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Abstract: Private Information Retrieval (PIR) protocols, which allow the client to obtain data from
servers without revealing its request, have many applications such as anonymous communication,
media streaming, blockchain security, advertisement, etc. Multi-server PIR protocols, where the
database is replicated among the non-colluding servers, provide high efficiency in the information-
theoretic setting. Beimel et al. in CCC 12’ (further referred to as BIKO) put forward a paradigm for
constructing multi-server PIR, capturing several previous constructions for k ≥ 3 servers, as well
as improving the best-known share complexity for 3-server PIR. A key component there is a share
conversion scheme from corresponding linear three-party secret sharing schemes with respect to a
certain type of “modified universal” relation. In a useful particular instantiation of the paradigm, they
used a share conversion from (2, 3)-CNF over Zm to three-additive sharing over Zβ

p for primes p1, p2, p
where p1 6= p2 and m = p1 · p2, and the relation is modified universal relation CSm . They reduced
the question of the existence of the share conversion for a triple (p1, p2, p) to the (in)solvability of a
certain linear system over Zp, and provided an efficient (in m, log p) construction of such a sharing
scheme. Unfortunately, the size of the system is Θ(m2) which entails the infeasibility of a direct
solution for big m’s in practice. Paskin-Cherniavsky and Schmerler in 2019 proved the existence of the
conversion for the case of odd p1, p2 when p = p1, obtaining in this way infinitely many parameters
for which the conversion exists, but also for infinitely many of them it remained open. In this work,
using some algebraic techniques from the work of Paskin-Cherniavsky and Schmerler, we prove the
existence of the conversion for even m’s in case p = 2 (we computed β in this case) and the absence
of the conversion for even m’s in case p > 2. This does not improve the concrete efficiency of 3-server
PIR; however, our result is promising in a broader context of constructing PIR through composition
techniques with k ≥ 3 servers, using the relation CSm where m has more than two prime divisors.
Another our suggestion about 3-server PIR is that it’s possible to achieve a shorter server’s response
using the relation CS′m for extended S′m ⊃ Sm. By computer search, in BIKO framework we found
several such sets for small m’s which result in share conversion from (2, 3)-CNF over Zm to 3-additive
secret sharing over Zβ′

p , where β′ > 0 is several times less than β, which implies several times shorter
server’s response. We also suggest that such extended sets S′m can result in better PIR due to the
potential existence of matching vector families with the higher Vapnik-Chervonenkis dimension.

Keywords: PIR; Share conversion; CNF secret sharing; communication complexity

1. Introduction
1.1. Private Information Retrieval

Private Information Retrieval (PIR) protocols allow the client to fetch items from the
server’s database without disclosing to the server which item was requested. A main
challenge in constructing PIR protocols is minimizing the communication complexity. The
idea of PIR was introduced by Chor et al. [1], together with the 2-server PIR protocol
having the communication complexity O(n1/3) for the dataset size n. PIR has a wide
variety of applications such as anonymous communication [2,3], privacy-preserving media
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streaming [4], blockchain security [5,6], personalized advertisement [7], location and contact
discovery [8–10], etc.

The naive approach to PIR is just to make the server send all the items in the database
to the client: we stress that PIR cares only about the privacy of the client’s request but not
about the privacy of the server. However, it entails a huge communication complexity
equal to the size of the database. To shorten the communication complexity and still keep
the privacy of the request, there are two main approaches to construct PIR:

• Historically, the first type of PIR was a Multi-Server PIR [1], where the database is
replicated for k ≥ 2 non-colluding servers. The client secret-shares its request, and
servers locally compute the secret-shared response and send it back to the client. The
client recovers the item from the shares of response. Multi-Server PIR protocols, such
as [11–14] are relatively efficient in information-theoretic settings. The requirement
of the replicated database kept by the non-colluding parties is restrictive; however,
there is a space for such a PIR, preferably in blockchain databases, cloud services,
multi-server enterprise ecosystems where a small number of servers (but not all) are
likely to be compromised.

• Single-Server PIR protocols work in a computational setting and are built on the
basis of homomorphic encryption (FHE, AHE, or SHE). The starting point in single-
server PIR is the AHE-based protocol of Kushilevitz and Ostrovski [15]. The early
single-server PIR constructions were both computationally and communicationally
low efficient, although recently significant progress was made which allow speaking
about the practically suitable one-server PIR solutions [16–19]. For instance, the
OnionPIR protocol from SHE [16] achieves a 64 KB request and 128 KB response in
the online phase of the protocol (and the same in the offline phase) for all the realistic
database sizes.

On the high level, for both approaches, the database is represented as a function
(usually, a polynomial) f such that for any key x and the correspondent value (a record)
y holds y = f (x). Then, the client has to send the request x to the server (servers) in a
way that preserves its privacy. For the Single-Server PIR, it means that x is sent encrypted,
in the Multi-Server paradigm, x is secret-shared. Encryption or secret sharing has to be
homomorphic so that the server (servers) could compute the function f (x) under the
encryption/secret-sharing and send the encrypted or secret-shared response y back to
the client.

In a 2-server computationally-secure PIR of Gilboa and Ishai [20], the request is shared
as a DPF (Distributed Point Function) and has a polylog length. In this case, to compute the
shares of the response, only additive operations are needed (DPF sharing is homomorphic
in respect of them). However, in the information-theoretic setting, which is the focus
of this work, it is still unclear how to construct efficient in terms of communication and
computation PIR with the secret sharing which is homomorphic in respect of any number
of additions and multiplications.

Currently, 3 generations of information-theoretic PIR protocols exist: the first genera-
tion originated from the work of Chor et al [1] is based on Reed-Muller codes and have
communication complexity n1/Θ(k), in the second from Beimel et al. [21] they restated some
of the previous results in a more arithmetic language, in terms of polynomials, and also
considered a certain encoding of the inputs and element-wise secret sharing the encoding,
which resulted in nO(k) communication complexity. The third generation from works of
Efremenko [11] followed by [22–26], Yekhanin [12], Beimel et al. [13], Dvir and Gopi [14]
is based on matching vectors and is the most computationally efficient line of protocols
with the complexity no(1) for database size n. In all the 3rd generation schemes, but [14],
as was demonstrated by Beimel et al. [13], in fact, the combination of two secret-sharing
schemes is utilized, both linear in different groups, and a share conversion with respect to
some relation, allowing to locally perform some non-linear operation over the shares (apart
from the case of the identity relation).
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1.2. Share Conversion

Suppose that there is some number of parties, each holding a share of a secret s
which was created by a secret-sharing scheme Sh1. The share conversion is defined as a
process of a local computation performed by those parties based only on their shares and
outputting the new shares of the secret s′ in a different scheme Sh2 so that there is some
predefined relation between s and s′. A systematic study of share conversion was started
by Cramer et al. [27] by considering the case s = s′ for two arbitrary linear secret sharing
systems over different fields.

Let us consider an easy illustrative example: for the function f (x) = x1 · x2 over the
ring R′, and for the conversion’s relation s′ = s2, for the input x = (x1, x2) shared in a
linear scheme over the ring R, it is possible to compute f (x) in the following circuit: first,
according to the linear property of the first scheme, servers locally compute shares of
x3 = x1 + x2, then convert shares of x1, x2 and x3 to shares of x2

1, x2
2 and x2

3 over R′, and
finally obtain shares of the response y = 2−1(x2

3 − x2
1 − x2

2).
This approach, however, leaves room for improvement, as such a conversion usually

increases the size of the request and response in PIR, because the conversion is a local
operation and therefore it is not a trivial issue: to evaluate the circuit which computes
some succinct function f (x) which represents the database, the client forms its request as
a proper input to this circuit. In addition, not any circuit is possible to compute within
the existing secret sharing and conversion schemes, which means that we are bound to
only certain kinds of the circuit families and, depending on the VC-dimension of these
families of those certain function families, the proper representation of request might be
much larger than the size of the database. Recall that the notion of the VC-dimension was
introduced by V. Vapnik and A. Chervonenkis in [28]. Informally, for the boolean function
family F , where each f ∈ F : D → {0, 1}, VC-dimension VC(F ) is the size of the largest

I ⊂ D such that the set
{

f |I
∣∣∣ f ∈ F} of restrictions of functions from F contains all the

possible boolean functions over I. The higher VC(F ) relative to |D|, the more efficient PIR
can be built. For a precise definition, see [13].

Using homomorphic properties of secret sharing schemes to perform MPC on shared
values is a widely used technique in information-theoretic MPC, initiated by the seminal
work of [29]. Indeed, in order to (semi honestly) securely evaluate an algebraic circuit,
the parties share their input with Shamir secret sharing. Then, linear combinations can be
homomorphically evaluated ‘for free’ via local computation on the shares so that additions
can be performed repeatedly any number of times. Multiplications can also be performed,
however, multiplying two shared values results in a value shared according to Shamir with
the doubled degree. This limits the depth of a circuit computable with (even) 1-privacy
if we require that the only communication round will be sending shares for the final
reconstruction. This idea transfers to PIR, where inputs come from a single party, so they
may also be conveniently preprocessed by it via arbitrarily complex functions (which is not
always possible for inputs distributed among multiple parties). For instance, for 3-server
PIR, degree-2 polynomials can be locally evaluated if Shamir secret sharing was used. As
degree-2 polynomials (over a field) in n variables have non-trivially high VC dimension
(n2), this allows for encoding each input via a vector of O(2n/2) entries and using the
appropriate share conversion. For k-server PIR, different kinds of share conversion may
enable us to evaluate a family of shallow circuits that both have high VC dimension and
suitable secret sharing with share conversion, allowing us to locally evaluate them. In
particular, note that a share conversion for a suitable relation, rather than a function suffice
to evaluate circuits of that type.

1.3. BIKO Framework

In [13], Beimel, Ishai, Kushilevitz, and Orlov (BIKO) interpret the state of the art
3-server PIR schemes as using share conversion from a (variant) of Shamir secret shar-
ing over a certain ring Rm for small composite m, applied to circuits stemming from MV
codes [30] {u1, . . . , uh}, {v1, . . . , uh} with a bounded set S ∪ {0} of < ui, uj > values, for



Entropy 2022, 24, 497 4 of 38

some S ⊆ Zm \ {0}. It has the property that < ui, vi >= 0, while < uj, vi > for j 6= i
is in S. We refer to such codes as S-bounded MV codes. They manage to get improved
complexity of the resulting PIR, by using conversions from CNF secret sharing rather than
from Shamir over certain small Rm, for which a conversion from Shamir for that relation
does not exist (the (t, k)-CNF is a threshold secret sharing scheme introduced in [31]; see
Section 2.2 for a detailed description). Specifically, they obtained conversions from (2, 3)-
CNF over Zm to the additive secret sharing scheme over Zβ

p for the following relation

CS =
{
(0, s′)|s′ ∈ Zβ

p \ {0}
}
∪
{
(s, 0)|s ∈ S \ {0}

}
∪
(
Zm \

{
S ∪ {0}

})
×Zβ

p. They work

with the so-called canonical set S = Sm =
{

x ∈ Zm|∀i x is either 0 or 1 modpei
i

}
\
{

0
}

,

where m = ∏k
i=1 pei

i is the decomposition of m into prime factors. This is a useful choice,
due to the existence of good Sm-bounded MV codes over composite moduli m. Their
approach is motivated by the existence of conversions for CNF to additive (roughly, that
CNF can be converted to “any” scheme, and any scheme can be converted to additive), they
use Sh1 as CNF over a certain ring, and Sh2 as additive over another ring. This relation
(although not a function) suffices to evaluate the required type of circuits, arising from the
MV family. There is a potential tradeoff here between the best MV codes that exist over a
certain ring R, and the size (more generally, the identity) of the set S that can be achieved.
On a high level:

1. The smaller S is, the easier it is to find a suitable share conversion (required to evaluate
functions in the circuit family induced by the MV code).

2. The larger S is, the easier it is to find an MV code resulting in a family of circuits with
high VC dimension. The communication complexity of the resulting PIR decreases
with the VC dimension of the set (and eventually, the size of the shallow circuit
to evaluate).

The concrete parameters of both constructions used so far for 3-server PIR (in their
most efficient variants) follow from the following Theorem 7, and instantiations of it via
known constructions of MV codes and share conversion schemes.

On a very high level, these PIR protocols consist of three steps and is shown in
Construction 1.

Construction 1: BIKO Framework [13]

1 Let f : {0, 1}log(n) → {0, 1} denote the server’s database. The client preprocesses
its input x ∈ {0, 1}log(n) into a vector vx ∈ Rh for a (constant) ring R, where
{vx}x is a set of vectors of an S-bounded MV code. It shares the vector
coordinate-wise among the k servers via some (2, k)-private secret sharing
scheme Sh1 (so no single server learns anything about the secret).

2 The servers use linear homomorphism properties of Sh1, Sh2, which are
homomorphic over certain finite groups, to locally evaluate (an encoding of) f on
the shared v. More concretely,

f (v) = ∑
{i| f (i)=1}

fi(v)

where fi(v) =< ui, v >. In some more detail, each < ui, v > uses linear
homomorphism of Sh1, then a share conversion from Sh1 to Sh2 relatively to CS,
applied to each share of fi(v), and finally linear homomorphism of Sh2 is applied
to evaluate ∑i fi(v) on the resulting shares. The share conversion is required to
transform < vi, v > for vi = v into a non-zero value, and < uj, v > for vj 6= v into
0’s, making the sum non-zero iff. f (v) = 1. Then each server sends its share to
the client.

3 The client recovers the output using linear homomorphism of Sh2, and
post-processing the value.
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The correctness of the scheme is easy to verify.
For a 3-server PIR, Ref. [13] provides the technique for the constructing the conversion

(it such a conversion exists) from (2,3)-CNF to the additive secret sharing and obtains
results for some special cases. Utilizing the results of Beimel et al., Paskin-Cherniavsky
and Schmerler in [32] proved that there is a share conversion from (2,3)-CNF over Zm to
3-additive secret sharing over Zp, if m = p1 p2, for distinct odd primes p1 and p2, one of
which is equal to p. Thereby they found infinitely many cases when conversion falling into
the BIKO framework exists.

Theorem 1 ([13,32]). Let m = p1 · p2, where p1, p2 are distinct primes, and p is a prime. Then,
there exists a share conversion from (2, 3)-CNF to additive over Zβ

p for the relation CSm for some β
in the following cases:

1. p1, p2 6= 2, and p ∈ {p1, p2}
2. p1 = 2, p2 ∈ {3, 5, 7} and p = 2.

For other cases of m = p1 · p2 and p, however, the existence of the conversion was
neither confirmed nor disproved. The constant β in Theorem 1 seems to grow with m, but
due to the techniques used, it has not been proven for any infinite family of parameters.

Remark 1. However, not all the 3rd generation information-theoretic PIR protocols fall into the
BIKO framework. For instance, the work of [14] could be viewed as a certain generalization of
it. This beautiful work surprisingly manages to carry over "3rd generation" PIR communication
complexity previously achieved for 3 or more servers, to the 2-server setting, resolving a long
standing open problem, thereby illustrating the limitations of the BIKO framework, providing
evidence that generalizing it in certain directions can be instrumental in the context of PIR. In
some more detail, [14]’s PIR has a bilinear, rather than linear reconstruction in Sh2, and the step
corresponding to share conversion can not be cleanly viewed as a share conversion from Sh1 to
Sh2 according to CS (or in fact any) relation. In particular, the client essentially uses a 2-out-of-3
sharing scheme to make the share conversion work, with himself holding one of the shares.

1.4. Our Contribution
Obtaining another infinite class of conversions from (2,3)-CNF.

Following the BIKO framework [13] and utilizing some results of [32], we prove that:

Theorem 2 (Main result, informal).

• There exists a share conversion from (2,3)-CNF over Z2q to 3-additive secret-sharing scheme

over Z(q−1)(q−2)
2 for any odd prime q.

• There is no conversion from (2,3)-CNF over Z2q to Zβ
p for any odd primes q and p (including

the case q = p) and any β > 0.

In this way, we prove the existence of the conversion for infinitely many cases, and
also for infinitely many cases we prove a conversion does not exist. Together with [32] for
m’s which are products of two primes, it leaves open only the question of the conversion in
the case when m = p1 p2, where p1 and p2 are both odd and not equal to p.

Note also that for considered cases, we managed to compute the parameter β which
determines the server’s response size. We prove that β in Theorem 7 is indeed the best for
m = 6 among m = p1 p2 where p1 = 2. More concretely, one of our contributions is the
precise value of β for share conversion with respect to relation CS2q . Previous techniques
did not allow to compute β, as they traded generality that could allow computing β for
some additional simplicity—using a single row in M 6≡ to understand the rank difference
β = rank(M≡, 6≡)− rank(M≡).
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Computing and improving server reply size.

Another somewhat surprising observation we made is that we may sometimes increase
S beyond Sm so that a conversion from (2, 3)-CNF over Zm to Zβ

q (for the same m, q as before)
still exists. This may have two possible implications. A direct implication that we observed
experimentally for several values of m, is that the rank difference β sometimes goes down,
but not all the way to 0. Thus, if the share conversion still exists, as follows from the
BIKO technique, β may decrease, leading to the reduced size of the server’s response. We
checked this fact for some small m’s by computer search and obtained positive results,
which is presented in Section 4. Indeed, we obtained smaller β supplementing Sm up
to S′m by additional values. We informally sum the result of the computer search in the
following theorem.

Theorem 3. There exists a share conversion from (2,3)-CNF over Zm to 3-additive secret-sharing
scheme over Zβ′

p with respect to the relation CS′m , refining β, where:

• m = 14, p = 2, S′m = Sm ∪ {3} and S′m = Sm ∪ {5}, β = 30, β′ = 6;
• m = 15, p = 3, S′m = Sm ∪ {11} β = 24, β′ = 12;
• m = 21, p = 3, S′m = Sm ∪ {8}, β = 60, β′ = 30;
• m = 33, p = 3, S′m = Sm ∪ {23}, β = 180, β′ = 90;
• m = 15, p = 5, S′m = Sm ∪ (any non-empty subset of {4, 7, 13}), β = 8, β′ = 2;
• m = 35, p = 5, S′m = Sm ∪ (any non-empty subset of {8, 22, 29}), β = 120, β′ = 30;
• m = 21, p = 7, S′m = Sm ∪ (any non-empty subset of {4, 10, 13, 16, 19}), β = 12, β′ = 2;
• m = 35, p = 7, S′m = Sm ∪ (any non-empty subset of {6, 11, 16, 26, 31}), β = 72, β′ = 12.

This result may also be viewed as evidence that canonical sets Sm for m with a larger
number r of prime factors may potentially have share conversions for CSm for (significantly)
smaller than 2r − 1 number of servers (as we have conversions for 2r − 1 servers but S
larger than Sm, where the resulting linear system has much more rows than columns). This
direction is interesting to explore, initiating a systematic search for share conversions with
server sets as small as possible, resulting in PIR with share complexity polynomial in MV
codeword length for m which is a factor of r primes.

In addition to our two main contributions, we identify a few minor errors in [13,32].
Nevertheless, these errors do not affect the correctness of any of their main contributions.

• We recalculated some computer search results of [13] (BIKO) as they come in contradic-
tion with the theoretical result of Paskin-Cherniavsky and Schmerler. In particular, [13]
showed the absence of the conversion for m = 35, p = 7, while [32] proved that the
conversion for this case exists. In addition, we obtained numerical results for cases
m = 22, 26, 33 which were not considered in BIKO. Our numerical results given in
Section 4 confirm both our theoretical result for p1 = 2 and the conclusion of [32].

• We corrected some calculation mistakes made in previous work [32]. The corrigenda
are shown in Appendix A.

1.5. Instantiations of BIKO and Future Directions of Our Work

Almost all third-generation PIR protocols falling in a BIKO framework, utilize the
conversion from Shamir secret sharing instead of CNF. The existence of the conversion
from Shamir secret sharing scheme implies the existence of conversion from CNF, but not
vice versa [13].

The following theorem by V. Grolmusz generalizes a similar instance of the theorem
for 3-servers in [13], to put our work in a broader context. It states the size of the MV
families depending on the constant m which has an impact on the complexity of the PIR
protocols based on them.
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Theorem 4 ([30]). Let m = ∏r
i=1 pi where the pi’s are distinct constant primes, and r > 1 is

constant. Then there exists an MV code family C ⊆ Zh
m of size |C| = exp

(
c logr(h)

log log(h)(r−1)

)
which

is Sm-bounded. Here c ≤ p−r
r , where pr is the largest prime.

In fact, the construction in Theorem 4 generalizes to any m with r distinct prime divisors.
Next, we outline some parameters for which suitable share conversions leading to (3rd

generation) PIR via the BIKO framework and MV codes from Theorem 4 exist. Note that
Theorems 5 and 6 were initially stated in terms of conversion from Shamir secret sharing,
but a corresponding conversion from CNF is implied.

Theorem 5 ([11,26]). For each r ≥ 2, there exists a number m with r distinct prime divisors
p1 ≤ . . . ≤ pr, with pr ≥ 73, for which there exists a share conversion from (2, 3/4 · 2r)-CNF over
Zm to 3/4 · 2r-additive over Zβ

2 for some β < m, and relation CSm . Furthermore, such a conversion
exists for every m of the form 2t − 1 with r distinct prime divisors, if the number of parties, 3/4 · 2r,
is replaced by 2r.

In a nutshell, the above result is obtained by [26] via a composition technique applied
to [11]’s result for 3-server and 2r-server PIR. The reduction in the number of parties from
2r to 3/4 · 2r for m with r prime distinct divisors follows from the (somewhat surprising)
3-party conversion for r = 2 and m = 73 · 7.

In [23], the authors found 50 additional such 3-party conversions for m = p1 · p2
(which need to satisfy a certain condition), leading to further improvements in the number
of parties as a function of r. Note, that for all m found in [23], pr ≥ 73 are large, so the
constant in Theorem 1 grows fast with r.

Theorem 6 ([23]). For each r ≥ 104, there exists a share conversion from (2, (3/4)51 · 2r)-CNF
over Zm to (3/4)51 · 2r-additive over Zβ

2 for some β < m, and relation CSm . For each r < 104,
there exists a share conversion from (2, 3dr/2e)-CNF over Zm to 3dr/2e-additive over Zβ

2 for some
β < m, and relation CSm .

Note that for the above instantiations, “descending” from [11], m must be odd.

Theorem 7 (Implicit in [13]). Let m ∈ N, {0} ⊆ S ⊆ Zm, and C an S-bounded MV code family
{Ch} of vectors in Zh

m. Assume also there exists share conversion from (2, k)-CNF over Zm to Zβ
p

for some constant β, for the relation CS. Then there exists a k-server PIR family for databases of size
n = |Ch| with client’s message of size dh log(m)e and server’s message of size dβ log pe.

From Theorems 6 and 7 follows

Corollary 7. Let r ≥ 3. Then there exists some m = ∏r
i=1 pei

i where p1 < . . . < pr are primes
where m|(2β − 1) for some β. Then a 3/4 · 2r-server PIR with client communication complexity
of O(22pr ·log1/r(n) log log1−1/r(n)) and (each) server’s communication complexity β log(p), for some
β ≤ m exists. For r ≥ 104, this improves to (3/4)512r servers, and 3dr/2e servers for r < 104.

We note that among the known m’s in the Corollary above for r = 2, pr ≥ 73 and
grows particularly fast with r for r ≥ 104 if (3/4)512r servers (instead of 3/4 · 2r) exist.

Instantiating Theorem 7 with Theorem 4 for MV-code construction, and either Theorem 1,

we obtain the best known concrete efficiency of 3-server PIR, with 26
√

log(n) log log(n) commu-
nication complexity. On the other hand, for more than polynomially improved communica-
tion complexity and a larger number of servers, the best result is obtained by instantiating
the share conversion via Theorem 5.

Our concrete result does not improve communication complexity for 3-server PIR,
which is essentially optimal for conversion from Z6 by [13] as stated in Theorem 1. However,
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the technical tools developed may help understand the existence of share conversions for
even m with a larger number of prime factors, with better the communication complexity
of PIR and the larger number of servers. Due to the generality of BIKO’s framework,
converting from CNF, one could hopefully get improved efficiency of communication com-
plexity relatively to the number of servers. In particular, as noted above, the instantiation
of BIKO as in [11] does not yield PIR protocols with even m, and the known values of
m have large maximal factors and lead to PIR with high constants in the exponent. By
a direct corollary from Theorems 4 and 5 similar to Corollary 7, we get a 6-server PIR
with communication complexity O

(
2146·log1/3(n) log log2/3(n)

)
. Using the BIKO framework

instantiated Theorem 5—the ‘furthermore’ part, for 8-server PIR we obtain a complexity
of O

(
234·log1/3(n) log log2/3(n)

)
, by using m = 255 = 3 · 5 · 17 = 28 − 1, and instantiating

Theorem 4 with m = 255. Thus, as far as we know, no PIR with complexity better than
O
(

2146·log1/3(n) log log2/3(n)
)

(best known 6-server PIR) exists for 7 servers. We conjecture
that a 7-server PIR with much improved constants exists, by using share conversion from
(2, 7)-CNF with parameters generalizing the conversions we obtained for m = 2 · p2.

Conjecture 1. A share conversion from (2, 7)-CNF over Z30 to Zβ
2 for some constant β exists,

implying a 7-server PIR for O
(

210·log1/3(n) log log2/3(n)
)

.

We hope to be able to verify the conjecture more easily by generalizing the insights
we have for the existence of a share conversion for m = 2 · p2 to a share conversion to
m = 2 · 15 (more generally, for 2 · c for some composite c), and the fact that in this case of
p1, the analysis turned out to be rather simple. Another reason to hope we can manage
with 7 servers is that M≡ is in that case, has a form similar to the 3-server case considered
in present work (unless, for example, 6-server case). See Section 1.6 for more details.

A broader goal is improving the number of servers one can tolerate for PIR with CC
corresponding to MV codes over Zm with r prime factors. While [26] show how to achieve
(3/4)512r servers for an infinite number of r’s and corresponding m’s, and 3r/2-server PIR
for finitely many r’s, it would be interesting to improve Theorem 6 to get share conversion
for 3r/2-server PIR for all r. Our hope is to devise a composition theorem along the lines
of [26], composing ‘gadgets’ of conversions from (2, 3)-CNF over Zm for coprime composite
m’s. As we already have such conversions for infinitely many pairwise coprime m’s via
Theorem 1, we only need a suitable composition theorem. In fact, it is not hard to show,
that if we had conversions for coprime m1, m2 respectively, both to Zβ

p for the same p, say

Zβ
2 , we would obtain the result. In particular, it is strictly easier to prove the existence of

conversion from Zp1 p2 to Zβ
2 for some β depending on p1, p2 for infinitely many coprime

p2i+1 · p2i+2’s (as the 51 known cases based on Mersenne-style primes in [26] are a special
case). To summarize, to complete this direction, we only need to find a conversion from
(2, 3)-CNF over Zmi to Zβi

2 for infinitely many coprimes mi’s of the form mi = p1 · p2 where
p1, p2 are distinct primes. This seems to require only moderate extension on the (linear
algebraic) toolbox conversions from (2, 3)-CNF that has been laid out in the seminal work
of [13] and subsequently in [32].

A more ambitious still direction (which we expect to be more technically involved)
is expected to lead to dramatic improvements in the number of servers, bringing it down
from exponential to linear in r. It relies on the following composition lemma, which is not
hard to prove (see full version for details).

Lemma 1. Let m1 = 2m′1, m2 = 2m′2, where m′1, m′2 > 1 are odd coprime integers. Assume there
exists a share conversion from (2, k)-CNF over Zm1 to (t1, k)-CNF over Zβ1

2 for the relation Sm1

(and an analogous conversion exists for m2). Then there exists a share conversion from (2, k)-CNF
over Z2m′1m′2

to (t1 + t2 + 1, k)-CNF over Zmax(β1,β2)
2 for CS2m′1m′2

.
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Remark 2. More generally, slightly optimizing parameters, relatively to iteratively applying
Lemma 1 for two mi’s, for any r ≥ 2, and m1, . . . , mr as above, we obtain a share conversion from
(2, k)-CNF over Z2 ∏r

i=1 m′i
to (1 + ∑r

i=1 ti, k)-CNF over Zmax(β1,...,βr)
2 for the relations CS2 ∏r

i=1 m′i
.

Assume a conversion generalizing our result from Theorem A1 for 3 servers to more
servers, while keeping the conversion to a scheme (t, k)-CNF for sufficiently small t. Such
a scheme has enough redundancy to support multiplications over the resulting field F2β

unlike (k, k)-additive, which has none (if needed, the field characteristic 2 may be replaced
with some other prime, generalizing Theorem 1 instead). Then we can obtain PIR with
linear server complexity k = O(r), using Theorem 4, and applying Lemma 1 r− 1 times.
More precisely, we have:

Corollary 7. Assume there exists a (global) constant t, such that for all sufficiently large k, the
following holds. For infinitely many mi’s of the form mi = 2pi where all pi are odd distinct primes,
there exists a share conversion from (2, k)-CNF to (t, k)-CNF over Zβi

2 for the relation Cmi . Then, for
all sufficiently large r, there exists a k = t(r− 1) + 1-server PIR with communication complexity
2O(log1/r(n) log log1−1/r(n)).

1.6. Our Techniques

As described above, one of the main contributions of [13] was an instantiation of
the framework for designing PIR protocols, which reduces the question of the existence
of a three-server PIR protocol to the existence of a share conversion for certain parame-
ters p1, p2, p, and certain linear sharing schemes over Abelian rings R, R′ determined by
the parameters.

BIKO provides the criteria of the share conversion existence in the case when m = p1 p2
for distinct primes p1 and p2 and the set Sm = {s1, s2, 1}, where s1 mod p1 = 0, s1
mod p2 = 1, s2 mod p1 = 1, s2 mod p2 = 0. Namely, they prove that for such m and
Sm, the share conversion from (2,3)-CNF over Zm to 3-additive scheme over Zβ

p exists if
and only if rank(M≡, 6≡)− rank(M≡) = β > 0, where the rank is computed over Fp. The
matrices M≡ and M≡, 6≡ are matrices over Zp with 3m2 columns and 3m2 and 4m2 rows
respectively which are constructed from some specific system of equations and inequalities.
Beimel et al. in [13] did not provide the general solution for this system; however, they
proved existence and nonexistence of the conversion for some special cases.

While the solvability of a system can be verified efficiently for a concrete instance, it
does not provide a simple condition for characterizing triples (p1, p2, p) for which solutions
exist. Moreover, the size of the matrix M≡, 6≡ in this system is 4m2 × 3m2 which makes
the numerical solution for big m’s heavy in practice (though asymptotically efficient).
Before [32], where the solvability of the system for the case odd primes p1 and p2, if one of
them equals to p was proven, even the question of whether an infinite set of such triples
exists remained open.

Our concrete goal in this work is to better understand the case of m = p1 p2, motivated
by understanding the technical foundations of the broader problem for m which is a
product of r > 2 distinct primes (see Section 1.5 for details). We proceed using the
BIKO characterization above. Concretely, for parameters m = p1 p2 and p, this reduces
to calculating the quantity rank(M≡, 6≡) − rank(M≡) = β, where the rank is computed
over Zp.

In [32], the case p1 = p for odd p1 and p2 was explored. To simplify the technical
task, the authors of [32] rely on the observation from [13] that β > 0 iff M≡ does not span
v 6≡ for any row v 6≡ of M 6≡. Thus, they replace M 6≡ with some v 6≡ as above, and work with
that (forgoing the goal of understanding the particular value of β). Then, they proceed
by bringing the matrix M≡, 6≡ to a more convenient form by performing a sequence of
carefully tailored elimination steps on the rows of the matrix M≡, 6≡. The sequence of
eliminations is based on a observing a 3-leveled structure of the matrix of the matrix M≡, 6≡,
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and working on blocks of decreasing coarseness as the elimination process progresses.
It also involves a change of basis at some point, to make the matrix’s structure nicer for
understanding. That is, rewriting the matrix so that the set of columns corresponds to
a new basis—here we even manage to get fewer vectors in, as it suffices to include a set
of vectors which is guaranteed to span M≡, 6≡. However, the resulting matrix after that
process remains too complex to check whether β > 0 for all parameters. The analysis up
to that point (resulting in some matrix Ainter = (A′inter, v′6≡) to analyze) is oblivious to the
particular parameters except for not looking at even m (not because it was particularly
hard, but rather out of a decision to limit the scope of the paper at what was already
achieved). To obtain their partial result for some of the parameters, the authors then
reduce the matrix’s rows modulo a certain vector subspace (formally, multiplied it from
the right by a certain square matrix L with non-trivial left kernel). Clearly, it holds that
if rank(AinterL)− rank(A′L) > 0, then rank(Ainter)− rank(A′) > 0 as well (implying the
existence of a share conversion), but not necessarily the other way around. The matrix
AinterL turns out to be sufficiently simple to analyze, and for p which is either p1 or
p2, the resulting rank difference is non-zero. However, we do not yet understand other
parameters, for which rank(Ainter)− rank(A′) = 0, or the case of even m. Also, due to
the first simplification, the concrete value of β is not found, and thus the concrete answer
complexity of the resulting PIR as implied by Theorem 8 remains unknown.

Our current paper considers the case where p1 = 2. We proceed by a quite straight-
forward generalization of [32]’s elimination process up until producing the matrix Ainter,
except that we do not make the simplification of keeping a single row out of M 6≡, but rather
keep the entire matrix. The main divergence from [32] is that we do not perform the reduc-
tion modulo a subspace, but are able to directly check whether rank(Ainter)− rank(A′) > 0,
and furthermore to compute the exact value of β. This is made possible, as the case where
p1 = 2 turns out to be particularly simple, and we managed to successfully analyze it
directly (for all p2, p). The other cases (when m is odd, and p is not equal to p1 or p2)
remain open.

2. Preliminaries
2.1. Some Notation

Parameters of the secret sharing schemes. Throughout this paper, we fix the notation
for p1, p2 and p being prime numbers such that p1 6= p2, and m = p1 · p2 are the parameters
of the secret sharing schemes and conversion. Later, considering the corner case p1 = 2 in
Section 3.4, we introduce the odd prime number q to set p2 = q.

Matrices and block-matrices. In this paper, we will consider matrices and block-
matrices over a finite field F = Zp. Those matrices are defined for 3 levels. The level-2
(“big”) block-matrices we denote by letter A with correspondent indexes. The elements of
level-2 matrices are level-1 block-matrices which we denote by the letter R with a lower
index equal to the upper index of its “host” A. The level-0 “small” matrices are square
matrices, initially having the size m×m. For them, we use distinct letters.

For entry i, j of some matrix X, we use the standard notation of X[i, j]. Addressing the
elements of level-2 and level-1 matrices, we address their blocks. Such, A1[i, j] denotes the
block in the ith row and jth column of A1. For level-0 matrices, we address the particular
elements of this matrix. More generally, for a matrix X ∈ Fu×v, for the subsets R ⊆ [v] of
rows and C ⊆ [u] of columns, X[R, C] denotes the sub-matrix with rows (or block-rows)
restricted to R and columns (or block-columns) restricted to C. Those rows and columns
are ordered in the original order in X. As special cases, using a single index i instead of
R (C) refers to a single row (column). A “·” instead of R (C) stands for [u] ([v]). Most of
the time, index arithmetic will be done modulo the matrices’ number of (block-)rows and
columns (we will however state this explicitly).

When we consider the case p1 = 2 in Section 3.4, the level-1 matrices Ri
j’s are quite

small and have only 2 level-0 blocks. Therefore, we omit the level-1 and address to level-0
blocks as to the entries of level-2 matrices A(k),`.
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Some concrete matrices and vectors. By the letter I, we denote the m× m identity
matrix. If the identity matrix has a different size, we write this size down in the lower
index. For instance, Iq is a q× q identity matrix. By ab×c we denote a b× c matrix with all
elements equal to a. In case when a = 0 and the size of this zero-block is clear from the
context, we omit b× c and write 0 instead of 0b×c. By ab we denote the row of a’s of the
length b. For example, 1m means the m-long string of 1’s.

By ei we denote the unity vector. The length of this vector is, as a rule, clear from the
context, or it is specified in the accompanying text. The lower index specifies the position of
1 in this vector. In Section 2.5 and subsequently in Section 3.2, when we construct matrices
in the basis B = B1 ∪ B2, the unity vectors have double indexes eb,c. As explained in
Section 2.5, there is the telescopic indexing system, and this double index points to the
single position in the vector.

Concatenation and circular shifts over matrices. For matrices X, Y with the same
number of columns, (X; Y) denotes the matrix comprised by concatenating Y below X. For
matrices X, Y with the same number of rows, we denote by (X|Y) the matrix obtained by
concatenating Y to the right of X.

In Section 3.4, we obtain the set of circularly shifted matrices. By X<<k we denote the
matrix X with the circular left shift by k positions.

2.2. Secret Sharing Schemes

A secret sharing scheme is defined by pair of algorithms Sh = (Share,Dec). The ran-
domized algorithm Share randomly splits a secret message s ∈ S into an n-tuple of shares,
(s1, . . . , sn). The deterministic algorithm Dec reconstructs s from some allowed (qualified)
subset of the shares. The set of all the qualified sets is called an access structure of the
secret-sharing scheme. We say that Sh is t-private, and has a threshold access structure if
any t shares jointly reveal no information about the secret s.

We say that Sh is linear over some finite Abelian ring G if S ⊆ G and each share si is
obtained by applying a linear function over G to the vector (s, r1, . . . , r`) ∈ G`+1, where
r1,. . . , r` are random and independent elements of G. A useful property of such schemes
is that they allow evaluating locally linear functions of the shares such that additions and
multiplications by the constant from G. In this work, we consider two types of linear secret
sharing schemes:

• Additive secret sharing: the algorithm Share splits s ∈ G into n random ring elements
that add up to s; the algorithm Dec reconstructs s by adding up all the shares. This
scheme is (n− 1)-private. Within the limits of this work, we consider a 3-additive
scheme, where n = 3.

• CNF secret sharing: the algorithm Share first splits s ∈ G into (n
t) additive shares sT ,

each labeled by a distinct set T ∈ ([n]t ), and then lets each share si be the subset of sT
apart from i ∈ T. For (2,3)-CNF we consider in this work, each of 3 parties obtains 2
additive shares out of 3, such that if additive shares of s are (a, b, c), then s1 = (b, c),
s2 = (a, c), and s3 = (a, b). This scheme is 1-private, as any two parties can sum their
shares up to calculate the secret s.

See [33] for a survey on secret sharing.

2.3. Share Conversion

We recall the definition of (generalized) share conversion schemes as considered in our
paper. Our definition is exactly the definition in [13], in turn, adopted from previous work.

Definition 1 ([13]). Let Sh1 and Sh2 be two n-party secret-sharing schemes over the domains of
secrets S1 and S2, respectively, and let C ⊆ S1 × S2 be a relation such that, for every a ∈ S1, there
exists at least one b ∈ S2 such that (a, b) ∈ C. A share conversion scheme convert(s1, . . . , sn)
from Sh1 to Sh2 with respect to relation C is specified by (deterministic) local conversion functions
g1, . . . , gn such that: If (s1, . . . sn) is a valid sharing for some secret s in Sh1, then g1(s1), . . . gn(sn)
is a valid sharing for some secret s′ in Sh2 such that (s, s′) ∈ C.
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For a pair of Abelian groups G1, G2 (When G1, G2 are rings, we consider G1, G2 as
groups with respect to the “+′′ operation of the rings), we define the relation CS as in [13].

Definition 2 (The relation CS [13]). Let G1 and G2 be finite Abelian groups, and let S ⊆ G1 \ {0}.
The relation CS converts s = 0 ∈ G1 to any nonzero s′ ∈ G2 and every s ∈ S to s′ = 0. There is no
requirement when s /∈ S ∪ 0. Formally,

CS = {(s, 0)|s ∈ S} ∪
{
(0, s′) : s′ ∈ G2 \ {0}

}
∪
{
(s, s′)|s /∈ S ∪ {0}, s′ ∈ G2

}
Given m = p1 · p2, where p1 6= p2 are primes and p is a prime, we consider pairs of

rings G1 = Zm, G2 = Zβ
p. We denote the set a relation CSm in this work is built with as

Sm = {x ∈ G1|∀i ∈ [2], x mod pi ∈ {0, 1}} \ {0}. I.e., Sm = {(0, 1)Zm , (1, 0)Zm , (1, 1)Zm},
where (a, b)Zm means the element of Zm which has the remainder a modulo p1, and b
modulo p2. For S = Sm, we refer to Sm as the canonical relation for Zm.

2.4. The Characterization of BIKO.

In Beimel et al. [13], Sh1 is a 3-additive secret sharing scheme over Zm, and Sh2 is
(2,3)-CNF sharing over Zβ

p. The conversion with respect to relation CSm from Sh1 to Sh2 is
considered. In [13], is proven that such a conversion exists iff a certain condition is satisfied
by the matrix M≡, 6≡ over Zp.

In matrix M≡, 6≡, the rows are indexed by triples (a, b, c) ∈ Z3
m, corresponding to (2, 3)-

CNF sharings of some s ∈ Sm ∪ {0}. The rows corresponding to s 6= 0 (i.e., to s ∈ Sm)
form the upper part of the matrix, denoted by M≡, and the rows corresponding to s = 0
form the lower part, denoted by M 6≡. In this way, M≡, 6≡ = (M≡; M 6≡). The columns of
M≡, 6≡ are indexed by values in [3]× Zm × Zm. Intuitively, an index (i, x, y) of a column
corresponds to share si (of ith server) of the (2, 3)-CNF scheme being equal to (x, y). Rows
are indexes by triples (a, b, c) = (s− b− c, b, c). There are m possible values for a, b and c,
and 4 possible values for s. For a given b and c, and for a given s there is only one possible
value of s− b− c, hence we replace the first index by simply s, and the matrix has 4m2

rows. The row indexed by (s, b, c) has 1 in the column (i, x, y), if the 3-additive shares
(s− b− c, b, c) are agree with CNF-shares, and 0 otherwise. Thus, there are 1’s in cells
[(s, b, c); (1, b, c)], [(s, b, c); (2, s− b− c, c)] and [(s, b, c); (3, s− b− c, b)], and 0’s elsewhere
in this row.

The work in [13] provided a quantitative lower bound on β, depending on the degree
difference between M≡ and M 6≡.

Theorem 8 (Theorem 4.5 [13]). Let β = rankFp(M≡, 6≡)− rankFp(M≡). Then, we have:

• If β = 0, then there is no conversion from (2, 3)-CNF sharing over Zm to additive sharing
over Zκ

p with respect to CSm , for every κ > 0.
• If β > 0, then there is a conversion from (2, 3)-CNF sharing over Zm to additive sharing over

Zβ
p with respect to CSm . Furthermore, in this case, every row v of M 6≡ is not spanned by the

rows of M≡.

Theorem 8 provides a full characterization via a condition that given (p1, p2, p) can
be verified in polynomial time in (p1, p2, log(p)). More precisely, the size of our matrix
M≡, 6≡ is 4m2 × 3m2, so verifying the condition amounts to solving a set of linear equations,
which naïvely takes about O(m6) time, or slightly better using improved algorithms for
matrix multiplication, and the running time cannot be better than Ω̃(m4) using generic
matrix multiplication algorithms. Thus, the complexity of verification grows very fast with
m, becoming essentially infeasible for p1, p2 circa 50.
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2.5. Our Starting Point—The Result of Paskin-Cherniavsky and Schmerler

The work [32] is made within BIKO’s setting. Starting with the matrix M≡, 6≡ they
performed the sequence of elimination steps, according to the following lemma.

Lemma 2. Let A denote a matrix in Zv×u
p , and let b = A[v, [u]]. Let I1 ⊆ [v − 1], I2 ⊆ [u]

denote non-empty sets of rows and columns, respectively. A′ is obtained from A by a sequence
of row operations on A, so that A′[I1, I2] is a basis of A′[[v], I2], and the rest of the rows in
A′[I1, I2] are zero. Let b′ = A′[v, [u]]. Then, Rows(A′[[v] \ I1, [u] \ I2]) span b′[[u] \ I2] iff
Rows(A[[v− 1], [u]]) span b.

In fact, the result of [32] is the proof of the existence of the conversion for finite rings
G1 = Zp1 p2 to G2 = Zβ

p1 with distinct odd p1 and p2, for which it was enough to prove
that the first row of M 6≡ is not spanned by M≡. Therefore, the matrix considered in [32]
contained the full matrix M≡ and the single row from M 6≡. (As in our work we solve the
problem for 2 sets of parameters proving both positive and negative results, we consider
the full M≡, 6≡ matrix.) After two elimination steps which cut the matrix M≡ to m + m2

rows, and the permutation of columns, they introduced a new basis B = B1 ∪ B2, where

B1 =
{
−eb,i + eb,i+1 | b ∈ Zm, i ∈ {0, ..., p2 − 2}},

B2 =
{

eb,i+j·(1,0)Zm
− eb,i+(j+1)·(1,0)Zm

| b ∈ Zm, i ∈ Zp2 , j ∈ Zp1 \ {p1 − 1}
}

,
(1)

where ex,y is a vector of length m2 having 1 in the position indexed by (x, y) and 0’s
elsewhere. Indexes x and y are taken modulo m.

In this new basis, the matrix M≡, 6≡ has the block structure and is separated into 3
“types” (layers): Type-1 and Type-2 layers compose M≡, and Type-3 is M 6≡ after several elim-
ination steps and basis change. For the Type-1 matrix, the basic block is the m-component
vector (1, . . . , 1) and p1 × (p1 − 1) block matrices R2

1 and R3
1 made from m-long vectors:

R2
1 =

0 1 · · · p1 − 3 p1 − 2
0




1 (1, . . . , 1)
2 (1, . . . , 1) (1, . . . , 1)
... (1, . . . , 1) (1, . . . , 1)

. . .
p1 − 2 (1, . . . , 1) (1, . . . , 1) · · · (1, . . . , 1)
p1 − 1 (1, . . . , 1) (1, . . . , 1) · · · (1, . . . , 1) (1, . . . , 1)

, (2)

R3
1 =

0 · · · (p2 − 1) mod p1 · · · p1 − 2
0 

(1, ..., 1) · · · (1, ..., 1) (1, ..., 1) 

...
...

...
...

. . .
−p2 mod p1 (1, ..., 1) · · · (1, ..., 1) (1, ..., 1) (1, ..., 1)

(1, ..., 1)
...

...
. . .

p1 − 1 (1, ..., 1) · · · (1, ..., 1)

. (3)

Basic m×m blocks of Type-2 are identity matrix I, and

T2 =

0 · · · (1, 0)Zm − 2 (1, 0)Zm − 1 (1, 0)Zm · · · m− 1
0


1 · · · 1 1

1 · · · 1 1
...

. . . . . . . . . . . .
m− 1 1 · · · 1 1

. (4)
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Bigger blocks composed from them have the size p1 × (p1 − 1) “small” m×m blocks:

R1
2 =

0 1 · · · p1 − 2
0


I


1 I
...

. . .
p1 − 2 I
p1 − 1 −I −I · · · −I

; (5)

R2
2 =

0 1 · · · p1 − 3 p1 − 2
0




1 T2
2 T2 T2
... T2 T2

. . .
p1 − 2 T2 T2 · · · T2
p1 − 1 T2 T2 · · · T2 T2

; (6)

R3
2 =

0 · · · (p2 − 1) mod p1 p2 mod p1 · · · p1 − 2
0



T2 · · · T2 T2


1 T2 · · · T2 T2 T2
...

...
...

...
...

. . .
−p2 mod p1 T2 · · · T2 T2 T2 T2

T2
...

...
. . .

p1 − 1 T2 · · · T2

; (7)

R4
2 =

0 1 · · · p1 − 2
0


I


1 −I I
...

...
. . .

p1 − 2 −I I
p1 − 1 −2I −I · · · −I

. (8)

The matrix M≡ is brought to the form (A1; A2), where each of matrices A1 and A2 are
block matrices having the left and right parts (In [32], the matrices we are talking about have
the additional upper index (6), which is omitted here. Thus, Ai = A(6),i = (A(6),L,i|A(6),R,i)
for i ∈ 1, 2):

(A1; A2), A1 = (AL,1|AR,1), A2 = (AL,2|AR,2), (9)

where

AL,1 =

0


L0
1


1 L1

1
...

...
p2 − 2 Lp2−2

1
p2 − 1 0

, Li
1 =

0 1 · · · i · · · p2 − 2
0


(1, . . . , 1)


1
...

p1 − 2
p1 − 1
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AR,1 =

0 1 2 · · · p2 − 2 p2 − 1
0


R2

1 −R2
1


1 R2

1 −R2
1

...
. . .

p2 − 2 R2
1 −R2

1
p2 − 1 R2

1 − R3
1

, (10)

AL,2 =

0


L0
2


1 L1

2
...

...
p2 − 2 Lp2−2

2
p2 − 1 0

, Li
2 =

0 1 · · · i · · · p2 − 2
0


T2


1
...

p1 − 2
p1 − 1

,

AR,2 =

0 1 2 · · · p2 − 2 p2 − 1
0


R4

2 + R2
2 −R2

2


1 R4
2 + R2

2 −R2
2

...
. . .

p2 − 2 R4
2 + R2

2 −R2
2

p2 − 1 R1
2 + R2

2 − R3
2 R1

2 · · · R1
2 R1

2

. (11)

We remark that the appearance of AR,1 and AR,2 are slightly different from those in
the work of Paskin-Cherniavsky and Schmerler. The difference is in p2 − 1’st block-row
and comes from the computational mistake made in [32] while changing the basis to B. We
correct this mistake and bring the corrigendum in Appendix A.

In [32], only the first row from the Type-3 layer was constructed. For our purposes of
obtaining β, we need the full Type-3 matrix. Therefore, we write here down the general
formula for Type-3 rows taken from [32], and we use it in our next work to construct the
entire Type-3 matrix in the basis B:

e(B,C) − e(B,C+(0,1)Zm ) −
(−1,0)Zm

∑
k=0

(eB+k,C − eB+k,C+1), where B, C ∈ Zm. (12)

3. Our Result
3.1. Starting Point and Main Technical Tool

Our goal is to compute the difference between ranks of matrices M≡ and M≡, 6≡. We
start from the matrix M≡ brought to the form (9) and we also construct the result of initial
elimination steps over the matrix M 6≡ from (12), obtained in [32]. We continue the process of
elimination using Lemma 2 considering the case m = 2q, where q is an odd prime number.

3.2. Construction of Type-3 matrix

First, as we need to compute the rank of the matrix M≡, 6≡, it is not enough to consider
only a single row from the Type-3 matrix (which is the result of the sequence of elimination
steps over M 6≡. Therefore, our first step is to reconstruct this matrix from (12) and to
perform initial elimination steps similar to those were made over matrix A2 in [32] to bring
it to the form (11).

To be consistent, we denote the initial Type-3 matrix as A(−1),3, the intermediate result
of the inner elimination steps over this matrix as A(0),3, and the final result (on the same
stage as (9)) as A3. Next we describe the process of obtaining Type-3 matrix from (12). Recall
that each of matrices A is separated in the left and right parts, where the left part contains
indexes of vectors from basis B1, and right—from B2. Each row of A(−1),3 is indexed by
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i, j, b such that the largest blocks are indexed by i ∈ Zp2 , and contains blocks indexes by
j ∈ Zp1 . The smallest blocks indexed by b ∈ Zm are, in turn, parts of middle-size blocks.

First, rewrite (12) as

e(B,C) − e(B,C+(0,1)Zm ) − e(B,C) + e(B,C+1) −
(−1,0)Zm

∑
k=1

(eB+k,C − eB+k,C+1) =

= e(B,C+1) − e(B,C+1−(1,0)Zm ) −
(−1,0)Zm

∑
k=1

(eB+k,C − eB+k,C+1).
(13)

• Consider the case when i 6= p2 − 1, j 6= 0. Each row indexed by (i, j, b) is determined
by (13), where B = b, C = i + j(1, 0)Zm . Then the first two terms in (13) are

eB,C+1 − eB,C+1−(1,0)Zm
= eb,(i+1)+j(1,0)Zm

− eB,(i+1)+(j−1)(1,0)Zm
= B2[(i + 1), (j− 1), b]. (14)

The term in the sum in (13) is

eB+k,C − eB+k,C+1 = eb+k,i − eb+k,i + eb+k,i+(1,0)Zm
− ... + eb+k,i+j(1,0)Zm

−

−eb+k,i+1 + eb+k,i+1 − eb+k,i+1+(1,0)Zm
− ...− eb+k,i+1+j(1,0)Zm

=

= B1[i, (b + k)] +
j−1

∑
`=0

(B2[i, `, b + k]− B2[(i + 1), `, b + k]).

(15)

• When j = 0, i 6= p2 − 1 the sum in (15) turns to 0. As for (14), the first two terms in
(13) are:

eB,C+1 − eB,C+1−(1,0)Zm
= eb,i+1 − eB,i−(1,0)Zm

= −
p1−2

∑
`=0

B2[(i + 1), `, b]. (16)

• When j 6= 0, i = p2 − 1, the first two terms of (13) are the same as in (14). The only
difference is the sum of terms:

eB+k,C − eB+k,C+1 = eb+k,(p2−1)+j(1,0)Zm
− eb+k,p2+j(1,0)Zm

=

= −eb+k,0 + eb+k,p2−1 −
p2−1+j

∑
`=0

(eb+k,`(1,0)Zm
− eb+k,(`+1)(1,0)Zm

)+

+
j−1

∑
`=0

(eb+k,(p2−1)+`(1,0)Zm
− eb+k,(p2−1)+(`+1)(1,0)Zm

) =

= −
p2−2

∑
`=0

B1[`, b + k]−
p2−1+j

∑
`=0

B2[0, `, b + k] +
j−1

∑
`=0

B2[(p2 − 1), `, b + k].

(17)

• Finally, for i = p2 − 1, j = 0, the first two terms in (13) are according (16), and the

terms in sum are as in (17), except from the term ∑
j−1
`=0 B2[(p2 − 1), `, b + k], i.e.,

−
p2−2

∑
`=0

B1[`, b + k]−
p2−1+j

∑
`=0

B2[0, `, b + k]. (18)

Substituting expressions (14)–(18) to (13) for appropriate i, j, b, we obtain the matrix
which has the structure similar to A2:

A(−1),3 =
(

A(−1),L,3|A(−1),R,3
)

, (19)

where
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A(−1),L,3 =

0


L(−1),0
3


1 L(−1),1

3
...

...
p2 − 2 L(−1),p2−2

3

p2 − 1 −∑
p2−2
i=0 L(−1),i

3

, L(−1),i
3 =

0 1 · · · i · · · p2 − 2
0


T3


1 T3
...

p1 − 2 T3
p1 − 1 T3

,

A(−1),R,3 =

0 1 2 · · · p2 − 2 p2 − 1
0


R2

3 R1
3 − R2

3


1 R2
3 R1

3 − R2
3

...
. . .

p2 − 2 R2
3 R1

3 − R2
3

p2 − 1 R4
3 − R3

3 R2
3

.

Here block matrices R2
3 and R3

3 are of the same form as R2
2 (6) and R3

2 (7) respectively,
where the blocks T2 are replaced with the blocks T3:

T3 =

0 1 2 · · · (0, 1)Zm − 2 (0, 1)Zm − 1 (0, 1)Zm · · · m− 1
0


1 1 · · · 1 1

1 · · · 1 1 1
...

. . . . . . . . . . . .
m− 1 1 1 1 · · · 1

. (20)

The matrix R1
3 is similar to R1

2, but with the opposite sign, and permuted rows:

R1
3 =

0 1 · · · p1 − 2
0


I I · · · I


1 −I
2 −I
...

. . .
p1 − 1 −I

. (21)

The matrix R4
3 can be obtained from R1

3 with the circular permutation of rows:

R4
3 =

0 · · · (p2 − 1) mod p1 p2 mod p1 · · · p1 − 2
0



−I


1 −I
...

. . .
−p2 mod p1 −I

I · · · I I I · · · I
−I

...
. . .

p1 − 1 −I

. (22)

3.3. Elimination Steps in Type-3 Matrix

Following the way in [32] for elimination steps in A2, we first sum the block-rows in
(19) with ordinal numbers from 0 to p1 − 2 to the last block-row. The resulting matrix A(0),3

equals A(−1),3 except the last row, where A(0),L,3[p2 − 1, ·] is 0-block, and

A(0),R,3[p2 − 1, ·] =
(

R2
3 + R4

3 − R3
3 | R1

3 | ... | R1
3

)
.
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The second elimination step is an inner step in every block-row except from the last
one (as those block-rows are the same in A(−1),3 and A(0),3, we can say that this step is
performed over (19)). Namely, in any level-2 block-row A(0),3[i, ·] where i ∈ {0, ..., p1 − 2},
we subtract the level-1 block-row with the ordinal number 0 from all other sub-rows in this
block-row. As a result, A3 =

(
AL,3|AR,3), where the left-side matrix takes the form

AL,3 =

0


L0
3


1 L1

3
...

...
p2 − 2 Lp2−2

3
p2 − 1 0

, Li
3 =

0 1 · · · i · · · p2 − 2
0


T3


1
...

p1 − 2
p1 − 1

, (23)

and the right-side matrix is

AR,3 =

0 1 2 · · · p2 − 2 p2 − 1
0


R2

3 R5
3 − R2

3


1 R2
3 R5

3 − R2
3

...
. . .

p2 − 2 R2
3 R5

3 − R2
3

p2 − 1 R2
3 + R4

3 − R3
3 R1

3 · · · R1
3 R1

3 R1
3

, (24)

where

R5
3 =

0 1 · · · p1 − 2
0


I I · · · I


1 −2I −I · · · −I
2 −I −2I · · · −I
...

...
...

. . .
...

p1 − 1 −I −I · · · −2I

. (25)

3.4. The Case of the Even m (p1 = 2, p2 = q)

In this section, we consider the case p1 = 2, p2 > 2 for both p = 2 and p > 2
(including the case p2 = p). We obtain the feasibility results and, moreover, in the case of
p = 2 when the conversion from (2,3)-CNF over Z2p2 to three-additive secret sharing over

Zβ
2 (as we prove) exists, we also compute β. We adopt the following notation in this section:

p2 = q > 2, and p are prime numbers, and m = 2q (later we split this case into subcases
p = 2 and p > 2). Our starting point is the block matrix A =

(
A2; A1; A3) over Zp, where

A1 and A2 are described in (9), and A3 in (23) and (24).
We next consider the matrices in the case when m = 2q, where q is an odd prime

number. Below we write down the block matrices completing the matrix A. Each of the
following matrices contains two square m×m blocks:

R1
2 = R1

3 = R4
3 =

(
I
−I

)
; R4

2 = R5
3 =

(
I
−2I

)
;

R2
2 =

(
0
T2

)
; R3

2 =

(
T2
0

)
; R2

3 =

(
0
T3

)
; R3

3 =

(
T3
0

)
.

(26)

We would like to remind that 1m = (1, ..., 1) is an m-element vector of 1’s, also 1q is the
q-element vector of 1’s. I is a m×m identity matrix, and Iq is a q× q identity matrix.
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Taking into account (26), the block matrix A =
(

A2; A1; A3) according to (9), (23) and
(24) is the following:

A2 =



T2 I
T2 − 2I −T2

T2 I
T2 − 2I −T2

. . . . . .
T2 I

T2 − 2I −T2
I − T2 I I · · · I I
T2 − I −I −I · · · −I −I


(27)

A1 =



1m

1m −1m

1m

1m −1m

. . . . . .
1m

1m −1m

−1m

1m


(28)

A3 =



T3 I
T3 −(T3 + 2I)

T3 I
T3 −(T3 + 2I)

. . . . . .
T3 I

T3 −(T3 + 2I)
−(T3 + I) I I · · · I I

T3 + I −I −I · · · −I −I


(29)

The left-side and the right-side matrices are divided by the double vertical line. All the
subsequent matrices which we will obtain from A will have the additional upper indexes:
A(i) =

(
A(i),2; A(i),1; A(i),3

)
, where i is the ordinal number of the matrix in the sequence

of transformation steps. Within the limits of this section, we consider matrices A(·),` as if
they have level-0 blocks as the entries, and we, therefore, address to level-0 blocks as to the
entries of level-2 matrices A(·),`.

First of all, we subtract A2 from A3 and rewrite all the matrices such that first go all
the block-rows for i < p2 − 1, j = 0, and then the block-rows for i < p2 − 1, j = 1 and two
last block-rows remain where they were before.

Matrices T2 and T3 depend on values (0, 1)Zm = q + 1 and (1, 0)Zm = q. We introduce
the new block T = T3 − T2 and note that with respect to (26),

T = T3 − T2 =

(
−Iq Iq
Iq −Iq

)
, T + 2I =

(
Iq Iq
Iq Iq

)
. (30)
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A(1),2 =



T2 I
T2 I

. . . . . .
T2 I

T2 − 2I −T2
T2 − 2I −T2

. . . . . .
T2 − 2I −T2

I − T2 I I · · · I I
T2 − I −I −I · · · −I −I



(31)

A(1),1 =



1m

1m

. . .
1m

1m −1m

1m −1m

. . . . . .
1m −1m

−1m

1m



(32)

A(1),3 =



T −I I
T −I I

. . . . . .
T −I I

T + 2I −(T + 2I)
T + 2I −(T + 2I)

. . . . . .
T + 2I −(T + 2I)

−(T + 2I)
T + 2I



(33)

We note that the last block-row in A(1),2 is the same as the previous one up to sign.
The same observation we can make about A(1),3.

3.4.1. Internal Transformations in Matrices on the Level-2

We made some quite obvious steps inside each of the matrices A(1),· to reach a more
comfortable form. In A(1),2 we eliminate the last block-row. In addition, we add all the
block-rows from A(1),2[i] for i ∈ {q− 1, ..., 2q− 3} to block-row A(1),2[2q− 2] and change
the sign of this row. The resulting matrix is

A(2),2 =



T2 I
T2 I

. . . . . .
T2 I

T2 − 2I −T2
T2 − 2I −T2

. . . . . .
T2 − 2I −T2

I I I · · · I T2 − I


(34)
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In A(1),1, we change the sign of the pre-last row, move it to the position p2 − 1 = q− 1
and make telescopic elimination by the following sequence of steps: starting with the row
i = q, we subtract the previous row from ith, then change the sign of the ith row. Then
we increment i by 1. We repeat this algorithm up to the last row of this matrix. Note, that
the last row turns to 0, so we eliminate it from the matrix. The result is the matrix with
(2q− 1) rows:

A(2),1 =



1m

1m

. . .
1m

1m

1m

. . .
1m

1m


(35)

The same transformation we perform in A(2),3, working with block-rows instead of
rows. The result is the following matrix with (2q− 1) block-rows:

A(2),3 =



T −I I
T −I I

. . . . . .
T −I I

T + 2I
T + 2I

. . .
T + 2I

T + 2I


(36)

3.4.2. Resolution of the Level-0 Blocks in A(2),3

Consider the block-rows of the appearance
(
· · · T + 2I · · ·

)
in (36). Accord-

ing (30), it equals to the matrix
(
· · · (Iq|Iq) · · ·
· · · (Iq|Iq) · · ·

)
, where first q rows are the same as q

last ones, and those q rows can be eliminated from the matrix. According to our notation,
the q×m-block equal to the concatenation of two Iq’s is denoted as (Iq|Iq). The rows we
just considered belong to the local basis of A(2),3.

Then we consider the block-rows
(
· · · T · · · −I I · · ·

)
in (36). Subtracting

from this block-row the basis vectors from two corresponding block-rows
(
· · · (Iq|Iq) · · ·

)
and taking into account (30), we transform it to:(

· · · (−Iq| Iq) · · · (0| Iq) (0| − Iq) · · ·
· · · ( Iq| − Iq) · · · (0| − Iq) (0| Iq) · · ·

)
.

Again, the first q rows in this block-row can be crossed out from the matrix, as they
are the same as q following ones up to the sign. Then the resulting matrix contains only
q(2q− 1) rows of the local basis:
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A(3),3 =



(Iq| − Iq) (0| − Iq) (0|Iq)
(Iq| − Iq) (0| − Iq) (0|Iq)

. . . . . . . . .
(Iq| − Iq) (0| − Iq) (0|Iq)

(Iq|Iq)
(Iq|Iq)

. . .
(Iq|Iq)

(Iq|Iq)


(37)

3.4.3. Resolution of the Level-0 Blocks in (A(2),2; A(2),1)

First, we consider block-rows of appearance
(
· · · T2 · · · I · · ·

)
in A(2),2

(Equation (34)). For each j > q, T2[j] = T2[0] + T2[q] − T[j − q], hence we can bring
all the T2[j] to 0 by the inner linear operations of rows in the block-row, which result in the
following appearance of the block-row under the consideration:(

· · · T′2 · · · (Iq+1|0) · · ·
· · · 0 · · · (J|J) · · ·

)
, (38)

where T′2 = T2[{0, ..., q}, ·], and J is a (q− 1)× q-size matrix:

J =


−1 1 0 · · · 0
−1 0 1 · · · 0

...
. . .

−1 0 0 · · · 1

. (39)

The set of all the upper block-rows as in (38) is in the echelon form and belongs to
the basis of our matrix. Now, we pay attention to q− 1 first rows in A(2),1 (Equation (35)),
taking into account that 1m = T′2[0] + T′2[q]. Subtracting the correspondent rows of A(2),2

from A(2),1, we bring the rows of the appearance A(2),1[i, ·] =
(
· · · 1m · · · · · ·

)
to

the form
(

0 · · · (−e0| − e0) · · ·
)
. Considering this resulting row together with the

second block-row from (38), we can see that those are easily transformable to the form(
0 · · · (Iq|Iq) · · ·

)
. As block-rows of the appearance

(
0 · · · (Iq|Iq) · · ·

)
are

composed from transformed rows of both matrices A(2),2 and A(2),1, we denote this merged
matrix of q− 1 block-rows as A(3),1&2

q−1 :

A(3),1&2
q−1 =


(Iq|Iq)

(Iq|Iq)
. . .

(Iq|Iq)

. (40)

This matrix is in the left echelon form and thus consisted from the basis vectors of M≡, 6≡.
In addition, we consider the last block-row of A(2),2, namely,

(
0 I I · · · I T2 − I

)
and subtract from there all the correspondent basis vectors of (40). Each block I then turns to(

0 −Iq
0 Iq

)
. Adding the upper half of the resulting block-row to the lower (and changing the

sign of the upper one), we get
(

0 (0|Iq) (0|Iq) · · · (0|Iq) (I − T2)[{0, ..., q− 1}, ·]
0 0 0 · · · 0 (1q×q − Iq|1q×q − Iq)

)
.

We subtract the last row of A(2),1 from each of last q rows of this block-row. Then these
last q rows come to the form

(
0 · · · (Iq|Iq)

)
, and we append them to (40) to complete

the matrix A(3),1&2. Then, subtracting the appropriate rows of the block (Iq|Iq) from
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the block (I − T2)[0, ..., q − 1], we transform it to the form (0q×q|Iq − N), where N is a
q-dimension matrix

N =


1 −1 −1 · · · −1 −1
1 1 −1 · · · −1 −1
1 1 1 · · · −1 −1
...

...
...

. . .
...

...
1 1 1 · · · 1 1

. (41)

Finally, we consider the block-rows in A(2),2 in (34) of the appearance(
0 · · · T2 − 2I −T2 · · ·

)
. Let us consider the result of the elimination the basis

(Iq|Iq) from the block

T2 − 2I =



−1 1 1 · · · 1 0 0 0 · · · 0
0 −1 1 · · · 1 1 0 0 · · · 0

. . . . . . . . . . . . . . .
0 0 0 · · · −1 1 1 1 · · · 0
0 0 0 · · · 0 −1 1 1 · · · 1
1 0 0 · · · 0 0 −1 1 · · · 1
. . . . . . . . . . . . . . .
1 1 1 · · · 0 0 0 0 · · · −1


. (42)

The result of the elimination is
(

0 N
0 −N

)
. For the block−T2, the result of the elimination

is
(

0 2Iq − N
0 N − 2Iq

)
. Thus, each block-row under the consideration turns to the following

q-row block-row
(

0 · · · (0|N) (0|2Iq − N) · · ·
)
.

Thus, the result of all the transformations over
(

A(2),2; A(2),1
)

above is
(

A(3),2; A(3),1&2
)

,
where

A(3),2 =



T′2 (Iq+1|0)
T′2 (Iq+1|0)

. . . . . .
T′2 (Iq+1|0)

(0|N) (0|2Iq − N)
(0|N) (0|2Iq − N)

. . . . . .
(0|N) (0|2Iq − N)

(0|Iq) (0|Iq) (0|Iq) · · · (0|Iq) (0|Iq − N)



A(3),1&2 =


(Iq|Iq)

(Iq|Iq)
. . .

(Iq|Iq)

. (43)

We note, that all the rows of A(2),1 in (35) of the appearance
(

0 · · · 1m · · ·
)

are
spanned by A(3),1&2 as the row’s sums over the correspondent block-row.

3.4.4. Resolution of the A(3),1&2 Basis

To apply Lemma 2, it is necessary to subtract vectors of basis A(3),1&2 from the first
(q − 1) block-rows of A(3),2. The matrix A(3),3 contains exactly the same block-rows as
A(3),1&2 which can be simply crossed out.
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Subtracting block (Iq|Iq) from block (Iq+1|0), we obtain the latest in form
(

0 −Iq
0 e0

)
.

We denote the (q + 1)× q block
(
−Iq
e0

)
as (−I′q+1). Then, after applying Lemma 2 to

remove the basis A(3),1&2 and corresponding columns, we obtain the matrix

A(4) =
(

A(4),2; A(4),3
)

,

where

A(4),2 =



T′2 −I′q+1
T′2 −I′q+1

. . . . . .
T′2 −I′q+1

N 2Iq − N
N 2Iq − N

. . . . . .
N 2Iq − N

Iq Iq Iq · · · Iq Iq − N


(44)

A(4),3 =


(Iq| − Iq) −Iq Iq

(Iq| − Iq) −Iq Iq
. . . . . .

(Iq| − Iq) −Iq Iq


3.4.5. Elimination of the Left-Side Matrices

We note that each row in block (Iq| − Iq) is spanned by the rows of T′2, namely,
(Iq| − Iq)[j] = T′2[j]− T′2[j + 1] (j ∈ {0, ..., q− 1}). Subtracting the correspondent rows of
A(4),2 from A(4),3, and applying Lemma 2, we obtain

A(5),2 =


N 2Iq − N

N 2Iq − N
. . . . . .

N 2Iq − N
Iq Iq Iq · · · Iq Iq − N



A(5),3 =


−I′q Iq

−I′q Iq
. . .
−I′q Iq

, where I′q =


1 · · ·

1 · · ·
. . .
· · · 1

−1 · · ·

. (45)

Here, the left side is crossed out, and matrix A(5) =
(

A(5),2; A(5),3
)

is the matrix of q× q
level-0 blocks.

3.4.6. Resolution of N and 2Iq − N Blocks

Up to this moment, we performed transformations in matrices without connection to
any particular modulus. Considering blocks N and 2Iq − N in A(5),2 (Equation (45)), we
can see two different situations taking into account the prime modulus p = 2 or p > 2:
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• In the case of p > 2, each N defined in (41) can be transformed to Iq by the linear
transformation steps such as additions of rows, multiplications by (-1) and 2−1 (which
exists due to the fact that p is odd). Applying the same transformations to the adjacent
block 2Iq − N, we turn it into −I∗q , where

I∗q =


· · · −1

1 · · ·
1 · · ·

. . .
· · · 1

. (46)

• In the case of p = 2, each block-row of the appearance
(
· · · N 2Iq − N · · ·

)
in

(45) contains q equal rows
(
· · · 1q 1q · · ·

)
.

According to the dichotomy above, we next consider two cases.

3.4.7. Case p1 = 2, p2 = q, p > 2

As described in the previous subsection, we start from matrix A(6) =
(

A(6),2; A(6),3
)

,
where

A(6),2 =


Iq −I∗q

Iq −I∗q
. . . . . .

Iq −I∗q
Iq Iq Iq · · · Iq Iq − N

; A(6),3 =


−I′q Iq

−I′q Iq
. . .
−I′q Iq

.

Performing inside each block-row of A(6),3 two operations: multiplication rows at
indexes from 0 to q− 1 by (−1), and circular permutation of rows, we transform A(6),3 to
the form

A(7),3 =


Iq −I∗q

Iq −I∗q
. . . . . .

Iq −I∗q

,

which is obviously spanned by rows of A(6),2, and therefore rank(M≡, 6≡) = rank(M≡).

Theorem 9. Assume m = 2q, and p, q are odd prime numbers. Then there is no share conversion
from (2,3)-CNF over Z2q to three-additive secret-sharing scheme over Zβ

p for any β.

Proof. The proof follows from Theorem 8 and the fact that rank(M≡, 6≡) = rank(M≡).

3.4.8. Case p1 = 2, p2 = q, p = 2

Here, we start from matrix A(6) =
(

A(6),2; A(6),3
)

, where

A(6),2 =


1q 1q

1q 1q

. . . . . .
1q 1q

Iq Iq Iq · · · Iq Iq ⊕ N

; A(6),3 =


I′q Iq

I′q Iq
. . . . . .

I′q Iq

.

Performing the same permutation of rows in each block-row in A(6),3 as for the case
p > 2, we obtain block-rows in form

(
· · · Iq I<<1

q · · ·
)

, where I<<k
q according to
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our notation is the result of the left k-bit circular shift in Iq. We remark that I<<k1
q I<<k2

q =

I<<(k1+k2) mod q
q . Subtracting the last block-row of A(6),2 from the first block-row of A(6),3,

we obtain

A(7),3[0] =
(

0 Iq ⊕ I<<1
q Iq · · · Iq Iq ⊕ N

)
.

The matrix Iq ⊕ I<<1
q is an invertible matrix, hence it is the linear transformation matrix.

We subtract the row (Iq ⊕ I<<1
q )A(7),3[1] from A(7),3[0] to obtain

A(7),3[0] =
(

0 0 Iq ⊕ (Iq ⊕ I<<1
q )I<<1

q · · · Iq Iq ⊕ N
)

.

We stress, that Iq ⊕ (Iq ⊕ I<<1
q )I<<1

q = Iq ⊕ I<<1
q ⊕ I<<2

q . Then we similarly subtract the
3rd block-row multiplied by the 3rd element of the first block-row, then 4th, and so on. As
a result, the first block-row takes the form:

A(7),3[0] =
(

0 0 0 · · · 0 Iq ⊕ N ⊕ I<<1
q ⊕ I<<2

q ⊕ · · · ⊕ I<<(q−1)
q

)
.

Taking into account that
⊕q−1

k=0 I<<k
q = 1q×q = N, the first block-row of A(7),3[0] equals zero

and can be crossed out of the matrix.
Now, we make some elimination steps to bring matrix A(6),2 to the echelon form (such

that all the rows there are basis rows). For this, we subtract all the rows with even ordinal
numbers from the first row of the last block-row. The resulting last block-row in A(6),2

turns to
(

K K · · · K K⊕ N
)
, where

K =


0 1 1 · · · 1
0 1 0 · · · 0
0 0 1 · · · 0

. . .
0 0 0 · · · 1

, K⊕ N =


1 0 0 · · · 0
1 0 1 · · · 1
1 1 0 · · · 1

. . .
1 1 1 · · · 0

 (47)

In both blocks K and K ⊕ N, the first row is spanned by others (as their sum), thus the
first row of this block-row can be crossed out. The remaining rows in this block-row are
basis vectors, which do not span A(7),3, and thus, according to Lemma 2 can be thrown out
the next consideration (together with the first row which also does not span A(7),3). Then
A(7) =

(
A(7),2; A(7),3

)
, where

A(7),2 =


1q 1q

1q 1q

. . .
1q 1q

; A(7),3 =


Iq I<<1

q
Iq I<<1

q
. . .

Iq I<<1
q

.

Matrix A(7),3 contains (q− 2) block-rows with q rows each. We make the last elimina-
tion step by subtracting each row of A(7),2 from the first row of the correspondent block-row
of A(7),2. Then each block Iq turns to K, and each I<<1

q turns to K<<1, where the first row is
the sum of others. Hence, each block-row in A(7),3 loses the first row, and the rest of them
are not spanned by the basis vectors of A(7),2. Thereby, there are (q− 2) block-rows with
(q− 1) rows each, and rank(M≡, 6≡)− rank(M≡) = (q− 1)(q− 2).

Theorem 10. Assume m = 2q, where q is an odd prime number. Then there exists a share
conversion from (2,3)-CNF over Z2q to a three-additive secret-sharing scheme over Z(q−1)(q−2)

2 .

Proof. The proof follows from Theorem 8 and rank(M≡, 6≡)− rank(M≡) = (q− 1)(q− 2).
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4. Computer Search Results on the Set Sm and the Extended Set S′
m.

Table 4 in the work of Beimel et al. [13] reports ranks of the matrices M≡ and M≡, 6≡
for m = 6, 10, 14, 15, 21, 35 and p = 2, 5, 7, 11. Unfortunately, some of the data there
go against the proven properties of those matrices. For instance, in [32] it was proven
that there exists a share conversion in case m = p1 · p2 and p = p1, where p1 and p2 are
distinct odd primes. At the same time, Table 4 in [13] shows that for the case m = 5 · 7 it
holds that rank(M≡) = rank(M≡, 6≡) over Z7, which means the absence of the conversion.
Moreover, rank(M≡) cannot be less than m2, since the matrix M≡ has an identity block
matrix of the size m2 ×m2 in the upper left corner. However, for case m = 35 in Table 4
in [13], this rank appears to be less. Therefore, we recalculated this table (also by computer
search) in Tables 1 and 2 to correct the result of [13] as well as to check the soundness of
our derivations.

Table 1. Rank of M≡ and difference between ranks M≡ and M≡, 6≡ (rank(M≡) ; β) for some even m
over different Zp.

m 2 · 3 = 6 2 · 5 = 10 2 · 7 = 14 2 · 11 = 22 2 · 13 = 26

Sm {1, 3, 4} {1, 5, 6} {1, 7, 8} {1, 11, 12} {1, 13, 14}

p = 2 87 ; 2 247 ; 12 487 ; 30 1207 ; 90 1687 ; 132

p = 3 89 ; 0 259 ; 0 517 ; 0 1297 ; 0 1819 ; 0

p = 5 89 ; 0 259 ; 0 517 ; 0 1297 ; 0 1819 ; 0

p = 7 89 ; 0 259 ; 0 517 ; 0 1297 ; 0 1819 ; 0

The results in Table 1 confirm our conclusions. Indeed, for the case of m = 2q there is a
conversion if and only if the modulus of the group is 2, and in this case β = (q− 1)(q− 2).
Table 2 is relevant to the result of [32]. For the case of odd m = p1 · p2, there is a conversion
if the modulus of the group p equals either p1 or p2.

Table 2. Rank of M≡ and difference between ranks M≡ and M≡, 6≡ (rank(M≡) ; β) for some odd m
over different Zp.

m 3 · 5 = 15 3 · 7 = 21 3 · 11 = 33 5 · 7 = 35

Sm {1, 6, 10} {1, 7, 15} {1, 12, 22} {1, 15, 21}

p = 2 617 ; 0 1229 ; 0 3077 ; 0 3529 ; 0

p = 3 593 ; 24 1169 ; 60 2897 ; 180 3529 ; 0

p = 5 609 ; 8 1229 ; 0 3077 ; 0 3409 ; 120

p = 7 617 ; 0 1217 ; 12 3077 ; 0 3457 ; 72

In this paper, as well as in [32], only the case of the set Sm of size 3 was considered.
However, as we noted in the Introduction, the larger sets if the conversion for them exists,
could result in MV families with higher VC dimension and hence in better PIR. For cases
when the conversion exists in respect to the relation CSm , we also decided to check the
extended sets S′m, trying different additional values from Zm and checking the ranks of M≡
and M≡, 6≡.

For even m, we only tested possible extensions for Sm modulo 2 (because if there is no
conversion for a set Sm, then there is no conversion for any extended set). Of all the cases
in Table 1, only for m = 2 · 7 there are extended sets S′m = {1, 3, 7, 8} and {1, 5, 7, 8} with
β > 0 (namely, β = 6). The set S′m = {1, 3, 5, 7, 8} provides β = 0 and therefore the absence
of the conversion.

Surprisingly, for odd m’s the result is more encouraging: for all m and p in Table 2
which provide β > 0 for Sm, there were also extended sets S′m with non-zero β. We summed
them in Table 3. In the row S′m \ Sm, there is a subset extending Sm up to S′m. It is interesting
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that any number of entries added from S′m \ Sm to Sm gives the same rank(M≡) and β. It
is also interesting that the set S′m in all the checked cases with the odd m contains all the
entries which are equal to 1 modulo p2 (taking p1 = p) except from 1 and (0, 1)Zm which
are already in Sm. Namely, S′m \ Sm = {(2, 1)Zm , ..., (p− 1, 1)Zm}.

Table 3. Extensions for some sets Sm allowing the share conversion.

p 3 3 3 5 5 7 7

m 3 · 5 = 15 3 · 7 = 21 3 · 11 = 33 3 · 5 = 15 5 · 7 = 35 3 · 7 = 21 5 · 7 = 35

S′m \ Sm {11} {8} {23} {4, 7, 13} {8, 22, 29} {4, 10, 13, 16, 19} {6, 11, 16, 26, 31}

rank(M≡) 607 1201 2989 627 3511 1257 3547

β 12 30 90 2 30 2 12
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Appendix A. The Correction Notice to Paskin-Cherniavsky and Schmerler

Here, we correct some computational mistakes made in [32]. The main mistake is the
appearance of the matrix A2, which correction implies also some changes in the following
proof of the result. Thought, those mistakes do not affect the main result of [32] (namely,
the existence of the conversion for m = p1 p2, p = p1).

The major computation mistake appears in Subsection 4.5.1 of [32], therefore the
following correction notice reproduces the corrected article starting from Subsection 4.5.1
up to the end the Section 4. In this section, we slightly change the enumeration of matrices
to make them consistent with the present work, where we start with the matrix A in (9),
which is denoted as A(6) in [32]. Here we correct the mistake made in the previous-step
matrix A(4) and show how it affects the following proof. Therefore, we change the upper
indexes in the following way: we write A(−1),· instead A(4),·; A(0),· instead A(5),·; A· instead
A(6),·; A(1),· instead A(7),·, etc. In addition, as we changed some notation in matrices, we
note that we use here the notation T2 for the matrix previously denoted T0 (to be consistent
with the present work), and also we use R·1 instead R̃·1, and R·2 instead R·1. Similarly, we
use L·1 instead L̃·1, and L·2 instead L·1.
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Appendix A.1. The Matrix A(−1),2

The mistake in the construction of A1 and A2 only affects the last block-rows of these
matrices (i.e., for i = p2 − 1). Therefore, we will consider in detail how these block-rows
are built. According to the Section 4.5 in [32], the Type-2 vectors are in the form:

r2
b,c = eb,c − eb,c+(1,0)Zm

−
(0,−1)Zm

∑
k=0

(eb+k,c − eb+k,c+1). (A1)

When i = p2 − 1, each term under the summation in (A1) is similar to (17):

eb+k,c − eb+k,c+1 = −
p2−2

∑
`=0

B1[`, b + k]−
p2−1+j

∑
`=0

B2[0, `, b + k] +
j−1

∑
`=0

B2[(p2 − 1), `, b + k]. (A2)

The first two terms of (A1) differ for distinct j: if j < p1 − 1 they are

eb,c − eb,c+(1,0)Zm
= eb,p2−1+j(1,0)Zm

− eb,p2−1+(j+1)(1,0)Zm
= B2[p2 − 1, j, b]. (A3)

For i = p2 − 1, j = p1 − 1, the first two terms in (A1) are

eb,c − eb,c+(1,0)Zm
= eb,p2−1+(p1−1)(1,0)Zm

− eb,p2−1+p1(1,0)Zm
= −

p1−2

∑
`=0

B2[p2 − 1, `, b]. (A4)

Equations (A3) and (A4) give us the matrix R1
2 in the last block of the last block-row of

A(−1),2. Equation (A2) gives the last block-row in A(−1),L,2, and the blocks −R3
2 and R2

2 in
the last block-row of A(−1),R,2. Upper block-rows in A(−1),2 remain as in [32].

A(−1),2 =
(

A(−1),L,2|A(−1),R,2
)

Here, the “right side” A(−1),R,2 is a p2 × p2 block matrix. Its content is as follows.

A(−1),R,2 =

0 1 2 · · · p2 − 2 p2 − 1
0


R1

2 + R2
2 −R2

2


1 R1
2 + R2

2 −R2
2

...
. . .

p2 − 2 R1
2 + R2

2 −R2
2

p2 − 1 −R3
2 R1

2 + R2
2

The left-side matrix A(−1),L,2 is a block matrix of size p2× 1 (where indeed the number
of rows in each of its p2 blocks is consistent with that of A(−1),R,2). It has the following
structure (There was a missing “-” in the description of A(−1),L,2[p2 − 1] in [32]).

A(−1),L,2 =

0


L(−1),0
2


1 L(−1),1

2
...

...
p2 − 2 L(−1),p2−2

2

p2 − 1 −∑
p2−2
i=0 L(−1),i

2

We refer to this partition into p2 × (p2 + 1) blocks of A(−1),2 as the “Level-1” partition
of A(−1),2. We continue next by describing the “Level-0” detail of R1

2, R2
2, R3

2, L(−1),i
2 in

A(−1),R,2, A(−1),L,2. The matrix L(−1),i
2 for i ∈ {0, . . . , p2 − 2} is a p1 × (p2 − 1) block matrix

of the following form:
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L(−1),i
2 =

0 1 · · · i · · · p2 − 2
0


T2


1 T2
...

...
p1 − 2 T2
p1 − 1 T2

for a m×m circulant matrix T2 specified in (4). Note that by the structure of A(−1),L,2, the
last matrix L(−1),p2−1

2 is a block matrix of size p1 × (p2 − 1), where each block equals −T2.
The matrix R1

2 is a p1 × (p1 − 1) matrix specified in (5). The matrix R2
2 is a p1 × (p1 − 1)

matrix given in (6). Finally, the matrix R3
2 is a p1 × (p1 − 1) block matrix (7).

Note that (p2 mod p1 − 1) is always smaller than p1 − 1 since p2 is prime (and thus
is not a multiple of p1).

Appendix A.2. The Matrix A(−1),3

We choose (B, C) = (0, 0). Then, by Equation (12) and a simple calculation, the line is
of the form (Note that another T0,0 element is required to take care of the e0,0 − e0,(0,1)Zm
part, so it is subtracted, and is thus missing from the first sum):

(0,1)Zm−1

∑
b=1

Tb,0 +
p1−2

∑
j=0

R0,1+j·(1,0)Zm

Appendix A.3. The Matrix A(−1),1

We consider in detail now only the last block-row of A(−1),1. According to the Section
4.5 in [32], the Type-1 vectors are in the form:

r1
c = ∑

b∈Zm

(eb,c − eb,c+1). (A5)

When i = p2 − 1, each term under the summation in (A5) is:

eb,c − eb,c+1 = eb,p2−1+j(1,0)Zm
− eb,p2+j(1,0)Zm

= −
p2−2

∑
`=0

B1[`, b]−
p2−1+j

∑
`=0

B2[0, `, b] +
j−1

∑
`=0

B2[(p2 − 1), `, b]. (A6)

The first term in (A6) gives the block filled by (−1)’s in the left part of the matrix
A(−1),1, the second term gives R3

1 in the first block of the right block-row, and the third
term gives R2

1 in the last block of the last block-row of A(−1),1. Upper block-rows in A(−1),1

remain as in [32].
The matrix A(−1),1 then is of the form A(−1),1 = (A(−1),L,1|A(−1),R,1). To describe the

left and right parts, we apply a certain transformation to A(−1),L,2 and A(−1),R,2, respectively.
As before, we view each as a block matrix comprised of blocks of size m× m (A(−1),L,2

has m× (p2 − 1) blocks, and A(−1),R,2 has m× p2(p1 − 1) blocks. That is, the resulting
A(−1),L,1 equals:

A(−1),L,1 =

0


L(−1),0
1


1 L(−1),1

1
... · · ·

p2 − 2 L(−1),p2−2
1

p2 − 1 −∑
p2−2
i=0 L(−1),i

1

where L(−1),i
1 equals:
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L(−1),i
1 =

0 1 · · · i · · · p2 − 2
0


(1, · · · , 1)


1 (1, · · · , 1)
...

...
p1 − 2 (1, · · · , 1)
p1 − 1 (1, · · · , 1)

The resulting matrix A(−1),R,1 equals (The last block-row is changed to correct the
mistake made in [32]):

A(−1),R,1 =

0 1 2 · · · p2 − 2 p2 − 1
0


R2

1 −R2
1


1 R2

1 −R2
1

...
. . .

p2 − 2 R2
1 −R2

1
p2 − 1 −R3

1 R2
1

where the resulting R2
1 is defined in (2), and R3

1 in (3). (The matrix R3
1 is corrected in

comparison with [32]).

Appendix A.4. Another Elimination Sequence

From now on, assume that p = p1 and that p2 > 2. We leave the full analysis of other
cases for future work. We are now able to apply Lemma 2. We perform this step for I2
corresponding to the L-part blocks of A(−1) and proceed in several steps. We perform the
row operations starting at a grosser resolution and then proceed to a finer resolution.

Appendix A.4.1. Step 1: Working at the Resolution of Level-1 Blocks

View A(−1),2 as a block matrix of Level-1 as described above. Let V(−1),2 denote
the corresponding block matrix. Replace the last row of V(−1),2, V(−1),2[p1 − 1, ·] by

∑
p2−1
i=0 V(−1),2[i, ·]. We thus obtain a new matrix A(0),2 of the following form.

A(0),2 =
(

A(0),L,2|A(0),R,2
)

has the same block structure as A(−1),2 on all levels, so we
do not repeat that, but rather only review its content.

The resulting right side A(0),R,2 is as follows. (The matrix A(0),R,2 corresponds to A(5),R,2

in [32] and has the different form in the last block-row because of the corrected mistake)

A(0),R,2 =

0 1 2 · · · p2 − 2 p2 − 1
0


R1

2 + R2
2 −R2

2


1 R1
2 + R2

2 −R2
2

...
. . .

p2 − 2 R1
2 + R2

2 −R2
2

p2 − 1 R1
2 + R2

2 − R3
2 R1

2 R1
2 · · · R1

2 R1
2

The resulting left-side matrix A(0),L,2 is (The matrix A(0),L,2 corresponds to A(5),L,2

in [32]):

A(0),L,2 =

0


L(−1),0
2


1 L(−1),1

2
...

...
p2 − 2 L(−1),p2−2

2
p2 − 1 0
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We perform a similar transformation on A(−1),1, resulting in:

A(0),1 = (A(0),L,1|A(0),R,1)

where A(0),R,1 equals (The matrix A(0),R,1 corresponds to A(5),R,1 in [32] and is in different
from it because of the corrected mistake):

A(0),R,1 =

0 1 2 · · · p2 − 2 p2 − 1
0


R2

1 −R2
1


1 R2

1 −R2
1

...
. . .

p2 − 2 R2
1 −R2

1
p2 − 1 R2

1 − R3
1

and A(0),L,1 equals (The matrix A(0),L,1 corresponds to A(5),L,1 in [32]):

A(0),L,1 =

0


L(−1),0
1


1 L(−1),1

1
...

...
p2 − 2 L(−1),p2−2

1
p2 − 1 0

Appendix A.4.2. Step 2: Working at the Resolution of Level-0 Blocks

Here, we view the matrix A(0) as a block matrix over Level-0 blocks. That is, denote
by (i, j) the row block corresponding to the jth Level-0 block inside the ith Level-1 block of
A. We transform A(0) into a matrix A as follows.

For each i ∈ {0, . . . , p2− 2}, j ∈ {1, . . . , p1− 1}, replace each row in V(0),2[(i, j), ·] with
V(0),2[(i, j), ·]−V(0),2[(i, 0), ·]. The resulting matrix A2 is of the form A2 = (AL,2|AR,2).
(The matrix A2 corresponds to A(6),2 in [32].)

The right side AR,2 is as follows. (The matrix AR,2 corresponds to A(6),R,2 in [32] and
is in different from it because of the corrected mistake.)

AR,2 =

0 1 2 · · · p2 − 2 p2 − 1
0


R4

2 + R2
2 −R2

2


1 R4
2 + R2

2 −R2
2

...
. . .

p2 − 2 R4
2 + R2

2 −R2
2

p2 − 1 R1
2 + R2

2 − R3
2 R1

2 · · · R1
2 R1

2

,

where R4
2 is given in (8). The resulting left-side matrix AL,2 is (The matrix AL,2 corresponds

to A(6),L,2 in [32].):

AL,2 =

0


L0
2


1 L1

2
...

...
p2 − 2 Lp2−2

2
p2 − 1 0

,

where Li
2 is given in (11).

Finally, we apply a similar transformation to A(0),1 resulting in AL,1 that equals (The
matrix AL,1 corresponds to A(6),L,1 in [32]):
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AL,1 =

0


L0
1


1 L1

1
...

...
p2 − 2 Lp2−2

1
p2 − 1 0

,

where Li
1 is given in (10). The resulting right-hand side is AR,1 = A(0),R,1 (there is no

change, since the first block-row in V(0),R,1 is zero).

Appendix A.4.3. Step 3: Working within Level-0 Blocks

Here, we move to working with individual rows and complete the task of leaving a
basis of the original rows of A(−1),L as the set of non-zero rows of the matrix A(1),L obtained
by a series of row operations. To this end, our goal is to understand the set of remaining
rows in AL. In the AL,2 part, each Level-0 block-column (with blocks of size m×m) has

only G
de f
= Rows(T2) ∪ {(1, . . . , 1)} (here, one appears m times) as non-zero rows, and in

each row, there are non-zero entries in only one of the blocks. Thus, it suffices to find a
basis for the set G of vectors.

Lemma A1. Assume p = p1. Then, the index set I = {k|0 ≤ k ≤ (p1 − 1)p2} satisfies that
Rows(T2[I, [m]]) is a basis for G. In particular, for each i ∈ Zp, we have ∑

p1−1
j=0 T2[i+ j · p2, [m]] =

x · (1, . . . , 1) . Here, x is computed as follows: first calculate y as p−1
2 modulo p1 (that is, in Zp1).

Then, we “lift” y back into Z (1 ≤ y ≤ p1 − 1) and then set x to be y modulo p—that is, x is an
element of Zp (note that all non-zero coefficients in the linear combination that results in (1, . . . , 1)
indeed belong to I).

Another observation that will be useful to us identifies the dual of T2.

Lemma A2. Assume p = p1. Then, the set of vectors:

S = {
p1−1

∑
j=0

ej·p2 − ei+(j+1)·p2
|i ∈ Zp2 \ {0}}

is a basis of Ker(T2), where Ker(T2)
de f
= {v|v · T2} denotes the left kernel of the matrix T2.

The observations are rather simple to prove by basic techniques; see [32]. Note that
the general theory of cyclotomic matrices is not useful here, as it holds over infinite or large
(larger than matrix size) fields, so we proceed by ad-hoc analysis of the (particularly simple)
matrices at hand.

We handle the A(1),2 part first (The matrix A(1),2 corresponds to A(7),2 in [32]). We
conclude from Lemma A1 that for every block specified by (i, j) where i 6= p2 − 1, in
VL,2[(i, j), ·], the rows indexed by b ∈ I (as in Lemma A1) span all rows in that block.
Furthermore, for the purpose of Lemma 2, we b-zero the rest of the rows, by a sequence of
row operations as specified by Ker(T2) in Lemma A2, starting from row (p1 − 1)p2 + 1 and
moving forward up to m− 1. That is, for b -zeroing row (p1 − 1)p2 + k (where k > 0) in
VL,2[(i, j), ·] as above, we store the combination:

p1−1

∑
h=0

(
V1[(i, j, k + h · p2), ·]−V1[(i, j, k + (h + 1) · p2), ·]

)
in row (i, j, k) of A(1),2.
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Overall, the resulting A(1),2 is as follows: A(1),R,2 is identical to AR,2, except for
replacing R4

2 with R5
2. That is, in the last block row R5

2, all cells are R2
−1, and there are p1

such cells.
Here, R2

−1 is of the form:

R2
−1 =

0 1 2 · · · p2 − 2 p2 − 1
1


1 −1


2 1 −1
...

. . .
p2 − 2 1 −1
p2 − 1 1 −1

R5
2 =

0 · · · p2 − 1 · · · 2p2 − 1 · · · m− p2 · · · m− 1
0



I



...

m− p2
m− p2 + 1

R2
−1 R2

−1 · · · R2
−1

...
m− 1

Next, we handle the A(1),1 part (Here, A(1),1 corresponds to A(7),1 in [32]). Here, we
b-zero the remaining rows in AL,1 by adding the right combination of rows in AL,2. The
combination is determined by the “in particular” part of Lemma A2. The resulting matrix
A(1),L,2 is identical to AL,2, except for T2 in each Li

2 being replaced by T′2. Here, T′2 has
the form:

0 1 · · · (1, 0)Zm − p2 − 1 · · · (1, 0)Zm − 1 (1, 0)Zm · · · m− p2 · · · m− 1
0



1 1 · · · 1


... 1 · · · 1
...

m− p2 1 1 · · · 1 1 · · · 1
m− p2 + 1

...
m− 1

Here, A(1),L,1 becomes zero, which was our goal. Note that as opposed to previous
transformations, the transformation performed on AL,1 does not “mirror” the transfor-
mation performed on AL,2 and in fact involves rows from both AL,2 and AL,1. A(1),R,1 is
identical to AR,1, except that in each Level-1 block (i, i) for i ∈ {0, . . . , p2 − 2}, the first row
of R2

1 (the content of this block) is replaced by (We correct here the typo in [32], by adding
the exponent (−1) to x):

−
p1−1

∑
i=0

x−1ei·p2 .

It remains to b-zero the L-part of A3. For simplicity, we focus on VL,3[0, 0] (which is
the only non-zero block in VL,2) and then use the resulting linear dependence to produce
the new row V3[0, ·].
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VL,3[0, 0] = x−1
p1−1

∑
i=0

VL,2[(0, 0, i · p2), 0]−VL,2[(0, 0, (−1, 0)Zm + 1), 0]

This results in:

A(1),R,3 = −x−1
p1−1

∑
i=0

e(0,0,i·p2)
+ e(0,0,(−1,0)Zm )+

(0,1)Zm−1

∑
b=1

Tb,0[R] +
p1−2

∑
j=0

R0,1+j·(1,0)Zm
[R] (A7)

Appendix A.4.4. A Reduced Matrix We Will Analyze Directly

Taking I1 to be the set of rows in A(1) that correspond to non-zero rows in A(1),L,1

and I2 corresponding to L, we obtain the following matrix A(2). (The matrix A(2) here
corresponds to A(8) in [32].) On Level-1, it has a block structure similar to that of A(1),R

(where the number of rows changes in some of the matrices). More concretely, A(2),2 has
the form (The correction of the mistake in [32] leads to the changed first block in the last
block-row in A(2),2):

A(2),2 =

0 1 2 · · · p2 − 2 p2 − 1
0



R5,−
2 + R2,−

2 −R2,−
2


1 R5,−

2 + R2,−
2 −R2,−

2
...

. . .
p2 − 2 R5,−

2 + R2,−
2 −R2,−

2
p2 − 1 R1

2 + R2
2 − R3

2 R1
2 · · · R1

2 R1
2

Here, R5,−
2 is identical to R5

2 except that the top m− p2 + 1 rows in it are removed.
That is, it is identical to R4

2, except that the (0,0)th Level-0 block in R4
2 replaces I by C, which

are equal.

m− p2 + 1
 R2

−1 R2
−1 · · · R2

−1

...
m− 1

.

Similarly, R2,−
2 is obtained from R2

2 in the same manner. In this case, only zero rows
are removed. A(2),1 is precisely A(1),R,1 (no rows were eliminated from there, as all corre-
sponding rows on the left side became zero). Similarly, A(2),3 = A(1),R,3.

Appendix A.5. Completing the Proof—Analysis of A(2)

We are now ready to make our conclusion, assuming p = p1 and p1, p2 > 2. We
stress that further analysis of the matrix is needed for identifying all p’s for which a share
conversion exists. In fact, some of the detailed calculations of the resulting matrix structure
are not needed for our conclusion, and we could instead identify only the properties that
we need of various sub-matrices. However, some of the details may be useful for future
analysis, so we made all the calculations.

Our last step is to reduce the matrix A(2) “modulo” the set G: for every row r in
A(2) and every Level-0 block in this row, we reduce the contents of that row “modulo”
span(Rows(T2)). That is, we complement the basis of Rows(T2) specified in Lemma A1
into a basis of Zm

p , where e0 is one of the added vectors and define a linear mapping L
taking elements of Rows(T2[I, ·]) to zero and other elements of the basis onto themselves
(it is inconsequential what the other base elements are). Indeed, observe that e0 is not in
span(Rows(T2)), as it is not in Ker(Ker(span(Rows(T2)))), as implied by Lemma A2. To
verify this, observe for instance that:
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〈
p1−1

∑
i=0

(ei·p2 − e1+i·p2), e0

〉
= 1 6= 0.

We apply a linear mapping L taking x ∈ span(Rows(T2)) to 0 and other base elements
to themselves. Recall that Level-0 blocks indeed have m columns each. We make the
following observations. We let A(3) denote the resulting matrix. (Here, A(3) corresponds to
A(9) in [32].)

Observation A1. The rows of A(3),1 are zero.

Observation A2. A(3),3 maps to ∑
(0,1)Zm−1
b=1 Tb,0[R] + ∑

p1−2
j=0 R0,1+j·(1,0)Zm

[R].

Observation A1 follows easily from the form of the matrix A(2) and Lemmas A1 and A2,
which implies that span(Rows(T2)) is exactly the kernel of S from Lemma A2 (this is the
reason we need Lemma A2: it is easier to verify that a given vector is not in Ker(span(S)),
rather than verifying it is not in span(T2)).

Observation A2 follows by the structure of A(2) and definition of L.
Now, if A(2),3 is spanned by the rest of the rows in A(2), then it must be the case that

the same dependence exists in A(3). Thus, it suffices to prove that the latter does not hold.
Assume for the sake of contradiction that:

v(A(3),1; A(3),2) = A(3),3

for some vector v. In the following, we use V0 for viewing v as a block vector with Level-0
blocks. Note that unusually for this type of matrix, the blocks in the first row have p2 − 1
rows, and in other block row, the cells have m rows, as usual. Similarly, we use V1 to
impose Level-1 structure onto v.

By the structure of R2,−
2 , we conclude that A(3),2 is of the form (we note that the

corrected mistake in [32] does not affect the appearance of A(3),2 as it does apply only to
the blocks spanned by the basis of T2. Hence the following consideration is exactly as in
the original work of Paskin-Cherniavsky and Schmerler):

A(3),2 =

0 1 2 · · · p2 − 2 p2 − 1
0


R5,−

2


1 R5,−
2

...
. . .

p2 − 2 R5,−
2

p2 − 1 R1
2 R1

2 · · · R1
2 R1

2

Observe that in A(3),3, non-zero values exist only in Level-1 blocks i = 0, 1. As there are
p2 such blocks and p2 > 2, by our assumption, we conclude that the last row contributes
zero to v(A(3),1; A(3),2), as in the last block, the output needs to be zero, and it equals
V[p2]A(3),2, which is the same contribution for all (Level-1) blocks.

To agree with A(3),3 at block i, we must then have v · R5,−
2 = e0. Viewing R5,−

2 as a
block-matrix of Level-0, because of the zeroes at all blocks but Block 0, the contributions of
all block-rows but the first one to v · R5,−

2 is:

−(2 + (p1 − 2)) ·V1[p2] = −p1 ·V1[0] = 0.

In the above, the last equality is due to the fact that p = p1. Thus, we must have
V1[0] · C = e0. However, we observe that Rows(C) is a subset of Ker(span(S)), where S is
specified in Lemma A2 and thus cannot equal e0 (which is not in Ker(span(S))).

This concludes the proof of Theorem A1:
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Theorem A1. Assume m = p1 · p2, p = p1, and p1, p2 > 2. Then, there exists a row v in M 6≡
such that Rows(M≡) does not span v.

References
1. Chor, B.; Kushilevitz, E.; Goldreich, O.; Sudan, M. Private Information Retrieval. J. ACM 1998, 45, 965–981. [CrossRef]
2. Angel, S.; Setty, S. Unobservable communication over fully untrusted infrastructure. In Proceedings of the 12th USENIX

Symposium on Operating Systems Design and Implementation (OSDI 16), Savannah, GA, USA, 2–4 November 2016; pp. 551–569.
3. Mittal, P.; Olumofin, F.G.; Troncoso, C.; Borisov, N.; Goldberg, I. PIR-Tor: Scalable Anonymous Communication Using Private

Information Retrieval. In Proceedings of the 20th USENIX Security Symposium, San Francisco, CA, USA, 8–12 August 2011; p. 31.
4. Gupta, T.; Crooks, N.; Mulhern, W.; Setty, S.; Alvisi, L.; Walfish, M. Scalable and private media consumption with Popcorn. In

Proceedings of the 13th (USENIX) Symposium on Networked Systems Design and Implementation (NSDI 16), Santa Clara, CA,
USA, 16–18 March 2016; pp. 91–107.

5. Henry, R.; Herzberg, A.; Kate, A. Blockchain access privacy: Challenges and directions. IEEE Secur. Priv. 2018, 16, 38–45.
[CrossRef]

6. Gentry, C.; Halevi, S.; Magri, B.; Nielsen, J.B.; Yakoubov, S. Random-Index PIR and Applications. Technical Report, Cryptology
ePrint Archive, Report 2020/1248. 2020. Available online: https://eprint.iacr.org (accessed on 19 December 2021).

7. Green, M.; Ladd, W.; Miers, I. A protocol for privately reporting ad impressions at scale. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, Vienna, Austria, 24–28 October 2016; pp. 1591–1601.

8. Grissa, M.; Hamdaoui, B.; Yavuz, A.A. Unleashing the power of multi-server pir for enabling private access to spectrum databases.
IEEE Commun. Mag. 2018, 56, 171–177. [CrossRef]

9. Tan, Z.; Wang, C.; Yan, C.; Zhou, M.; Jiang, C. Protecting privacy of location-based services in road networks. IEEE Trans. Intell.
Transp. Syst. 2020, 22, 6435–6448. [CrossRef]

10. Günther, D.; Holz, M.; Judkewitz, B.; Möllering, H.; Pinkas, B.; Schneider, T. PEM: Privacy-preserving Epidemiological Modeling.
Cryptol. ePrint Arch. 2020. Available online: https://eprint.iacr.org/2020/1546 (accessed on 20 December 2021)

11. Efremenko, K. 3-Query Locally Decodable Codes of Subexponential Length. SIAM J. Comput. 2012, 41, 1694–1703. [CrossRef]
12. Yekhanin, S. Towards 3-query locally decodable codes of subexponential length. J. ACM 2008, 55, 1:1–1:16. [CrossRef]
13. Beimel, A.; Ishai, Y.; Kushilevitz, E.; Orlov, I. Share Conversion and Private Information Retrieval. In Proceedings of the 27th

Conference on Computational Complexity, CCC 2012, Porto, Portugal, 26–29 June 2012; pp. 258–268. [CrossRef]
14. Dvir, Z.; Gopi, S. 2-Server PIR with Subpolynomial Communication. J. ACM 2016, 63, 39:1–39:15. [CrossRef]
15. Kushilevitz, E.; Ostrovsky, R. Replication is NOT Needed: SINGLE Database, Computationally-Private Information Retrieval.

In Proceedings of the 38th Annual Symposium on Foundations of Computer Science, FOCS’97, Miami Beach, FL, USA, 19–22
October 1997; pp. 364–373. [CrossRef]

16. Mughees, M.H.; Chen, H.; Ren, L. OnionPIR: Response Efficient Single-Server PIR. In Proceedings of the 2021 ACM SIGSAC
Conference on Computer and Communications Security, Virtual, Korea, 15–19 November 2021; pp. 2292–2306.

17. Ali, A.; Lepoint, T.; Patel, S.; Raykova, M.; Schoppmann, P.; Seth, K.; Yeo, K. Communication–Computation Trade-offs in PIR. In
Proceedings of the 30th USENIX Security Symposium (USENIX Security 21), Virtual, 11–13 August 2021; pp. 1811–1828.

18. Park, J.; Tibouchi, M. SHECS-PIR: Somewhat Homomorphic Encryption-Based Compact and Scalable Private Information
Retrieval. In European Symposium on Research in Computer Security; Springer: Berlin/Heidelberg, Germany, 2020; pp. 86–106.

19. Corrigan-Gibbs, H.; Kogan, D. Private information retrieval with sublinear online time. In Annual International Conference on the
Theory and Applications of Cryptographic Techniques; Springer: Berlin/Heidelberg, Germany, 2020; pp. 44–75.

20. Gilboa, N.; Ishai, Y. Distributed point functions and their applications. In Annual International Conference on the Theory and
Applications of Cryptographic Techniques; Springer: Berlin/Heidelberg, Germany, 2014; pp. 640–658.

21. Beimel, A.; Ishai, Y.; Kushilevitz, E.; Raymond, J. Breaking the O(n1/(2k-1)) Barrier for Information-Theoretic Private Information
Retrieval. In Proceedings of the 43rd Symposium on Foundations of Computer Science (FOCS 2002), Vancouver, BC, Canada,
16–19 November 2002; pp. 261–270. [CrossRef]

22. Ben-Aroya, A.; Efremenko, K.; Ta-Shma, A. Local list decoding with a constant number of queries. In Proceedings of the 2010
IEEE 51st Annual Symposium on Foundations of Computer Science, Las Vegas, NV, USA, 23–26 October 2010; pp. 715–722.

23. Chee, Y.M.; Feng, T.; Ling, S.; Wang, H.; Zhang, L.F. Query-efficient locally decodable codes of subexponential length. Comput.
Complex. 2013, 22, 159–189. [CrossRef]

24. Dvir, Z.; Gopalan, P.; Yekhanin, S. Matching Vector Codes. SIAM J. Comput. 2011, 40, 1154–1178. [CrossRef]
25. Efremenko, K. From irreducible representations to locally decodable codes. In Proceedings of the Forty-Fourth Annual ACM

Symposium on Theory of Computing, New York, NY, USA, 20–22 May 2012; pp. 327–338.
26. Itoh, T.; Suzuki, Y. Improved constructions for query-efficient locally decodable codes of subexponential length. IEICE Trans. Inf.

Syst. 2010, 93, 263–270. [CrossRef]
27. Cramer, R.; Damgård, I.; Ishai, Y. Share Conversion, Pseudorandom Secret-Sharing and Applications to Secure Computation.

In Proceedings of the Theory of Cryptography, Second Theory of Cryptography Conference, TCC 2005, Cambridge, MA, USA,
10–12 February 2005; Kilian, J., Ed.; Springer: Berlin/Heidelberg, Germany, 2005; Volume 3378, pp. 342–362. [CrossRef]

28. Vapnik, V.N.; Chervonenkis, A.Y. On the uniform convergence of relative frequencies of events to their probabilities. Theory
Probab. Appl. 1971, 16, 264–280. [CrossRef]

http://doi.org/10.1145/293347.293350
http://dx.doi.org/10.1109/MSP.2018.3111245
https://eprint. iacr. org
http://dx.doi.org/10.1109/MCOM.2018.1701341
http://dx.doi.org/10.1109/TITS.2020.2992232
https://eprint.iacr.org/2020/1546
http://dx.doi.org/10.1137/090772721
http://dx.doi.org/10.1145/1326554.1326555
http://dx.doi.org/10.1109/CCC.2012.23
http://dx.doi.org/10.1145/2968443
http://dx.doi.org/10.1109/SFCS.1997.646125
http://dx.doi.org/10.1109/SFCS.2002.1181949
http://dx.doi.org/10.1007/s00037-011-0017-1
http://dx.doi.org/10.1137/100804322
http://dx.doi.org/10.1587/transinf.E93.D.263
http://dx.doi.org/10.1007/978-3-540-30576-7_19
http://dx.doi.org/10.1137/1116025


Entropy 2022, 24, 497 38 of 38

29. Ben-Or, M.; Goldwasser, S.; Wigderson, A. Completeness Theorems for Non-Cryptographic Fault-Tolerant Distributed Computa-
tion (Extended Abstract). In Proceedings of the 20th Annual ACM Symposium on Theory of Computing, Chicago, IL, USA, 2–4
May 1988; Simon, J., Ed.; ACM: New York, NY, USA, 1988; pp. 1–10. [CrossRef]

30. Grolmusz, V. Superpolynomial size set-systems with restricted intersections mod 6 and explicit Ramsey graphs. Combinatorica
2000, 20, 71–86. [CrossRef]

31. Ito, M.; Saito, A.; Nishizeki, T. Multiple Assignment Scheme for Sharing Secret; Springer: Berlin/Heidelberg, Germany, 1993;
Volume 6, pp. 15–20.

32. Paskin-Cherniavsky, A.; Schmerler, L. On Share Conversions for Private Information Retrieval. Entropy 2019, 21, 826. [CrossRef]
33. Beimel, A. Secret-Sharing Schemes: A Survey. In Coding and Cryptology—Proceedings of the Third International Workshop, IWCC

2011, Qingdao, China, 30 May–3 June 2011; Chee, Y.M., Guo, Z., Ling, S., Shao, F., Tang, Y., Wang, H., Xing, C., Eds.; Springer:
Berlin/Heidelberg, Germany, 2011; Volume 6639, pp. 11–46. [CrossRef]

http://dx.doi.org/10.1145/62212.62213
http://dx.doi.org/10.1007/s004930070032
http://dx.doi.org/10.3390/e21090826
http://dx.doi.org/10.1007/978-3-642-20901-7_2

	Introduction
	Private Information Retrieval
	Share Conversion
	BIKO Framework
	Our Contribution
	Instantiations of BIKO and Future Directions of Our Work
	Our Techniques

	Preliminaries
	Some Notation
	Secret Sharing Schemes
	Share Conversion
	The Characterization of BIKO.
	Our Starting Point—The Result of Paskin-Cherniavsky and Schmerler

	Our Result
	Starting Point and Main Technical Tool
	Construction of Type-3 matrix
	Elimination Steps in Type-3 Matrix
	The Case of the Even m (p1=2, p2=q)
	Internal Transformations in Matrices on the Level-2
	Resolution of the Level-0 Blocks in A(2),3
	Resolution of the Level-0 Blocks in (A(2),2;A(2),1)
	Resolution of the A(3),1&2 Basis
	Elimination of the Left-Side Matrices
	Resolution of N and 2Iq-N Blocks
	Case p1=2, p2=q, p>2
	Case p1=2, p2=q, p=2


	Computer Search Results on the Set Sm and the Extended Set S'm. 
	AppendixA
	AppendixA.1
	The Matrix A(-1),3
	The Matrix A(-1),1
	AppendixA.4
	Step 1: Working at the Resolution of Level-1 Blocks
	Step 2: Working at the Resolution of Level-0 Blocks
	Step 3: Working within Level-0 Blocks
	A Reduced Matrix We Will Analyze Directly

	AppendixA.5

	References

