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Abstract: Remotely sensed data are essential for understanding environmental dynamics, for their
forecasting, and for early detection of disasters. Microwave remote sensing sensors complement
the information provided by observations in the optical spectrum, with the advantage of being less
sensitive to adverse atmospherical conditions and of carrying their own source of illumination. On
the one hand, new generations and constellations of Synthetic Aperture Radar (SAR) sensors provide
images with high spatial and temporal resolution and excellent coverage. On the other hand, SAR
images suffer from speckle noise and need specific models and information extraction techniques.
In this sense, the G0 family of distributions is a suitable model for SAR intensity data because it
describes well areas with different degrees of texture. Information theory has gained a place in signal
and image processing for parameter estimation and feature extraction. Entropy stands out as one of
the most expressive features in this realm. We evaluate the performance of several parametric and
non-parametric Shannon entropy estimators as input for supervised and unsupervised classification
algorithms. We also propose a methodology for fine-tuning non-parametric entropy estimators.
Finally, we apply these techniques to actual data.

Keywords: feature extraction; synthetic aperture radar; Shannon entropy estimator; classification

1. Introduction

Images obtained with coherent illumination systems, such as Synthetic Aperture Radar
(SAR), are contaminated by speckle. This noise-like interference phenomenon corrupts the
image in a non-Gaussian and non-additive manner, making difficult its processing and
visual interpretation.

Against this backdrop, statistical procedures are essential tools for processing SAR
data. A suitable model to describe this sort of image is fundamental to obtain features
that promote a good analysis. In this sense, the family of G0 distributions [1] has been
extensively used to model SAR data because of its analytical simplicity and ability to
describe a wide variety of roughness targets.

The application of machine and deep learning techniques to the problem of classi-
fication, segmentation and detection of objects in SAR images became more popular in
recent times. Palacio et al. [2] used machine learning techniques in combination with filters
to perform classification in PolSAR images. Baek and Jung [3] carried out a comparison
between three different machine learning techniques to classify single- and dual-pol SAR
image showing that the deep neural network presented the best performance.

Different authors used methods based on transfer learning techniques to classify SAR
images. These methods aim to solve the problem of having limited labeled area information
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to train deep convolutional neural networks (CNN). Kang and He [4] applied this technique
using a CNN trained on a CIFAR-10 dataset to extract a mid-level representation. They
showed that this technique is adequate to solve the problem of the limited amount of
labeled SAR data, by comparing the results obtained with a CNN without using this
technique and combining a Support Vector Machine (SVM) with a Gabor filter or with
gray level co-occurrence matrices. Lu and Li [5] implemented this methodology using
several popular pre-trained models and proposed a new method of data augmentation.
They also made a comparison with some related works and showed that their proposed
method outperformed the others. Huang et al. [6] proposed to transfer the knowledge
obtained from a large number of unlabeled SAR images by incorporating a reconstruction
path with stacked convolutional autoencoders in the network architecture. Their proposal
was competitive for the MTSAR dataset using all training samples, and had the best
performance when the training dataset has a small size.

Transfer learning was also implemented by Rostami et al. [7]. They proposed to
transfer the knowledge from the electro-optical domain to SAR by learning a shared
embedding space, and they showed that their approach is effective when applied to a ship
classification problem. Huang et al. [8] proposed another deep transfer learning method
to solve the land cover classification problem with highly unbalanced classes, geographic
diversity and noisy labels. They showed that the proposed model, which uses cross-entropy,
can be generalized and can be applied to others SAR domains.

Several approaches have been developed in order to obtain expressive and tractable
features from SAR data. In particular, entropy measures have been widely used for this pur-
pose. Parameter estimation [9], classification [10], procedures for constructing confidence
interval and contrast measures [11,12], edge detection [13], and noise reduction filters [14]
are among their applications.

Sundry authors have tackled the segmentation and classification SAR images problem
using information theory measures. Nobre et al. [15] used Rényi’s entropy for monopo-
larized SAR image segmentation. Ferreira and Nascimento [16] derived a closed-form
expression for the Shannon entropy based on the G0 law for intensity data and proposed
a new entropy-based segmentation method. Carvalho et al. [10] employed stochastic dis-
tances to approach unsupervised classification applied to Polarimetric Synthetic Aperture
Radar (PolSAR) images. Shannon entropy has been applied to analyzed SAR imagery
in several approaches, from inference [11] to classification [16]. Therefore, its estimation
deserves attention.

The parametric expression of the Shannon entropy for a system characterized by a
continuous random variable is the following well-known expression:

H(Z) = −E[log f (z)] = −
∫
R

f (z) log f (z)dz (1)

where f is the probability density function that characterizes the distribution of the real-
valued random variable Z. Several procedures can be applied to obtain an estimate of H(Z)
given a random sample Z = (Z1, Z2, . . . , Zn).

The most direct family of estimators of H(Z) given Z consists of obtaining estimators
for θ, the parameter that indexes the distribution of Z, say θ̂, and using them in (1). This
approach yields the families of maximum likelihood, moments, and robust estimators,
to name a few. This is the “parametric approach”.

“Non-parametric” approaches do not use θ̂ as a proxy. Instead, they rely on the
equivalent expression for the Shannon entropy given by

H(Z) =
∫ 1

0
log

dF−1(p)
dp

dp, (2)

where F is the cumulative distribution function that also characterizes the distribution of the
random variable [17]. Such alternative approaches compute estimates of F in Equation (2)
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from the observed sample. Vasicek [17] replaced the distribution function F by the empirical
distribution function Fn and used a difference operator in place of the differential operator.
van Es [18] studied an entropy estimator based on differences between order statistics.
Correa [19] proposed a new entropy estimator determined from local linear regression. Al-
Omari [20] and Noughabi and Noughabi [21] presented modified versions of the estimator
introduced by Ebrahimi et al. [22].

It is important to mention that these estimators have been studied in different contexts.
Maurizi [23] studied the works by Vasicek [17] and van Es [18] to estimate the entropy
H(Z) when the random variable has support [0, 1]. Noughabi and Park [24] considered
them to propose goodness of fit tests for the Laplace distribution. Suk-Bok et al. [25]
assessed the proposal by [17] to estimate H(Z) for a double exponential function in the
framework of multiple type-II censored sampling. More recently, Al-Labadi et al. [26]
considered these estimators to propose a new Bayesian non-parametric estimation to
entropy. Additionally, Lopes and Machado [27] considered Ref. [22] as a reference in the
review of other entropy estimators.

In this paper, we study the performance of parametric and non-parametric estimators
of the entropy in the context of supervised and unsupervised classification. In the para-
metric case, we use the relationship between the G0 and Fisher distributions to obtain an
expression of the entropy. In the non-parametric case, we assess these estimators in terms
of bias, mean square error, computational time, and accuracy.

2. Materials and Methods

2.1. The G0 Model

The multiplicative model defines the return Z in a monopolarized SAR image as the
product of two independent random variables: one corresponding to the backscatter X,
and the other to the speckle noise Y. In this manner, Z = XY represents the return in each
pixel of the image.

The G0 distribution is an attractive model for Z because of its flexibility to adequately
model areas with all types of roughness [28,29]. For intensity SAR data, this family arises
from considering the speckle noise Y modeled as a Γ distributed random variable with
unitary mean and the shape parameter L ≥ 1, the number of looks. We also assume that
the backscatter X obeys a reciprocal gamma law. Thus, the density function for intensity
data is given by

f (z) =
LLΓ(L− α)

γαΓ(−α)Γ(L)
· zL−1

(γ + zL)L−α
,

where −α, γ, z > 0 and L ≥ 1. The r-order moment is

E(Zr) =
(γ

L

)r Γ(−α− r)
Γ(−α)

· Γ(L + r)
Γ(L)

, (3)

provided α < −r, and infinite otherwise.
Mejail et al. [28] proved a relationship between the G0 distribution and the Fisher–

Snedekor F law, which states that the cumulative distribution function Fα,γ,L for the return
Z is

Fα,γ,L(z) = Υ2L,−2α(−αz/γ), (4)

for every z > 0, where Υ2L,−2α is the cumulative distribution function of a Fisher–Snedekor
random variable with 2L and −2α degrees of freedom. This connection is helpful to obtain
a closed formula for the entropy.

2.2. Shannon Entropy

Shannon’s contribution to the creation of what is known as information theory is well
known. Shannon [30] proposed a new way of measuring the transmission of information
through a channel, thinking of information as a statistical concept. The entropy of the G0
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distribution can be obtained using (4). Denote HF as the entropy under the Fisher–Snedekor
model; then the G0 entropy for intensity data HG0 is

HG0(α, γ, L) = HF(2L,−2α)− log(−α/γ). (5)

Using (5), the expression of HG0 is

HG0(α, γ, L) = − log(−α/γ)− (1− α)ψ(0)(−α) + log(−α/L) + (L− α)ψ(0)(L− α)

+ log
(

B(L,−α)
)
+ (1− L)ψ(0)(L), (6)

where ψ(0) and B are the digamma and beta functions, respectively.
Figure 1 shows the theoretical entropy HG0(α, γ, L) as a function of α and γ with L = 2.

It can be shown that for each fixed γ value, HG0 is an injective function. The same behavior
repeats if we consider α as a constant.

Figure 1. HG0 (α, γ, L) as a function of α and γ for L = 2.

2.3. Shannon Entropy Estimators

Several authors have proposed entropy estimators using (2). Most of them are based
on order statistics of the sample. Al-Omari [20] presented an overview of these estimators
and also proposed a new one. From a parametric point of view, it is natural to consider the
maximum likelihood estimator (ML) of the entropy (HML).

In what follows, we describe the entropy estimators studied in this paper.

2.3.1. Maximum Likelihood Entropy Estimator

Let Z = (Z1, . . . , Zn) be an independent random sample of size n from the G0(α, γ, L)
distribution. Assume that L is known. The maximum likelihood estimator of (α, γ) for L is
known and denoted as (α̂ML, γ̂ML), which consists of the values in the parametric space
R− ×R+, which maximize the reduced log-likelihood function:

`(α, γ; L, Z) = log Γ(L− α)− α log γ− log Γ(−α) +
α− L

n

n

∑
i=1

log
(
γ + LZi

)
. (7)

Solving (7) requires numerical maximization routines that, under certain circumstances,
do not converge [31]. We use the L-BFGS-B version of the Broyden–Fletcher–Goldfarb–
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Shannon (BFGS) method [32] that allows box constraints. This algorithm belongs to the
quasi-Newton methods family, not requiring the Hessian matrix but only the gradient. The
optimal asymptotic properties of the ML estimator are well-known.

The ML entropy estimator [33] is

ĤML(Z) = HG0(α̂ML, γ̂ML, L). (8)

This estimator inherits all of the good properties of ML estimators (consistency and asymp-
totic normality), but also their pitfalls: sensitivity to the initial value, lack of convergence
due to flatness of (7), and lack of robustness. Convergence problems, which are more
prevalent with small samples and with data from textureless areas, were identified by
Frery et al. [31] and mitigated with a line-search algorithm. Refs. [9,34,35] studied robust
alternatives to (7).

2.3.2. Non-Parametric Entropy Estimators

Assume that Z = (Z1, Z2, . . . , Zn) is a random sample from the law characterized by
the distribution function F(z) whose order statistics are Z(1), Z(2), . . . , Z(n). Vasicek [17]
proposed the following entropy estimator:

ĤV(Z) =
1
n

n

∑
i=1

log
[ n

2m
(
Z(i+m) − Z(i−m)

)]
, (9)

with m < n/2 as a positive integer, Z(i+m) − Z(i−m) the spacing of order m, or m-spacing,
Z(i) = Z(i) if 1 < i, and Z(i) = Z(n) if i > n. The author proved that this estimator is weakly
consistent for H(Z) when m/n→ 0 and n, m→ ∞.

The only possible numerical problem with this estimator and its variants is having zero
as the argument of the logarithm, a situation that can be easily checked and solved. Their
computational complexity reduces to adding differences of order statistics. These estimators
are robust by nature, since they do not depend on any particular model. Differently from
the approaches discussed in Refs. [9,34,35], achieving such a robustness does not impose a
heavy computational burden.

Several authors introduced modifications to Vasicek’s estimator. In this work we
consider the following entropy estimators variants, surveyed by Al-Omari [20].

• van Es [18]:

ĤVE(Z) =
1

n−m

n−m

∑
i=1

log
[n + 1

m
(
Z(i+m) − Z(i)

)]
+

n

∑
k=m

1
k
+ log

m
n + 1

. (10)

• Correa [19]:

ĤC(Z) = − 1
n

n

∑
i=1

log
∑i+m

j=i−m(j− i)
(
Z(j) − Z(i)

)
n ∑i+m

j=i−m
(
Z(j) − Z(i)

)2 , (11)

where Z(i) = (2m + 1)−1 ∑i+m
j=i−m Z(j).

• Noughabi and Arghami [36]:

ĤNA(Z) =
1
n

n

∑
i=1

log
[ n

cim
(
Z(i+m) − Z(i−m)

)]
(12)

where

ci =


1 if 1 ≤ i ≤ m,
2 if m + 1 ≤ i ≤ n−m,
1 if n−m + 1 ≤ i ≤ n,

and Z(i−m) = Z(1) if i ≤ m and Z(i+m) = Z(n) for i ≥ n−m.
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• Al-Omari [37]:

ĤAO1(Z) =
1
n

n

∑
i=1

log
[ n

ωim
(
Z(i+m) − Z(i−m)

)]
, (13)

where

ωi =


3/2 if 1 ≤ i ≤ m,
2 if m + 1 ≤ i ≤ n−m,
3/2 if n−m + 1 ≤ i ≤ n,

in which Z(i−m) = Z(1) for i ≤ m, and Z(i+m) = Z(n) for i ≥ n−m.
• Al-Omari alternative proposal [20]:

ĤAO2(Z) =
1
n

n

∑
i=1

log
[ n

vim
(
Z(i+m) − Z(i−m)

)]
, (14)

where

vi =


1 + (i− 1)/m if 1 ≤ i ≤ m,
2 if m + 1 ≤ i ≤ n−m,
1 + (n− i)/2m if n−m + 1 ≤ i ≤ n,

in which Z(i−m) = Z(1) for i ≤ m, and Z(i+m) = Z(n) for i ≥ n−m.
• Ebrahimi et al. [22]:

ĤE(Z) =
1
n

n

∑
i=1

log
[ n

τim
(
Z(i+m) − Z(i−m)

)]
, (15)

where

τi =


1 + (i− 1)/m if 1 ≤ i ≤ m,
2 if m + 1 ≤ i ≤ n−m,
1 + (n− i)/m if n−m + 1 ≤ i ≤ n.

van Es [18] showed that, under general conditions, (10) converges almost surely to
H[Z] when m, n → ∞, m/ log(n) → ∞, and m/n → 0. The author also proved the
estimator’s asymptotic normality when m, n→ ∞ and m = o(n1/2). Correa [19], through
a simulation study, showed that his estimator has a smaller mean squared error than
Vasiciek’s proposal (9).

Al-Omari’s estimators, cf. (13) and (14), converge in probability to H[Z] when m, n→
∞ and m/n→ 0. Ebrahimi et al. [22] presented an estimator adjusting Vasicek’s [17] weight.

Under the same conditions as Al-Omari [37], the authors proved that ĤE(Z)
p−→

n→∞
H[Z]

when m, n→ ∞ and m/n→ 0. The same applies to the Noughabi–Arghami estimator.

2.4. Estimator Tuning

The choice of the spacing parameter m in this type of estimators is an important
task that is still open. Wieczorkowski and Grzegorzewski [38] proposed the following
heuristic formula:

mWG = [
√

n + 0.5]. (16)

Our goal is to find a value of m that performs well in a range of parameters α and
sample sizes n when estimating the entropy under the G0 model. In order to achieve
this goal, we assess the performance of (16) with a Monte Carlo study for each one of
the entropy estimators presented in Section 2.3.2 under the G0 model. We considered a
parameter space comprised of:

• Sample sizes n ∈ {9, 25, 49, 81, 121}, which represent different scenarios of squared
windows of sides 3, 5, 7, 9 and 11;
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• Texture values α ∈ {−8,−5,−3,−1.5} to depict areas with different levels of rough-
ness and L = 2 (the L = 1 case was studied by Cassetti et al. [39]).

Since γ is a scale parameter, we based the forthcoming analysis on the condition
E(Z) = 1, which links texture and brightness by γ∗ = −α− 1. With the aim to simplify
the notation, we consider αj with j = 1, 2, 3, 4 where α1 = −1.5, α2 = −3, α3 = −5 and
α4 = −8. Thus, γ∗j = −αj − 1.

For each fixed n and j we draw 1000 independent samples z1, . . . , zn from G0(αj, γ∗j , 2).

We used m = mWG and calculated all estimators Ĥi
mj from Section 2.3.2. Therefore, we

obtained a vector of estimates (Ĥ1
mj, Ĥ2

mj, . . . , Ĥ1000
mj ) from which we computed the sample

mean Ĥmj = 1000−1 ∑1000
i=1 Ĥi

mj, the sample bias B̂mj = Ĥmj − Hj, where Hj is the true

entropy from (6), and the sample mean squared error M̂SEmj = 1000−1∑1000
i=1 (Ĥi

mj − Hj)
2.

Then, we analyzed the performance of these estimators in terms of bias and MSE.
In order to improve the spacing (16), we implemented another strategy to choose,

for each sample size n, the best value m to be used for all textures α. In the following, we con-
sidered m ∈ {1, 2, . . . , bn/2c} as was indicated in (9). We repeated the same methodology
as before for each m and for each j, obtaining {B̂1j, . . . , B̂bn/2cj}. This vector is represented
in the jth column of Table 1. We then calculated, in each row of the table, the average
of the absolute value of bias (shown in the last column of Table 1). The best m value is
m = arg min

s
|B̂s.|. Table 1 shows the schema of the methodology employed, for fixed n and

an entropy estimator. Each table entry, B̂sj, represents the bias for m = s and α = αj.

Table 1. Selection criteria for the best m for each n and each entropy estimator, with α1 = −1.5,
α2 = −3, α3 = −5 and α4 = −8.

m α1 α2 α3 α4 B̂

1 B̂11 B̂12 B̂13 B̂14 B̂1. =
∑4

j=1|B̂1j |
4

...
...

...
...

...
...

s B̂s1 B̂s2 B̂s3 B̂s4 B̂s. =
∑4

j=1|B̂ij |
4

...
...

...
...

...
...

bn/2c B̂bn/2c1 B̂bn/2c2 B̂bn/2c3 B̂bn/2c4 B̂bn/2c. =
∑4

j=1|B̂bn/2cj |
4

m = arg min
s

B̂s.

Section 3.1 presents the results of this approach. The spacing values we obtained are
different from the heuristic formula (16), and they lead to better estimates in terms of bias
and mean squared error.

2.5. Classification

To study the performance of the selected entropy estimators in terms of SAR image
classification, we divided the analysis into simulated and actual images. We used unsuper-
vised and supervised techniques to choose the three estimators that led to the best values
of classification quality. For the former, we applied a k-means algorithm, which groups
data into k classes setting k centroids and minimizing the variance within each group. This
non-hierarchical clustering technique has been applied in many studies in SAR image
processing, cf. the works by Niharika et al. [40] and by Liu et al. [41].

For the latter approach we implemented a support vector machine (SVM) algorithm,
which is a supervised machine learning technique [42] whose objective is to define, given
a set of features, the best possible separation between classes by finding a hyperplane
that maximizes the margin of separation between these classes. It is common to accept
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some misclassification to obtain a better overall performance; this is achieved through the
penalizing parameter c.

When data cannot be separated by a hyperplane, they are transformed to a higher-
dimensional feature space through a suitable non-linear transformation called “kernel
function”. Given x, x’ ∈ Rn, linear and radial kernels are respectively defined by KL(x, x’) =
〈x, x’〉 and KR(x, x’) = exp(−g‖x− x’‖2), for g > 0.

We randomly selected 1000 pixels in each of the four regions, far away enough from
the boundaries, to find the best kernel and hyperparameters. This reference sample was
divided into two sets: training and validation (80% of the sample), and testing (20%).
We considered linear and radial types for the kernel, with the penalizing parameters
c = 0.001, 0.01, 0.1, 1, 5, 10 and g = 0.01, 0.1, 1, 1.5, 2. With the training–validation set we
made a 5-cross fold validation, and computed the mean and the standard deviation of the
F1-scores. Recall that F1 = 2 · TPR · PPV/(TPR + PPV), where TPR is the True Positive
Rate and PPV is the Positive Predictive Value.

This approach has been applied in different areas, such as sea oil spill monitoring [43],
pattern recognition [44], and classification of polarimetric SAR data [2], among other
applications.

We used different measures of quality depending on the type of classification. In the
unsupervised case, we used the Calinski–Harabasz (CH) [45] and Davies–Bouldin [46]
(DB) indexes, while we present the Kappa coefficient for the supervised classification. We
also show the accuracy of both algorithms. All of these measures should be interpreted as
“bigger is better”, except for the DB index, for which “lower is better”.

3. Results and Discussion
3.1. Choice of the Spacing Parameter m for Non-Parametric Estimators

Figure 2 presents the bias and the MSE for the Wieczorkowski and Grzegorzewski [38]
criterion, L = 2 case, and for all of the estimators analyzed, except for the Al-Omari (14)
and Ebrahimi (15) estimators. These two estimators presented large bias and, thus, were
discarded for further analysis.

α = − 5 α = − 8

α = − 1.5 α = − 3

9 25 49 81 121 9 25 49 81 121

−0.4

−0.2

0.0

−0.4

−0.2

0.0

sample size

B
ia

s

α = − 5 α = − 8

α = − 1.5 α = − 3

9 25 49 81 121 9 25 49 81 121

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

sample size

M
SE

Estimator HA01 (14) HC (12) HML (9) HNA (13) HV (10) HVE (11)

Figure 2. Bias and MSE for Wieczorkowski and Grzegorzewski [38] criterion given by (16), L = 2.

It can be seen that there is no single estimator that performs best for all α values,
but HC and HAO1 present low bias and low MSE for all of the cases studied except for
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α = −1.5. The others estimators show bad behavior in terms of bias because of their slower
convergence to zero for all of the cases studied.

Table 2 shows the best m chosen according to the methodology used for L = 1 and
L = 2, for samples coming from G0 distribution.

Table 2. Heuristic spacing mWG, and best m chosen for each n and entropy estimator.

L n mWG ĤAO1 ĤC ĤNA ĤV ĤVE

1

9 4 4 4 3 4 4
25 6 6 5 3 8 2
49 8 7 5 4 9 2
81 10 7 4 5 8 2

121 12 9 4 6 11 2

2

9 4 4 4 3 3 2
25 6 8 4 4 9 2
49 8 8 4 5 9 2
81 10 9 4 5 9 2

121 12 10 5 6 10 2

Notice that, with few exceptions, the optimal spacing m is smaller than the empirical
formula mWG.

3.2. Performance of the Nonparametric Estimators for the Selected m Value

In order to study the behavior of our proposal for the selection of the m value we
performed a Monte Carlo simulation as described in Section 2.4. Figure 3 shows the
results obtained for the estimators studied for the m value chosen in terms of bias and
MSE, for L = 2 case. We also plotted the HML estimator. It can be observed that there is
an improvement in entropy estimation in terms of bias and MSE with our methodology,
compared to the (16) heuristic formula for all of the estimators studied. All of them show a
faster convergence of the bias to zero and are competitive with the performance of the HML
estimator in terms of bias and MSE, for sample sizes larger than 81.

α = − 5 α = − 8

α = − 1.5 α = − 3

9 25 49 81 121 9 25 49 81 121
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α = − 1.5 α = − 3
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0.4

0.6

sample size

M
SE

Estimator HA01 (14) HC (12) HML (9) HNA (13) HV (10) HVE (11)

Figure 3. Bias and MSE for authors’ proposed m choice, L = 2.
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As mentioned, the optimized spacing leads, in most cases, to the use of more samples
than the (16) criterion. This suggests that the latter is an optimistic view of the information
content of each sample, at least when dealing with G0 deviates. In other words, theses
observations are less informative for the estimation of the entropy. Because of this, a smaller
spacing, i.e., larger samples, are required to achieve good estimation quality.

In the following, we present empirical results classifying a simulated image SAR.

3.3. Simulated Image

We generated two 300× 300 images with observations coming from G0 distributions
with L = 1, 2, γ = 0.1, and four different classes: α ∈ {−1.5,−3,−5,−8}. Figure 4a
shows the image obtained with L = 2, where the brightest area corresponds to α = −1.5,
i.e., extremely textured observations. As the brightness decreases, the texture changes from
heterogeneous (α = −3 and −5) to a homogeneous zone corresponding to the darkest area
(α = −8). As the performance measures were similar in both L = 1, 2 cases, i.e., single and
multi-look, we only show results from the latter.

0.7

0.8

0.9

9 25 49 81 121
sample size

A
cc

ur
ac

y

Estimator HA01 HC HML HNA HV HVE

(a) (b) (c)

Figure 4. K-means applied to a simulated image with L = 2, γ = 0.1 and sliding windows size
9× 9. (a) Simulated image. (b) Classification with ĤC and s = 9. (c) Accuracy as a function of the
sample size.

We computed a map of estimated entropies (Ĥ) with each estimator by sweeping the
image with sliding windows of sizes s× s, for s = 3, 5, 7, 9, 11. These are the sample sizes
studied in Section 2.4. Then, we used Ĥ as a feature to classify by both the unsupervised
and supervised techniques.

Figure 4b shows the result of classifying by the k-means algorithm the ĤC map of
values obtained with s = 9.

Figure 4c shows the accuracy as a function of the sample size. It can be observed that a
9× 9 window presents the best accuracy. It can also be seen that the ĤML estimator has the
worst performance, whereas ĤC, ĤNA and ĤVE show the best performance. These results
are corroborated by the values shown in Table 3, in which the best performances are shown
in bold font.

Table 3. Accuracy for k-means (k = 4) applied to simulated data with L = 2. Best values marked
in bold.

n ĤAO1 ĤC ĤNA ĤV ĤVE ĤML

9 0.664 0.659 0.665 0.665 0.640 0.682
25 0.839 0.855 0.859 0.837 0.846 0.796
49 0.911 0.915 0.915 0.909 0.911 0.884
81 0.916 0.918 0.918 0.916 0.918 0.900
121 0.905 0.906 0.907 0.905 0.907 0.895
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Table 4 presents the CH and DB values for the best sample size (s = 9, n = 81).
According to CH, ĤC, ĤNA, and ĤVE have the best performance, whereas DB selected ĤC,
ĤNA, and ĤV as the best.

We also provide, for the sake of comparison, quality measures obtained by HML.

Table 4. Classification quality indexes for k-means (k = 4) applied to simulated data with n = 81 and
L = 2. Best values marked in bold.

Index ĤAO1
ĤC ĤNA ĤV ĤVE ĤML

CH 852,914 898,079 902,719 852,914 867,746 703,774
DB 0.441 0.434 0.433 0.441 0.442 0.467

Table 5 shows the selected kernels and hyper-parameters that maximize the F1 mean
and minimize the F1 variance. The best models were trained using the whole reference
sample and applied to classify the complete image. The accuracy and κ coefficient were
computed, and the results are shown in Figure 5. The best accuracy values are shown in
Table 6, as well as the models that achieved them. It can be seen that the optimal value
for L = 1 was obtained for a sliding window of size 9× 9. Sizes 9× 9 and 7× 7 presented
similar (best) values. In this sense, with the purpose of providing a unified criterion, we
chose the size of the sliding window as 9× 9 to perform the analysis.

Table 5. Best kernel (L: lineal, R: radial) and hyper-parameters for SVM applied to simulated
SAR data.

n ĤAO1 ĤC ĤNA ĤV ĤVE ĤML

9 R, c = 5, g = 1 R, c = 1, g = 0.1 R, c = 5, g = 2 R, c = 5, g = 2 L, c = 0.1 R, c = 10, g = 0.01
25 R, c = 5, g = 2 L, c = 10 L, c = 10 R, c = 10, g = 1 R, c = 1, g = 1.5 L, c = 0.1
49 L, c = 10 L, c = 10 R, c = 10, g = 1.5 R, c = 5, g = 1.5 L, c = 0.1 R, c = 5, g = 1
81 R, c = 10, g = 2 L, c = 5 L, c = 10 R, c = 10, g = 2 R, c = 1, g = 2 L, c = 1

121 L, c = 5 L, c = 5 L, c = 1 L, c = 1 L, c = 1 L, c = 0.01

Accuracy Kappa

9 25 49 81 121 9 25 49 81 121

0.5

0.6

0.7

0.8

0.9

1.0

Sample size

Estimator HAO1 HC HML HNA HV HVE

Accuracy Kappa

9 25 49 81 121 9 25 49 81 121

0.5

0.6

0.7

0.8

0.9

1.0

Sample size

Estimator HAO1 HC HML HNA HV HVE

(a) (b)

Figure 5. Accuracy and κ coefficient for SVM applied to simulated data with L = 2. (a) Using testing
set. (b) Using the whole image.

Table 6. Best accuracy values and best models for SVM applied to simulated SAR data.

n L = 1 L = 2

9 0.677, ĤAO1 -ĤV 0.732, ĤNA-ĤV
25 0.804, ĤNA 0.866, ĤNA
49 0.872, ĤC-ĤNA 0.918, ĤNA
81 0.893, ĤV 0.915, ĤVE

121 0.889, ĤC-ĤV 0.907, ĤVE
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Tables 7 and 8 show the confusion matrices when the models are applied to the
simulated images, L = 1, 2. It can be observed that if L = 1, ĤC, ĤNA, and ĤV overcame
ĤML for extremely high, high, and middle textured areas, respectively. For L = 2, ĤML
performed better than the other models except for regions with a very high level of texture
in which ĤV and ĤAO1 produced better results.

Table 7. Confusion matrices for synthetic data with L = 1 (in percentage). Best values marked
in bold.

Reference

Prediction α = −1.5 α = −3 α = −5 α = −8

ĤAO1

α = −1.5 93.30 0.00 0.00 0.01
α = −3 6.69 93.84 1.24 3.34
α = −5 0.01 6.15 93.88 10.38
α = −8 0.00 0.01 4.87 86.27

ĤC

α = −1.5 93.44 0.01 0.00 0.01
α = −3 6.55 93.31 1.12 3.04
α = −5 0.01 6.67 93.82 10.38
α = −8 0.00 0.01 5.06 86.57

ĤNA

α = −1.5 93.05 0.00 0.00 0.01
α = −3 6.95 93.44 1.11 3.11
α = −5 0.01 6.55 94.50 10.86
α = −8 0.00 0.01 4.39 86.03

ĤV

α = −1.5 93.29 0.00 0.00 0.01
α = −3 6.71 93.91 1.30 3.45
α = −5 0.01 6.07 93.84 10.44
α = −8 0.00 0.01 4.86 86.09

ĤVE

α = −1.5 92.69 0.01 0.00 0.01
α = −3 7.29 92.37 1.31 2.70
α = −5 0.01 7.61 92.50 10.54
α = −8 0.00 0.01 6.18 86.75

ĤML

α = −1.5 92.99 0.00 0.00 0.00
α = −3 7.00 93.63 0.87 2.84
α = −5 0.01 6.36 94.47 10.34
α = −8 0.00 0.01 4.66 86.82

3.4. Actual Images

We assessed our proposal with two SAR images. First, we considered an image of
the surroundings of Munich in Germany of the size 459× 494, which was acquired in
L-band, HV polarization, and complex single look format. Second, we used a subsample of
500× 645 pixels of a full PolSAR image of California’s San Francisco bay area, taken by the
NASA/JPL AIRSAR L-band instrument in intensity format.

We applied the SVM algorithm to both actual images, replicating the procedure
described in the study of simulated data, using the entropy estimator as a feature for
classification of the three polarizations.

The Equivalent Number of Looks (ENL) using uncorrelated data is defined as

ENL = 1/ĈV2, the reciprocal of the sample coefficient of variation ĈV = σ̂/µ̂, where σ̂
is the sample standard deviation and µ̂ is the sample mean [47]. In order to find the ENL
in each polarization band of the image of San Francisco, we manually selected samples
from homogeneous areas in each band and calculated ENL as an average weighted by
the sample size per band. Finally, the ENL is the average of the estimations in each
polarization. We obtained 2.53, 3.41, and 3.41 as the ENL values in the HH, HV, and VV
bands, respectively. Thus, we considered the ENL as equal to 3.12 for the whole image.
We then used the same spacings, m, for L = 2 and L = 3.
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Table 8. Confusion matrices for synthetic data with L = 2 (in percentage). Best values marked
in bold.

Reference

Prediction α = −1.5 α = −3 α = −5 α = −8

ĤAO1

α = −1.5 96.79 0.17 0.00 0.09
α = −3 3.20 93.40 0.44 3.54
α = −5 0.01 6.43 96.76 9.21
α = −8 0.00 0.00 2.80 87.16

ĤC

α = −1.5 96.48 0.10 0.00 0.03
α = −3 3.51 93.36 0.26 3.24
α = −5 0.01 6.54 97.29 9.47
α = −8 0.00 0.00 2.45 87.25

ĤNA

α = −1.5 96.48 0.12 0.00 0.03
α = −3 3.51 93.36 0.25 3.25
α = −5 0.01 6.52 97.39 9.48
α = −8 0.00 0.00 2.35 87.23

ĤV

α = −1.5 96.79 0.17 0.00 0.09
α = −3 3.20 93.40 0.44 3.54
α = −5 0.01 6.43 96.76 9.21
α = −8 0.00 0.00 2.80 87.16

ĤVE

α = −1.5 96.08 0.10 0.00 0.02
α = −3 3.91 93.64 0.27 3.00
α = −5 0.01 6.26 97.07 9.35
α = −8 0.00 0.00 2.66 87.63

ĤML

α = −1.5 95.68 0.01 0.00 0.01
α = −3 4.31 93.96 0.12 3.23
α = −5 0.01 6.03 97.42 8.90
α = −8 0.00 0.00 2.46 87.86

Figures 6 and 7 show the training samples selected to perform the supervised clas-
sification in both images. In the fist case, we worked with three types of regions: urban
(red), forest (dark green), and pasture (light green). In the other case, we selected five areas:
water (blue), urban zone (red), vegetation (green), pasture (yellow), and beach (orange).

Figure 6. Image of the surrounding of Munich with reference samples.
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Figure 7. Image of San Francisco with reference samples.

We studied linear and radial kernels; the last one produced better results, except for
ĤAO1 and ĤV when applied to the image of Munich. The combinations of hyper-parameters
are the following:

• c = 1 for ĤAO1 in Munich;
• c = 1 and g = 0.1 for ĤC in Munich;
• c = 0.01 and g = 1 for ĤNA in Munich;
• c = 10 for ĤV in Munich;
• c = 5 and g = 1.5 for ĤVE in Munich;
• c = 5 and g = 1.5 for ĤML in Munich;
• c = 1 and g = 0.1 for ĤAO1 in San Francisco;
• c = 10 and g = 1.5 for ĤC in San Francisco;
• c = 5 and g = 2 for ĤNA in San Francisco;
• c = 5 and g = 2 for ĤV in San Francisco;
• c = 10 and g = 2 for ĤVE in San Francisco;
• c = 10 and g = 1.5 for ĤML in San Francisco.

We subsequently included the CV as a feature in the classification process. In this case,
the best performance was achieved for the linear kernel with a cost of 10 applied to the
image of San Francisco, except for ĤAO1 and ĤV showing a best performance if a radial
kernel is used with c = 5 and g = 1, respectively, and ĤML with a radial kernel using
c = 10 and g = 1.5, respectively. On the other hand, the radial kernel produced the best
results for the image of Munich using the following hyper-parameters:

• c = 1 and g = 0.1 for ĤAO1 ;
• c = 5 and g = 2 for ĤC;
• c = 1 and g = 2 for ĤNA;
• c = 1 and g = 0.1 for ĤV;
• c = 10 and g = 1 for ĤVE;
• c = 10 and g = 1.5 for ĤML.

Tables 9 and 10 present the test accuracy and Kappa index. We also show the validation
accuracy, which was computed using cross-validation with five folds; these values are
similar to the test accuracy, showing that there is no evidence of overfitting. In addition, we
show that including the CV coefficient as a feature in the classification problem improved
the results.
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If we only consider the entropy, ĤVE showed the best performance in both single and
multilook cases. However, if we add CV as a characteristic, then ĤC appears as the best
classifier followed by ĤNA and ĤML for the single-look case, and ĤAO1 followed by ĤNA

and ĤV for the multilook case.

Table 9. Validation–test accuracy and Kappa coefficient values in the test set for the image of Munich.
Best values marked in bold.

Feature Set Model Validation
Accuracy Test Accuracy Kappa

Entropy estimator

ĤAO1
0.9503 0.9471 0.9174

ĤC 0.9530 0.9394 0.9045
ĤNA 0.9461 0.9592 0.9364
ĤV 0.9489 0.9526 0.9262
ĤVE 0.9779 0.9824 0.9722
ĤML 0.9751 0.9713 0.9548

Entropy estimator and CV

ĤAO1
0.9751 0.9868 0.9794

ĤC 0.9807 0.9923 0.9878
ĤNA 0.9793 0.9901 0.9845
ĤV 0.9903 0.9846 0.9757
ĤVE 0.9848 0.9813 0.9707
ĤML 0.9724 0.9901 0.9843

Table 10. Validation–test accuracy and Kappa coefficient values in the test set for the image of
San Francisco. Best values marked in bold.

Feature Set Model Validation
Accuracy Test Accuracy Kappa

Entropy estimator

ĤAO1
0.9377 0.9301 0.9108

ĤC 0.9718 0.9692 0.9608
ĤNA 0.9748 0.9716 0.9637
ĤV 0.9614 0.9727 0.9655
ĤVE 0.9733 0.9799 0.9743
ĤML 0.9525 0.9585 0.9471

Entropy estimator and CV

ĤAO1
0.9970 0.9976 0.9970

ĤC 0.9970 0.9882 0.9849
ĤNA 0.9955 0.9964 0.9955
ĤV 1.0000 0.9953 0.9940
ĤVE 0.9941 0.9941 0.9925
ĤML 0.9748 0.9810 0.9758

Figures 8 and 9 exhibit the classification of the whole images when our proposal is
applied. It can be observed that in the case of the image of San Francisco the classifiers
distinguished the beach and, with the addition of the CV, some roads surrounded by trees
were better classified.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 8. Surroundings of Munich classification using: (a) ĤAO1 (test acc. 0.9471), (b) ĤAO1 and CV
(test acc. 0.9868), (c) ĤC (test acc. 0.9394), (d) ĤC and CV (test acc. 0.9923), (e) ĤNA (test acc. 0.9592),
(f) ĤNA and CV (test acc. 0.9901), (g) ĤV (test acc. 0.9526), (h) ĤV and CV (test acc. 0.9846), (i) ĤVE

(test acc. 0.9824), (j) ĤVE and CV (test acc. 0.9813), (k) ĤML (test acc. 0.9713), and (l) ĤML and CV
(test acc. 0.9901).

The processing time is an important feature when proposing a new estimator. Table 11
shows the processing time, measured in minutes, needed to perform a map of estimated
entropies moving through the image with sliding windows of size 9× 9 for each one of the
estimators applied to the Munich and San Francisco images. It can be seen that HV had the
shortest processing time, followed by HVE and HNA.

Table 11. Processing time to perform an entropy map with sliding windows of size 9× 9. Best values
marked in bold.

Estimator

Image ĤML ĤAO1 ĤC ĤNA ĤV ĤVE

Munich 2.00 1.22 5.66 0.91 0.85 0.90
San Francisco 4.62 5.77 26.36 4.14 4.03 4.10

We conclude this section by comparing the results of classifying by using estimates
of the entropy with those obtained with a classical approach. Table 12 compares the
results obtained using our best models against the technique that applies the improved
Lee filter [48] and then classifies using SVM. Figure 10 shows the classification of the
whole images applying the alternative method. It can be observed that our proposal offers
advantages that prior methods cannot.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 9. San Francisco classification using: (a) ĤAO1 (test acc. 0.9301), (b) ĤAO1 and CV (test acc.
0.9976), (c) ĤC (test acc. 0.9692), (d) ĤC and CV (test acc. 0.9882), (e) ĤNA (test acc. 0.9716), (f) ĤNA

and CV (test acc. 0.9964), (g) ĤV (test acc. 0.9727), (h) ĤV and CV (test acc. 0.9953), (i) ĤVE (test
acc. 0.9799), (j) ĤVE and CV (test acc. 0.9941), (k) ĤML (test acc. 0.9585), and (l) ĤML and CV (test
acc. 0.9810).

Table 12. Comparison results of our best proposal against an alternative method. Best values marked
in bold.

Image Model Test Accuracy Kappa

Munich ĤC and CV 0.9923 0.9878
Lee and SVM 0.9890 0.9829

San Francisco ĤAO1 and CV 0.9976 0.9970
Lee and SVM 0.7606 0.6933

(a) (b)

Figure 10. Classification using SVM after applying Lee filter to the image of: (a) Munich, (b) San Francisco.
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4. Conclusions

We assessed the performance of six non-parametric entropy estimators in conjunc-
tion with the ML estimator in terms of bias, MSE and image classification for single and
multilook cases.

On the one hand, the advantage of using these non-parametric estimators is that
they are very simple to implement, since they do not assume any model and do not
need optimization algorithms. On the other hand, they depend on a space parameter
m. Although the literature recommends a heuristic value, we proposed a criterion for
choosing the value of m that presents the slightest bias in the entropy estimation for all of
the textured values studied and all of the sample sizes analyzed. This criterion presents
better performance than that proposed by Wieczorkowski and Grzegorzewski [38].

With these values for m, we applied unsupervised (k-means) and supervised (SVM)
classification algorithms to both simulated and actual data, and compared their perfor-
mance with the ĤML entropy estimator. We showed evidence that ĤVE presents the best
performance in terms of accuracy and kappa index for both single and multilook cases,
when it is applied to actual images. However, when we added the coefficient of varia-
tion as a feature used by the classifier, both measures improved and the best estimators
changed. ĤC and ĤAO1 performed the best for the single and multilook cases, respectively,
showing an improvement of 1% for the former and of 3% for the latter. However, these two
estimators require longer processing times than the others.

We completed the analysis by comparing our proposal with another technique that
combines the improved Lee filter with an SVM classifier, showing that the entropy-based
approach presents better accuracy indexes.

Hence, we strongly recommend to consider these non-parametric estimators because
of the simplicity of their implementation and their good performance.
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