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Abstract: A novel yet simple extension of the symmetric logistic distribution is proposed by intro-
ducing a skewness parameter. It is shown how the three parameters of the ensuing skew logistic
distribution may be estimated using maximum likelihood. The skew logistic distribution is then
extended to the skew bi-logistic distribution to allow the modelling of multiple waves in epidemic
time series data. The proposed skew-logistic model is validated on COVID-19 data from the UK,
and is evaluated for goodness-of-fit against the logistic and normal distributions using the recently
formulated empirical survival Jensen–Shannon divergence (ESJS) and the Kolmogorov–Smirnov
two-sample test statistic (KS2). We employ 95% bootstrap confidence intervals to assess the improve-
ment in goodness-of-fit of the skew logistic distribution over the other distributions. The obtained
confidence intervals for the ESJS are narrower than those for the KS2 on using this dataset, implying
that the ESJS is more powerful than the KS2.

Keywords: empirical survival Jensen–Shannon divergence; Kolmogorov–Smirnov two-sample test;
skew logistic distribution; bi-logistic growth; epidemic waves; COVID-19 data

1. Introduction

In exponential growth, the population grows at a rate proportional to its current size.
This is unrealistic, since in reality, growth will not exceed some maximum, called its carrying
capacity. The logistic equation [1] (Chapter 6) deals with this problem by ensuring that the
growth rate of the population decreases once the population reaches its carrying capacity [2].
Statistical modelling of the logistic equation’s growth and decay is accomplished with the
logistic distribution [3] and [4] (Chapter 22), noting that the tails of the logistic distribution
are heavier than those of the ubiquitous normal distribution. The normal and logistic
distributions are both symmetric, however, real data often exhibits skewness [5], which has
given rise to extensions of the normal distribution to accommodate for skewness, as in the
skew normal [6] and epsilon skew normal [7] distributions. Subsequently, skew logistic
distributions were also devised, as in [8,9].

Epidemics, such as COVID-19, are traditionally modelled by compartmental mod-
els such as the SIR (Susceptible-Infected-Removed) model and its extension, the SEIR
(Susceptible-Exposed-Infected-Removed) model, which estimate the trajectory of an epi-
demic [10]. These models typically rely on assumptions on how the disease is transmitted
and progresses [11], and are routinely used to understand the consequences of policies
such as mask wearing and social distancing [12]. Time series models [13], on the other
hand, employ historical data to make forecasts about the future, are generally simpler
than compartmental models, and are able to make forecasts on, for example, number of
cases, hospitalisations and deaths. The SIR model can be interpreted as a logistic growth
model [14,15]. However, as the data is inherently skewed, a skewed logistic statistical model
would be a natural choice, although, as such, it does not rely on biological assumptions in
its forecasts [16].
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Herein, we present a novel yet simple (one may argue the simplest), three parameter
skewed extension to the logistic distribution to allow for asymmetry; c.f. [16]. Nevertheless,
if instead of our extension we deploy one of the other skew logistic distributions (such as
the one described in [8]) the results would no doubt be comparable to the results we obtain
herein; however, we pursue our simpler extension, detailing its statistical properties.

In the context of analysing epidemics, the logistic distribution is normally preferred,
as it is a natural distribution to use in modelling population growth and decay. However,
we still briefly mention a comparison of the results we obtain in modelling COVID-19
waves with the skew logistic distribution, to one which, instead, employs a skew normal
distribution (more specifically we choose the, flexible, epsilon skew normal distribution [7]).
The result of this comparison implies that utilising the epsilon skew normal distribution
leads, overall, to results which are comparable to those when utilising the skew logistic
distribution. However, in practice, it is still preferable to make use of the skew logistic distri-
bution as it is the natural model to deploy in this context [17], since, on the whole, it is more
consistent with the data as its tails are heavier than those of a skew normal distribution.

Epidemics are said to come in “waves”. The precise definition of a wave is somewhat
elusive [18], but it is generally accepted that, assuming we have a time series of the number
of, say, daily hospitalisations, a wave will span over a period from one valley (minima) in
the time series to another valley, with a peak (maxima) in between them. There is no strict
requirement that waves do not overlap, although, for simplicity we will not consider any
overlap as such; see [18], for an attempt to give an operational definition of the concept
of epidemic wave. In order to combine waves, we make use of the concept of bi-logistic
growth [19,20], or more generally, multi-logistic growth, which allows us to sum two or
more instances of logistic growth when the time series spans over more than a single wave.

To fit the skew logistic distribution to the time series data we employ maximum
likelihood, and to evaluate the goodness-of-fit we make use of the recently formulated em-
pirical survival Jensen–Shannon divergence (ESJS) [21,22] and the well-established Kolmogorov–
Smirnov two-sample test statistic (KS2) [23] (Section 6.3). The ESJS is an information-theoretic
goodness-of-fit measure of a fitted parametric continuous distribution, which overcomes
the inadequacy of the coefficient of determination, R2, as a goodness-of-fit measure for non-
linear models [24]. The KS2 statistic also satisfies this criteria regarding R2; however, we
observe that the 95% bootstrap confidence intervals [25] we obtain for the ESJS are nar-
rower than those for the KS2, suggesting that the ESJS is more powerful [26] than the KS2.
Another well-known limitation of the KS2 statistic is that it is less sensitive to discrepancies
at the tails of the distribution than the ESJS statistic is, in the sense that as opposed to ESJS
it is “local”, i.e., its value is determined by a single point [27].

The rest of the paper is organised as follows. In Section 2, we introduce a skew
logistic distribution, which is a simple extension of the standard, symmetric, logistic
distribution obtained by adding to it a single skew parameter and derive some of its
properties. In Section 3, we formulate the solution to the maximum likelihood estimation of
the parameters of the skew logistic distribution. In Section 4, we make use of an extension
of the skew logistic distribution to the bi-skew logistic distribution to model a time series of
COVID-19 data items having more than a single wave. In Section 5, we provide analysis of
daily COVID-19 deaths in the UK from 30 January 2020 to 30 July 2021, assuming the skew
logistic distribution as an underlying model of the data. The evaluation of goodness-of-fit
of the skew logistic distribution to the data makes use of the recently formulated ESJS,
and compares the results to those when employing the KS2 instead. We observe that the
same technique, which we applied to the analysis of COVID-19 deaths, can be used to
model new cases and hospitalisations. Finally, in Section 6, we present our concluding
remarks. It is worth noting that in the more general setting of information modelling, being
able to detect epidemic waves may help supply chains in planning increased resistance to
such adverse events [28]. We note that all computations were carried out using the Matlab
software package.
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2. A Skew Logistic Distribution

Here, we introduce a novel skew logistic distribution, which extends, in straightforward
manner, the standard two parameter logistic distribution [3] and [4] (Chapter 22) by
adding to it a skew parameter. The rationale for introducing the distribution is that, apart
from its simple formulation, we believe that the maximum likelihood solution presented
below is also simpler than those derived for other skew logistic distributions, such as the
ones investigated in [8,9]. This point provides further justification for our skew logistic
distribution when introducing the bi-skew logistic distribution in Section 4.

Now, let µ be a location parameter, s be a scale parameter and λ be a skew parameter,
where s > 0 and 0 < λ < 2. Then, the probability density function of the skew logistic
distribution at a value x of the random variable X, denoted as f (x; λ, µ, s), is given by:

f (x; λ, µ, s) = κλ

exp
(
−λ

x−µ
s

)
s
(

1 + exp
(
− x−µ

s

))2 , (1)

noting that for clarity we write x− µ above as a shorthand for
(
x− µ

)
, and κλ is a normali-

sation constant, which depends on λ.
When λ = 1, the skew logistic distribution reduces to the standard logistic distribution

as in [3] and [4] (Chapter 22), which is symmetric. On the other hand, when 0 < λ < 1,
the skew logistic distribution is positively skewed, and when 1 < λ < 2, it is nega-
tively skewed. So, when λ = 1, κλ = 1, and, for example, when λ = 0.5 or 1.5, κλ = 2/π.
For simplicity, from now on, unless necessary, we will omit to mention the constant κλ as it
will not effect any of the results.

The skewness of a random variable X [4,5], is defined as:

E

[(
X− µ

s

)3
]

,

and thus, assuming for simplicity of exposition (due the linearity of expectations [5]) that
µ = 0 and s = 1, the skewness of the skew logistic distribution, denoted by γ(λ), is
given by:

γ(λ) =
∫ ∞

−∞
x3 exp(−λx)

s
(
1 + exp(−x)

)2 dx. (2)

First, we will show that letting λ1 = λ, with 0 < λ1 < 1, we have γ(λ1) > 0, that
is f (x; λ1, 0, 1) is positively skewed. We can split the integral in (2) into two integrals
for the negative part from −∞ to 0 and the positive part from 0 to ∞, noting that when
x = 0, the expression to the right of the integral is equal to 0. Then, on setting y = −x
for the negative part, and y = x for the positive part, the result follows, as by algebraic
manipulation it can be shown that:

exp(−λ1y)(
1 + exp(−y)

)2 >
exp(λ1y)(

1 + exp(y)
)2 , (3)

implying that γ(λ1) > 0 as required.
Second, in a similar fashion to above, on letting λ2 = λ1 + 1 = λ, with 1 < λ2 < 2, it

follows that γ(λ2) < 0, that is f (x; λ2, 0, 1) is negatively skewed. In particular, by algebraic
manipulation we have that:

exp
(
−λ2y

)(
1 + exp(−y)

)2 <
exp

(
λ2y

)(
1 + exp(y)

)2 , (4)

implying that γ(λ2) < 0 as required.
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The cumulative distribution function of the skew logistic distribution at a value x of
the random variable X is obtained by integrating f (x; λ, µ, s), to obtain F(x; µ, s, λ), which
is given by:

F(x; λ, µ, s) = κλ exp
(
−(λ− 2)

x− µ

s

) 1(
1 + exp

(
x−µ

s

)) −
λ− 1
λ− 2 2F1

(
1, 2− λ; 3− λ;− exp

(
x− µ

s

)),

(5)

where 2F1(a, b; c; z) is the Gauss hypergemoetric function [29] (Chapter 15); we assume a, b
and c are positive real numbers, and that z is a real number extended outside the unit disk
by analytic continuation [30].

The hypergeometric function has the following integral representation [29] (Chapter 15),

Γ(c)
Γ(b)Γ(c− b)

∫ 1

0

tb−1(1− t)c−b−1

(1− tz)a dt, (6)

where c > b. Now, assuming without loss of generality that µ = 0 and s = 1, we have that:

2F1
(
1, 2− λ; 3− λ;− exp(x)

)
= (2− λ)

∫ 1

0

t1−λ(
1 + t exp(x)

) dt, (7)

where x is a real number.
Therefore, from (7) it can be verified that: (i) 2F1(1, 2− λ; 3− λ;− exp(x)) is monoton-

ically decreasing with x, (ii) as x tends to plus infinity, 2F1(1, 2− λ; 3− λ;− exp(x)) tends
to 0 and (iii) as x tends to minus infinity, 2F1(1, 2− λ; 3− λ;− exp(x)) tends to 1, since:

(2− λ)
∫ 1

0
t1−λ dt = 1.

3. Maximum Likelihood Estimation for the Skew Logistic Distribution

We now formulate the maximum likelihood estimation [31] of the parameters µ, s and
λ of the skew logistic distribution. Let {x1, x2, . . . , xn} be a random sample of n values
from the density function of the skew logistic distribution in (1). Then, the log likelihood
function of its three parameters is given by:

ln L(λ, µ, s) = −n ln(s)− λ

s

n

∑
i=1

(xi − µ)− 2
n

∑
i=1

ln

(
1 + exp

(
− xi − µ

s

))
. (8)

In order to solve the log likelihood function, we first partially differentiate ln L(λ, µ, s)
as follows:

∂ ln L(λ, µ, s)
∂λ

=
n

∑
i=1

µ− xi
s

,

∂ ln L(λ, µ, s)
∂µ

=
λn
s
− 2

s

n

∑
i=1

1

1 + exp
(

xi−µ
s

) and

∂ ln L(λ, µ, s)
∂s

= −n
s
+

1
s2

n

∑
i=1

(
xi − µ

)λ− 2

1 + exp
(

xi−µ
s

)
. (9)
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It is therefore implied that the maximum likelihood estimators are the solutions to the
following three equations:

µ =
∑n

i=1 xi

n
,

λ =
2
n

n

∑
i=1

1

1 + exp
(

xi−µ
s

) and

s =
1
n

n

∑
i=1

(
xi − µ

)λ− 2

1 + exp
(

xi−µ
s

)
, (10)

which can be solved numerically.
We observe that the equation for µ in (10) does not contribute to solving the maximum

likelihood, since the location parameter µ is equal to the mean only when λ = 1. We thus look
at an alternative equation for µ, which involves the mode of the skew logistic distribution.

To derive the mode of the skew logistic distribution we solve the equation,

∂

∂x

exp
(
−λ

x−µ
s

)
s
(

1 + exp
(
− x−µ

s

))2 = 0, (11)

to obtain:

µ = x− s log
(
−λ− 2

λ

)
. (12)

Thus, motivated by (12) we replace the equation for µ in (10) with:

µ = m− s log
(
−λ− 2

λ

)
, (13)

where m is the mode of the random sample.

4. The Bi-Skew Logistic Distribution for Modelling Epidemic Waves

We start by defining the bi-skew logistic distribution, which will enable us to model
more than one wave of infections at a time. We then discuss how we partition the data
into single waves, in a way that we can apply the maximum likelihood from the previous
section to the data in a consistent manner.

We present the bi-skew logistic distribution, which is described by the sum,

f (x; λ1, µ1, s1) + f (x; λ2, µ2, s2),

of two skew logistic distributions. It is given in full as:

exp
(
−λ1

x−µ1
s1

)
s1

(
1 + exp

(
− x−µ1

s1

))2 +
exp

(
−λ2

x−µ2
s2

)
s2

(
1 + exp

(
− x−µ2

s2

))2 , (14)

which characterises two distinct phases of logistic growth (c.f. [19,32]). We note that (14) can
be readily extended to the general case of the sum of multiple skew logistic distributions;
however, for simplicity, we only present the formula for the bi-skew logistic case. Thus,
while the (single) skew logistic distribution can only model one wave of infected cases
(or deaths, or hospitalisations), the bi-skew logistic distribution can model two waves of
infections, and in the general cases, any number of waves.
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In the presence of two waves, the maximum likelihood solution to (14), would give us
access to the necessary model parameters, and solving the general case in the presence of
multiple waves, when the sum in (14) may have two or more skew logistic distributions,
is evidently even more challenging. Thus, we simplify the solution for the multiple wave
case, and concentrate on an approximation assuming a sequential time series when one
wave strictly follows the next. More specifically, we assume that each wave is modelled by
a single skewed logistic distribution describing the growth phase until a peak is reached,
followed by a decline phase; see [33] who consider epidemic waves in the context of the
standard logistic distribution. Thus, a wave is represented by a temporal pattern of growth
and decline, and the time series as a whole describes several waves as they evolve.

To provide further clarification of the model, we mention that the skew-bi logistic
distribution is not a mixture model per se, in which case there is a mixture weight for each
distribution in the sum, as in, say, a Gaussian mixture [34] (Chapter 9). In the bi-skew
logistic distribution case we do not have mixture weights, rather, we have two phases in our
context waves, which are sequential in nature, possibly with some overlap, as can be seen
in Figure 1 (c.f. [19,32]). Strictly speaking, the bi-skew logistic distribution can be viewed as
a mixture model where the mixture weights are each 0.5 and a scaling factor of 2 is applied.
Thus, as an approximation, we add a preprocessing step where we segment the time series
into distinct waves, resulting in a considerable reduction to the complexity of the maximum
likelihood estimation. We do, however, remark that the maximum likelihood estimation
for the bi-skew logistic distribution is much simpler than that of a corresponding mixture
model, due to the absence of mixture weights. In particular, although we could, in principle,
make use of the EM (expectation-maximisation) algorithm [34] (Chapter 9) and [35] to
approximate the maximum likelihood estimates of the parameters, this would not be strictly
necessary in the bi-skew logistic case, cf. [36]. The only caveat, which holds independently
of whether the EM algorithm is deployed or not, is the additional number of parameters
present in the equations being solved. We leave this investigation as future work, and focus
on our approximation, which does not require the solution to the maximum likelihood of
(14); the details of the preprocessing heuristic we apply are given in the following section.

5. Data Analysis of COVID-19 Deaths in the UK

Here, we provide a full analysis of COVID-19 deaths in the UK from 30 January 2020
to 30 July 2021, employing the ESJS goodness-of-fit statistic and comparing it to the KS2
statistic. The daily UK COVID-19 data we used was obtained from [37].

As a proof of concept of the modelling capability of the skew logistic distribution, we
now provide a detailed analysis of the time series of COVID-19 deaths in the UK from 30
January 2020 to 30 July 2021.

To separate the waves, we first smoothed the raw data using a moving average with a
centred sliding window of 7 days. We then applied a simple heuristic, where we identified
all the minima in the time series and defined a wave as a consecutive portion of the time,
of at least 72 days, with the endpoints of each wave being local minima apart from the
first wave, which starts from day 0. The resulting four waves in the time series are shown
in Figure 1; see last column of Table 1 for the endpoints of the four waves. It would be
worthwhile, as future work, to investigate other heuristics, which may, for example, allow
overlap between the waves to obtain more accurate start and end points and to distribute
the number of cases between the waves when there is overlap between them.

In Table 1, we show the parameters resulting from maximum likelihood fits of the skew
logistic distribution to the four waves. Figure 2 shows histograms of the four COVID-19
waves, each overlaid with the curve of the maximum likelihood fit of the skew logistic
distribution to the data. Pearson’s moment and median skewness coefficients [38] for the
four waves are recorded in Table 2. It can be seen that the correlation between these and
1− λ is close to 1, as we would expect.
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Figure 1. Reported daily COVID-19 deaths from 30 January 2020 to 30 July 2021 and their minima
labelled ‘*’, resulting in four distinct waves; a moving average with a centred sliding window of 7
days was applied to the raw data.

Table 1. Parameters from maximum likelihood fits of the skew logistic distribution to the four waves,
and the day of the local minimum (End), which is the end point of the wave.

Fitted Parameters for the Skew Logistic Distribution

Wave λ µ s End

1 0.2150 3.5137 3.8443 71
2 1.0741 196.5157 14.4323 239
3 0.2297 243.0709 4.5882 334
4 1.7306 502.2758 7.0195 532

Table 2. Pearson’s moment and median skewness coefficients for the four waves, and the correlation
between 1− λ and these coefficients.

Skewness

Wave 1− λ Moment Median

1 0.7850 0.9314 0.2939
2 −0.0741 −0.7758 −0.0797
3 0.7703 0.9265 0.1939
4 −0.7306 −1.5555 −0.2413

Correlation 0.9931 0.9826
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Figure 2. Histograms for the four waves of COVID-19 deaths from 30 January 2020 to 30 July
2021, each overlaid with the curve of the maximum likelihood fit of the skew logistic distribution to
the data.

We now turn to the evaluation of goodness-of-fit using the ESJS (empirical survival
Jensen–Shannon divergence) [21,22], which generalises the Jensen–Shannon divergence [39]
to survival functions, and the well-known KS2 (Kolmogorov–Smirnov two-sample test
statistic) [23] (Section 6.3). We will also employ 95% bootstrap confidence intervals [25]
to measure the improvement in the ESJS and KS2, goodness-of-fit measures, of the skew-
logistic over the logistic and normal distributions, respectively. For completeness, we
formally define the ESJS and KS2.

To set the scene, we assume a time series [40], x = {x1, x2, . . . , xn}, where xt, for t =
1, 2, . . . , n is a value indexed by time, t, in our case modelling the number of daily COVID-19
deaths. We are, in particular, interested in the marginal distribution of x, which we suppose
comes from an underlying parametric continuous distribution D.

The empirical survival function of a value z for the time series x, denoted by Ŝ(x)[z], is
given by:

Ŝ(x)[z] =
1
n

n

∑
i=1

I{xi>z}, (15)

where I is the indicator function. In the following, we will let P̂(z) = Ŝ(x)[z] stand for the
empirical survival function Ŝ(x)[z], where the time series x is assumed to be understood
from context. We will generally be interested in the empirical survival function P̂, which
we suppose arises from the survival function P of the parametric continuous distribution
D, mentioned above.



Entropy 2022, 24, 600 9 of 13

The empirical survival Jensen–Shannon divergence (ESJS) between two empirical survival
functions, Q̂1 and Q̂2 arising from the survival functions Q1 and Q2, is given by:

ESJS(Q̂1, Q̂2) =
1
2

∫ ∞

0
Q̂1(z) log

(
Q̂1(z)
M̂(z

)
+ Q̂2(z) log

(
Q̂2(z)
M̂(z)

)
dz, (16)

where:
M̂(z) =

1
2

(
Q̂1(z) + Q̂2(z)

)
.

We note that the ESJS is bounded and can thus be normalised, so it is natural to
assume its values are between 0 and 1; in particular, when Q̂1 = Q̂2 its value is zero.
Moreover, its square root is a metric [41], cf. [21].

The Kolmogorov–Smirnov two-sample test statistic between Q̂1 and Q̂2 as above, is
given by:

KS2(Q̂1, Q̂2) = max
z
|Q̂1(z)− Q̂2(z)|, (17)

where max is the maximum function, and |v| is the absolute value of a number v. We note
that KS2 is bounded between 0 and 1, and is also a metric.

For a parametric continuous distribution D, we let φ = φ(D, P̂) be the parameters
that are obtained from fitting D to the empirical survival function, P̂, using maximum
likelihood estimation. In addition, we let Pφ = Sφ(x) be the survival function of x, for D
with parameters φ. Thus, the empirical survival Jensen–Shannon divergence and the
Kolmogorov–Smirnov two-sample test statistic, between P̂ and Pφ, are given by ESJS(P̂, Pφ)

and KS2(P̂, Pφ), respectively, where P̂ and Pφ are omitted below as they will be understood
from context. These values provide us with two measures of goodness-of-fit for how well
D with parameters φ is fitted to x [22].

We are now ready to present the results of the evaluation. In Table 3, we show the
ESJS values for the four waves and the said improvements, while in Table 4, we show the
corresponding KS2 values and improvements. In all cases, the skew logistic is a preferred
model over both the logistic and normal distributions, justifying the addition of a skewness
parameter as can be see in Figure 2. Moreover, in all but one case the logistic distribution
was preferred over the normal distribution—wave 3, where the KS2 statistic of the normal
distribution was smaller than that of the logistic distribution. We observe that, for the
second wave, the ESJS and KS2 values for the skew logistic and logistic distribution were
the closest, since, as can be seen from Table 1, the second wave was more or less symmetric,
in which case the skew logistic distribution reduces to the logistic distribution.

Table 3. ESJS values for the skew logistic (SL), logistic (Logit) and normal (Norm) distributions,
and the improvement percentage of the skew logistic over the logistic (SL-Logit) and normal (SL-
Norm) distributions, respectively.

ESJS Values for SL, Logit and Norm Distributions

Wave SL Logit SL-Logit Norm SL-Norm

1 0.0419 0.0583 28.25% 0.0649 35.54%
2 0.0392 0.0448 12.52% 0.0613 36.17%
3 0.0316 0.0387 18.38% 0.0423 25.38%
4 0.0237 0.0927 74.47% 0.0939 74.79%

In Tables 5 and 6, we present the bootstrap 95% confidence intervals of the ESJS and
KS2 improvements, respectively, using the percentile method, while in Tables 7 and 8, we
provide the 95% confidence intervals of the ESJS and KS2 improvements, respectively,
using the bias-corrected and accelerated (BCa) method [25], which adjusts the confidence
intervals for bias and skewness in the empirical bootstrap distribution. In all cases, the
mean of the bootstrap samples is above zero with a very tight standard deviation. As noted
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above, the second wave is more or less symmetric, so we expect that the standard logistic
distribution will provide a fit to the data, which is as good as the skew logistic fit. It is thus
not surprising that in this case the improvement percentages are, generally, not significant.
In addition, the improvements for the third wave are also, generally, not significant, which
may be due to the starting point of the third wave, given our heuristic, being close to its
peak; see Figure 1. We observe that, for this dataset, it is not clear whether deploying the
BCa method yields a significant advantage over simply deploying the percentile method.

Table 4. KS2 values for the skew logistic (SL), logistic (Logit) and normal (Norm) distributions,
and the improvement percentage of the skew logistic over the logistic (SL-Logit) and normal (SL-
Norm) distributions, respectively.

KS2 Values for SL, Logit and Norm Distributions

Wave SL Logit SL-Logit Norm SL-Norm

1 0.0621 0.1245 50.14% 0.1280 51.50%
2 0.0357 0.0391 8.57% 0.0420 15.01%
3 0.0571 0.0930 38.66% 0.0854 33.18%
4 0.0098 0.0817 87.98% 0.1046 90.61%

In Table 9, we show the mean and standard deviation statistics of the confidence inter-
val widths, of the metrics we used to compare the distributions, implying that, in general,
the ESJS goodness-of-fit measure is more powerful than the KS2 goodness-of-fit measure.
This is based on the known result that statistical tests using measures resulting in smaller
confidence intervals are normally considered to be more powerful, implying that a smaller
sample size may be deployed [42].

Table 5. Results from the percentile method for the confidence interval of the difference of the ESJS
between the logistic (Logit) and skew logistic (SL), and between the normal (Norm) and skew logistic
(SL) distributions, respectively; Diff, LB, UB, CI, Mean and STD stand for difference, lower bound,
upper bound, confidence interval, mean of samples and standard deviation of samples, respectively.

Percentile Confidence Intervals for ESJS Improvement

Wave/Diff LB of CI UB of CI Width of CI Mean STD

1/SL-Logit 0.0093 0.0317 0.0224 0.0211 0.0063
1/SL-Norm 0.0170 0.0382 0.0212 0.0278 0.0063
2/SL-Logit −0.0010 0.0066 0.0076 0.0034 0.0049
2/SL-Norm 0.0154 0.0232 0.0078 0.0201 0.0051
3/SL-Logit −0.0028 0.0112 0.0140 0.0083 0.0022
3/SL-Norm 0.0021 0.0149 0.0128 0.0120 0.0022
4/SL-Logit 0.0549 0.0810 0.0261 0.0714 0.0068
4/SL-Norm 0.0560 0.0821 0.0261 0.0722 0.0070

As mentioned in the introduction, we obtained comparable results to the above when
modelling epidemic waves with the epsilon skew normal distribution [7] as opposed to
using the skew logistic distribution; see also [43] for a comparison of a skew logistic and
skew normal distribution in the context of insurance loss data, showing that the skew
logistic performed better than the skew normal distribution for fitting the datasets tested.
Further to the note in the introduction that the skew logistic distribution is a more natural
one to deploy in this case due to its heavier tails, we observe that in an epidemic scenario,
the number of cases counted can only be non-negative, while the epsilon skew normal also
supports negative values.
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Table 6. Results from the percentile method for the confidence interval of the difference of the KS2
between the logistic (Logit) and skew logistic (SL), and between the normal (Norm) and skew logistic
(SL) distributions, respectively; Diff, LB, UB, CI, Mean and STD stand for difference, lower bound,
upper bound, confidence interval, mean of samples and standard deviation of samples, respectively.

Percentile Confidence Intervals for KS2 Improvement

Wave/Diff LB of CI UB of CI Width of CI Mean STD

1/SL-Logit 0.0438 0.0760 0.0322 0.0621 0.0073
1/SL-Norm 0.0411 0.0821 0.0410 0.0684 0.0078
2/SL-Logit 0.0003 0.0047 0.0044 0.0033 0.0009
2/SL-Norm 0.0007 0.0092 0.0085 0.0065 0.0017
3/SL-Logit −0.0073 0.0441 0.0514 0.0343 0.0082
3/SL-Norm −0.0142 0.0365 0.0507 0.0267 0.0080
4/SL-Logit 0.0474 0.0728 0.0254 0.0680 0.0046
4/SL-Norm 0.0710 0.0962 0.0252 0.0905 0.0048

Table 7. Results from the BCa method for the confidence interval of the difference of the ESJS
between the logistic (Logit) and skew logistic (SL), and between the normal (Norm) and skew logistic
(SL) distributions, respectively; Diff, LB, UB, CI, Mean and STD stand for difference, lower bound,
upper bound, confidence interval, mean of samples and standard deviation of samples, respectively.

BCa Confidence Intervals for ESJS Improvement

Wave/Diff LB of CI UB of CI Width of CI Mean STD

1/SL-Logit 0.0087 0.0260 0.0173 0.0210 0.0062
1/SL-Norm 0.0165 0.0333 0.0168 0.0275 0.0063
2/SL-Logit −0.0009 0.0258 0.0267 0.0036 0.0053
2/SL-Norm 0.0153 0.0425 0.0272 0.0201 0.0050
3/SL-Logit −0.0024 0.0095 0.0119 0.0084 0.0023
3/SL-Norm −0.0027 0.0135 0.0162 0.0119 0.0024
4/SL-Logit 0.0308 0.0703 0.0395 0.0708 0.0074
4/SL-Norm 0.0554 0.0713 0.0159 0.0726 0.0069

Table 8. Results from the BCa method for the confidence interval of the difference of the KS2 between
the logistic (Logit) and skew logistic (SL), and between the normal (Norm) and skew logistic (SL)
distributions, respectively; Diff, LB, UB, CI, Mean and STD stand for difference, lower bound, upper
bound, confidence interval, mean of samples and standard deviation of samples, respectively.

BCa Confidence Intervals for KS2 Improvement

Wave/Diff LB of CI UB of CI Width of CI Mean STD

1/SL-Logit 0.0428 0.0801 0.0373 0.0624 0.0074
1/SL-Norm 0.0444 0.0777 0.0333 0.0683 0.0078
2/SL-Logit 0.0005 0.0047 0.0042 0.0033 0.0008
2/SL-Norm 0.0001 0.0089 0.0088 0.0064 0.0017
3/SL-Logit 0.0013 0.0445 0.0432 0.0346 0.0077
3/SL-Norm −0.0111 0.0368 0.0479 0.0263 0.0082
4/SL-Logit 0.0491 0.0739 0.0248 0.0676 0.0047
4/SL-Norm 0.0685 0.0985 0.0300 0.0908 0.0046
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Table 9. Mean and standard deviation (STD) statistics for the confidence interval (CI) widths using
the percentile (P) and BCa methods.

Summary Statistics for the CI Widths

Statistic ESJS-P KS2-P ESJS-BCa KS2-BCa

Mean 0.0172 0.0298 0.0214 0.0287
STD 0.0077 0.0176 0.0091 0.0155

6. Concluding Remarks

We have proposed the skew-logistic and bi-logistic distributions as models for single
and multiple epidemic waves, respectively. The model is a simple extension of the sym-
metric logistic distribution, which can readily be deployed in the presence of skewed data
that exhibits growth and decay. We provided validation for the proposed model using the
ESJS as a goodness-of-fit statistic, showing that it is a good fit to COVID-19 data in UK
and more powerful than the alternative KS2 statistic. As future work, we could use the
model to compare the progression of multiple waves across different countries, extending
the work of [16].
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