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Abstract: In this manuscript, we systematically investigate projective difference synchronization
between identical generalized Lotka–Volterra biological models of integer order using active control
and parameter identification methods. We employ Lyapunov stability theory (LST) to construct the
desired controllers, which ensures the global asymptotical convergence of a trajectory following
synchronization errors. In addition, simulations were conducted in a MATLAB environment to
illustrate the accuracy and efficiency of the proposed techniques. Exceptionally, both experimental
and theoretical results are in excellent agreement. Comparative analysis between the considered
strategy and previously published research findings is presented. Lastly, we describe an applica-
tion of our considered combination difference synchronization in secure communication through
numerical simulations.

Keywords: active control method; chaotic system; generalized Lotka–Volterra model; Lyapunov
stability theory; parameter identification method; projective synchronization

1. Introduction

Preserving and addressing ecological or biological systems are primary concerns of
many scientific areas. Consequently, their significant adverse consequences, for instance,
the occurrence of extreme complex dynamic behavior in the above-mentioned systems
due to oscillatory interactions found in the population through competition or cooperation
are challenging topics for researchers, ecologists, biologists. Mathematical models give
both pragmatic and quantitative descriptions of significant biological phenomena, and
bioscience interpretations of their outcomes would help in practical predictions of the state
of a considered system under different conditions. The concept of employing mathematical
models for prey–predator interactions was independently introduced by A. J. Lotka [1] and
V. Volterra [2] in the 1920s to examine many intriguing properties existing in population
dynamics such as predation and parasitism. Subsequently, numerous mathematical models
on prey and predator populations were presented and studied by several researchers and
authors, resulting in extending the applicability of such models [3–13]. Moreover, system
parameters have a prominent aspect in controlling or chaotifying considered chaotic models,
and consequently in synchronization and control theory, thereby rendering parameter
identification techniques a major key factor in chaos theory. More importantly, remarkable
works [14–17] were reported in this field utilizing the design of the considered adaptive
control method to estimate unknown parameters.
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Specifically, the generalized Lotka–Volterra (GLV) biological model comprising three
species is the most influential model in existing population interactions. Significantly,
Arnedo et al. [18] in 1980 reported that it may acquire a chaotic pattern for a considerable
set of parameters. These models essentially contain one prey and two predator populations.
In addition, Samardzija and Greller [19] in 1988 comprehensively showed that GLV systems
possess chaotic behavior. Chaotic systems are basically nonlinear dynamic systems with
extreme sensitiveness to small perturbations of initial conditions and parameter data.
Synchronization in chaotic systems is defined as the process of typically adapting chaotic
systems, so that each shows similar behavior owing to coupling for stability gains.

It has been more than three decades since the pioneering announcement of the chaos
phenomenon by Pecora and Carroll [20] in 1990. They systematically developed a synchro-
nization process using a master–slave configuration in similar chaotic models with entirely
different initial conditions. Afterwards, synchronization in nonidentical chaotic systems was
also established. Since then, a huge range of newly prescribed chaos synchronization and
control schemes have been initiated and analysed by researchers and academicians. Various
synchronization techniques, such as complete [21,22], hybrid [23], anti [24], partial anti [25],
projective [26], hybrid projective [17,27–29], function projective [30], phase [31], combination
synchronization [32], lag [33], combination-combination [16,17], modified projective [34],
compound [35], triple compound [36], combination difference [24,37], modulus synchroniza-
tion [38,39], output-feedback chaos synchronization [40], partial synchronization [41] and mul-
ticlustering synchronization [42], in chaotic and hyperchaotic systems are attained by utilizing
enormous control approaches, namely, active [43–46], adaptive [17,47,48], backstepping de-
sign [49], feedback [47], sliding mode [50], adaptive sliding mode control [51], and UDE-based
control method [52], which are available in the recently updated literature. Moreover, synchro-
nization theory for time-delayed nonlinear and fractional-order (FO) systems was precisely
developed. Chaos control in chaotic systems by employing a parameter identification method
was introduced by Hubler [53] in 1989. Further, E.W. Bai and K. E. Lonngren [54] achieved
synchronization in chaotic systems via an active control method in 1997. More importantly,
combination synchronization was first studied in 2011 by Runzi et al. [55]. Further, many
significant studies [56,57] were conducted in this direction. In addition, Dongmo et al. [58]
introduced difference synchronization in 2018. Optimal control design and synchronization
for LV models were rigorously studied in [59]. Further, in [14,15], a parameter identification
method was discussed in the synchronization of GLV biological systems.

Chaos synchronization has a huge spectrum of applications in secure communica-
tion [60–67]. Numerous types of secure communication strategies were illustrated, such
as chaos modulation, chaos masking, and chaos shift keying. In chaos communication
schemes, the essential idea of transmitting a message utilizing chaotic or hyperchaotic
models is that a message signal is embedded in a transmitter system that generates a chaotic
signal. After that, this chaotic signal is emitted to a receiver through a public channel. The
message signal is lastly recovered by the receiver. A chaotic system is primarily used as
both transmitter and receiver. Subsequently, this theory needs significant consideration in
various research fields.

Our current paper’s objective, with the above works in mind, is to propose and analyze
a combination difference projective synchronization (CDPS) technique in three identical
chaotic GLV systems by utilizing active control and parameter identification methods.
In combination difference synchronization schemes, three chaotic systems (identical or
nonidentical) are involved, in which two are selected as master systems, and one is selected
as a slave system. In this work, we considered the GLV model (master and slave system),
but it is a nonrealistic mathematical model. Nevertheless, the mathematical aspect of the
problem can shed some light on it.

The manuscript is organized as follows: Section 2 outlines the mathematical nota-
tions and basic terminology used within this paper. Section 3 presents a synchronization
methodology in a general setup. Section 4 reports the chaotic analysis of GLV model for
which CDPS was investigated. Active nonlinear controllers were appropriately designed
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for the CDPS scheme using Lyapunov stability theory. Section 5 describes CDPS via a
parameter identification method (PIM), and discussions concerning the numerical simula-
tions that were performed in MATLAB software are presented. Furthermore, comparative
analysis with previously published findings was conducted. Section 6 comprehensively
discusses an application of our considered approach, CDPS, in secure communication.
Lastly, concluding remarks are in Section 7.

2. Problem Formulation

In this section, the methodology to elaborate combination synchronization [55] using
master–slave composition in three chaotic systems is presented.

Let the first master system be

ẏm1 = h1(ym1), (1)

and the second master system be

ẏm2 = h2(ym2). (2)

Let the slave system be

ẏs1 = h3(ys1) + U(ym1, ym2, ys1), (3)

where ym1 = (ym11, ym12, . . . , ym1n)
T ∈ Rn, ym2 = (ym21, ym22, . . . , ym2n)

T ∈ Rn, ys1 =
(ys11, ys12, . . . , ys1n)

T ∈ Rn are state vectors of master and slave systems (1)–(3), respectively;
h1, h2, h3 : Rn → Rn are three nonlinear continuous functions; and U = (U1, U2, . . . , Un)T :
Rn × Rn × Rn → Rn are controllers to be properly determined.

Definition 1. Master Systems (1) and (2) are in complete synchronization (CS) with Slave System
(3) if

limt→∞‖ys1(t)− (ym1(t) + ym2(t))‖ = 0,

where ‖.‖ denotes vector norm.

Definition 2. Master Systems (1) and (2) are in antiphase synchronization (APS) with Slave
System (3) if

limt→∞‖ys1(t) + (ym1(t) + ym2(t))‖ = 0.

Definition 3. The combination of Master Systems (1) and (2) is in combination difference synchro-
nization (CDS) with Slave System (3) if

limt→∞‖e(t)‖ = limt→∞‖Pys1(t)− (Rym2(t)− Sym1(t))‖ = 0,

where ‖.‖ denotes vector norm and P = diag(p1, p2, . . . , pn), R = diag(r1, r2, . . . , rn), S =
diag(s1, s2, . . . , sn) and P 6= 0.

Remark 1. Considered matrices P, R, and S are called scaling matrices. Moreover, P, R and S are
expanded as matrices of functions of state variables ym1, ym2 and ys1.

Remark 2. The problem regarding combination synchronization is converted into a traditional
chaos control issue [68] if R = S = 0.

Remark 3. If P = I and R = S = βI, then for β = 1, it is reduced to complete synchronization;
if β = −1, it turns into antiphase synchronization. Hence, the combination difference projective
synchronization (CDPS) error takes the form:

e(t) = ys1(t)− β(ym2(t)− ym1(t)), (4)
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where β = diag(a, a, . . . , a).

Definition 4. The combination of Chaotic Systems (1)–(2) is in combination difference projective
synchronization (CDPS) with System (3) if

limt→∞‖e(t)‖ = limt→∞‖ys1(t)− β(ym2(t)− ym1(t))‖ = 0.

The following section presents the general theory of the CDS scheme to control chaos
generated by Chaotic Systems (1)–(3) using active control approach.

3. Synchronization Methodology

We now describe the methodology to achieve the CDS scheme between Master Sys-
tems (1) and (2), and Slave System (3). We designed controllers Ui by

Ui =
θi
pi
− (h3)i −

Kiei
pi

, (5)

where θi = (ri(h2)i − si(h1)i) and Ki > 0 (known as gain constants), i = 1, 2, 3, . . . , n.

Theorem 1. Considered Systems (1)–(3) asymptotically attain the proposed CDS scheme if con-
trollers are defined as given in Equation (5).

Proof. Errors are given by

ei = piys1i − (riym2i − siym1i), f or i = 1, 2, . . . , n.

The error dynamic system turns into

ėi = pi ẏs1i − (ri ẏm2i − si ẏm1i) = pi((h3)i + Ui)− (ri(h2)i − si(h1)i)

= pi((h3)i +
θi
pi
− (h3)i −

Kiei
pi

)− θi

= − Kiei. (6)

The classical Lyapunov function is defined by

V(e(t)) =
1
2

eTe

=
1
2

Σe2
i . (7)

On differentiating V(e(t)) as given in Equation (7), we have

V̇(e(t)) = Σei ėi = Σei(−Kiei)

= − ΣKie2
i ), using Equation (6). (8)

We now choose each Ki > 0 (i = 1, 2, 3, . . . , n), so that V̇(e(t)) given by Equation (8) is
negative definite. Thus, by LST [69], we obtain

limt→∞ei(t) = 0, (i = 1, 2, 3).

Therefore, Master Systems (1) and (2), and Slave System (3) achieved the desired
CDS scheme.
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4. Combination Difference Projective Synchronization (CDPS) for Identical Chaotic
GLV Systems via Active Control Method (ACM)

In this section, we first describe the widely known chaotic GLV three-species system
to be chosen for a CDPS scheme using active control design. Samardzija and Greller [19],
primarily in 1988, exhibited that GLV systems possess chaotic behavior. We now present
the GLV model as the first master system:

ẏm11 = ym11 − ym11ym12 + b3y2
m11 − b1y2

m11ym13,
ẏm12 = −ym12 + ym11ym12,
ẏm13 = b2ym13 + b1y2

m11ym13,

(9)

where (ym11, ym12, ym13)
T ∈ R3 is the state vector of the system, and b1, b2 and b3 are

positive parameters. Additionally, in Equation (9), ym11 denotes the prey population, and
ym12, ym13 represents the predator populations. For parameter values b1 = 2.9851, b2 = 3,
b3 = 2 and initial values (27.5, 23.1, 11.4), the first master GLV system depicted chaotic
behavior, as displayed in Figure 1a.

The second identical master GLV chaotic system is described as
ẏm21 = ym21 − ym21ym22 + b3y2

m21 − b1y2
m21ym23,

ẏm22 = −ym22 + ym21ym22,
ẏm23 = b2ym23 + b1y2

m21ym23,

(10)

where (ym21, ym22, ym23)
T ∈ R3 is the state vector of the system, and b1, b2 and b3 are

positive parameters. Further, in Equation (10), ym11 represents the prey population, and
ym12, ym13 denote the predator populations. For parameter values b1 = 2.9851, b2 = 3,
b3 = 2, this second master GLV system depicted chaotic behavior for selected initial
conditions (1.2, 1.2, 1.2) as shown in Figure 1b.

0
20

40
60

80

0

10

20

30
−20

0

20

40

60

80

y
m11

y
m12

y m
13

(a)

0.8
1

1.2
1.4

1.6

0.8

1

1.2

1.4
0

0.5

1

1.5

y
m21

y
m22

y m
23

(b)

−400

−200

0

200

−50

0

50

100
−200

−150

−100

−50

0

50

y
s31

y
s32

y s3
3

(c)

Figure 1. Phase plots for chaotic GLV system (a) ym11 − ym12 − ym13 space, (b) ym21 − ym22 − ym23

space, (c) ys31 − ys32 − ys33 space.
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The slave system, prescribed by the identical chaotic GLV system, is described as:
ẏs31 = ys31 − ys31ys32 + b3y2

s31 − b1y2
s31ys33 + U1,

ẏs32 = −ys32 + ys31ys32 + U2,
ẏs33 = b2ys33 + b1y2

s31ys33 + U3,

(11)

where (ys11, ys12, ys13)
T ∈ R3 is the state vector of the system, and b1, b2 and b3 are pos-

itive parameters. Moreover, in Equation (11), ys31 represents the prey population, and
ys32, ys33 denote the predator populations. For parameter values b1 = 2.9851, b2 = 3,
b3 = 2 and initial conditions (2.9, 12.8, 20.3), the slave GLV system displayed chaotic be-
havior, as exhibited in Figure 1c. Additionally, the detailed study and numerical results
for Equations (9)–(11) are found in [19]. Further, U1, U2 and U3 are controllers that are
determined so that CDPS among identical GLV chaotic systems could be attained.

Next, CDPS is proposed to synchronize states of a chaotic GLV model. A Lyapunov
stability theory (LST)-based active control approach was employed, and the required
stability criterion is derived.

Synchronization error functions (e1, e2, e3) are defined as
e1 = ys31 − β(ym21 − ym11),
e2 = ys32 − β(ym22 − ym12),
e3 = ys33 − β(ym23 − ym13).

(12)

The immediate goal here is the design of active controllers Ui, (i = 1, 2, 3), which
ensure that the synchronization error functions mentioned in Equation (12) satisfy

limt→∞ei(t) = 0, (i = 1, 2, 3).

Then, the resulting error dynamics becomes
ė1 = e1 − ys31ys32 + b3y2

s31 − b1y2
s31ys33 − β(−ym21ym22 + b3y2

m21

−b1y2
m21ym23 + ym11ym12 − b3y2

m11 + b1y2
m11ym13) + U1,

ė2 = e2 + ys31ys32 − β(−ym11ym12 + ym21ym22) + U2,
ė3 = b2e3 + b1y2

s31ys33 − β(b1y2
m21ym23 − b1y2

m11ym13) + U3.

(13)

Let us now design the active controllers by the following rule:

U1 =
θ1

p1
− (h3)1 −

K1e1

p1
, (14)

where θ1 = (r1(h2)1 − s1(h1)1) and K1 > 0 is a gain constant as described in Equation (5).
By inserting the values of s1, r1, θ1, (h3)1 into Equation (14) and simplifying, we obtain

U1 = − e1 + ys31ys33 − b3y2
s31 + b1y2

s31ys33 + β(−ym21ym22 + b3y2
m21

− b1y2
m21ym23 + ym11ym12 − b3y2

m11 + b1y2
m11ym13)− K1e1. (15)

Considering Equation (5), we obtain

U2 =
θ2

p2
− (h3)2 −

K2e2

p2
, (16)

where θ2 = (r2(h2)2 − s2(h1)2) and K2 > 0 are gain constants.
By substituting the values of s2, r2, θ2, (h3)2 in Equation (16) and solving, we find that

U2 = e2 − ys31ys32 + β(−ym11ym12 + ym21ym22)− K2e2. (17)
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Again using Equation (5), we have

U3 =
θ3

p3
− (h3)3 −

K3e3

p3
, (18)

where θ3 = (r3(h2)3 − s3(h1)3) and K3 > 0 are gain constants.
By inserting the values of s3, r3, θ3, (h3)3 into Equation (18) and combining, we obtain

U3 = b2e3 − b1y2
s31ys33 + β(b1y2

m21ym23 − b1y2
m11ym13)− K3e3. (19)

On substituting the active controllers described in Equations (15), (17), and (19) into
error dynamics Equation (13), we have

ė1 = −K1e1,
ė2 = −K2e2,
ė3 = −K3e3.

(20)

The Lyapunov function, denoted by V(e(t)), is now constructed using the following rule:

V(e(t)) =
1
2
[e2

1 + e2
2 + e2

3]. (21)

Clearly, Lyapunov function V(e(t)), as defined in Equation (21), is surely positive
definite in R3. Then, the derivative for Lyapunov function is expressed as:

V̇(e(t)) = e1 ė1 + e2 ė2 + e3 ė3. (22)

Using Equation (20) in Equation (22), one finds that

V̇(e(t)) = − K1e2
1 − K2e2

2 − K3e2
3 < 0,

where Ki > 0 for i = 1, 2, 3 which shows that V̇(e(t)) is surely negative definite. Therefore,
by LST [69], CDPS error dynamics is globally asymptotical stable, i.e., synchronizing error
function e(t)→ 0 is globally asymptotic for t→ ∞ for each initial values e(0) ∈ R3.

5. Combination Difference Projective Synchronization (CDPS) in Identical Chaotic
GLV Systems Using Parameter Identification Method (PIM)

In this section, we discuss the CDPS technique to obtain parameter-updating laws
in order to identify and estimate system parameters, specifically in addition to adaptive
controllers that all state variables tend to equilibrium points as time approaches infinity.
As an illustrative example, we consider three identical GLV systems for investigating the
CDPS scheme via PIM.

Two master systems (as GLV systems) and the slave system (as a GLV system) are
written as follows: 

ẏm11 = ym11 − ym11ym12 + b3y2
m11 − b1y2

m11ym13,
ẏm12 = −ym12 + ym11ym12,
ẏm13 = b2ym13 + b1y2

m11ym13.

(23)


ẏm21 = ym21 − ym21ym22 + b3y2

m21 − b1y2
m21ym23,

ẏm22 = −ym22 + ym21ym22,
ẏm23 = b2ym23 + b1y2

m21ym23.

(24)
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ẏs31 = ys31 − ys31ys32 + b3y2

s31 − b1y2
s31ys33 + W1,

ẏs32 = −ys32 + ys31ys32 + W2,
ẏs33 = b2ys33 + b1y2

s31ys33 + W3,

(25)

where W1,W2 and W3 are control functions that were designed so that CDPS among three
(identical) chaotic systems is obtained.
State errors are now defined as

e11 = ys31 − β(ym21 − ym11),
e12 = ys32 − β(ym22 − ym12),
e13 = ys33 − β(ym23 − ym13).

(26)

The main goal of this considered work was to introduce controllers Wi, (i = 1, 2, 3),
ensuring that state errors defined in Equation (26) satisfied

limt→∞e1i(t) = 0, (i = 1, 2, 3).

The subsequent error dynamic system is transformed as follows:

˙e11 = e11 − ys31ys32 + b3y2
s31 − b1y2

s31ys33 − β(−ym21ym22

+b3y2
m21 − b1y2

m21ym23 + ym11ym12 − b3y2
m11

+b1y2
m11ym13) + W1,

˙e12 = −e12 + ys31ys32 − β(−ym11ym12 + ym21ym22) + W2,
˙e13 = −b2e13 + b1y2

s31ys33 − β(b1y2
m21ym23 − b1y2

m11ym13) + W3.

(27)

Now, we define adaptive control functions as follows:

W1 = −e11 + ys31ys33 − b̂3y2
s31 + b̂1y2

s31ys33 + β(−ym21ym22

+b̂3y2
m21 − b̂1y2

m21ym23 + ym11ym12 − b̂3y2
m11

+b̂1y2
m11ym13)− K1e11,

W2 = e12 − ys31ys32 + β(−ym11ym12 + ym21ym22)− K2e12,
W3 = b̂2e13 − b̂1y2

s31ys33 + β(b̂1y2
m21ym23 − b̂1y2

m11ym13)− K3e13,

(28)

where K1, K2, K3 are gaining positive constants.
By inserting expressions for control functions described in Equation (28) into error

dynamics Equation (27), we find that

ė11 = (b3 − b̂3)y2
s31 − (b1 − b̂1)y2

s31ys33 − β[(b3 − b̂3)y2
m21

−(b1 − b̂1)y2
m21ys23 − (b3 − b̂3)y2

m11

−(b1 − b̂1)y2
m11ym13]− K1e11,

ė12 = −K2e12,
ė13 = −(b2 − b̂2)e13 + (b1 − b̂1)y2

s31ys33 − β[−(b2 − b̂2)ym23

+(b1 − b̂1)y2
m21ym23 + (b2 − b̂2)ym13

−(b1 − b̂1)y2
m11ym13]− K3e13,

(29)

where b̂1, b̂2 and b̂3 are estimated values for unknown parameters b1, b2, and b3, respectively.

Now, we define parameter estimation error by

b̃1 = b1 − b̂1, b̃2 = b2 − b̂2, b̃3 = b3 − b̂3. (30)
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Using Equation (30), the error dynamics given in Equation (29) turns into
ė11 = b̃3(y2

s31 − βy2
m21 − βy2

m11)− b̃1(y2
s31ys33 − βy2

m21ym23

+βym11ym13)− K1e11,
ė12 = −K2e12,
ė13 = −b̃2e13 + b̃1(y2

s31ys33 − βy2
m21ym23 + βy2

m11ym13)− K3e13.

(31)

The derivative of parameter estimation error, as defined in Equation (30), simplifies to

˙̃b1 = − ˙̂b1, ˙̃b2 = − ˙̂b2, ˙̃b3 = − ˙̂b3. (32)

The Lyapunov function is described by

V(e(t)) =
1
2
[e2

11 + e2
12 + e2

13 + b̃2
1 + b̃2

2 + b̃2
3]. (33)

This clearly shows that Lyapunov function V(e(t)) is surely positive definite.
Using Equation (32), the derivative of Lyapunov function V(e(t)) becomes

V̇(e(t)) = e11 ė11 + e12 ė12 + e13 ė13 − b̃1
˙̂b1 − b̃2

˙̂b2 − b̃3
˙̂b3. (34)

Keeping Equation (34) in mind, we prescribe the parameter estimating laws by the
following rule: 

˙̂b1 = −(y2
s31ys33 − βy2

m21ym23 + βy2
m11ym13)E11

+(y2
s31ys33 − βy2

m21ym23 + βy2
m11ym13)e13 + K4b̃1,

˙̂b2 = −e2
13 + K5b̃2,

˙̂b3 = (y2
s31 + βy2

m11 − βy2
m21)e11 + K6b̃3,

(35)

where K4, K5 and K6 are gaining positive constants.

Theorem 2. The considered chaotic Systems (9)–(11) asymptotically attained the proposed CDPS
scheme in each initial state (xm1(0), xm2(0), xm3(0)) ∈ R3 if adaptive control functions and
parameter estimating law were defined as given in Equations (28) and (35) respectively.

Proof. It is obvious that V(e(t)), which is defined in Equation (33), is a positive definite
Lyapunov function in R6. By simplifying, Equations (31), (34) and (35) were transformed
into the following expression:

V̇(e(t)) = − K1e2
11 − K2e2

12 − K3e2
13 − K4b̃2

1 − K5b̃2
2 − K6b̃2

3 < 0,

where Ki > 0 for i = 1, 2, 3, 4, 5, 6 . This shows that V̇(e(t)) is surely negative definite.
Hence, by using LST [69], one can deduce discussed CDPS error e(t)→ 0 globally and

asymptotically with t→ ∞ in each initial value e(0) ∈ R3.

5.1. Numerical Simulations and Results

Numerical simulations are specifically presented through MATLAB software to show
the effectiveness of the CDPS scheme via ACM. We take here pi = 1 and ri = si = a = −2
for all i = 1, 2, 3, which shows that the considered slave model would be projectively an-
tiphase synchronized with the combination of the given master systems. Further, (K1, K2, K3)
were chosen to be 6. The initial conditions of Systems (9) and (10) and corresponding Slave
System (11) were (27.5, 23.1, 11.4), (1.2, 1.2, 1.2), and (2.9, 12.8, 20.3), respectively. The trajec-
tories of Master Systems (9) and (10), and Slave System (11) achieving projective antiphase
synchronization are shown in Figure 2a–c. In addition, synchronization error functions
(e1, e2, e3) = (−49.7,−31,−0.1) converging to zero for t tended to infinity, as shown in
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Figure 2d. Consequently, the discussed CDPS approach in master and slave systems is nu-
merically demonstrated. Figure 3a–d exhibit the trajectories for Master Systems (9) and (10),
and Slave System (11), attaining projective complete synchronization by choosing pi = 1,
ri = si = β = 1.5 for all i = 1, 2, 3 and (e1, e2, e3) = (42.35, 45.65, 35.6).

Further, numerical simulations were implemented through MATLAB software to show
the effectiveness of the CDPS scheme via PIM. We take here pi = 1 and ri = si = a = 1.5
for all i = 1, 2, 3, displaying that the considered slave chaotic system would be projec-
tively completely synchronized with the combination of the given master systems. Further,
(K1, K2, K3) were chosen to be 6. Initial conditions for Master Systems (9) and (10), and
corresponding Slave System (11) were (27.5, 23.1, 11.4), (1.2, 1.2, 1.2), and (2.9, 12.8, 20.3),
respectively. Trajectories for Master Systems (9) and (10), and Slave System (11) achieving
projective complete synchronization are shown in Figure 4a–c. Furthermore, Figure 4d
depicts that the estimated values (b̂1, b̂2, b̂3) of unknown parameters asymptotically con-
verged to their originally described expressions with time. In addition, synchronization
error functions (e1, e2, e3) = (−49.7,−31,−0.1) converging to zero for t tended to infinity,
as shown in Figure 4e. As above, Figure 5a–e exhibit trajectories for Master Systems (9)
and (10), and Slave System (11), attaining projective complete synchronization by choosing
pi = 1, ri = si = β = −2 for all i = 1, 2, 3 and (e1, e2, e3) = (−49.7,−31,−0.1). Thus, the
discussed CDPS scheme for master and slave systems was computationally confirmed.
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Figure 2. Time history of combination difference projective antiphase synchronized trajectories
for GLV system (a) ys31(t) and ym21(t)− ym11(t), (b) ys32(t) and ym22(t)− ym12(t), (c) ys33(t) and
ym23(t)− ym13(t), (d) synchronization error plot.
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for GLV system (a) ys31(t) and ym21(t)− ym11(t), (b) ys32(t) and ym22(t)− ym12(t), (c) ys33(t) and
ym23(t)− ym13(t), (d) synchronization error plot.
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of GLV system (a) ys31(t) and ym21(t) − ym11(t), (b) ys32(t) and ym22(t) − ym12(t), (c) ys33(t) and
ym23(t)− ym13(t), (d) parameter estimation, (e) synchronization error plot.

0 5 10 15 20 25 30
−50

0

50

100

t

y
s
3
1
(t
),
y
m
2
1
(t
)
−
y
m
1
1
(t
)

 

 

ys31(t)
ym21(t)− ym11(t)

(a)

0 5 10 15 20 25 30
−30

−20

−10

0

10

20

30

40

t

y
s
3
2
(t
),
y
m
2
2
(t
)
−
y
m
1
2
(t
)

 

 

ys32(t)
ym22(t)− ym12(t)

(b)

0 5 10 15 20 25 30
−60

−40

−20

0

20

40

60

80

100

120

t

y
s
3
3
(t
),
y
m
2
3
(t
)
−
y
m
1
3
(t
)

 

 

ys33(t)
ym23(t)− ym13(t)

(c)

0 0.2 0.4 0.6 0.8 1
−40

−30

−20

−10

0

10

20

30

40

t

b̂
1
,
b̂
2
,
b̂
3

 

 

b̂1
b̂2
b̂3

(d)

0 1 2 3 4 5
−50

−40

−30

−20

−10

0

10

t

e
1
1
(t
),
e
1
2
(t
),
e
1
3
(t
)

 

 

e12(t)

(e)

Figure 5. Time series for combination difference projective anti-phase synchronized trajectories
of GLV system (a) ys31(t) and ym21(t) − ym11(t), (b) ys32(t) and ym22(t) − ym12(t), (c) ys33(t) and
ym23(t)− ym13(t), (d) parameter estimation, (e) synchronization error plot.
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5.2. Comparative Analysis

In [55], the authors initiated and achieved combination synchronization among
3 integer-order chaotic systems via an active backstepping method at t = 4 (approx.).
In [56], the authors investigated an active backstepping method for achieving combination
synchronization in integer-order chaotic systems, where synchronized states occurred at
t = 4.5 (approx.). The researchers attained a finite-time stochastic combination synchroniza-
tion scheme in 3 integer-order chaotic systems utilizing an adaptive method and the Weiner
process in [57] at t = 3 (approx.). In [58], the researchers first proposed and discussed com-
bination difference synchronization in 3 identical and nonidentical integer-order chaotic
and hyperchaotic systems, where it was observed that synchronized states were realized at
t = 6 (approx.). Moreover, the researchers in [70] discussed a feedback control strategy for
achieving combination difference synchronization in three integer-order chaotic models
comprising an exponential term at t = 4 (approx.). In addition, the hybrid synchroniza-
tion of two chaotic systems was achieved via PIM in [15] when it was conducted on a
similar GLV system with the same parametric values. Synchronized error converged to
zero for t = 0.8 (approx.); in our study, the CDPS approach was attained by utilizing an
active control approach and parameter identification method, in which synchronized errors
converged to zero at t = 0.5 (approx.) and at t = 0.4 (approx.), respectively, as exhibited
in Figures 6 and 7. This obviously illustrates that our proposed CDPS approach utilizing
an active control approach and parameter identification method is preferable to previous
published work. Hence, synchronization time via our studied methodology was the least
among all the above-discussed approaches, as shown in Table 1.

Table 1. Different types of synchronization schemes using different techniques.

Types of Synchronization Authors Time

1. Combination synchronization of three
classical chaotic systems using active

backstepping design

Runzi, Luo and Yinglan, Wang and
Shucheng, Deng 4

2. Combination synchronization of three
different order nonlinear systems using

active backstepping design
Wu, Zhaoyan and Fu, Xinchu 4.5

3. Finite-time stochastic combination
synchronization of three different chaotic

systems and its application in secure
communication

Runzi, Luo and Yinglan, Wang 3

4. Difference synchronization of identical
and nonidentical chaotic and hyperchaotic

systems of different orders using active
backstepping design

Dongmo, Eric Donald and Ojo, Kayode
Stephen and Woafo, Paul and Njah,

Abdulahi Ndzi
6

5. Difference synchronization among three
chaotic systems with exponential term and

its chaos control

Yadav, Vijay K and Shukla, Vijay K and
Das, Subir 4

6. Hybrid synchronization of generalized
Lotka–Volterra three-species biological

systems via adaptive control
Vaidyanathan, Sundarapandian 0.8

7. CDPS approach attained utilizing active
control approach

Mohammad Sajid,Harindri Chaudhary,
Ayub Khan, Uzma Nigar, Santosh Kaushik 0.5

8. CDPS approach attained using
parameter identification method

Mohammad Sajid,Harindri Chaudhary,
Ayub Khan, Uzma Nigar, Santosh Kaushik 0.4
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Figure 6. Time series of error convergence by active control method. (a) Combination difference
projective complete synchronization; (b) combination difference projective antiphase synchronization.
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Figure 7. Time series of error convergence by parameter identification method. (a) Combination
difference projective complete synchronization; (b) combination difference projective antiphase
synchronization.

6. Application of Combination Difference Projective Synchronization in
Secure Communication

In this section, we show the application of CDPS among GLVs. A chaotic signal is
applied for message-masking and -recovery signals. The system block diagram of the
GLV-based secure communication scheme is displayed in Figure 8. In a chaotic masking
signal, information messaging signal Θ(t) is added at the master (transmitter) and slave
(receiver) ends, and the message masking signal is removed. This application is based on
the vast complexity of master systems to develop data security. Therefore, we divided
the transmitted signals into two master systems to improve the protection of secure com-
munication. Signals that receivers must receive are in the form of Θ(t) = Θ1(t) + Θ2(t),
depicted in Figure 9a. Signals Θ1(t) and Θ2(t) are summed to the right-hand side of the
third equation of the master systems. The amplitude of the message signal may be weaker
than the chaotic masking signal, so that it cannot damage the chaotic system’s behavior.
η(t) = Θ + β2(y22m − y12m) is the transmitted signal shown in Figure 9b. Recovered signal
Θ̂(t) is obtained when the chaotic signal is subtracted from e(t), i.e., Θ̂(t) = η(t)− y22s
exhibited in Figure 9c, and Θ(t)− Θ̂(t) demonstrates the error message signal in 9d. We
selected the signal to be Θ1(t) = sign(sin(2 ∗ t)), Θ2(t) = 3 ∗ sign(sin(2 ∗ t)). Moreover,
Figure 9a–d depict that message signal Θ(t) = 2 ∗ sign(sin(2 ∗ t)) was successfully recov-
ered at the receiver end.
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Figure 8. Combination difference synchronization-based secure communication.
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Figure 9. (a) Original message signal µ(t); (b) transmitted message signal e(t); (c) recovered signal
µ̂(t); (d) error message signal µ(t)− µ̂(t).

7. Discussion and Conclusions

In this paper, a suggested CDPS strategy for chaotic identical GLV systems via active
control and a parameter identification method was explored. By designing appropriate
nonlinear controllers on the basis of classical LST, the considered CDPS scheme was
attained. Additionally, special cases of antiphase synchronization, chaos control problem,
and complete synchronization were discussed. Further, numerical simulations conducted
in MATLAB exhibited that properly designed control functions are simple and efficient
in asymptotically stabilizing the chaotic regime of GLV systems to the desired set points,
which shows the effectiveness of the technique. Analytical and computational outcomes
completely agreed. Comparison analysis showed that the time taken by synchronizing
the error functions for converging to zero with time tending to infinity was less compared
to that in other studies. This demonstrates that our considered CDPS design is more
beneficial than earlier published work is, and our results indicate novelty over existing
results. The discussed CDPS scheme has potential and advantages since this technique has
enormous applications in encryption, control theory, and secure communication. In fact,
we described the application of our considered CDPS in secure communication using chaos
masking methodology. The considered scheme may be used to describe the effect of various
specific coexisting species presented by the slave system of the GLV model. Controlling
and examining chaos generated in the complex GLV systems of complex dynamic networks
are open research problems. Thus, the investigated ACM and PIM methodologies can
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be developed for complex dynamical networks of the discussed GLV model as a future
research problem.
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