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Abstract: When we consider an error model in a quantum computing system, we assume a parametric
model where a prepared qubit belongs. Keeping this in mind, we focus on the evaluation of the
amount of information we obtain when we know the system belongs to the model within the
parameter range. Excluding classical fluctuations, uncertainty still remains in the system. We propose
an information quantity called purely quantum information to evaluate this and give it an operational
meaning. For the qubit case, it is relevant to the facility location problem on the unit sphere, which is
well known in operations research. For general cases, we extend this to the facility location problem
in complex projective spaces. Purely quantum information reflects the uncertainty of a quantum
system and is related to the minimum entropy rather than the von Neumann entropy.
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1. Introduction

Building a large-scale quantum computer remains challenging, and there are many
problems to be solved. For example, the performance of error correction depends very
strongly on how coherent the noise process is [1], and experimenters need to improve the
quantum computing system through analysis of the physical noise [2]. When we prepare
an imperfect quantum computing system, it is important to specify the noise based on a
suitable error model. The process of understanding the physical error model for a prepared
system corresponds to that of obtaining a certain amount of information on the system.
In the present paper, keeping this in mind, we consider how to evaluate such information
without any entropic concept.

An overly simple example is given by a purely rotation error model [2] with a pa-
rameter range. Let the ideal qubit state be |0〉 and the error model be e−iθY|0〉, where
Y = −i(|0〉〈1| − |1〉〈0|) and θ denotes the parameter to be specified. Then the parameter
range reflects the information we have on the system. We have more information when we
know −ε ≤ θ ≤ ε than when we know −2ε ≤ θ ≤ 2ε.

However, what if we consider a more complicated situation such as |θ1, θ2〉 = e−iθ2Z

e−iθ1Y|0〉, where Z = |0〉〈0| − |1〉〈1|, with the parameter range of, say, 0 ≤ θ1 ≤ π/4 and
0 ≤ θ2 ≤ π/4? How do we compare the range with the parameter range 0 ≤ θ1 ≤ 2π/5
and θ2 = 0? To simplify the problem, let us adopt discrete models. We consider two
situations: First, the qubit is described by one of the candidate pure states, |0〉, |+〉, |Y+〉,
where |+〉 = |θ1 = π/4, θ2 = 0〉 and |Y+〉 = |θ1 = π/4, θ2 = π/4〉. Second, it is described

by one of the candidate pure states |0〉, |0〉+
√

2|1〉√
3

, |+〉. Then, which state’s information is
greater? Or equivalently, which uncertainty is larger? We will give a definite answer in the
present article (See Section 8).

Let us describe our problem in a slightly more formal way before going into detail.
Let the quantum system be described in a separable Hilbert space and a subset of pure
statesM = {ψ1, ψ2, . . . } be given. We call the subsetM a (pure-state) model. Suppose we
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know that the quantum system is described by one of the pure states in the model. Then
we evaluate the amount of information obtained by knowing the model.

We write the model as a countable set for simplicity, but a model might consist of
an uncountable set of pure states, e.g., the above parametric pure state |θ1, θ2〉. Another
continuous model would be a wavefunction with a certain continuous parameter {ϕ(x− s) :
−∞ < s < ∞} (see, e.g., Holevo [3]).

Our problem is closely related to so-called quantum estimation, but the above type
of problem has still not been investigated. In quantum state estimation [4–9] or quan-
tum state discrimination [6,10–13], for a given model, we find an optimal quantum mea-
surement to extract information on the quantum state and choose the true state in the
model from observation. This has been a typical problem and has been investigated by
many authors. In quantum information experiments, quantum tomography has been also
discussed [14–17]. As far as the author knows, these studies do not refer to the comparison
of several models in terms of information quantity.

In our setting, we focus on the information that we obtain before preparation for a
measurement. As we see later, we clearly obtain a certain amount of information other than
the dimension of the Hilbert space.

We consider only pure state models so that we can neglect classical fluctuation. As
we shall see later, there is no classical counterpart for such information. In other words,
we calibrate so that such classical information becomes zero. If a positive amount of
information remains under the calibration, then we expect that it reflects the truly quantum
information. We do not have a proper name for this information, and we call it model
information or information of the model tentatively. It would become an alternative to the
usual entropy.

In the next section, we provide a rough idea of how to define model information
and present pure state models as examples. Then, we will formulate a pure state model
and define the representative quantum state for it in a rigorous manner. In Section 4, we
describe the equivalence between the problem of finding the representative quantum state
and finding the minimax facility location on the sphere in operations research. In Section 5,
we introduce the purely quantum information of the model and calculate it in several
examples. We also describe the relationship of entropic concepts to our result and extension
to infinite-dimensional Hilbert space in Section 7. Finally, concluding remarks are given
in Section 8.

2. Rough Idea on Defining Model Information
2.1. Preliminary Considerations

In this section, we describe a rough idea of how we evaluate model information. First,
we recall classical information theory. Suppose that Alice picks a three-letter word w1w2w3,
where w1, w2, w3 ∈ {a, b, c, . . . , z} and we setM = {a, b, c, . . . , y}. If Bob knows w1 ∈ M,
Bob does not feel that he obtains much information. However, if w1 ∈ M′ = {a, e, i, o, u},
then Bob feels that he obtains more information on the word Alice picks.

The above situation corresponds to a commutative case in quantum theory. Keeping
this in mind, let us consider the model information in the quantum system. We assume
that Bob already knows that the quantum system is described in a d-dimensional Hilbert
space. Since information quantity is a relative concept, let us compare two models. Let
the first model consist of a d-dimensional orthonormal basis, i.e.,M = {e1, . . . , ed} and the
second model consist of {e1, . . . , ek} (k << d). At least we can say that the second model
gives more significant information to Bob than the first model. This is because the quantum
state is in a proper subspace.

Now we tackle the case where some quantum states are nonorthogonal. For simplicity,
we set d = 2 and consider the following models:
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M1 = {|+〉, |−〉},
M2 = {|0〉, |+〉},

M3 = {|0〉, |0〉+
√

2|1〉√
3

, |+〉},

M4 = {|0〉, |+〉, |Y+〉},

where |±〉 = 1√
2
(|0〉 ± |1〉), |Y+〉 = 1√

2
(|0〉 + i|1〉). In explicit calculations, we set

|0〉 = (1, 0)>, |1〉 = (0, 1)>.
Suppose that we know that the quantum state ϕ is one of the candidate states inM2

(hereinafter, we write ϕ ∈ M2 for simplicity). Perhaps we agree that the information is more
than ϕ ∈ M3 and ϕ ∈ M4. Then, which is more informative, ϕ ∈ M3 or ϕ ∈ M4? Both
models consist of three nonorthogonal state vectors. Likewise, which is more informative,
ϕ ∈ M1 or ϕ ∈ M2? In the present article, we consider how to quantitatively evaluate the
information obtained when Bob knows that the quantum state ϕ belongs to a modelM.

2.2. Full Rank Condition

In order to avoid technical difficulties, we give one important assumption here. Let us
define the rank of a model as

rankM = dim spanC{ψ1, ψ2, . . . }.

We assume that the rank of a model is equal to the dimension of the Hilbert space, i.e.,
d = rankM. We call it the full rank condition. The full rank condition implies that there
exists no complementary subspace that is orthogonal to every state vector in the modelM.

2.3. Rough Idea on Defining Model Information

Under the full rank condition, we consider the case where a model has considerable
information on the quantum system. Suppose that we are given the following model:

M = {|e1〉,
√

1− ε|e1〉+
√

ε|e2〉, . . . ,
√

1− ε|e1〉+
√

ε|ed〉}

(0 < ε << 1). While this satisfies the full rank condition, clearly all candidate quantum
states are approximately in the same direction as |e1〉.

Then, the quantum system ϕ is approximately described by a representative state
vector |e1〉. When ε→ 0 but ε 6= 0, the model information is expected to increase.

From the above discussion, we find that the information quantity associated with
ϕ ∈ M is completely different from the number of elements, |M|. Rather, a certain scale or
a size of the modelM should be included in the definition of the model information.

Along the lines of the above rough idea, we discuss in the next section:

(a) How to determine a representative state vector for a given modelM;
(b) One definition of the model information;
(c) The relationship with the concept of entropy.

We emphasize that all of these have no classical counterpart and thus it might be
difficult to understand them. Before going into detail, we shall give an overview of each
item here.

For (a), we consider maximin overlap between quantum states and define the repre-
sentative quantum state of a model. Mathematically speaking, it is regarded as a variant
of the facility location problem on the unit sphere [18,19], which appears in operations
research. In operations research, many authors have developed algorithms on the facility
location problem. In particular, finding the minimax solution is our concern. For a finite
model (|M| < ∞), we present a naive algorithm to find the representative quantum state
for a model using this consideration.
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In order to consider item (b), we introduce an imaginary two-person game called the
quantum detection game. Bob benefits from the information of a given model to obtain a
higher score than Alice. The value of the game, which is determined by a least favorable
prior [20] in this game, defines one information quantity related to the modelM.

In (c), we compare our method with the formal analogue based on the von Neumann
entropy. Later we will see that the newly proposed information quantity is related to the
minimum entropy [21,22] rather than the von Neumann entropy.

3. Basic Definitions
3.1. Definition of Pure State Models and Assumptions

In the present paper, letH be a d-dimensional Hilbert space. (d could be ∞). We call a
finite-dimensional parametric family of quantum pure states

M = {ψθ ∈ H : ‖ψθ‖ = 1, θ ∈ Θ ⊂ Rm}

a quantum statistical model of pure states or briefly a (pure state) model. Note that ‖ f ‖2 = 〈 f | f 〉.
Basically, the parameter set Θ is a compact subset of finite-dimensional Euclidean space.

We assume the following two conditions:

(1) Identifiability: θ 6= θ′ ⇒ |ψθ〉〈ψθ | 6= |ψθ′〉〈ψθ′ |. Conventionally, we only consider
quantum states up to the (global) phase factor below, and we often identify a pure
state |ψ〉 with a density operator |ψ〉〈ψ|.

(2) Continuity: For every sequence {θn}∞
n=1 ⊂ Θ and θ ∈ Θ,

θn → θ ⇒ ‖|ψθn〉〈ψθn | − |ψθ〉〈ψθ |‖∞ → 0

holds. (‖A‖∞ denotes the operator norm, i.e., ‖A‖∞ = sup‖ϕ‖=1‖Aϕ‖).
For simplicity, we often consider a finite set of parameters, Θ = {θ1, . . . , θk}. Then, ψθj

is denoted by ψj. We often call it a discrete model, which is written asM = {ψ1, . . . , ψk}.

3.2. Preliminary Results

In the present paper, we introduce the information of a modelM. Although the formal
definition is given in Section 5, we need several concepts to understand them analytically
and geometrically.

In this section, we introduce the most fundamental concept, the representative quan-
tum state of a model. We shall give a rough idea for when dimH = 2 and |M| = 2.
Specifically, we setM = {ψ1, ψ2} with ‖ψ1‖ = ‖ψ2‖ = 1. When two quantum states are
close to each other, ψ1 ' ψ2, it is natural to consider that a representative quantum state of
modelM should be a "midpoint between two quantum states". We often identify the state
vector with the point on the whole pure states specified by the vector.

Mathematically, we may try to define the point as the point ϕ equidistant between ψ1
and ψ2 such that

|〈ϕ|ψ1〉| = |〈ϕ|ψ2〉| (1)

holds.
However, the above equidistance condition does not determine the point ϕ generally.

Thus, we maximize the above “overlap” under the condition (1). Then we obtain an explicit
formula for the representative point of a model,

|ϕrep〉 =
|ψ1〉+ e−iδ|ψ2〉√

2(1 + |γ|)
, γ = 〈ψ1|ψ2〉, δ = arg γ (2)
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where δ satisfies γ = |γ|eiδ and then the maximum overlap is given by
maxϕ |〈ϕ|ψ1〉| = 1+|γ|

2 .
Next, we consider the case where |M| = 3. Let us takeM3 andM4 introduced in the

previous section:
InM4, the above idea applies, i.e., we find the quantum state to maximize the overlap

|〈ϕ|ψ1〉| = |〈ϕ|ψ2〉| = |〈ϕ|ψ3〉|. (3)

Up to the global phase, we set ϕ as

|ϕ〉 =
(

cos α

sin α eiδ

)
, 0 ≤ α ≤ π/2, 0 ≤ δ < 2π. (4)

Then, we obtain an explicit solution satisfying (3), cos α =
√

3+
√

3
6 , δ = π

4 after lengthy
but straightforward algebra. (See also Section 4.1.3).

However, we find no solution satisfying Equation (3) inM3. We need a more careful
treatment. First, we fix an arbitrary quantum state ϕ and consider the set of numbers r
satisfying |〈ϕ|ψj〉| ≥ r, j = 1, 2, 3. The condition assures that the overlap between ϕ and an
arbitrary quantum state inM is not less than r. For each ϕ, the maximum of r is equal to
min{|〈ϕ|ψj〉| : j = 1, 2, 3}.

We consider that the larger the overlap gets, the more suitable ϕ becomes as a repre-
sentative quantum state of the modelM. Thus, we maximize r as a function of ϕ.

It is convenient for explicit calculation to use the squared overlap (i.e., Fidelity),
maxϕ minψ∈M3 |〈ϕ|ψ〉|2, and we regard ϕrep = arg max r(ϕ;M3) as a representative quan-
tum state of the modelM3. Based on the above idea, we will give a more formal definition
of the representative quantum state in the next subsection.

3.3. Representative Quantum State

Now we are ready to define the representative quantum state of a given modelM
formally. We adopt the distance dF(ϕ, ϕ′) = 1 − F(ϕ, ϕ′) = 1 − |〈ϕ|ϕ′〉|2 rather than
the overlap.

Definition 1. Let a modelM be given. When a quantum state ϕrep satisfies

inf
ϕ

sup
ψ∈M

dF(ϕ, ψ) = sup
ψ∈M

dF(ϕrep, ψ), (5)

ϕrep is called a representative quantum state of the modelM with respect to the distance dF.

When we emphasize the modelM, we write ϕrep(M). While the terms max and min
are enough for discrete models, using the terms sup and inf is generally inevitable. (see
Section 7). We also use a condition equivalent to (5),

sup
ψ∈M

dF(ϕ, ψ) ≥ sup
ψ∈M

dF(ϕrep, ψ), ∀ϕ.

In the above definition, ϕrep is also interpreted as the minimax estimate in quan-
tum estimation with no observation. Suppose that a parametric family of pure states or
countable set of pure states is given. Then we give an estimate, say ϕ, as the true quan-
tum state without any observation. The error is evaluated by the Fidelity-based quantity,
dF(ϕ, ψtrue) = 1 − |〈ϕ|ψtrue〉|2. The above representative quantum state is a minimax
estimate in this setting.

In the context of quantum estimation, this may seem quite strange because we do
not perform any measurement. However, it is not unnatural to consider estimation with
no observation. For example, in classical information theory, we infer the outcome of an
information source with no observation. For a given parametric model of source code
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distribution {pθ(x) : θ ∈ Θ}, this kind of estimation corresponds to constructing a minimax
code [23].

Apart from actual application, quantum estimation with no observation also makes
sense theoretically. In a quantum computer, a quantum bit will be processed under a certain
quantum gate with an unknown parameter, say, θ, during the computing process. When θ
is uncontrollable with a range [−2ε, ε], it might be necessary to estimate the quantum bit.
Since there is no reason to estimate θ ' 0.5ε, we need a certain formulation to estimate the
quantum bit.

We should also mention why we adopt dF as the distance among several candidates
as the closeness measure in our definition. There are two reasons. One is the operational
meaning of the quantum detection game, which is explained in Section 5. The other is due
to the following property:

Lemma 1. Let a modelM = {ψθ} be given. Let f be a continuous nondecreasing function on
[0, 1]. When we adopt the distance d(ϕ, ψ) = f ◦ dF(ϕ, ψ), then the representative quantum state
remains the same.

Proof. It is enough to show that for every ϕ,

f

{
sup

θ

dF(ϕ, ψθ)

}
= sup

θ

f ◦ dF(ϕ, ψθ) (6)

holds.
If Equation (6) holds true, then we show the statement in the following way.

For every ϕ, from the definition of ϕrep, supθ dF(ϕ, ψθ) ≥ supθ dF(ϕrep, ψθ) holds. Since f is
an increasing function, applying f to both sides and using Equation (6) yields
supθ f ◦ dF(ϕ, ψθ) ≥ supθ f ◦ dF(ϕrep, ψθ), which implies that ϕrep is a representative quan-
tum state with respect to the distance f ◦ dF.

Now let us show Equation (6). Let ϕ be fixed and set α = supθ dF(ϕ, ψθ). For every
ε > 0, due to the continuity of f , there exists δ > 0 such that |α− x| ≤ δ⇒ f (α) ≤ f (x) + ε.
We take θ∗ such that α ≤ dF(ϕ, ψθ∗) + δ. Then

f (α) ≤ f (dF(ϕ, ψθ∗)) + ε

≤ sup
θ

f ◦ dF(ϕ, ψθ) + ε

Since ε is arbitrary, we obtain f (α) ≤ supθ f ◦ dF(ϕ, ψθ).
Next, observe that f (α) ≥ f ◦ dF(ϕ, ψθ) for every θ since α ≥ dF(ϕ, ψθ). Taking the

supremum of RHS with respect to θ, we obtain the converse inequality. Thus, Equation (6)
is shown, and the proof is complete.

In Section 5, we shall define the information quantity obtained when we know ϕ ∈ M,
which is denoted by J(M). When we find ϕrep, it is shown to be easy to calculate J(M).

Now let us consider the representative quantum state of a two-state model geomet-
rically. Recall that each pure state in a two-dimensional Hilbert space is written in the
form (4). If we switch to the Bloch representation, we obtain one-to-one correspondence
between (α, δ) ↔ (x, y, z) = (sin 2α cos δ, sin 2α sin δ, cos 2α) on the unit sphere (Bloch
sphere). When one pure state is set to |0〉 (P), the distance between the pure state and
another pure state specified with (α, δ) (Q) is 2α along the shortest path on the Bloch sphere.
The shortest path connecting two points P and Q on the Bloch sphere is the arc along
the large circle on the Bloch sphere. The arc is called a geodesic connecting P and Q and
the equidistant point M on the geodesic from both points is called the geodesic midpoint
between P and Q. The representative quantum state corresponds to the geodesic midpoint.
The concept of geodesics on the Bloch sphere is often useful and has been investigated in
several works [24–27].
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For every pair of independent quantum states ψ1 and ψ2, let us consider a two-
dimensional subspace spanC{ψ1, ψ2}. Then each state in the subspace is regarded as a
point on the Bloch sphere. By using the Formula (2), we summarize the above statements.

Lemma 2. Let a model M be given. Then, for every pair of quantum states ψ1 and ψ2 with
‖ψ1‖ = ‖ψ2‖ = 1, the geodesic midpoint ϕM is given by

|ϕM〉 =
|ψ1〉+ e−iδ|ψ2〉√

2(1 + |γ|)
, γ = 〈ψ1|ψ2〉, δ = arg γ (7)

where δ satisfies γ = |γ|eiδ and then arc length α between ϕM and ψ1 is given by α = arccos|〈ψ1|ψ2〉|
and arc length between ψ1 and ψ2 is 2α.

Understanding the geometry of the unit sphere is very helpful to find the representa-
tive quantum state, which is discussed in Section 4.

3.4. Example of a Representative Quantum State:M3

As a slightly nontrivial example, let us focus onM3 and find a representative quantum

state. First, we focus on the submodel N3 = {|0〉, |0〉+
√

2|1〉√
3
}. Then its representative quan-

tum state, ϕrep(N3) is the geodesic midpoint of |0〉 and |0〉+
√

2|1〉√
3

. Using the Formula (7),

|ϕrep(N3)〉 =
(
√

3 + 1)|0〉+
√

2|1〉

2
√
(
√

3 + 1)
(8)

is obtained.
Next, we use the following lemma.

Lemma 3. Let a modelM and its submodelN ⊂M be given. If the representative quantum state
ϕrep of N satisfies

sup
ψ∈N

dF(ϕrep, ψ) = sup
ψ∈M

dF(ϕrep, ψ),

then ϕrep is also the representative quantum state ofM.

Proof. Let ϕ be an arbitrary quantum state. Since N ⊂M,

sup
ψ∈M

dF(ϕ, ψ) ≥ sup
ψ∈N

dF(ϕ, ψ)

≥ sup
ψ∈N

dF(ϕrep, ψ)

= sup
ψ∈M

dF(ϕrep, ψ),

which implies that ϕrep is also the representative quantum state ofM.

It is easily seen that dF(ϕrep(N3), |+〉) < maxψ∈N3 dF(ϕrep(N3), ψ). Due to the above
Lemma 3, ϕrep(N3) (8) is also the representative quantum state ofM3.

4. Facility Location Problem

Mathematically, finding the representative quantum state of a given model is equiv-
alent to finding the minimax facility location for a given demand point in operations
research [18].
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4.1. Facility Location Problem on the Sphere

Decades ago, Drezner and Wesolowsky [18] considered the facility location problem
on the sphere. We briefly summarize their formulation. Suppose that there are m demand
points with (positive) weights on the unit sphere and our objective is to locate a single
facility on the same sphere so as to minimize the weighted sum of distances from the facility
to the demand points. Let (ξi, φi) and (ξ, φ) denote the locations of the i-th demand point
and the facility, respectively, in spherical coordinate (0 ≤ ξ ≤ π, 0 ≤ φ < 2π). Weights for
demand points are denoted as πi. Without loss of generality, we may take ∑i πi = 1. We
obtain the following minimization problem.

min
ξ,φ

m

∑
i=1

πidi(ξ, φ),

where di(ξ, φ) is the distance between the facility (ξ, φ) and the i-th demand point (ξi, φi).
Drezner and Wesolowsky measured distances through the sphere for squared Eu-

clidean distances and they also used the shortest length of arc. Let us denote the shortest
length of arc between two points on a sphere with a unit radius by α. Then the squared
Euclidean distance is given by 4 sin2(α/2). Both distances are computed by the equation:

cos α = cos ξi cos ξ + sin ξi sin ξ cos(φi − φ).

The interpretation of the problem is as follows. The distance di(ξ, φ) is the transporta-
tion cost from a facility (ξ, φ) to the i-th demand point (ξi, φi). We regard the relative
frequency of each transport as the weight. When we already know the relative frequency,
we minimize the objective function ∑m

i=1 πidi(ξ, φ) with respect to (ξ, φ).
Focusing on the correspondence between a point (ξ, φ) on the unit sphere and a

complex unit vector

|ψ(ξ, φ)〉 =
(

cos ξ/2
eiφ sin ξ/2

)
, (9)

the problem is completely solved when we adopt the squared Euclidean distance. Let
us denote |ϕ〉 = |ψ(ξ, φ)〉 as the location of the facility instead of (ξ, φ). Straightforward
calculation yields di(ξ, φ) = 4{1− |〈ϕ|ψ(ξi, φi)〉|2} = 4dF(ϕ, ψ(ξi, φi)). Thus, the objective
function to be minimized is written as

m

∑
i=1

πidi(ξ, φ) = 4
m

∑
i=1

πi

{
1− |〈ϕ|ψ(ξi, φi)〉|2

}
= 4〈ϕ|

{
I −

(
m

∑
i=1

πi|ψ(ξi, φi)〉〈ψ(ξi, φi)|
)}
|ϕ〉

= 4(1− 〈ϕ|ρπ |ϕ〉),

where in the last line, we set ρπ = ∑m
i=1 πi|ψ(ξi, φi)〉〈ψ(ξi, φi)|. Note that ρπ is positive

semidefinite and of trace one, and it is regarded as the Bayes mixture (For the definition,
see Section 5.1). Then, the minimization problem minϕ ∑m

i=1 πidi(ξ, φ) reduces to finding
the maximum of 〈ϕ|ρπ |ϕ〉. This is given by the first eigenvector ϕ of ρπ . This result [28]
agrees with that derived by Drezner and Wesolowsky, who obtained the same result by
differentiation with respect to variables (ξ, φ) in the context of operations research.

However, what if we have no information on the relative frequency {πi} for each
demand point? One idea is to take the minimax point. Through the minimax theorem [20],
we obtain the associated weight π∗ = {π∗i } such that

min
ξ,φ

m

∑
i=1

π∗i di(ξ, φ) = min
ξ,φ

max
i=1,...,m

di(ξ, φ) (10)
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holds, where di(ξ, φ) is the squared Euclidean distance. (Strictly speaking, the above holds
under the condition that the convex hull of all demand points does not include the origin).
This π∗ is called the least favorable weight.

Now we go back to our problem. Let the Hilbert space be two-dimensional, where
each quantum state is specified by (ξ, φ) in (9). Let a discrete modelM = {|ψ(ξ1, φ1)〉, . . . ,
|ψ(ξm, φm)〉} be given. Each state corresponds to a demand point on the Bloch sphere. The
distance dF corresponds to the transportation cost measured by a constant multiplied by
the squared Euclidean distance. Then, finding the representative quantum state ϕrep of the
modelM is equivalent to finding the minimax facility location specified by ϕ on the Bloch
sphere with the distance dF.

According to this correspondence, we also know the following fact. When we know
the least favorable weight π∗ in the problem, we obtain the representative quantum state
as the first eigenvector of the Bayes mixture ρπ with respect to π∗ [20].

Following the interpretation of the facility location problem on the sphere, we find
the representative quantum state of each model in Section 2.1. Since sin2(α/2) is a
strictly increasing function of α, both minimax points for the two distance measures agree
due to Lemma 1.

4.1.1. Example 1:M2

Pure states |+〉 and |0〉 correspond to the demand points specified by (ξ, φ) = (π/2, 0)
and (ξ, φ) = (0, 0) (North pole) on the Bloch sphere, respectively. Then, the minimax
location on the Bloch sphere is specified by (ξM, φM) = (π/4, 0). Thus, ϕrep ofM2 is given
by |ϕrep〉 = (cos π/8, sin π/8)>. Figure 1 shows the demand points and the minimax
location of the facility on the Bloch sphere.

Figure 1. Configuration of demand points inM2 and the minimax facility location on the Bloch
sphere: The red solid points denote demand points and the green solid point denotes the minimax
facility location (the representative quantum state), which is the geodesic midpoint.

4.1.2. Example 2:M3

First, the quantum state |0〉+
√

2|1〉√
3

corresponds to the demand point specified by (ξ∗, 0),

where cos ξ∗/2 = 1/
√

3, sin ξ∗/2 =
√

2/3. We follow Algorithm Step (1) described in the
next subsection. Then, the most distant pair is (ξ, φ) = (0, 0) (North pole) and (ξ∗, 0). The
other point specified by (ξ, φ) = (π/2, 0) is closer to the center specified by (ξ∗/2, 0) than
that pair of points. Thus, the minimax location on the Bloch sphere is specified by (ξ∗/2, 0)
and ϕrep ofM3 is given by |ϕrep〉 = (cos ξ∗/4, sin ξ∗/4)>. Figure 2 shows the demand
points and minimax location of the facility on the Bloch sphere.
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Figure 2. Configuration of demand points inM3 and the minimax facility location on the Bloch
sphere: The red solid points denote demand points and the green solid point denotes the minimax
facility location (the representative quantum state), which is the geodesic midpoint between the most
distant pair of demand points.

4.1.3. Example 3:M4

ForM4, we follow Algorithm Step (1) and Step (2) described in the next subsection.
After tedious calculation, we find the minimax location, which is specified by (ξ∗/2, π/4)
(ξ∗ is defined as above) and ϕrep of M4 is given by |ϕrep〉 = (cos ξ∗/2, ei π

4 sin ξ∗/2)>.
Figure 3 shows the demand points and the minimax location of the facility on the Bloch sphere.

Figure 3. Configuration of demand points inM4 and the minimax facility location on the Bloch
sphere: The red solid points denote demand points, and the green solid point denotes the minimax
facility location (the representative quantum state), which is the center of the circumscribed circle of
the triangle whose edges are the demand points (See Algorithm Step (2)).

It may be thought that using the squared Euclidean distance rather than the arc length
is unnatural. However, as shown in Lemma 1, The minimax location obtained under the
squared Euclidean distance agrees with that obtained under the arc length due to the
strict monotonicity of α 7→ 4 sin2(α/2) (See the beginning of Section 4.1 for the squared
Euclidean distance). In this sense, the representative quantum state of a model is invariant. On
the contrary, the least favorable weight for the facility location problem depends on the
measure of distance on the sphere; thus, it is not invariant.

4.2. Algorithm to Find Nonrandomized Minimax Location

In operations research, there are several studies on the facility location problem on
the unit sphere, where some algorithms to find the minimax facility location are also
proposed. Inspired by these studies, we propose a naïve algorithm to find the nonrandom-
ized minimax facility location. Specifically, we consider the facility location problem on a
three-dimensional hypersphere in a four-dimensional real Euclidean space. This is easily
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generalized to a general dimension. Basically, a pure state model in a d-dimensional Hilbert
space is regarded as a subset of a complex projective space CPd−1. A complex projective
space CPd−1 is a typical example of a complex manifold but is actually a 2d− 2-dimensional
real manifold. This fact is sufficient to understand the following argument. (For complex
projective space, e.g., see Section 4 in Bengtsson and Życzkowki [29]).

We exclude the possibility of a randomized strategy, although it is sometimes better
than any nonrandomized strategy, at least theoretically. (For example, see Section 1.5 in
Ferguson [30]). For example, let us consider six demand points, (ξ, φ) = (π/2± ε, 0),
(π/2± ε, 2π/3), (π/2± ε, 4π/3) on the unit sphere, where ε is a small positive constant.
Then, a randomized facility location strategy, north pole with probability 1/2 and south
pole with probability 1/2, yields the average transportation cost measured by the arc
length, 1/2(π/2 + ε) + 1/2(π/2− ε) = π/2 for each demand point. Thus, it achieves
the minimax location. On the other hand, any nonrandomized strategy yields a higher
transportation cost (>π/2) in the worst case. The algorithm presented below fails in this
example. When dim H = 2, all demand points are not covered in a hemisphere if and only
if there exists a randomized strategy that is better than any nonrandomized strategy. No
simple mathematical condition can assure that nonrandomized minimax is not worse than
any randomized strategy when dim H > 2. Thus, we implicitly assume this fact and the
existence of a nonrandomized minimax strategy in the Algorithm 1.

Algorithm 1: Find Minimax Facility Location

(1) Find the most distant pair: Let two distinct demand points A and B be arbitrary.
Then, from Formula (7), find the geodesic midpoint P. Then calculate the arc length
AP (= BP). Find the maximum arc length R2 and its center P2,∗. If every arc length
between P2,∗ and a demand point is not more than R2, then P2,∗ is the minimax
location and STOP. If not, then go to Step (2).

(2) Find the most distant triplet: Let A, B, and C be three arbitrary demand points. Find
the center P of the circumscribed circle of the triangle4ABC on the hypersphere.
Then calculate the arc length AP (= BP = CP). Find the maximum arc length R3 (>R2)
and its center P3,∗. If every arc length between P3,∗ and a demand point is not more
than R3, then P3,∗ is the minimax location and STOP. If not, then go to Step (3).

(3) Find the most distant quadruplet: Let A, B, C, and D be four arbitrary demand points.
Find the center P of the circumscribed sphere of the tetrahedron ABCD on the
hypersphere. Then, calculate the arc length AP (= BP = CP = DP). Find the maximum
arc length R4 (>R3) and its center P4,∗. P4,∗ is the minimax location and STOP.

Due to monotonicity, we may evaluate the squared Euclidean distance or inner product
instead of the arc length between two demand points.

When we generalize the algorithm suitably to CPd−1 (as a 2d− 2-dimensional real
manifold), we obtain the algorithm to find the representative quantum state of a model in a
d-dimensional Hilbert space. In the last subsection, we used the proposed algorithm to find
the representative quantum state in some examples. In Section 5, we also demonstrate how
to find the representative quantum state following the above algorithm in a specific case.

In the qubit system, the above argument is applied to the mixed states because the
Bloch ball is regarded as the hypersphere S3

+, a hemisphere of a 3-sphere, in a real four-
dimensional Euclidean space (e.g., see Section 9.5 in Bengtsson and Życzkowki [29]).

Though the algorithm itself is not our main concern, we briefly mention the efficiency
of the algorithm. The computational complexity of each Step (1), (2), and (3) is, respectively,
O(m2), O(m3), and O(m4), and clearly it is not efficient. The above problem is reduced to
finding the covering sphere for all demand points with the minimum radius (cf. Shiode [19]).
Based on this idea, it could be possible to obtain more efficient algorithms even for a
continuous model.

The facility location problem on the sphere and finding the representative quantum
state of a model (in a two-dimensional Hilbert space) are completely different. It is a
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bit surprising that the former problem, which comes from operations research, is helpful
for understanding the result in the latter, which comes from quantum physics. What a
top manager in a global business really cares about might be essentially the same as a
fundamental problem in quantum physics. How does this wonderful connection arise? A
mathematician might point out the underlying isomorphism between SU(2) and SO(3) [29].
However, this connection arises mainly from a game-theoretic approach. In other words,
the unexpected tie implies the universality and effectiveness of game-theoretic concepts,
which are different from information-theoretic concepts such as entropy. This is again
emphasized when we introduce the definition of model information in the next section.

5. Quantum Detection Game and Model Information

We have explained how to determine a representative quantum state of a given model.
Based on the state, in the present section, we define a new information quantity, model
information. Geometrically, this is the maximum radius from the representative quantum
state as the center.

The basic strategy to define an information quantity is to introduce a certain imaginary
two-person game where one player obtains points according to the information available.

For example, in classical information theory, we consider assigning the ideal code
length − log p(x) to each alphabet x when we know the code distribution p(x). Bob’ s
best score is given by his guessed distribution q(x) and obtains the score {− log q(x)} −
{− log p(x)} for each alphabet x. Taking the average with respect to p(x), we obtain the
Kullback–Leibler information [23], which is a very fundamental quantity in
information theory.

According to Tanaka [20], we consider a quantum detection game as an imaginary
two-person game.

5.1. Quantum Detection Game and Definition of Purely Quantum Information

As an example, we introduce a four-dimensional pure state model,MFP and set ε
between 1/4 < ε < 1. This consists of the following four-dimensional vectors:

MFP = {ϕ1, ϕ2, ϕ3, ϕ4} (11)

ϕ1 = e1 =


1
0
0
0

, ϕ2 =


√

ε√
1− ε
0
0

, ϕ3 =


√

ε
0√

1− ε
0

, ϕ4 =


√

ε
0
0√

1− ε

. (12)

While dimH = 4, it is enough to consider each vector in a real four-dimensional
vector space.

Let us explain the quantum detection game under the modelMFP. First, Alice picks
one pure state from the model (i.e., ϕ1, . . . , ϕ4) and then sends it to Bob. Bob knows only
the candidate pure state sets and the model, and prepares a two-outcome measurement in
the form {|ϕ〉〈ϕ|, I − |ϕ〉〈ϕ|}, where I is the identity operator and ϕ is the unit vector. We
call ϕ a detector or a detector state. Bob’s purpose is not to guess the number that Alice has
chosen but to obtain "detection" with a higher probability.

The detection rate for the chosen state |ϕj〉〈ϕj| is given by Tr{|ϕj〉〈ϕj||ϕ〉〈ϕ|} =

|〈ϕ|ϕj〉|2 when Alice sends ϕj to Bob and Bob prepares ϕ as a detector. (Tr denotes the
matrix trace and |a〉〈b| is regarded as a matrix). As a game, Alice aims at making Bob’s
detection rate smaller by choosing ϕ1, . . . , ϕ4 with a certain probability. In contrast, Bob
aims at making the detection rate larger by preparing his detector ϕ based on the knowledge
of the model. Later, we will evaluate the information of the modelMFP.

Now we go back to the general situation and explain the details. First, we seek the
minimum detection rate for Bob among all possible models. Suppose that Alice picks
among the whole pure states in a completely random way (i.e., with respect to the Haar
measure). This is the worst case for Bob. When Bob is allowed to adopt a randomized
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strategy, the detection rate is 1/d (d is the dimension of the Hilbert space). If the model
consists of the orthonormal basis, then again the detection rate is 1/d. It is the minimum
detection rate.

Next, suppose that Alice has a certain tendency for choosing the pure state, which
is also described by the modelM and Bob knows this for some reason. Although we do
not care about the origin of such models, there are various situations where they apply in
quantum science and technology. For example, in the bipartite system C2 ⊗C2 without
interaction, a pure state arises as a product state like |ϕ〉|ϕ′〉. Then an entangled state such
as α|00〉+ β|11〉 is not expected. In quantum computation, the output qubit state under
the unitary gate, which has some rotation error, would be ei(ε+π/2)Y|ϕ〉. Then, Bob could
obtain a detection rate larger than 1/d based on the information of the model. Following
this idea, we propose one information quantity for a model below.

A detailed explanation of the quantum detection game and useful results are described
in the author’s previous work [20]. Below, we only present some of the results in a formal
way, which is necessary to define the information quantity. Those definitions hold in an
infinite-dimensional Hilbert space.

First, we define the Bayes mixture in a slightly formal way. LetM = {ψθ : θ ∈ Θ}
be a model, (see Section 3) and π be a probability distribution on the parameter space Θ.
Then, the Bayes mixture ρπ is defined as

ρπ =
∫

Θ
|ψθ〉〈ψθ |π(dθ), (13)

In the context of Bayesian statistics [31–33], we call π a prior distribution or briefly a
prior. For a discrete model, the above integral is replaced with a finite sum ∑j πj|ψj〉〈ψj|.
Then, when Alice sends |ψj〉 to Bob with probability πj, it is equivalent to sending ρπ to
Bob in the quantum detection game.

Finally, we have come to our main theme: to define the information quantity of a
modelM.

Definition 2. LetM be a model in a d-dimensional Hilbert space. Then, we define the purely
quantum information (PQI) of a modelM as

J(M) = inf
π
‖ρπ‖∞ − 1/d.

For calibration, we subtract the lower bound 1/d, and thus J(M) ≥ 0. When Bob
knows that the quantum state Alice prepares is amongM, we interpret this as Bob obtaining
J(M). As shown in Section 5.3, the above infimum is related to the value of the quantum
detection game (possible maximum score) through the minimax theorem [20].

Let us rewrite J(M) in a slightly simpler form. For a discrete model, there exists
a prior distribution that achieves the infimum of ‖ρπ‖∞. Then, we call the prior a least
favorable prior (LFP). LFP is one of the technical terms in statistical decision theory or game
theory (see, e.g., Section 1.7, p. 39 in Ferguson [30]). Using the least favorable prior πLF,
PQI is defined by

J(M) = ‖ρπLF‖∞ − 1/d. (14)

Even if LFP is not uniquely determined, ‖ρπLF‖∞ remains the same [20]. As some read-
ers may recognize, the LFP completely agrees with the least favorable weight
in Section 4.

5.2. Basic Properties of PQI

From the form (14), we obtain some properties of PQI easily. First, by definition, J(M)
is independent of a basis. In other words, bothM = {ψj} andM′ = {Uψj}, where U is a
unitary operator, yield the same PQI. Second, clearly the following holds.
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Lemma 4. Let M be a model in a d-dimensional Hilbert space. The following conditions
are equivalent.

(i) J(M) = 0.
(ii) ρπLF = 1

d I for every LFP.

When J(M) = 0, Alice can send the completely mixed state effectively and then Bob
obtains no information from the model M to achieve a higher detection rate than 1/d.
Geometrically speaking, such a model fully spreads with no specific direction.

In contrast, when J(M) > 0, a certain bias exists and it prevents Alice from preparing
the completely mixed state. Thus, Bob benefits after knowing the model. IfM satisfies
the full-rank condition, then there exists a prior π such that the Bayes mixture ρπ > 0
(A > 0 denotes the positive definiteness of a Hermitian matrix A). IfM does not satisfy
the full-rank condition, we have a d′-dimensional subspace whereM (restricted to the
subspace) satisfies the full-rank condition. Since infπ‖ρπ‖∞ ≥ 1/d′ > 1/d, we have the
lower bound of PQI, J(M) ≥ 1/d′ − 1/d.

We mention the relation between PQI and the von Neumann entropy S(ρ). (Recall
that the von Neumann entropy is defined by S(ρ) = −Trρ log ρ). It is easily shown that
J(M) = 0 if and only if S(ρπLF ) = log d. The worst case for Bob also corresponds to the
maximum entropy state. As we shall see in Section 6, our formulation is instead related to
the minimum entropy.

Next, we consider how to calculate the PQI of a given model. If the model has a certain
symmetry, then we obtain the LFP analytically and directly calculate ‖ρπLF‖∞. On the
other hand, due to the minimax theorem in the author’s previous work [20], the infimum
of the operator norm of a Bayes mixture, infπ‖ρπ‖∞ is easily calculated by finding the
representative quantum state of the model, which is defined in Section 3. Thus, we are
able to calculate the PQI of a given model by finding the minimax point (the representative
quantum state of the model), and to do so, we utilize the algorithm shown in Section 4 in
order to find the minimax point in the facility location problem on the unit sphere. We
present the above procedure explicitly in Section 5.4 in detail.

The mathematical structure is quite similar to the calculation of channel capacity
in classical information theory [34,35]. However, we emphasize that even in a formal
analogue, we do not introduce any entropic quantity or any concept from information
theory to define the above PQI. What we have used is an imaginary two-person game called
the quantum detection game and some basic rules in quantum physics. Taking into account
many works in quantum information theory [36], it is a bit surprising to develop purely
quantum information without referring to any classical concepts in information theory [37–40].

We also note that PQI is completely different from other kind of information quantity
such as the Fisher information [7,8]. For a parametric model of quantum states, ρ(θ),
differentiable with respect to the parameter θ, Fisher information evaluates the change of
quantum states, ρ(θ + ∆θ)− ρ(θ). It is related to the distinguishability between two close
quantum states ρ(θ) and ρ(θ + ∆θ) from observation after performing some measurements.
Let us take a specific example to see the difference. Suppose that we have a continuous
one-parameter modelMrot = {|ϕ(s)〉 = (cos s)|0〉+ (sin s)|1〉 : 0 ≤ s ≤ π/4}. Although
quantum Fisher information has been defined in various ways as an extension of classical
Fisher information, it is not defined for a discrete model such asM2 = {|0〉, |+〉}. Indeed,
for M2, we only consider distinguishing between two possible states (quantum state
discrimination), while forMrot, we have to consider parameter estimation (quantum state
estimation), and the estimation error is bounded by SLD Fisher information [4–6]. However,
PQI yields the same value for bothM2 andMrot.
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5.3. Basic Formula for PQI Calculation

We provide several examples to show how we calculate the PQI of a model below. We
give the following formula, which connects the representative quantum state and PQI. The
formula is obtained by the minimax theorem (10).

1− ‖ρπLF‖∞ = min
ϕ

max
ψ∈M

dF(ϕ, ψ)

= max
ψ∈M

dF(ϕrep, ψ). (15)

Or equivalently, we have the formula

‖ρπLF‖∞ = max
ψ∈M

∣∣〈ϕrep|ψ〉
∣∣2. (16)

Using the above formula and result in Section 4, we obtain the PQI of M2, M3,
andM4 (For the definition, see Section 2.1).

First, we consider the PQI ofM2. We already know the representative quantum state
ofM2 from Section 4. Thus, using the Formula (16), we obtain ‖ρπLF‖∞ =

∣∣〈ϕrep|0〉
∣∣2 =

2+
√

2
4 and J(M2) =

√
2

4 . In the same way, for M3, using the Formula (16), we obtain

‖ρπLF‖∞ = 3+
√

3
6 , J(M3) =

√
3

6 . Straightforward calculation also yields J(M4) =
√

3
6 ,

which coincidently is equal to J(M3).

5.4. Example of PQI Calculation:MFP

Next, as a more nontrivial example, we calculate the PQI of the modelMFP introduced
in Section 5.1. First, following the algorithm in Section 4, let us find the minimax point (the
representative quantum state of the modelMFP).

In Step (1), we find the most distant pair. We mainly focus on the inner product
between two vectors instead of the geodesic distance between them. Then, the most
distant pair corresponds to those for which the inner product is the closest to zero. Since
|〈ϕ1|ϕj〉|2 = ε, |〈ϕj|ϕk〉|2 = ε2, (j, k = 2, 3, 4), and 0 < ε2 < ε < 1, the most distant pair is
{ϕ2, ϕ3}, {ϕ2, ϕ4}, and {ϕ3, ϕ4}.

Using the Formula (7) in Lemma 2, we obtain the geodesic midpoint between ϕ2 and
ϕ3, which is denoted by M1 and ϕM1 = 1√

2(1+ε)
(2
√

ε,
√

1− ε,
√

1− ε, 0)>. Comparing the

inner products, it is easily seen that ϕ1 is located at a point more distant from ϕM1 than ϕ2
and ϕ3. Thus, we go to Step (2) in the algorithm. Note that in the modelMFP, all inner
products are real and positive.

In Step (2), we find the most distant triplet. In our model, it is enough to consider the
circumscribed hypercircle in a real four-dimensional Euclidean space. Due to the symmetry,
we only check two triangles, ∆234 and ∆123 whose vertices are {ϕ2, ϕ3, ϕ4} and {ϕ1, ϕ2, ϕ3},
respectively.

First, let Q be the center of the circumscribed hypercircle of the triangle ∆234. (Each
edge is a geodesic on the sphere). Generally, the point Q is not uniquely determined.
However, by imposing the condition that Q is on the three-dimensional real subspace
L234 = spanR{ϕ2, ϕ3, ϕ4}, the point Q is uniquely determined as the point achieving
the minimum distance from each vertex (radius of the circumscribed hypercircle). The
condition is equivalent to an orthogonality condition, i.e., ψ ∈ L234 ⇐⇒ 〈ψ|ϕL〉 = 0, where
|ϕL〉 = (

√
1− ε,−

√
ε,−
√

ε,−
√

ε)>.
Now let ϕQ = (x, y, z, w)>, x, y, z, w > 0 be a vector corresponding to Q. Then it satis-

fies 〈ϕQ|ϕ2〉 = 〈ϕQ|ϕ3〉 = 〈ϕQ|ϕ4〉, 〈ϕQ|ϕL〉 = 0, and
∥∥ϕQ

∥∥2
2 = 1, where ‖·‖2 denotes the

Euclid norm. We obtain the solution ϕQ =
1√

3(2ε + 1)

(
3
√

ε,
√

1− ε,
√

1− ε,
√

1− ε
)>

.
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Next, we investigate the other circumscribed hypercircle of the triangle ∆123. In a
similar way, we define the point R for ∆123. Then, the state vector corresponding to R is

given by ϕR =

(√
1 +
√

ε

3−
√

ε
,

√
1−
√

ε

3−
√

ε
,

√
1−
√

ε

3−
√

ε
, 0

)>
.

Let each radius of the circumscribed hypercircle be r123 and r234. Then
r2

123 = dF(ϕR, ϕ1) =
2(1−

√
ε)

3−
√

ε
, and r2

234 = dF(ϕQ, ϕ2) =
2(1−ε)

3 . Thus, r2
234 > r2

123, the most
distant triplet is {ϕ2, ϕ3, ϕ4}.

Finally, we check whether the circumscribed hypercircle with center ϕQ and radius
r234 includes the other point ϕ1. (If not, we go to Step (3) in the algorithm) Since we assume

that (1 >)ε > 1/4, 〈ϕ1|ϕQ〉 =
√

3ε
1+2ε > 〈ϕ2|ϕQ〉 = 〈ϕ3|ϕQ〉 = 〈ϕ4|ϕQ〉 =

√
1+2ε

3 holds,
this implies that ϕ1 is closer to the point ϕQ than the other three points. Thus, the Algorithm
stops and ϕQ is the minimax location.

Using ϕQ, we obtain

VL := sup
ψ,‖ψ‖2=1

inf
1≤j≤4

|〈ϕj|ψ〉|2

=
1 + 2ε

3
.

Due to Equation (16), VL agrees with the infimum of the detection rate ‖ρπLF‖∞, and
we obtain PQI J(MFP) =

1+8ε
12 .

5.5. PQI Calculation from LFP

Now let us find the LFP in this model. Since the modelMFP has a certain symmetry,
we obtain it directly.

First, let the support of π be {ϕ2, ϕ3, ϕ4}, that is, π2 + π3 + π4 = 1 and π1 = 0,
πj > 0, j = 2, 3, 4. Then we obtain one of the LFPs, which is given by the uniform
distribution, π2 = π3 = π4 = 1/3. To see this, we use the following two facts. First,
for every permutation σ (e.g., σ(2) = 4, σ(3) = 3, σ(4) = 2),∥∥∥∥∥ 4

∑
j=2

πσ(j)|ϕj〉〈ϕj|
∥∥∥∥∥

∞

=

∥∥∥∥∥ 4

∑
j=2

πj|ϕj〉〈ϕj|
∥∥∥∥∥

∞

holds. (To see this, construct the unitary operator Uσ, which is the group homomorphism
σ 7→ Uσ). Second, the average for every permutation is given by

1
3! ∑

σ∈S234

∑
j

πσ(j)|ϕj〉〈ϕj| =
1
3 ∑

j
|ϕj〉〈ϕj|,

where S234 is the permutation group acting on the set {2, 3, 4}. Thus, for every π,∥∥∥∥∥1
3 ∑

j
|ϕj〉〈ϕj|

∥∥∥∥∥
∞

=

∥∥∥∥∥ 1
3! ∑

σ∈S234

∑
j

πσ(j)|ϕj〉〈ϕj|
∥∥∥∥∥

∞

≤ 1
3! ∑

σ∈S234

∥∥∥∥∥∑j
πσ(j)|ϕj〉〈ϕj|

∥∥∥∥∥
∞

=

∥∥∥∥∥∑j
πj|ϕj〉〈ϕj|

∥∥∥∥∥
∞

holds. Thus, the uniform distribution is the LFP when π1 = 0.
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Then, we relax the condition π1 = 0. We set the uniformly mixed state as

ρπ∗ =
1
3
|ϕ2〉〈ϕ2|+

1
3
|ϕ3〉〈ϕ3|+

1
3
|ϕ4〉〈ϕ4|. (17)

Then, the operator norm is given by

‖ρπ∗‖∞ =
1 + 2ε

3
. (18)

From direct but very tedious calculation, we can see that the above achieves the
infimum even if we permit π1 > 0. Setting ρπ := ∑4

j=1 πj|ϕj〉〈ϕj|, we obtain

inf
π
‖ρπ‖∞ = inf

0≤p≤1
‖ pρπ∗ + (1− p)|ϕ1〉〈ϕ1| ‖∞

=
1 + 2ε

3
.

Therefore, we obtain the LFP as

π∗,1 = 0, π∗,2 = π∗,3 = π∗,4 = 1/3. (19)

Even when we do not find the representative quantum state directly, we can construct
it from the LFP in the following way. Since the Bayes mixture with respect to LFP is given by
Equation (17), we find the first eigenvector ψπ∗ with the maximum eigenvalue ρπ∗ (no de-

generacy), which is given by ψπ∗ =

(√
3ε

2ε + 1
,

√
1− ε

3(2ε + 1)
,

√
1− ε

3(2ε + 1)
,

√
1− ε

3(2ε + 1)

)>
.

Actually, this agrees with the representative quantum state, ϕQ, in Section 5.4.
Through the minimax theorem [20], we can also directly show that the norm (18)

achieves the minimum. To see this, we introduce the following inequality:

VU := inf
π

sup
ψ,‖ψ‖2=1

4

∑
j=1

πj|〈ϕj|ψ〉|2

= inf
π
‖ρπ‖∞

≤ 1 + 2ε

3
.

Since VU ≥ VL (for details, see the author’s previous work [20]), we obtain
1+2ε

3 ≥ VU ≥ VL = 1+2ε
3 , which implies VU = VL. Thus, one LFP is given by (19).

The above argument does not exclude another possibility for the LFP with π1 > 0.

5.6. Difference from Maximization of von Neumann Entropy

In our formulation, PQI has no direct relation to any entropic concept. Since some
readers may expect a certain relationship, let us see what happens if we formally adopt the
von Neumann entropy to obtain the LFP in the last example. We consider the maximization
of S(ρπ) over the prior π. The concavity of S(ρ) yields

max
π

S(ρπ) = max
0≤λ≤1

S(λ|ϕ1〉〈ϕ1|+ (1− λ)ρπ∗)

≥ max
0≤λ≤1

{λS(|ϕ1〉〈ϕ1|) + (1− λ)S(ρπ∗)}

= S(ρπ∗),

where π∗ denotes LFP (19). For some ε, we numerically find a positive λ∗ achieving the
maximum of S

(
λ|ϕ1〉〈ϕ1|+ (1− λ)ρπ∗

)
. Thus, a positive weight for |ϕ1〉〈ϕ1| could appear

under the maximization, which is clearly different from our result.
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While the LFP π∗, which is obtained by minimization of ‖ρπ‖∞, yields the minimax
solution in the quantum detection game, the maximizer, say, πent, is meaningless, at least
in this example. Indeed, ‖ρπent‖∞ > ‖ρπ∗‖∞, which implies that ρπent is more informative
than ρπ∗ , and the prior πent is not the least favorable to Bob anymore.

We have carefully treated the information or uncertainty of a nonorthogonal pure state
model and excluded classical fluctuation. As a consequence, the remaining uncertainty
is not evaluated by the usual entropy anymore. For a nonorthogonal pure state model,
the von Neumann entropy as a measure of information lacks theoretical justification. At
least in the quantum detection game, the method based on the von Neumann entropy is a
mere formal extension. It makes sense only for a model that consists of orthogonal pure
states (see Section 2).

However, there are many variants of entropy [37–41] both in classical and quantum
information theory. We discuss a certain relationship between our information quantity
and the minimum entropy in the next section.

6. Discussion: Relation to Entropy

In the previous section, we introduced an information quantity for a pure state model
called PQI. Under the full-rank condition, any classical model consists of an orthonormal
basis. Then PQI of the model necessarily vanishes.

We emphasize that PQI is literally something purely quantum since we have not for-
mally extended something in classical information theory. It is the information quantity
completely independent of the concept of entropy, which does make sense in classical
information theory. Thus, a natural question arises, i.e., what kind of relationship do the
entropy and PQI have? Actually, PQI is related to the minimum entropy instead of the von
Neumann entropy, as we will discuss below.

6.1. Jaynes Principle and Distinguishability

First, we briefly review the concept of entropy and the Jaynes principle [42,43].
Suppose that we are given the set of the alphabet. Then our lack of knowledge on

the set is evaluated by Shannon entropy through a probability distribution {pi} satisfying
p1 + · · ·+ pd = 1, pi ≥ 0, i = 1, . . . , d. (Recall that classical Shannon entropy is defined as
Scl(p) = ∑i −pi log pi). The larger the entropy becomes, the larger the uncertainty we have.

We have minimum information as interpreted as the maximum entropy state, that is,
pi = 1/d and thus

max
p

Scl(p) = log d

holds. The central idea also provides the theoretical foundation for maximum entropy
methods in data processing [44,45].

The underlying concept is distinguishability. In classical information theory, distin-
guishability holds trivially. In quantum theory, it is represented by the orthogonality of
two quantum states. When pure states corresponding to alphabets, say, {1, 2, . . . , d}, are
orthogonal to each other, every result in classical information theory is extended in a
straightforward manner.

In statistical physics, a physical state of an ensemble is estimated through entropy
maximization when we have no knowledge of the system. This way of thinking is called
the Jaynes principle [42,43], and it is fundamental to statistical physics. For example, for a
given set of eigenstates of a Hamiltonian, say, |E0〉, |E1〉, . . . , with some conditions, we
obtain a canonical ensemble by using the principle.

In quantum physics, we are able to consider the maximization of the von Neumann
entropy of the density matrix ρπ = ∑j πj|ψj〉〈ψj| (Bayes mixture) for orthogonal vectors
{ψ1, . . . , ψd}. Since S(ρπ) = Scl(π), this maximization completely reduces to the classical
case. Then the maximizer is the completely mixed state, i.e., 1

d I, which corresponds to the
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uniform distribution. Formally, additional constraints also yield a quantum exponential
family [46], which is the quantum analogue of the classical exponential family [47,48].

However, we have no solid criterion such as the Jaynes principle for a nonorthogonal
pure states model. For example, a qubit |0〉 processed under one unitary operation, which
is assumed to be among U1, U2, U3. (|ψj〉 = Uj|0〉, j = 1, 2, 3). In a sense, it is a simplified
rotation error model (e.g., Kueng et al. [2]). In our formulation, a modelMU = {ψ1, ψ2, ψ3}
is given. Suppose that we have no information or knowledge on which unitary gate
processed the qubit. Then, how do we describe the quantum bit?

Mathematically, it is possible to extend the maximum entropy criterion to the noncom-
mutative case. Then we consider the maximization,

sup
π

S(ρπ) (20)

over the prior π. Is this kind of formal extension enough in quantum information theory?
There are many quantities such as Rényi’s entropy [37–41] in both classical and quantum
information theory. Is there another possibility to consider such quantities?

Every quantum state in the model MU is not orthogonal anymore; thus, they are
not distinguishable, which is completely different from the set of the alphabet. In spite
of this, do we seek some justification for the maximization of the entropy from classical
information theory?

In our formulation, the above formal argument breaks down. First, for the model
MU , we describe the system by the representative quantum state ϕrep(MU), which is
completely independent of the von Neumann entropy. Second, in the quantum detection
game between Alice and Bob, we see that the von Neumann entropy is useless in a specific
example (Section 5.6). Rather, we consider the least favorable case or the minimization of
the detection rate, infπ‖ρπ‖∞, which is contrastive to the maximization of entropy (20).

If we seek a purely quantum counterpart of the Jaynes principle, then minimization of
‖ρπ‖∞ would be promising. Luckily, due to monotonicity, the minimization is equivalent to
the maximization of − log‖ρπ‖∞, where the function − log‖ρ‖∞ is known as the minimum
entropy of ρ. Some of its properties are similar to those of the von Neumann entropy and
others are not. In the next subsection, we review basic properties of the minimum entropy.

6.2. Properties of the Minimum Entropy

In the present subsection, we briefly review basic properties of the minimum entropy
and then give another definition for purely quantum information. The minimum entropy
of the density matrix ρ is defined by T(ρ) := − log‖ρ‖∞, which is a special case of quantum
Rényi entropy.

Quantum Rényi entropy has a real parameter α and is defined by

Sα(ρ) =
log Trρα

1− α

for fixed α (see, e.g., p. 117 in Ohya and Petz [41]). When α → ∞, we obtain the mini-
mum entropy.

The minimum entropy T(ρ) inherits some common properties of quantum Rényi
entropy. For example, additivity T(ρ⊗ σ) = T(ρ) + T(σ) holds. For every pure state, T
equals to zero.

However, the concavity does not necessarily hold. Concavity of entropy means that a
probability mixture of quantum states increases the uncertainty of the whole system.

This negative property is not due to noncommutativity. To see this, let us take two
commutative density matrices,

ρ =

(
1 0
0 0

)
, σ =

(
µ 0
0 1− µ

)
,
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where 1
2 ≤ µ < 1. Then, since

∥∥∥ ρ+σ
2

∥∥∥
∞
= 1+µ

2 ,

1
2

T(ρ) +
1
2

T(σ)− T
(

ρ + σ

2

)
= log

(
1 + µ

2
√

µ

)
> 0

Thus, convexity rather than concavity holds in the above example.
Since minimum entropy is based on the operator norm, we obtain a sufficient condition

for convexity easily.

Lemma 5. Let two density matrices ρ and σ exist where ‖ρ‖∞ 6= ‖σ‖∞. Suppose that

‖λρ + (1− λ)σ‖∞ = λ‖ρ‖∞ + (1− λ)‖σ‖∞

holds for every λ, 0 < λ < 1. Then

T(λρ + (1− λ)σ) < λT(ρ) + (1− λ)T(σ)

holds.

Proof. Since − log(x) is convex,

T(λρ + (1− λ)σ) = − log‖λρ + (1− λ)σ‖∞

= − log{λ‖ρ‖∞ + (1− λ)‖σ‖∞} ∵ Assump.

< λ(− log‖ρ‖∞) + (1− λ)(− log‖σ‖∞)

= λT(ρ) + (1− λ)T(σ)

holds.

To see the above lemma, when we introduce T(ρ) as a variant of entropy over the
whole density operators, its theoretical significance seems very weak.

However, when we consider PQI in a pure state model, the situation changes drasti-
cally. For the pure state family, concavity of the minimum entropy necessarily holds in the
following sense.

Lemma 6. Let a set of pure states be given, sayM. Then concavity holds, restricted to the model.

Proof. Choose a finite set of pure states fromM, say ρ1, . . . , ρk. Then

T

(
k

∑
j=1

λjρj

)
≥ 0 =

k

∑
j=1

λjT(ρj)

holds.

Other properties of minimum entropy are usually shown in the context of quantum
Rényi entropy (see, e.g., Hu and Ye [22] (Section III, p. 4), Dam and Hayden [21]).

Observing the above, we provide another possible definition of purely quantum
information through T(ρ). In the quantum detection game, finding the LFP is equivalent
to maximizing the minimum entropy T(ρπ) rather than the von Neumann entropy S(ρπ).
To consider the logarithm of the detection rate, we obtain another definition of purely
quantum information such as

J′(M) = log d− sup
π

T(ρπ) (≥ 0).

By definition, J′(M) vanishes if the model has orthogonal pure states with the full-
rank condition, where the classical case is included.
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From Lemmas 5 and 6, we must be careful to treat minimum entropy T(ρ) in the
definition of J′(M). At least, it should not be considered over the set of the whole density
matrices. As a consequence, a comparison of the two definitions, J(M) and J′(M), also
should be performed carefully and would require a deeper understanding of the model
information, which will be a topic for future research.

Finally, we make two comments. First, our definition of the model information yields
one operational meaning for the minimum entropy. It is apart from the usual extension of
entropic concepts in classical information theory. Rather, it comes from an imaginary design
of the quantum detector and facility location problem on the unit sphere in a complex
projective space. Second, we expect that the purely quantum version of the Jaynes principle
is established based on the minimum entropy. (For some related works on maximum
entropy methods, see the reference [49]). It might be possible to develop data processing
methods and some dynamics based on the new principle.

7. Infinite-Dimensional Hilbert Space

Thus far, we have considered the PQI of a model only in a finite-dimensional Hilbert
space. While our definition of PQI applies to infinite-dimensional Hilbert space, technical
difficulties seem to arise due to a parametric family of functions. In this section, we only
skim them in a specific example.

Let L2(R) denote the set of square integrable complex functions over R and g be a
known continuous function in L2(R) satisfying ‖g‖2

2 =
∫
|g(x)|2dx = 1. Let us consider

the quantum statistical modelM∞ = {g(x− θ) : θ ∈ R} describing a wavefunction with a
single parameter.

Parameter estimation of the shift parameter θ has been theoretically investigated [3].
If we replace the wavefunction g with a probability density function such as the Gaussian
density, the estimation problem for the shift parameter θ is called that for the location
parameter and is very common in classical statistics [50].

Before evaluating the PQI of the modelM∞, first let us formally consider quantum
state estimation with no observation. It is seen that the worst-case error equals one for
every estimation.

Lemma 7. Let gθ(x) = g(x− θ) and f ∈ L2(R) with ‖gθ‖2 = ‖ f ‖2 = 1. Then

inf
θ∈R
|〈gθ | f 〉| = 0, (21)

sup
θ∈R

{
1− |〈gθ | f 〉|2

}
= 1 (22)

holds.

For proof, see the Appendix A.1. The above lemma says that every quantum state in
L2(R) would be a minimax location on “CP∞”.

Since the parameter space Θ = R is noncompact, the minimax theorem [20] does not
hold generally. However, we directly show that the Formula (16) holds in this specific
example, that is,

inf
π
‖ρπ‖∞ = 0 = sup

f∈L2(R)

{
inf
θ∈R
|〈gθ | f 〉|2

}
.

The first equality holds due to the following lemma. Because of technical difficulties,
we give a proof in the Appendix A.2.

Lemma 8. Let gθ(x) = g(x− θ) with ‖gθ‖2 = 1 and ε be an arbitrary positive constant. Then
there exists a finite set {θ1, . . . , θn} and the uniform prior πn over the set such that
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‖ρπn‖∞ ≤
1
n
+ ε,

ρπn =
1
n

n

∑
j=1
|gθj〉〈gθj |.

Thus, a formal definition of PQI shows that J(M∞) = infπ‖ρπ‖∞ = 0. We can
interpret the result as follows. Even if Bob knows that the quantum state is in the model
M∞ or that the quantum system is described by a wavefunction g(x− θ), he obtains no
information, which gives Bob an advantage over Alice in the quantum detection game.

We do not obtain the conditions where PQI is positive with explicit examples. Even if
the Formula (16) holds under some conditions, calculation of PQI would become drastically
different. A detailed investigation is left for future study.

8. Concluding Remarks

We have defined one information quantity called purely quantum information (PQI)
not for a pure state itself, but for a parametric model of pure states. While PQI evaluates
the size of a pure state model, it necessarily vanishes in classical cases by definition. We
call the center of the model the representative quantum state, and PQI is determined by
the maximum length from the center to each quantum state in the model.

Finally, we give the answer to the problem presented in the beginning of the article.
Let ψθ = e−iθ2Ze−iθ1Y|0〉 and calculate PQI for two models:

M5 = {ψθ : 0 ≤ θ1 ≤ π/4, 0 ≤ θ2 ≤ π/4},
M6 = {ψθ : 0 ≤ θ1 ≤ 2π/5, θ2 = 0}

ModelM5 has the same amount of PQI asM4, J(M5) =
√

3/6 = 0.289. The PQI of the
modelM6 is J(M6) =

1
2 cos 2π

5 = 0.154, which is smaller than J(M5). This implies that
M6 spreads more thanM5, and we see that the PQI is independent of the dimension of
the parameter space.
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Appendix A. Proofs

Appendix A.1. Proof of Lemma 7

For ε > 0, we show that there exists M such that

|θ| ≥ M⇒ |〈 f |gθ〉| < 2
√

ε. (A1)

First, we take compact sets K and L satisfying
∫

K | f |
2dx > 1− ε and

∫
L |g|

2dx > 1− ε,
respectively. Second, there exists a positive constant M such that |θ| ≥ M ⇒ L + θ =
{x + θ : x ∈ L} and K are disjoint. Note that

∫
L+θ |gθ |2dx > 1− ε for every θ. Then, we

bound the absolute value of the inner product by two terms:

|〈 f |gθ〉| ≤
∣∣∣∣∫K

f̄ (x)gθ(x)dx
∣∣∣∣+ ∣∣∣∣∫∼K

f̄ (x)gθ(x)dx
∣∣∣∣,
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where∼K denotes the complement of K. Due to the Cauchy–Schwarz inequality, the second
term is bounded by ∣∣∣∣∫∼K

f̄ (x)gθ(x)dx
∣∣∣∣ ≤ √∫∼K

| f |2dx
√∫
∼K
|gθ |2dx

≤
√

ε‖g‖2

=
√

ε.

The first term requires more steps. Since K ⊂∼ (L + θ),∣∣∣∣∫K
f̄ (x)gθ(x)dx

∣∣∣∣ ≤ ∫K
| f̄ (x)gθ(x)|dx

≤
∫
∼(L+θ)

| f̄ (x)gθ(x)|dx

≤
√∫
∼(L+θ)

| f |2dx

√∫
∼(L+θ)

|gθ |2dx

≤ ‖ f ‖2
√

ε

=
√

ε.

Putting them together, we obtain (A1). Therefore |〈gθ | f 〉| → 0 as |θ| → 0 and we
obtain (21) and (22).

Appendix A.2. Proof of Lemma 8

First from (A1), |〈gθ |gθ′〉| = |〈g|gθ′−θ〉| → 0 when |θ − θ′| → 0. Thus, for ε > 0, there
exists M such that |θ − θ′| ≥ M⇒ |〈gθ |gθ′〉| < ε.

Using the above, we construct the sequence of a prior distribution with finite support
(i.e., discrete probability) and Bayes mixture. First, for fixed n, we take a parameter set
{θ1, . . . , θn} satisfying |θi − θj| ≥ M for i, j = 1, . . . , n.

Without loss of generality, we assume that gθ1 , . . . , gθn are linearly independent. Then,
set Gij = 〈gθi |gθj〉 (Gii = 1). It is easily shown that the gram matrix G = [Gij] is positive
definite. Then, we decompose G into the identity In and A = G − In, where diagonal
components of A are zero.

For a uniform weight over the parameter set {θ1, . . . , θn}, we define the Bayes mixture

ρn =
1
n

n

∑
j=1
|gθj〉〈gθj |.

Now we show that

‖ρn‖∞ =
1
n
‖G‖∞ =

1
n
+

1
n
‖A‖∞, (A2)

‖A‖∞ ≤ (n− 1)ε. (A3)

First, we expand an arbitrary normalized vector ψ as ψ = ∑j cj|gθj〉. Then 1 = 〈ψ|ψ〉 =
c†Gc, where c = (c1, . . . , cn)> is a column vector and c† denotes the conjugate transpose of
the vector c. Since G is positive definite, we take another parameter vector d as d =

√
Gc.

Note that there is one-to-one correspondence between ψ and d. Thus,
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〈ψ|ρn|ψ〉 =
1
n ∑

j
|〈ψ|gθj〉|

2

=
1
n
‖Gc‖2

2

=
1
n

d†Gd,

where ‖a‖2
2 = aa†.

This implies that

‖ρn‖∞ = sup
ψ:‖ψ‖2=1

〈ψ|ρn|ψ〉

=
1
n

sup
d:‖d‖2=1

d†G d

=
1
n
+

1
n

sup
d:‖d‖2=1

d† A d

=
1
n
+

1
n
‖A‖∞,

which shows Equation (A2).
Next, we show the inequality (A3). Due to Geršgorin’s Theorem (see, e.g., Section 6.1

in Horn and Johnson [51]), all eigenvalues of A are located in the union of n discs

n⋃
i=1

{
z ∈ C : |z| ≤ ∑

j 6=i
|Gij|

}
.

Thus, we easily show that the absolute value of each eigenvalue is bounded by
(n− 1)ε.

Finally, we obtain from (A2) and (A3), ‖ρn‖∞ ≤ 1
n + ε. For fixed ε > 0, we have

0 ≤ infπ‖ρπ‖∞ ≤ ε. Since ε is arbitrary, infπ‖ρπ‖∞ must be zero.
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