rejecting a hypothesis in the test to having no evidence to
do so with that α.

This paper is organized as follows: in Section 2, the re-implementation of FIPS test
battery is explained; in Section 3, the materials and methods used in our analysis and an
analysis of the independence of the test in the battery is performed; finally, in Section 4,
the conclusions of the study are given.

2. FIPS Test Battery and the New Implementation

The FIPS 140-2 [16] battery is the successor of the FIPS 140-1 standard. It provides the
same tests as 140-1, but with updated and stronger conditions for passing, with revised
confidence intervals for all tests. It is a battery that, despite its limitations, is widely used
by various manufacturers as the standard due to its speed and understandable (if cursory)
output. An interesting study about this battery can be found in [29]. There is a new standard,
FIPS 140-3 (https://csrc.nist.gov/publications/detail/fips/140/3/final, accessed on 15
March 2022), published in 2019. FIPS 140-3 does not implement statistical tests. However,
as far as RNG testing is concerned, it focuses on entropy source modeling. Despite the
existence of this version, FIPS 140-2 is still used by manufacturers when onboarding new
RNGs, or as a start up/procedural check of sequences with expectations of randomness.
FIPS 140-2 results are also frequently used in marketing materials for RNG hardware.

The rng-tools module for Linux includes an implementation of FIPS 140-2 (in rngtest).
However, this implementation is not suitable for the purposes of this research for two
reasons: (i) it works only with a fixed number of bits (20000 bits), and (ii) it only tells us if a
sequence has passed the tests or not and it does not provide a statistic or a p-value. This
work re-implemented these tests to overcome these limitations. The code was designed in
Python and can be found in Appendix A.

With the new implementation, the tests work for any sequence size (though sequences
smaller than 20,000-bits will not produce reliable results), and return both internal test
statistics and the p-values calculated over those stats. The first three are broadly the same,
except that instead of comparing the statistics with a range, statistical tests are performed
(a binomial test in Monobit, and a Chi-square goodness-of-fit test in Poker and Runs).
However, we need to make further changes to the last two tests for two reasons:

• In both cases, a value is not compared to a range, but directly fails the test if certain
requirements are met (streaks of more than 25 bits in Long Run, two consecutive equal
blocks in Continuous Run). This can be improved by calculating the probability of
test-specific conditions occurring (runs of bits, repeat sequences, etc.), counting the
number of times these cases occur, and performing a binomial test.

• The probability of fail conditions occurring is too low for the sequence size tested (at
most 107). This makes the expected frequency of these conditions almost always 0
so the p-value is, most of the time, also 0. As the required sequence size is too large
to run the battery in a reasonable time, we changed the original tests to increase the
probability: the minimum length in the Long Run test goes from 26 bits to 8, and the
block size in the Continuous Run test goes from 32 bits to 4. We leave it as future work
to optimize the battery (or a possible C implementation) to repeat the tests with larger
sequences and thus address the original tests.

2.1. Monobit Test

It consists of counting the number of ones, c1, in a sequence. On the original battery,
the test is passed if this number is between 9725 and 10,275. Adapting this test is quite sim-
ple: to measure the randomness of a sequence, a binomial test must be applied. The number

https://csrc.nist.gov/publications/detail/fips/140/3/final

Entropy 2022, 24, 613 4 of 16

of data is n (length of the sequence), and the expected value is c = n
2 . The resulting p-value

will inform about how close to c the statistic c1 is.

2.2. Poker Test

The sequence is divided into 4-bit blocks. For each block, there are 24 possible values;
now, it is counted how many times each of them occurs. In the original implementation,
the following formula is applied to the frequencies fi:

X =
16

5000

15

∑
i=0

f 2
i − 5000

and it is checked if X ∈ [2.16, 46.17]. This formula is actually a Chi-square goodness-of-fit
test [30]. In the experimental case, the observed values are the frequencies fi, and the
expected values are the frequencies ei = e = 5000/16, so

15

∑
i=0

(fi − e)2

e
=

16
5000

15

∑
i=0

f 2
i − 5000

Now it is possible to scale the test to sequences of size n, taking into account that there
are n/4, so ei = e = (n/4)/16 = n/64. Then, the statistic is

X =
15

∑
i=0

(fi − e)2

e
=

64
n

15

∑
i=0

f 2
i −

n
4

which follows a Chi-Square distribution and the p-value is: p = P(z > X).

2.3. Runs Test

A run is a set of consecutive elements in the sequence (in this case consecutive 0 s or
1 s). This test calculates all the runs in a sequence and classifies them according to their
element (0 or 1) and the size in bits: 1, 2, 3, 4, 5, and 6+ (6 or more). In the original battery,
the sequence passes this test if the number of elements in each category is in the range
shown in Table 1.

Table 1. Ranges and lengths in runs test.

Length Range Length Range

1 2343–2657 4 251–373
2 1135–1365 5 111–201
3 542–708 6+ 111–201

The ranges are the same for runs of 0 s and runs of 1 s. It is possible to perform a Chi-
square goodness-of-fit test, where the observed values are sj

i , with i ∈ S = {1, 2, 3, 4, 5, 6+}
and j ∈ {0, 1}. Under the hypothesis of randomness, the expected number of runs of zeros
and ones must be the same for each size, that is, e0

i = e1
i ∀i ∈ S, so it will be considered,

without loss of generality, only the streaks of 1 s. Let k ∈ S and n >> k, with n being the
sequence length.

• If the run does not appear at the beginning or at the end of a sequence, we must set
k + 2 bits: the k ones of the run and the two zeros that delimit the beginning and end
of the run.

. . . 0

k︷ ︸︸ ︷
1 . . . 1 0 . . .

• If the run appears at the beginning or end of the sequence, then we only need one zero
to delimit the run, so we need to set k + 1 bits:

k︷ ︸︸ ︷
1 . . . 1 0 . . .

Entropy 2022, 24, 613 5 of 16

. . . 0

k︷ ︸︸ ︷
1 . . . 1

By linearity, the expected number of runs is e1
k = (n− k− 1)pk(1− p)2 + 2pk(1− p),

with p being the probability that a bit in the sequence is 1. In this case, p = 1/2, so
e1

k = (n − k + 3)(1/2)k+2. Similarly, e0
k = e1

k . In addition, the total expected num-
ber of runs is [31]: eT = (2n0n1/(n0 + n1)) + 1 where n0 is the number of zeros and
n1 is the number of ones. Under the hypothesis of randomness, n0 = n1 = n/2 so
eT = ((n2/2)/n) + 1 = (n/2) + 1 and e6+ = eT − ∑5

i=1 ∑1
j=0 ej

i = n
64 + 7

16 . Then
e0

6+ = e1
6+ = e6/2 = (n/128) + (7/32). Now it can be performed the goodness-of-fit test:

R = ∑
i∈S

1

∑
j=0

(sj
i − ej

i)
2

ej
i

2.4. Long Run Test

Originally, a sequence fails the test if it has a run of length greater than 25 bits.
The simplest idea would be to perform a binomial test with the expected value number
of runs of size 26 or more. However, this amount would be too small. As the size of the
sequences in our experiments is not large, they have an effectively zero probability of 0 runs
of this size or more (the minimum size in our experiments is n = 1 MB = 8× 106 bits,
in that case e26+ ' 0.619). This problem was not significant in the original test (which only
determined whether the sequence passed or not), but it affected our experiments, as this
translates into almost always obtaining the same p-value for high-order runs. There are two
solutions to address the problem: (i) working with much larger sequences, or (ii) altering
the original test, causing it to fail with runs of less length. This solution was tested with runs
of size 8 bits or more and gave a greater range of expected quantities. This is, therefore, not
truly reflective of the original test, but is used to provide a representative and meaningful
statistic for use in a subsequent binomial test. In this research, solution (ii) was taken.
The number of runs of size 8 or more was used as the expected value for the binomial test.
In that case, e8+ = eT −∑7

i=1 ∑1
j=0 ej

i =
n+27−6

28 . If n = 1 MB, then e8+ ' 31,250.48.

2.5. Continuous Run Test

The original test divides the sequence u into N blocks of 32 bits, and associates to each
block a real number in (0, 1), using the transformation

b1 . . . b32 →
∑32

i=1 232−i · bi

232

The test fails if a run is found. This is equivalent to say that two consecutive blocks
are equal without the need to transform each block into a real number.

On this basis, the p-value is calculated. Again, the possibility of performing a binomial
test (with expected value e being the number of times two consecutive blocks are equal)
is presented. There are N − 1 pairs of consecutive blocks, and the probability that two
blocks are equal is p = 1/232 so e = (N − 1) · p = (N − 1)/232. As in the previous test,
this number is almost always 0 if the sequence is not sufficiently large. It is decided to alter
the test (in this, 4-bit blocks are used, which offer a greater variety of equal-block pairings
within a given sequence to analyze and characterize).

3. Analysis of the Independence of the Tests in FIPS Battery

Two machines are used for this analysis:

• Windows machine with specifications:

– Operating System: Windows 10 (64-bit)
– CPU: AMD Ryzen 3700XT (3.6 Ghz, 8 cores, 16 threads)
– RAM: 64 GB

Entropy 2022, 24, 613 6 of 16

• Linux machine with specifications:

– Operating System: Debian (64-bit)
– CPU: Intel Core 6200U (2.3 Ghz, 2 cores, 4 threads)
– RAM: 8 GB

In general, the Windows machine is used for the main calculations, as it is more
powerful, reserving the Linux machine for the generation of sequences. The elements that
are selected for the experimentation are shown in Table 2. As the results are not significantly
different when changing the sequence size or the generator, it is shown the case of sequences
of 107 bits, generated with dev/urandom. We work with Pearson’s correlation coefficient
and mutual information. For both measures, running a single experiment is not ideal: recall
that the resulting p-values are uniformly distributed in (0, 1) so that for an α significance,
the probability of failing the test is α. Therefore, we carry out 100 different tests for
each pair of tests (both Pearson’s correlation and mutual information), and we execute
a Kolmogorov–Smirnov (K-S) test on each set of 100 p-values, thus we have a reliable
measure of their uniformity.

Table 2. Information and parameters of the experiments.

Number of Sequences Size (Bits) Generator Significance

dev/urandom
104 105 CryptGenRandom() 0.001

106 python.secrets()
107 qRNG

In Figure 1 are represented the results corresponding to Pearson’s correlation of the
obtained p-values. As can be seen, there is some correlation between (i) the Poker and
Monobit tests, (ii) Monobit with Runs tests, (iii) Poker and Runs tests and (iv) Poker and
Continuous Run tests. In all cases, the correlation is similar (around 0.2). The rest of the
correlations are, in principle, low, although they are significantly lower between Long Run
and Monobit, and between Continuous Run and Long Run.

Figure 1. Pearson’s correlation (p-values): results.

Let us turn to the significance matrix (Figure 2). The results of the K-S test give us
interesting information; only the two pairs with the lowest correlation passed the test:
Long Run and Monobit (0.41) and Continuous Run and Long Run (0.53). The other four
pairs, which initially did not have a high correlation, did not pass the test: 1.2× 10−10 for
Continuous Run and Monobit, 2.4× 10−10 for Long Run and Poker, 1.5× 10−18 for Long

Entropy 2022, 24, 613 7 of 16

Run and Runs, and 2.2× 10−7 for Continuous Run and Runs, which is an indicator that
they share dependencies. Finally, the four most correlated pairs fail the test with a p-value
of ε in all cases.

Figure 2. K-S test results.

With regard to the results of mutual information, the obtained results are similar (see
Figure 3) although on a different scale. The previous four correlated pairs remain correlated,
with values around 0.013, more than 10 times less than in Pearson’s correlation results.
That could be an indicator that the dependence in these pairs is mainly linear. In the same
way, the two least-correlated pairs remain (around 0.001), although this time they are closer
to the other values (around 0.0016).

Figure 3. Mutual information (p-values): results.

The results of the K-S test do not vary concerning those of the correlation (see Figure 4):
the four most dependent pairs have a p-value of ε, the two least correlated pass the test,
and the other four fail it, although not in such an extraordinary way (between 2.4× 10−5

and 9.9× 10−11).

Entropy 2022, 24, 613 8 of 16

Figure 4. Mutual information (p-values): K-S.

Figure 5 shows the dispersion matrix of the p-values. It is possible to detect the largest
correlations between tests. There is a little deviation in the lower right corner for the pairs
Poker with Monobit, Runs with Monobit, and Runs with Poker, that is, there are no cases in
which the first of the tests has a low p-value and the second has a high p-value. As for the
pair between Continuous Run and Poker, this deviation is in the upper left corner. There
are no cases in which the first has a high p-value and the second has a low p-value. In the
rest of the pairs, it is not possible to detect dependencies.

Figure 5. Dispersion matrix (p-values).

Entropy 2022, 24, 613 9 of 16

In addition, the study was developed on the values obtained for the statistics output
by FIPS 140-2 tests for 100 random sequences. This approach was adopted to provide a
more rigorous analysis than that provided by p-value comparisons alone. While p-values
inform us of a test’s result, given various input, and can allow one to judge whether two
tests consistently report the same outputs, it is only a deeper analysis of the statistical basis
for these p-values that allows us to determine if the correlation is due to test characteristics,
or the influence of tested sequences. In Figure 6, the results with the Pearson’s correlation
applied to the statistics are represented. This matrix is very different from that of the
p-values. Of the four most correlated pairs, only one remains (Runs with Poker) with a
similar value (0.247889). Only one more pair has a prominent correlation: Continuous Run
with Monobit (−0.124682). The rest of the correlations, in principle, do not seem to be very
high (around 0.01).

Figure 6. Pearson’s correlation (statistics): results.

These results remain in the K-S test (Figure 7), where only these two pairings fail the
test. The rest pass (although some were borderline, such as Poker with Monobit (0.0048)).

Figure 7. Pearson’s correlation (statistics): K-S.

Entropy 2022, 24, 613 10 of 16

Results related to the mutual information measure can be seen in Figure 8. Unlike
what we saw in Pearson’s correlation, these results are more consistent with those obtained
for the p-values. In general, the values obtained remain in the same line, distinguishing the
three usual cases. Perhaps the most prominent variation is in the pair between Continuous
Run and Monobit (from 0.001801 to 0.005572, three times more, but still low).

Figure 8. Mutual information (statistics): results.

The K-S matrix (Figure 9) corroborates these results. As with p-values, only two pairs
pass the test. The main change concerning those results is that the pairs that do not pass
the test have a higher p-value than before (for example, the four most correlated pairs go
from ε to values around 10−70), but they are still invalid. These results show us that mutual
information is more resistant to changes and that it is capable of giving a general measure
of independence between tests.

Figure 9. Mutual information (statistics): K-S.

Figure 10 provides the dispersion matrix for the statistics study. The most appreciable
graphical dependencies are those between (i) Runs with Poker (they have a distribution with
a deviation toward the lower right corner that is, they share low p-values); (ii) Poker and
Runs with Monobit (their distribution has a deviation toward the left, so Monobit obtains
low p-values when the others have p-values around the mean) and (iii) Continuous Run with
Poker (its distribution has downward deviation, so Continuous Run obtains low p-values

Entropy 2022, 24, 613 11 of 16

when Poker has p-values around the mean). There is also a slight downward deviation,
like the last case, between Long Run and Poker, Long Run and Runs, and Continuous Run
and Runs.

Figure 10. Dispersion matrix (statistics).

4. Conclusions

In this work, we carried out a study of the linear and non-linear dependencies between
FIPS 140-2 battery tests. In order to carry out this analysis, it was necessary to re-implement
the battery in such a way as to provide the user with the p-values and statistics resulting
from the application of different hypothesis tests within the battery. The original tests
(as implemented in the rngtools rngtest suite) only provide a Boolean pass or fail output,
and so this re-implementation is vital for the success of this analytical work.

As for the analysis of p-values, we were able to verify that the results derived from the
analysis using Pearson’s correlations and mutual information are similar, although mea-
sured on different scales, with those relating to mutual information being more than
10 times lower than those of Pearson’s correlation. This suggests that the existing relation-
ships in this battery are fundamentally linear. With regard to the analysis of the statistics,
we were able to verify that the mutual information measure is more resistant to changes
and that it is capable of providing a general measure of independence between tests.

The most important interrelationships are between the Poker, Runs, and Monobit tests,
with dependencies on each other. If required to select a single test (for the purposes of
streamlining the test battery while retaining meaningful output), it would be Monobit,
as Poker also has dependencies on Continuous Run, and the Runs test is somewhat more
complex. In addition, of the three, it is the one who has the lowest correlation with
Long Run.

Entropy 2022, 24, 613 12 of 16

We are left with three tests (Monobit, Long Run, and Continuous Run), but there
is still a dependency (not as big as the first ones, but significant) between Continuous
Run and Monobit. If the ultimate objective is the elimination of redundancies in a battery,
some of these two tests should be eliminated, but we consider that more studies with
the Continuous Run test should be done. Recall that this test is not the original one and
depends on a parameter (block size). It is left as future work to test other versions of this
test to see if any of them are independent of Monobit.

Author Contributions: Conceptualization, E.A.L., M.B.L.C., L.J.G.V. and J.H.-C.; methodology, E.A.L.,
M.B.L.C., L.J.G.V. and J.H.-C.; software, E.A.L., M.B.L.C., L.J.G.V. and J.H.-C.; validation, E.A.L.,
M.B.L.C., L.J.G.V. and J.H.-C.; formal analysis, E.A.L., M.B.L.C., L.J.G.V. and J.H.-C.; investigation,
E.A.L., M.B.L.C., L.J.G.V. and J.H.-C.; data curation, E.A.L., M.B.L.C., L.J.G.V. and J.H.-C.; writing—
original draft preparation, E.A.L., M.B.L.C., L.J.G.V. and J.H.-C.; writing—review and editing, E.A.L.,
M.B.L.C., L.J.G.V., D.H.-S. and J.H.-C.; visualization, E.A.L., L.G-V., M.B.L.C., D.H.-S. and J.H.-C. All
authors have read and agreed to the published version of the manuscript.

Funding: This research work has received funding from UCM Projects THEIA (FEI-EU-19-04),
THEIA I (FEI-EU-21-01) and THEIA II (FEI-22-01). This work has been partly funded by the EPSRC
Quantum Communications Hub Project (EP/T001011/1). It is also supported by the InnovateUK
funded AquRand project (106374-49229).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Acknowledgments: We thank the reviewers for their comments, which have helped us to improve
our work.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Code of the Re-Implementation of FIPS Battery

import numpy as np
import collections
from scipy import~stats

Executes the Monobit test: it counts ones in the sequence
def monobit(u,n):
f = collections.Counter(u)
ones = f[’1’]
return (ones ,stats.binom_test(ones , n))

Divides the sequence into blocks and executes the Monobit test on each one
def monobit_blocks(u,n,m):
a = n //m
l = []
for i in range(a):
f = collections.Counter(u[i*m:(i+1)*m])
ones = f[’1’]
l.append(ones)
return stats.chisquare(l,a*[m/2])

Executes the Poker test: it counts the number of occurrences of each
possible 4-bit subsequence

def poker(u,n):
b = n //4
r = 4*b
mat = [int(u[start:start+4],2) for start in range(0, r, 4)]
oc_mat = sep(2,2,mat)
return chisquare(np.array(oc_mat))

Returns a vector with the number of runs (consecutive 0s or 1s) of size 1,
2, 3, 4, 5, +6 and + long

from itertools import~groupby

def runs_seq(u,n,long):

Entropy 2022, 24, 613 13 of 16

r = [(k, sum(1 for i in g)) for k,g in groupby(u)]
f = collections.Counter(r)
runs = [0 for i in range(13)]
cont = 0
l = len(r)
for i in range(1,6):
r1,r2 = f[(’0’,i)],f[(’1’,i)]
runs[2*i-2] = r1
runs[2*i-1] = r2
cont += r1 + r2
for i in range(6,long):
r1,r2 = f[(’0’,i)],f[(’1’,i)]
runs[10] += r1
runs[11] += r2
cont += r1 + r2
j = long
while(cont < l):
r1,r2 = f[(’0’,j)],f[(’1’,j)]
r3 = r1 + r2
runs[10] += r1
runs[11] += r2
runs[12] += r3
cont += r3
j += 1
return~runs

Executes the Runs test: it counts the number of occurrences of runs (of 0s
or 1s) of size k, with~k = 1, 2, 3, 4,
5, +6 (6 and more)

long = 8
runs_freq = [1/4,1/4,1/8,1/8,1/16,1/16,1/32,1/32 ,1/64 ,1/64,1/64,1/64]

def runs(u,n,long):
runs = runs_seq(u,n,long)
s = sum(runs) - runs[12]
rf = [s*i for i in runs_freq]
return stats.chisquare(runs[:12],rf,1)

Executes the Long Run test (modified): it counts the number of runs of size
long or more

def long_run(u,n,long):
runs = runs_seq(u,n,long)
rl = runs[12]
s = sum(runs) - rl
return (rl ,stats.binom_test(rl ,s,1/(2 **(long-1))))

Divides the sequence into blocks and executes the Long Run test on each one
def long_run_blocks(u,n,m,long):
a = n //m
l = []
for i in range(a):
l.append(runs_seq(u[i*m:(i+1)*m],m,long)[12])
return stats.chisquare(l,a*[m/(2** long)])

Executes the Long Run test (modified): it counts how many times two
subsequences of size bits are equal

def cont_run(u,n,bits):
b = n // bits
r = bits*b
v = [u[start:start+bits] for start in range(0, r, bits)]
cont = 0
act = v[0]
for i in range(1,b):
if (v[i] == act):
cont += 1
v[i] = act
return (cont ,stats.binom_test(cont , b-1, 1/(2 ** bits)))

Entropy 2022, 24, 613 14 of 16

Divides the sequence into blocks and executes the Continuous test on each
one

def cont_run_blocks(u,n,m,bits):
a = n //m
l = []
for i in range(a):
b = m // bits
r = bits*b
v = [u[start:start+bits] for start in range(i, i+r, bits)]
cont = 0
act = v[0]
for i in range(1,b):
if (v[i] == act):
cont += 1
v[i] = act
l.append(cont)
return stats.chisquare(l,a*[(b-1)/(2** bits)])

Executes FIPS 140 -2 battery tests in a sequence (faster than executing each
test separately)

def fips(u,n,long):
runs_freq = [1/4,1/4,1/8,1/8,1/16,1/16,1/32,1/32 ,1/64 ,1/64,1/64,1/64]
aux = 1/(2** (long-1))
l = len(u)
b = n //4
r = 4*b
sp = [[] for i in range(l)]
for i in range(l):
Monobit
f = collections.Counter(u[i])
ones = f[’1’]
sp[i].append ((ones ,stats.binom_test(ones , n)))
Poker
mat = [int(u[i][start:start+4],2) for start in range(0, r, 4)]
oc_mat = sep(2,2,mat)
sp[i].append(stats.chisquare(np.array(oc_mat)))
Runs
runs = runs_seq(u[i],n,long)
rl = runs[12]
s = sum(runs) - rl
rf = [s*i for i in runs_freq]
sp[i].append(stats.chisquare(runs[:12],rf ,1))
Long Run
sp[i].append ((rl,stats.binom_test(rl,s,aux)))
Continuous Run
if bits != 4:
mat = [int(u[i][start:start+bits],2) for start in range(0, r, bits)]
cont = 0
act = mat[0]
for j in range(1,b):
if (mat[j] == act):
cont += 1
mat[j] = act
sp[i].append ((cont ,stats.binom_test(cont , b-1, 1/16)))
return~sp

Executes FIPS 140 -2 battery tests in a set of sequences
def FIPS(u,n,long):
l = len(u)
f = fips(u,n,8)
s = [[] for i in range(l)]
p = [[] for i in range(l)]
for i in range(l):
(s[i], p[i]) = zip(*f[i])
return (s,p)

Entropy 2022, 24, 613 15 of 16

References
1. Figueroa-García, J.C.; Varón-Gaviria, C.A.; Barbosa-Fontecha, J.L. Fuzzy Random Variable Generation Using α-Cuts. IEEE Trans.

Fuzzy Syst. 2021, 29, 539–548. [CrossRef]
2. Cotrina, G.; Peinado, A.; Ortiz, A. Gaussian Pseudorandom Number Generator Using Linear Feedback Shift Registers in Extended

Fields. Mathematics 2021, 9, 556. [CrossRef]
3. Cogliatti, R.; de Souza, R.A.A.; Yacoub, M.D. Practical, Highly Efficient Algorithm for Generating κ-µ and η-µ Variates and a

Near-100% Efficient Algorithm for Generating α-µ Variates. IEEE Commun. Lett. 2012, 16, 1768–1771. [CrossRef]
4. Hernández, J.A.; Sánchez, R.; Larrabeiti, D. Oversubscription Dimensioning of Next-Generation PONs With Different Service

Levels. IEEE Commun. Lett. 2016, 20, 1341–1344. [CrossRef]
5. Rennó, V.M.; de Souza, R.A.A.; Yacoub, M.D. On the Generation of White Samples in Severe Fading Conditions. IEEE Commun.

Lett. 2019, 23, 180–183. [CrossRef]
6. Wang, L.; Cheng, H. Pseudo-Random Number Generator Based on Logistic Chaotic System. Entropy 2019, 21, 960. [CrossRef]
7. Lee, K.; Lee, S.; Seo, C.; Yim, K. TRNG (True Random Number Generator) Method Using Visible Spectrum for Secure Communi-

cation on 5G Network. IEEE Access 2018, 6, 12838–12847. [CrossRef]
8. Xu, M.; Pan, W.; Yan, L.; Luo, B.; Zou, X.; Zhang, L.; Mu, P. An Explicit Non-Malleable Extraction Scheme for Quantum

Randomness Amplification With Two Untrusted Devices. IEEE Commun. Lett. 2018, 22, 85–88. [CrossRef]
9. Sfeir, E.; Mitra, R.; Kaddoum, G.; Bhatia, V. RFF Based Detection for SCMA in Presence of PA Nonlinearity. IEEE Commun. Lett.

2020, 24, 2604–2608. [CrossRef]
10. Moysis, L.; Volos, C.; Jafari, S.; Munoz-Pacheco, J.M.; Kengne, J.; Rajagopal, K.; Stouboulos, I. Modification of the Logistic Map

Using Fuzzy Numbers with Application to Pseudorandom Number Generation and Image Encryption. Entropy 2020, 22, 474.
[CrossRef]

11. Lin, C.H.; Wu, J.X.; Chen, P.Y.; Li, C.M.; Pai, N.S.; Kuo, C.L. Symmetric Cryptography With a Chaotic Map and a Multilayer
Machine Learning Network for Physiological Signal Infosecurity: Case Study in Electrocardiogram. IEEE Access 2021, 9,
26451–26467. [CrossRef]

12. Bassham, L.E.; Rukhin, A.L.; Soto, J.; Nechvatal, J.R.; Smid, M.E.; Barker, E.B.; Leigh, S.D.; Levenson, M.; Vangel, M.;
Banks, D.L.; et al. SP 800-22 Rev. 1a. A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic
Applications; Technical Report; National Institute of Standards & Technology: Gaithersburg, MD, USA, 2010.

13. L’ecuyer, P.; Simard, R. TestU01: AC library for empirical testing of random number generators. ACM Trans. Math. Softw. 2007,
33, 1–40. [CrossRef]

14. Brown, R.G.; Eddelbuettel, D.; Bauer, D. Dieharder: A Random Number Test Suite (Version 3.31.1); Duke University Physics
Department: Durham, NC, USA, 2014.

15. Walker, J. ENT: A Pseudorandom Number Sequence Test Program; 2008. Available online: https://www.fourmilab.ch/random/
(accessed on 15 March 2022).

16. FIPS PUB 140-2. Available online: https://csrc.nist.gov/publications/detail/fips/140/2/final (accessed on 15 March 2022).
17. Almaraz Luengo, E.; García Villalba, L.J. Recommendations on Statistical Randomness Test Batteries for Cryptographic Purposes.

ACM Comput. Surv. 2021, 54, 1–34. [CrossRef]
18. Doğanaksoy, A.B.E.; Muş, K. Extended results for independence and sensitivity of NIST randomness tests. In Proceedings of the

Information Security and Cryptography Conference, ISC Turkey, Ankara, Turkey, 25–27 December 2008; pp. 190–194.
19. Fan, L.; Chen, H.; Gao, S. A General Method to Evaluate the Correlation of Randomness Tests. In Information Security Applications,

WISA 2013, Lecture Notes in Computer Science, Jeju Island, Korea; Springe: Cham, Switzerland, 2014; Volume 8267.
20. Sulak, F.; Uğuz, M.; Koçak, O.; Doğanaksoy, A. On the Independence of Statistical Randomness Tests Included in the NIST Test

Suite. Turk. J. Electr. Eng. Comput. Sci. 2017, 25, 3673–3683. [CrossRef]
21. Hernandez-Castro, J.; Barrero, D.F. Evolutionary generation and degeneration of randomness to assess the indepedence of the

Ent test battery. In Proceedings of the 2017 IEEE Congress on Evolutionary Computation (CEC), Donostia, Spain, 5–8 June 2017;
pp. 1420–1427. [CrossRef]

22. Karell-Albo, J.A.; Legón-Pérez, C.M.; Madarro-Capó, E.J.; Rojas, O.; Sosa-Gómez, G. Measuring independence between statistical
randomness tests by mutual information. Entropy 2020, 22, 741. [CrossRef]

23. Zhao, X.; Yang, S.; Shan, S.; Chen, X. Mutual Information Maximization for Effective Lip Reading. In Proceedings of the 2020 15th
IEEE International Conference on Automatic Face and Gesture Recognition (FG 2020), Buenos Aires, Argentina, 16–20 November
2000; pp. 420–427. [CrossRef]

24. Sun, Y.; Yuan, P.; Sun, Y.; Zhai, Z. Hybrid Segmentation Algorithm for Medical Image Segmentation Based on Generating
Adversarial Networks, Mutual Information and Multi-Scale Information. IEEE Access 2020, 8, 118957–118968. [CrossRef]

25. Ji, C.; Wang, J.; Zhang, G. Approximate Expression for the Mutual Information of Dense PAM. IEEE Commun. Lett. 2018,
22, 2182–2185. [CrossRef]

26. Ciganović, N.; Beaudry, N.J.; Renner, R. Smooth Max-Information as One-Shot Generalization for Mutual Information. IEEE
Trans. Inf. Theory 2014, 60, 1573–1581. [CrossRef]

27. Maji, P. Mutual Information-Based Supervised Attribute Clustering for Microarray Sample Classification. IEEE Trans. Knowl.
Data Eng. 2012, 24, 127–140. [CrossRef]

28. Kvålseth, T.O. On normalized mutual information: Measure derivations and properties. Entropy 2017, 19, 631. [CrossRef]

http://doi.org/10.1109/TFUZZ.2019.2956668
http://dx.doi.org/10.3390/math9050556
http://dx.doi.org/10.1109/LCOMM.2012.092112.121359
http://dx.doi.org/10.1109/LCOMM.2016.2558155
http://dx.doi.org/10.1109/LCOMM.2018.2879928
http://dx.doi.org/10.3390/e21100960
http://dx.doi.org/10.1109/ACCESS.2018.2799682
http://dx.doi.org/10.1109/LCOMM.2017.2766631
http://dx.doi.org/10.1109/LCOMM.2020.3010698
http://dx.doi.org/10.3390/e22040474
http://dx.doi.org/10.1109/ACCESS.2021.3057586
http://dx.doi.org/10.1145/1268776.1268777
https://www.fourmilab.ch/random/
https://csrc.nist.gov/publications/detail/fips/140/2/final
http://dx.doi.org/10.1145/3447773
http://dx.doi.org/10.3906/elk-1605-212
http://dx.doi.org/10.1109/CEC.2017.7969470
http://dx.doi.org/10.3390/e22070741
http://dx.doi.org/10.1109/FG47880.2020.00133
http://dx.doi.org/10.1109/ACCESS.2020.3005384
http://dx.doi.org/10.1109/LCOMM.2018.2866450
http://dx.doi.org/10.1109/TIT.2013.2295314
http://dx.doi.org/10.1109/TKDE.2010.210
http://dx.doi.org/10.3390/e19110631

Entropy 2022, 24, 613 16 of 16

29. Hurley-Smith, D.; Patsakis, C.; Hernandez-Castro, J. On the unbearable lightness of FIPS 140-2 randomness tests. IEEE Trans. Inf.
Forensics Secur. 2020, 1. [CrossRef]

30. D’Agostino, R.B. (Ed.) Goodness-of-Fit Techniques; CRC Press: Boca Raton, FL, USA, 1986; Volume 68.
31. Mogull, R.G. Teacher’s Corner: The One-Sample Runs Test: A Category of Exception. J. Educ. Stat. 1994, 19, 296–303. [CrossRef]

http://dx.doi.org/10.1109/TIFS.2020.2988505
http://dx.doi.org/10.3102/10769986019003296

	Introduction
	FIPS Test Battery and the New Implementation
	Monobit Test
	Poker Test
	Runs Test
	Long Run Test
	Continuous Run Test

	Analysis of the Independence of the Tests in FIPS Battery
	Conclusions
	Code of the Re-Implementation of FIPS Battery
	References

