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Abstract: Belief propagation (BP) decoding for polar codes has been extensively studied because of
its inherent parallelism. However, its performance remains inferior to that of successive cancellation
list decoding (SCL) due to the structure of the decoding graph. To improve the block error rate
(BLER) performance, the BP correction (BPC) decoding, a post-processing scheme that corrects prior
knowledge of the identified code bit, improves convergence by executing additional iterations on the
failed BP decoder. Moreover, the BPC decoder demonstrates a better decoding performance than
the BP-based bit-flipping decoder. Nevertheless, the additional decoding attempts lead to increased
latency. In this article, a modified BPC decoder is proposed to reduce the number of decoding
attempts by redefining the correction rules. A new metric is designed to effectively identify the
corrected location. Numerical results show that the proposed modified BPC decoder achieves a
slight improvement in BLER compared with the original BPC, with a dramatic reduction in average
complexity. Furthermore, a higher-order version, named MBPC-Ω, is extended to further improve
the performance, where the Ω is the maximum correction order. Numerical results show that the
higher-order modified BPC achieves a similar BLER performance to existing multiple bit-flipping
BP decoders but has around half the latency overhead. In addition, the proposed MBPC-2 decoder
performs better than the cyclic redundancy check-aided SCL (CA-SCL) decoder with list size 4 and is
slightly worse than the CA-SCL with list size 8 in high signal-to-noise ratio (SNR) regions but with
significant decoding latency reduction.

Keywords: polar code; belief propagation decoding; post-processing; higher-order correction

1. Introduction

Polar code [1] is a mathematically proven capacity-achieving coding scheme and has
specific construction methods and linear encoding and decoding complexity, which have
been selected as the coding scheme in fifth-generation enhanced mobile broadband (eMBB)
control channels [2]. A successive cancellation list (SCL) decoder with a cyclic redundancy
check (CRC) (CA-SCL) [3,4] obtains comparable error performance with that of the state-
of-the-art LDPC code. However, it suffers from high latency due to its intrinsic serial
structure. Conversely, the belief propagation (BP) decoder [5,6] performs the decoding
process in a parallel manner, therefore garnering more and more attention as a low-latency
implementation method.

However, the original BP decoder has a worse block error rate (BLER) performance than
that of the SCL decoder. Therefore, several BP-based decoding algorithms have been proposed
to enhance BLER performance. By considering different representations obtained using
graph permutations, the multi-trellis scheme, first proposed in [7], was further improved
in [8–10] with different permuted patterns, resulting in better BLER performance, but its
throughput subsequently dropped. In [11], a BP list (BPL) decoder performed L independent
BP decoders on different permuted versions of the factor graph to yield a valid estimate.
Additionally, the selection strategy of L permuted factor graphs which have the least number
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of girths was designed in [12], resulting in better performance and lower average decoding
latency. Post-processing is another effective strategy to improve the BLER performance.
A random perturbation-based post-processing method was developed in [13] to address
different types of BP errors and to improve convergence. The noise-aided BPL decoder,
combined with random noise injection and list decoding, introduced in [14], has a much
better performance than the SCL and is a bit behind the CA-SCL decoder in terms of BLER
performance. Inspired by the SC bit-flipping decoder, the BP flipping (BPF) decoder, as a
post-processing method, was first proposed in [15] and was then improved in [16–18]. The
BPF decoder, performing bit-flipping on error-prone information bits, achieved a comparable
BLER performance with that of the SCL decoder with a small list size. The flipping set
which is constructed by a convolutional neural network-based imitation learning scheme
was presented in [19], such that useless flipping attempts are avoided. [20] proposed a
noised-aided BPL bit-flipping decoder which is superior to the CA-SCL decoder at the cost
of numbers of decoding iterations. In [21], a low-complexity two-level post-processing
algorithm was proposed to modify the false converged error efficiently in the BPL decoder.
In [22], the correction performed on code bits was studied. When the BP decoder failed, the
correction operation performed as an external perturbation used to improve the convergence,
named the BPC decoder. By correcting the unreliable code bits, i.e., assigning ±∞ to their
log-likelihood rate (LLR) and performing additional iterations, the decoder is expected to
converge correctly. For identical additional decoding attempts, the BPC decoder shows better
BLER performance than the BPF decoder. However, without benefiting from prior knowledge
about the identified code bit, assignments on both sides lead to excessive decoding attempts,
resulting in relatively high decoding latency overhead.

In this article, the BPC decoder is modified by redefining the correction set based on a
new metric and the correction operation based on the predefined threshold, abbreviated
as the MBPC decoder. Then, the proposed MBPC decoding is extended to a higher-order
scheme, named MBPC-Ω, where Ω code bits are corrected in one decoding attempt. The
simulation results show that the MBPC decoder shows a slight performance gain but
has less complexity and latency than the original BPC decoder. The higher-order MBPC
decoders are verified to considerably improve the BLER performance. For polar codes
of length N = 2048 with 24-bit CRC termination, when BLER = 10−3, the MBPC-2
decoder achieves around a 0.9 dB performance gain compared with the original BP decoder.
Compared with existing BP-based multiple flipping decoders, the MBPC-2 performs a
similar BLER but approximately half iterations. At BLER = 10−5, the MBPC-2 decoder
achieves a gain of 0.2 dB compared with the CA-SCL decoder with L = 4, at a latency
overhead saving of 95%. The contributions of this article are summarized as follows.

• Different from using the stopping tree to reduce the searching range in the original BPC
decoder, a new metric is proposed, which combines the reliability of code bits and the
size of the stopping tree to which it belongs, to construct the correction set effectively.

• We refine the correction operation in the original BPC decoder. Setting a threshold
V , an identified code bit is only corrected to its opposite side when its reliability is
lower than V . The decoding latency is reduced by avoiding invalid decoding attempts,
especially in low signal-to-noise ratio (SNR) regions. In addition, the refresh operation
is modified by re-initializing the massage to the initial state of the original BP rather
than the end state to remove the dispensable store procedures.

• The MBPC-Ω decoder is proposed to further improve the BLER performance, where
the decoder is executed on correction sets of increasing order. The correction set SΩ, in
which each element contains Ω code bits, is established nested based on the preorder
set SΩ−1 and the corresponding decoding result.

The remainder of this article is organized as follows. Section 2 provides brief state-
ments of the polar code, the BP decoder, and the BPC decoding algorithm. Section 3
analyzes the metric and provides the proposed MBPC decoding algorithm. The higher-
order MBPC decoder is presented. The simulation results are presented in Section 4. Finally,
Section 5 concludes the article.
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2. Preliminaries
2.1. Polar Codes

Polar codes are linear block codes based on the channel polarization phenomenon.
After channel combination and splitting, N channel copies are converted to N polarized
sub-channels, where the capacity of each sub-channel approaches 1 or 0 as N increases. The
polar codes select K reliable sub-channels to transmit information bits, and the remaining
sub-channels transmit frozen bits. The sets of information indices and frozen indices are
denoted by I and its complement IC, respectively. For shorthand, we use aj

i to denote the
vector (ai, ai+1, ..., aj). The codeword xN

1 can be mapped by the generator matrix GN :

xN
1 = uN

1 GN , (1)

where N = 2n, GN = RN F⊗n. The F⊗n is the n-th Kronecker power of F =

(
1 0
1 1

)
and

RN is a N × N bit-reversal permutation matrix. The source vector uN
1 ∈ {0, 1}N includes

both information and frozen blocks.

2.2. Belief Propagation Decoder

BP decoding for polar codes is an iterative decoding algorithm based on the (n + 1)-
stage factor-graph realization of GN . Two types of LLR messages are involved: right-
propagating Ri,j and left-propagating Li,j, where i denotes the stage and j denotes the row
index. The four nodes connecting two stages constitute the processing elements (PEs). The
architecture of a PE is shown in Figure 1. Thus, the iteration rule can be represented by
Equation (2):

i,j

i,j+N/2i

i+1,j

i+1,j+N/2i

i,j i+1,j

i,j+N/2i i+1,j+N/2i

i,j i+1,j

i,j+N/2i i+1,j+N/2i

Figure 1. The processing element (PE) in BP decoder.


Li,j = f (Li+1,j, Li+1,j+N/2i + Ri,j+N/2i )

Li,j+N/2i = f (Li+1,j, Ri,j) + Li+1,j+N/2i

Ri+1,j = f (Ri,j, Li+1,j+N/2i + Ri,j+N/2i )

Ri+1,j+N/2i = f (Li+1,j, Ri,j) + Ri,j+N/2i

, (2)

where the function f (x, y) = ln(1 + ex+y)/(ex + ey). The Ln+1,j messages at the rightmost
stage are obtained by the channel output LLR(yj). Additionally, the R1,j messages at the
leftmost stage are initialized by a priori known information from the information bits and
frozen bits, as shown in Equations (3) and (4).

Ln+1,j = LLR(yj), (3)

R1,j =

{
0, if j ∈ I

+∞, if j ∈ IC . (4)

Conventional flooding scheduling is applied [23]. The messages, starting from the
rightmost stage, are iteratively updated column by column from right to left and then from
left to right until a maximum iteration number Imax is reached or a predefined stopping
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condition is valid. The BP decoder outputs the estimated vector ûN
1 = (û1, û2, ..., ûN)

through ûj = sgn(L1,j + R1,j), where sgn(x) = 0 when x ≥ 0, and sgn(x) = 1 otherwise.

2.3. Belief Propagation Correction Decoder

The BPC decoder, proposed in [22], considers the perturbation on code bits located at
the rightmost stage of the factor graph, which are corrupted by channel noise. When a de-
coding failure occurs in the original BP decoder, the decoding attempts after correction are
performed to generate a valid estimate. Specifically, the correction operations assign both
+∞ and −∞ to the Ln+1,j of identified code bits in turn, and additional decoding attempts
are executed until the estimate fulfills the error detection and termination check (EDTC)
criterion. Each decoding attempt involves a one-bit correction. Compared with the flipping
on information bit, the simulation results show that the correction on code bit has a greater
impact on the decoding result. The correction set S is established based on the reliabilities
of the left-propagating message determined by the channel LLRs. The decoder selects T
indices with the lowest magnitude of Ln+1,j, i.e., S ← j ∈ {1, 2, ..., N} of T smallest |Ln+1,j|.
The stopping tree [22] is utilized to reduce the sorting range. The CRC is selected as the
EDTC. Let the symbol in bold denote the matrix for LLR messages. Algorithm 1 gives a
brief description of the BPC decoding.

Algorithm 1 The BPC decoding algorithm.

Input: LLR(yN
1 ), Imax, T, I .

1: Initialize L and R by Equations (3) and (4)
2: ûN

1 ← conventional BP decoding with CRC termination and Imax.
3: if CRC(ûN

1 ) = true then
4: return ûN

1 .
5: else
6: Store the messages of current state in vectors L′ and R′.
7: Obtain the correction set S = {j1, j2, ..., jT}.
8: for k = 1 to T do
9: Refresh the L and R by L′ and R′. And assign the ±∞ to Ln+1,jk in turn.

10: Perform additional BP iterations with CRC termination and get ûN
1 .

11: if CRC(ûN
1 ) = true then

12: return ûN
1 .

13: end if
14: end for
15: end if
Output: ûN

1 .

3. Design of Higher-Order Belief Propagation Correction Decoder

As the SNR increases, the decoding failure is gradually dominated by the graph
structure, and the scheme for selecting code bits based on the value of LLR alone is flawed.
This section first proposes a metric to effectively select the corrected code bit. Differently
from the reduction of the searching range in [22], the stopping tree is selected as a part of
the metric. Then, to solve the issue of additional latency caused by bilateral attempts, the
original BPC is modified by refining the correction operation with a threshold. Then, a
high-order modified BPC decoder is designed to further improve the BLER performance.

3.1. A Metric to Establish the Correction Set S
Inspired by the fact that the channel noise and graph structure dominate the errors in

BP decoding, we propose a new metric, which combines the reliability of the code bit and
the characteristic of the stopping tree where the code node is located. Specifically, eruption
by channel noise is the leading cause of decoding errors in low to medium SNR regions,
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while the graph structure dominates the decoding result in high SNR regions. Thus, the
metric combines the two factors to identify the valid corrected node.

A stopping set, defined as a subset of all variable nodes in the Tanner graph realization,
is one of the critical factors affecting the BP decoding result and causing error floor [24]. In
the stopping set, the adjacent check nodes of each variable node are connected to the set
at least twice. For polar codes, a stopping set can be shaped like a tree rooted at a single
information bit with leaves at code bits and includes at least one variable node from each
middle column of the graph. A stopping tree rooted with it can be easily found for each
information bit. An example of such a stopping tree is shown in Figure 2 with black nodes.
Conversely, for each code bit xj, we can find the stopping trees with that specific code bit
as a leaf node. Let ST(j) denote the number of stopping trees that the code bit xj belongs
to. According to [25], the chance of recovery for the code bit with small ST(j) is higher
than others by iterations. In other words, errors in the code bits with large ST(j) have more
impact on the decoding results. Therefore, we select the corrected code bit according to
ST(j) combined with the reliability L(j) of code bit.

u

3u

7u

2u

6u

4u

8u

5u

x1

x3

x4

x5

x6

x7

x8

x2

Figure 2. Normal realization of the encoding graph for N = 8. An example of the stopping tree
rooted at u7 is shown in the black nodes.

Denoting the reliability of j-th code bit as L(j) = Rn+1,j + Ln+1,j, a new metric M(j)
for code bit xj is defined in Equation (5), where α is used to select the unreliable code bit
and β is a penalty indicated by a stopping tree.

M(j) = α · |L(j)|+ β · (n + 1) · (1/ST(j)). (5)

By sorting the resulting metrics in ascending order, i.e., M(j1) ≤ M(j2) ≤ ... ≤ M(jN),
the nodes with the smallest metrics are selected to establish the set S , i.e.,
S = {j1, j2, ..., jT}, |S| = T. The values of α and β, related to the dimension and channel
noise, can be optimized by off-line Monte Carlo simulation.

3.2. The Modified BPC Decoder

In the BPC decoder, the correction operation assigns ±∞ to the selected code bits
separately and performs decoding attempts, bringing numerous latencies overhead. Since
the code bits contain prior information, the correction operation is reconsidered by the
parameter V , a threshold for the magnitude of L(j), which is set to identify the current
state of xj. When |L(j)| ≥ V , the code bit is considered reliable so that both positive and
negative assignments were executed. Otherwise, the node is corrected with its opposite
side based on the sign of L(j).

The modified BPC decoder based on the proposed metric and refined correction,
abbreviated as MBPC, is detailed in Algorithm 2. The function sign(x) marks the sign of
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x, sign(x) =

{
1 x ≥ 0
−1 x < 0

. As shown in Algorithm 2, the enhanced correction operation

in lines 9–14 avoids unnecessary attempts to reduce the complexity and latency overhead.
Additionally, in lines 10 and 14, a predefined finite value τ is set, rather than ∞, which can
mitigate the impact caused by a false assignment. Here, the value of τ is set to 8. Note that,
in Algorithm 1, the store operation in line 6 and refresh operation in line 9 ensure that the
correction is post-processed on the conventional BP and avoid error propagation caused by
previous false attempts. Based on the empirical fact that it converges quickly if the input is
valid in the BP decoder, we modify the refresh operation, where the L and R messages are
reset to the initial state before each attempt, as shown in Algorithm 2 line 8, resulting in
avoiding complexity and memory consumption. Moreover, the modified refresh operation
enables the post-processing scheme to operate in T independent factor graphs in parallel.

Algorithm 2 Modified BPC decoding algorithm.

Input: LLR(yN
1 ), Imax, I , T.

1: Initial L and R by Equations (3) and (4).
2: ûN

1 ← conventional BP decoding with CRC termination and Imax.
3: if CRC(ûN

1 ) = true then
4: return ûN

1 .
5: else
6: Construct the set S = {j1, j2, ..., jT} based on M(j) in Equation (5).
7: for k = 1 to T do
8: Initial L and R by Equations (3) and (4).
9: if |L(jk)| < V then

10: Ln+1,jk = −sign(Ln+1,jk )× τ

11: ûN
1 ← conventional BP decoding with CRC termination.

12: else
13: for a = 0 : 1 do
14: Ln+1,jk = (1− 2a)× τ.
15: ûN

1 ← conventional BP decoding with CRC termination.
16: end for
17: end if
18: if CRC(ûN

1 ) = true then
19: return ûN

1 .
20: end if
21: end for
22: end if
Output: ûN

1

3.3. Higher-Order Belief Propagation Correction Decoder

In this section, we generalize the MBPC decoder to a higher-order version, called
MBPC-Ω. When the conventional BP fails to pass the CRC, the decoder executes MBPC-
Ω in increasing order consecutively. Similar to the SCF-Ω decoder defined in [26], the
proposed MBPC-Ω decoding is performed on nested correction sets, each of which contains
Tk elements, denoted as Sk, 1 ≤ k ≤ Ω. Each element consists of k code bits. The nested
rule is designed to construct the set. Concretely, the set Sk is established based on the
preorder set Sk−1 and its corresponding decoding results. In other words, each element in
Sk contains the element in Sk−1 and an additional code bit, which was selected based on
the metric of the decoding result in the decoding attempt by Sk−1.

Denoting the r-th element in Sk−1 by Sk−1,r, we redefine M(j)k,r as the metric of each
code bit in the decoding result of a decoding attempt with Sk−1,r.

M(j)k,r = α · |L(j)k−1,r|+ β · (n + 1) · (1/ST(j)), (6)
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where L(j)k−1,r represents the reliability of code bits corresponding to the decoding result
by Sk−1,r and L(j)0,r represents the initial message LLR(yj). For limited computational
complexity, we extract Tk,k−1 elements from Sk−1, each of which selects Tk,k code bits with
the smallest metric based on Equation (6) as the k-th identified bit. Thus, the size of set Sk is
Tk = Tk,k−1 × Tk,k, and the maximum number of decoding attempts of order-k is 2k × Tk. The
rule to generate the correction set can be summarized as generate_Sk, described in Algorithm 3.

The MBPC-Ω decoder is presented in Algorithm 4. For the convenience of description,
we describe the enhanced correction operation in the procedure as correction_operation(Sk,r)
in Algortihm 5. For each attempt, k identified code bits are corrected simultaneously. The
“flag” indicates the avoidable decoding attempt. The maximum number of decoding at-
tempts is T = ∑Ω

k=1 2k × Tk. Note that, in the case of |L(jl)| ≥ V , if the decoding attempts
of both sides fail the CRC, the element to which jl belongs is repeatedly recorded in the
next order of the correction set. If none of the decoding attempts meet the requirements of
the CRC until the order exceeds Ω, the decoder declares a failure.

Algorithm 3 The procedure of generate_Sk.

1: for r = 1 to Tk,k−1 do
2: Stmp ← Tk,k bits with smallest M(j)k,r.

// generate a size-Tk,k set of k-th corrected bit
3: for j = 1 to Tk,k do
4: Sk,(r−1)·Tk,k−1+j ← Sk−1,r ∪ Stmp, j.
5: end for
6: end for

Algorithm 4 The proposed MBPC-Ω decoding algorithm.

Input: LLR(yN
1 ), Imax, I , T, Ω.

1: Initial L and R by Equations (3) and (4).
2: Perform the original BP decoder with CRC termination.
3: if ûN

1 passes the CRC then
4: return ûN

1 .
5: else
6: Generate the set S1 of size T1.
7: for k = 1 to Ω do
8: for r = 1 to Tk do
9: // each code bit in r-th element expressed by jl : (j1, j2, ...jk).

10: a = 0, flag = 0.
11: while a < 2k do
12: Initialize L and R by Equations (3) and (4).
13: Perform the correction_operation(Sk,r, a, flag); a++.
14: if flag = 1 then
15: continue.
16: end if
17: ûN

1 ← conventional BP decoding with CRC termination.
18: if CRC(ûN

1 ) = true then
19: return ûN

1 .
20: else
21: Construct the set Sk+1 by generate_Sk.
22: end if
23: end while
24: end for
25: end for
26: end if
Output: ûN

1
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Algorithm 5 The procedure of correction_operation(Sk,r, a, flag).

1: Binary extension for a = (b1, b2, ..., bk).
2: for l = 1 to k do
3: if |L(jl)| < V and bl = 1 then
4: flag = 1; break.
5: else
6: Ln+1,jl = (2bl − 1)× sign(Ln+1,jl )× τ; flag = 0.
7: end if
8: end for

Output: flag.

4. Numerical Results

In this section, the simulation results are verified on a binary-input additive white
Gaussian noise (BI-AWGN) channel in terms of the BLER performance and decoding
latency for polar codes based on the proposed schemes. Information set I is selected based
on the Monte Carlo approach [1] at 2.0 dB.

First, the BLER performance of the proposed MBPC-Ω scheme is compared with that
of the BPC decoder in [22] and the EBPF decoder in [16]. MBPC-Ω with order Ω = 1 is
a one-bit correction scheme, the same as MBPC. The parameters of the proposed metric
are set to α = 1.0, β = 0.75 for code length N = 512 and rate R = 1/2. To ensure a fair
comparison, the sizes of the correction set are set to T = 20 in the MBPC-1 and the BPC,
while the size of the flipping set in the EBPF is set to T = 40. The parameters of correction
sets in the MBPC-2 and the MBPC-3 decoders are set to T1 = 20, T2,1 = T3,2 = 20 and
T2,2 = T3,3 = 20, respectively. As seen in Figure 3, the MBPC-1 decoder has a better BLER
performance than the EBPF decoder and achieves a slight performance gain than that of
the BPC decoder in high SNR regions. The proposed higher-order algorithm can evidently
effectively improve the BLER performance, e.g., at BLER = 10−3, the MBPC-2 decoder
performs 0.9 dB better than the original BP 0.45 dB and better than the MBPC-1. As Ω
increases, the maximum number of decoding attempts increases dramatically, bringing
challenges to the complexity, but the performance gain gradually decreases. Accordingly,
in the further comparisons with the existing multiple flipping scheme, only MBPC-1 and
MBPC-2 are studied.

1.0 1.5 2.0 2.5 3.0 3.5

10-4

10-3

10-2

10-1

100

BL
ER

Eb/N0 (dB)

 BP
 BPC [22] 
 EBPF [16]
 MBPC-1  
 MBPC-2  
 MBPC-3  

Figure 3. The BLER performance comparisons in polar code with length N = 512, R = 1/2, and
Imax = 60. A 16-bit CRC is used.
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The BLER performance and average number of iterations of the proposed schemes
for N = 2048, R = 1/2 are simulated for a comparison with the original BP, BPC, higher-
order GBPF proposed in [16], and multiple BPF decoder designed based on the critical
set (CS) in [15] as shown in Figures 4 and 5. The 24-bit CRC is used. The parameters in
Equation (6) are set to α = 0.65 and β = 3.5. The size of the correction set in the MBPC-1
is T = 20. In the higher-order scenario, the number of maximum flipping attempts in the
GBPF-2 decoder and the maximum correction operations in the MBPC-2 decoder are set to
T = 80 + 20× 40 and T = 40 + 4× 10× 20, respectively, to keep the maximum decoding
attempts the same as those for the BPF-2, i.e., T = 4× |CS|, |CS| = 210. As seen in Figure 4,
the performance of the proposed MBPC-2 decoder is significantly improved compared with
that of the conventional BP decoder. When compared with the BPF-2 and GBPF-2 decoders,
the MBPC-2 decoder achieves a similar performance in low to medium SNR regions but
has a 0.1 dB performance gain when BLER = 10−5. Compared with the CA-SCL decoder
with L = 4, the gain is around 0.2 dB in almost all simulated SNR regions. In addition, the
BLER of the MBPC-2 decoder can compete with the CA-SCL decoder with L = 8 when
SNR ≤ 2.2 dB, but the performance degrades at high SNR regions.

1.0 1.5 2.0 2.5 3.0
10-6

10-5

10-4

10-3

10-2

10-1

100

BL
ER

Eb/N0 (dB)

 BP
 MBPC-1
 MBPC-2
 BPF-2 [15]
 GBPF-2 [17]
 CA-SCL L=4
 CA-SCL L=8

Figure 4. The BLER performance comparisons in the polar code with length N = 2048, R = 1/2, and
Imax = 200. A 24-bit CRC is used.

The BP-based decoding complexity and latency can be reflected as the number of
iterations. Figure 5 presents a comparison of the average number of iterations. As expected,
the number of average iterations of the MBPC-1 decoder is approximately half that of
the BPC and EBPF decoders, while the MBPC-2 decoder also reduces the complexity
and latency by half compared with the BPF-2 and GBPF-2 decoders at a similar BLER
performance. Specifically, the proposed MBPC-2 decoder saves around 45% of the average
number of iterations at 2.0 dB than the BPF-2 decoder; also observed is that, with the
increase in SNR, the average number of iterations of the proposed MBPC decoder can
approach that of the conventional BP decoder.

Furthermore, the average decoding latency in the MBPC decoder defined by the clock
cycles can be expressed by Equation (7) and compared with that of the CA-SCL decoder.

Lave = Iave × 2 log N, (7)

where the Iave represents the average number of iterations. Without considering the consump-
tion of CRC, the decoding clock cycles of the CA-SCL decoder can be represented by the
conventional SCL decoder in [27] as LSCL = 2N + K− 2. Observed from Table 1, the MBPC-1
decoder has a low latency overhead at all simulated points, while the MBPC-2 decoder shows
a lower decoding latency than that of the CA-SCL decoder in medium to high SNR regions.
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Figure 5. The average iteration number comparisons between the proposed MBPF and existing
BP-based decoders. The code length N = 2048, R = 1/2 and Imax = 200.

Table 1. Average decoding clock cycle comparisons between the proposed MBPC decoder and the
CA-SCL decoder.

Decoder SNR (dB)
1.5 1.75 2.0 2.25 2.5 2.75 3.0

MBPC-1 3080 946 396 220 165 133 115
MBPC-2 15,466 3476 924 396 212 154 121

List size

CA-SCL L = 4 L = 8
5142 5142

5. Conclusions

In this article, a new metric, combined reliability with stopping tree, was defined to
effectively identify corrected code bits in the BPC decoder. A rule for the correction operation
defined by a threshold is designed to reduce the number of additional decoding attempts,
especially in low to medium SNR regions. A higher-order version is designed based on the
nested correction set to better decrease the gap with the performance of the CA-SCL decoder.
The simulation results illustrate that the proposed higher-order MBPC decoding algorithm
can effectively improve BLER performance with lower average latency in medium to high
SNR regions and ensure better applicability than existing BPF decoders. Compared with the
CA-SCL decoder, the proposed MBPC-2 decoder achieves around a 0.2dB performance gain
with L = 4 in all simulated SNR regions and competes with the CA-SCL with L = 8 when
SNR ≤ 2.2 dB. Further research directions involve latency reduction in low SNR regions and
BLER performance improvement in high SNR regions. For the latency overhead caused by
massive increases in the iterations at low SNR regions, the modified refresh operation enables
the decoder to be implemented in a parallel version to reduce the latency for further research,
in which T1 decoders with the same structure can be executed independently with different
initializations. In addition, the method for identifying the corrected locations by deep learning
is also an attractive direction of study.
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