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Abstract: In vertical federated learning (FL), the features of a data sample are distributed across
multiple agents. As such, inter-agent collaboration can be beneficial not only during the learning
phase, as is the case for standard horizontal FL, but also during the inference phase. A fundamental
theoretical question in this setting is how to quantify the cost, or performance loss, of decentralization
for learning and/or inference. In this paper, we study general supervised learning problems with
any number of agents, and provide a novel information-theoretic quantification of the cost of decen-
tralization in the presence of privacy constraints on inter-agent communication within a Bayesian
framework. The cost of decentralization for learning and/or inference is shown to be quantified in
terms of conditional mutual information terms involving features and label variables.

Keywords: vertical federated learning; Bayesian learning; information-theoretic analysis

1. Introduction

Consider a digital bank interested in building a prediction model for credit scoring
based on data features of given individuals, such as saving information and spending
habits, that are distributed across other banks, fintech companies, and online retail shops
(see Figure 1). Data labels indicating loan approval or rejection reside at a trusted third-
party credit bureau, which keeps track of the approved loans [1]. This setting exemplifies
vertical federated learning (FL), in which data features are scattered across different partici-
pating agents, with data barriers between them preventing a direct exchange of information.

Unlike conventional horizontal FL, in which agents have independent data points, in
vertical FL settings, inter-agent collaboration can be beneficial not only during the learning
phase but also during the inference phase [2,3]. It is therefore important to understand at
a fundamental theoretical level whether decentralization, wherein agents use only local
data for learning and/or inference, entails a significant performance loss as compared to
collaborative learning and/or inference. This is the subject of this paper.

As a first attempt in this direction, Chen et al. [3] address this problem by studying
a binary classification problem in which each class corresponds to a bivariate Gaussian
distribution over two input features, which are vertically distributed between two agents.
The authors identify four collaboration settings depending on whether collaboration is
done during learning and/or inference phases as collaborative learning–collaborative in-
ference (CL/CI), collaborative learning–decentralized inference (CL/DI), decentralized
learning–collaborative inference (DL/CI), and decentralized learning–decentralized infer-
ence (DL/DI). By taking a frequentist approach, the authors compare the classification
error rates achieved under these four settings.

In this work, inspired by [3], we develop a novel information-theoretic approach to
quantify the cost of decentralization for general supervised learning problems with any
number of agents and under privacy constraints. Specifically, we consider a supervised
learning problem defined by an arbitrary joint distribution PX,Y|W involving the feature
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vector X and label Y, with the feature vector vertically partitioned between any number of
local agents. A trusted central server, also called a data scientist or aggregator [4], holds
the labels, which it shares with the agents upon request (see Figure 1). The agents collab-
orate through the aggregator during learning and/or inference. To limit the information
leakage from the shared feature to an adversarial eavesdropper, unlike [3], privacy con-
straints are imposed on the aggregation mapping. By adopting a Bayesian framework,
we characterize the average predictive performance of the four settings—CL/CI, CL/DI,
DL/CI, and DL/DI—under privacy constraints via information-theoretic metrics. Finally,
we illustrate the relation between the four collaboration settings with/without privacy
constraints on two numerical examples.

Fintech Company

Training

User ID Loan 

122 Yes

232 No

110 No

Data Scientist: Credit Bureau

Training

User ID Loan

432 No

Test

User ID Deposit

122 10000

232 500

110 200

User ID Deposit 

432 100

Online Retail Site

User 
ID

# shopping

122 100

232 200

110 20

TrainingTest Test

User 
ID

#shopping

432 50

Figure 1. Illustration of the vertical federated learning (FL) setup under study for a prototypical
credit scoring application.

In line with the recent works of [5,6], this work relates information-theoretic measures
to learning centric performance metrics with the goal of providing theoretical insights.
Specifically, we leverage information-theoretic tools to gain insights into the performance
degradation resulting from decentralized learning and/or inference for general supervised
learning problems. The main contribution is hence of theoretical nature, as it provides a
connection between information-theoretic metrics and practically relevant measures of
generalization in decentralized Bayesian learning and inference.

2. Problem Formulation

Setting: We study a vertical federated learning (FL) setting with K agents that can coop-
erate during the learning and/or inference phases of operation of the system. Our main
goal is to quantify, using information-theoretic metrics, the benefits of cooperation for
learning and/or inference. We focus on a supervised learning problem, in which each
data point corresponds to a tuple (X, Y) encompassing the K-dimensional feature vector
X = (X1, . . . , XK) and the scalar output label Y. As illustrated in Figure 1, each kth feature
Xk in vector X is observed only by the kth agent. A trusted central server, referred to as
the aggregator, holds the output label Y, which it shares with the agents on request [4,7].
Features and labels can take values in arbitrary alphabets. The unknown data distribution
is assumed to belong to a model class {PX,Y|W : W ∈ W } of joint distributions that are
identified by a model parameter vector W taking values in some space W . Adopting a
Bayesian approach, we endow the model parameter vector with a prior distribution PW .
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As illustrated in Figure 1, let (X ,Y) = {(X1, Y1), . . . , (XN , YN)} denote a training data
set of N labelled samples, which, when conditioned on model parameter W, are assumed
to be generated i.i.d. according to distribution PX,Y|W . The N × K matrix X collects the
K-dimensional feature vectors {Xn}N

n=1 by rows. We denote as Xn,k, the (n, k)th element
of matrix X , for n = 1, . . . , N, and k = 1, . . . , K; and as Xk = [X1,k, . . . , XN,k]

T ([·]T is
the transpose operation), the kth column of the data matrix, which corresponds to the
observations of agent k. The goal of the system is to use the training data set (X ,Y) to infer
the model parameter W, which enable the agents to predict the label of a new, previously
unseen, test feature input X. The joint distribution of model parameter W, training data
(X ,Y), and test data (X, Y) can be written as follows ([8], Chapter 3.3):

PW,X ,Y ,X,Y = PW ⊗N
i=1 (PXi,1,...,Xi,K ,Yi |W)︸ ︷︷ ︸

training

⊗ PX1,...,XK ,Y|W︸ ︷︷ ︸
testing

, (1)

with⊗ representing the product of distributions, and conditional distribution PXi,1,...,Xi,K ,Yi |W
being equal to PX1,...,XK ,Y|W for i = 1, . . . , N.
Collaborative/decentralized learning/inference: In the learning phase, training data is
used to infer the model parameter W, enabling the agents in the inference phase to make
predictions about test label Y given the test feature vector X based on the model PX,Y|W .
Either or both learning and inference phases can be carried out collaboratively by the
agents or in a decentralized fashion (i.e., separately by each agent). When collaborating for
learning or inference, the K agents share their locally observed feature data via the aggre-
gator. The operation of the aggregator is modelled as a stochastic aggregation mapping
PX̂|X1,...,Xk

= PX̂|X from the input K local features to an output shared feature X̂, to be used
by each of the K local agents. As detailed next, for learning, the mapping PX̂|X is applied
independently to each data point. Furthermore, as we also detail later in this section, we
impose privacy constraints on the aggregation mapping PX̂|X so that the shared feature X̂
does not reveal too much information about the local agents’ features.

We specifically distinguish the following four settings:

• Collaborative learning–collaborative inference (CL/CI): Agents collaborate during both
learning and inference phases by sharing information about their respective features.
Accordingly, during learning, each agent has access to the shared training data features
X̂ = (X̂1, . . . , X̂N), where each nth component X̂n ∼ PX̂|X=Xn

is generated indepen-
dently by the aggregator in response to the observed feature vector Xn, in addition to
its own observed local feature data Xk. Furthermore, during inference, agent k can
use the shared test feature X̂ ∼ PX̂|X=X, obtained by aggregating the test feature vector
X, in addition to its own observation Xk, in order to predict the test label Y.

• Collaborative learning–decentralized inference (CL/DI): Agents collaborate only during
learning by sharing information about their respective features as explained above,
while inference is decentralized. Accordingly, during inference, each kth agent uses
the kth feature Xk of test feature vector X in order to predict the test label Y.

• Decentralized learning–collaborative inference (DL/CI): Agents collaborate for inference,
while each kth agent is allowed to use only its observed training data Xk, along with
the labels Y shared by the aggregator, during learning.

• Decentralized learning–decentralized inference (DL/DI): Agents operate independently,
with no cooperation in either learning or inference phases.

Privacy constraints: The aggregation mapping PX̂|X shares the output feature X̂ with each
of the K local agents during collaborative learning and/or inference. To account for privacy
constraints concerning agents’ data, we limit the amount of information that a “curious”
eavesdropper may be able to obtain about the local features’ data from observing X̂. To this
end, we impose the following privacy constraint on the aggregation mapping so that the
shared feature X̂ does not leak too much information about the local features Xk of all
agents k = 1, . . . , K.
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The aggregation mapping PX̂|X is said to be ε- individually private if

I(X̂; Xk|X(−k)) ≤ ε, for all k = 1, . . . , K, (2)

where X(−k) = (X1, . . . , Xk−1, Xk+1, . . . , XK) and

I(X̂; Xk|X(−k)) = EPX̂,X

[
log

PX̂,Xk |X(−k)

PX̂|X(−k)PXk |X(−k)

]
is the conditional mutual information under the joint distribution PX̂,X = PXPX̂|X, with PX

being the marginal of PX,Y,W . The constraint (2) measures privacy against a strong eaves-
dropper that knows all features except the kth feature Xk. Specifically, the conditional
mutual information I(X̂; Xk|X(−k)) quantifies the additional information about Xk gained
by the eavesdropper upon observing the shared feature X̂. As such, the metric is also
relevant as a privacy measure against “curious” agents.

We note that although the privacy constraint in (2) bears a resemblance to the MI-
differential privacy (MI-DP) constraint introduced in [9], the condition (2) does not have the
same operational meaning. In fact, the MI-DP constraint in [9,10] or the f -divergence-based
DP constraint in [11] ensure differential privacy for individual i.i.d. data samples of a
training data set, and they rely on a mechanism that applies to the entire data set during
learning. In contrast, the constraint (2) accounts for the privacy of correlated local features
via a per-sample masking mechanism, and it applies to both learning and inference phases.

Predictive loss under privacy constraints: In all the four settings described above, any
agent k uses the available training data (X̃k,Y), with X̃k being equal to Xk for decentralized
learning and to (Xk, X̂ ) for collaborative learning, in order to infer the model parameter
W. The inferred model is then used to predict the label Y given the test feature input
X̃k, with X̃k being equal to Xk for decentralized inference and to (Xk, X̂) for collaborative
learning. We impose that the aggregation mapping PX̂|X must satisfy the privacy constraint
in (2).

The joint operation of learning and inference at agent k can be accordingly described
via a stochastic predictive distribution QY|X̃k ,Y ,X̃k

on the test label Y given the training data

(X̃k,Y) and test feature input X̃k. The predictive distribution can be thought of as the
result of a two-step application of learning and inference, where a model parameter is
first learned using the input training data (X̃k,Y) and is subsequently used to infer the
label corresponding to the test feature input X̃k. Note that this stochastic mapping can
account for arbitrary choices of learning and inference algorithms. By optimizing over
aggregation mapping as well as over learning and inference algorithms, we define the
ε-private predictive loss as

R(ε) = min
PX̂|X

∈P(X̂|X)

max
k=1,...,K

min
QY|X̃k ,Y ,X̃k

∈Q(Y|X̃k ,Y ,X̃k)

EPY,X̃k ,Y ,X̃k

[
− log QY|X̃k ,Y ,X̃k

]

s.t I(X̂; Xk|X(−k)) ≤ ε for all k = 1, . . . , K. (3)

In (3), the aggregation mapping PX̂|X is optimized over some specified family P(X̂|X)
of conditional distributions PX̂|X in order to minimize the worst-case predictive loss across
the agents under constraint (2). Furthermore, the inner optimization is over a class of
predictive distributions Q(Y|X̃k,Y , X̃k).

In the absence of privacy constraints (i.e., when ε = ∞), assuming that the distribution
family P(X̂|X) is sufficiently large, the optimal aggregation mapping PX̂|X puts its entire

mass on the output shared feature X̂ = X. As such, under collaborative learning, each
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agent k uses the entire feature data (i.e., X̃k = X ) , and under collaborative inference, it
uses the entire test feature vector X̃k = X. The predictive loss (3) in the absence of privacy
constraints is evaluated as

R(∞) = max
k=1,...,K

min
QY|X̃k ,Y ,X̃k

∈Q(Y|X̃k ,Y ,X̃k)

EPY,X̃k ,Y ,X̃k

[
− log QY|X̃k ,Y ,X̃k

]
. (4)

The predictive loss (4) represents the worst-case minimum average cross-entropy loss
across all agents, which can be obtained given the information about the training data set
and the test input feature [5].

3. Preliminaries and Fully Collaborative Benchmark

In this section, we first provide a brief explanation of the main information-theoretic
metrics used in this work. Then, we define and derive the average predictive loss for the
benchmark case in which both learning and inference are collaborative.
Information-theoretic metrics: Let A and B denote two (discrete or continuous) ran-
dom variables with joint distribution PA,B, and with corresponding marginals PA and PB.
The joint entropy of A and B, denoted H(A, B), is defined as H(A, B) = EPA,B [− log PA,B],
with EP[·] denoting the expectation with respect to distribution P. More generally, the condi-
tional entropy of A given B is defined as H(A|B) = EPA,B [− log PA|B], where
PA|B = PA,B/PB is the conditional distribution of A given B. By the chain rule, we have
the relationship H(A, B) = H(B) + H(A|B); we also have the property that conditioning
does not increase entropy [12] (i.e., H(A|B) ≤ H(A)). The mutual information I(A; B) be-

tween the random variables is defined as I(A; B) = EPA,B

[
log
(

PA,B
PAPB

)]
. Finally, for random

variables A, B, and C with joint distribution PA,B,C, the conditional mutual information

I(A; B|C) between A and B given C is defined as I(A; B|C) = EPA,B,C

[
log
( PA,B|C

PA|C PB|C

)]
.

Private collaborative learning–collaborative inference (CL/CI): As a benchmark, we now
study the predictive loss (3) for the CL/CI setting. The ε-private predictive loss (3) of CL/CI
is given as

RCL/CI(ε) = min
PX̂|X∈F (X̂|X)

max
k=1,...,K

min
QY|X̂ ,Xk ,Y ,X̂,Xk

∈Q(Y|X̂ ,Xk ,Y ,X̂,Xk)

EPY,X̂ ,Xk ,Y ,X̂,Xk

[
− log QY|X̂ ,Xk ,Y ,X̂,Xk

]
(5)

where

F (X̂|X) = {PX̂|X ∈ P(X̂|X) : constraint (2) holds} (6)

is the feasible space of conditional distributions satisfying the privacy constraint (2). The fol-
lowing lemma presents an information-theoretic characterization of the lossRCL/CI(ε).

Lemma 1. Assume that the family Q(Y|X̂ ,Xk,Y , X̂, Xk) comprises the set of all predictive distri-
butions QY|X̂ ,Xk ,Y ,X̂,Xk

. Then, the ε-private predictive loss (5) for the CL/CI setting evaluates as

RCL/CI(ε) = min
PX̂|X

∈F (X̂|X)

max
k=1,...,K

H(Y|X̂ ,Xk,Y , X̂, Xk). (7)

In addition, if ε = ∞, and P(X̂|X) includes the space of all conditional distributions PX̂|X, then the
predictive loss (4) in the absence of privacy constraints for CL/CI is evaluated as

RCL/CI(∞) = H(Y|X,X ,Y). (8)
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Proof. For a fixed aggregation mapping PX̂|X, and an agent k, the predictive distribution

that minimizes the inner cross entropy term in (5), EPY,X̂ ,Xk ,Y ,X̂,Xk

[
− log QY|X̂ ,Xk ,Y ,X̂,Xk

]
, is

the posterior distribution, PY|X̂ ,Xk ,Y ,X̂,Xk
[12], resulting in the conditional entropy term in

(7). When ε = ∞ and P(X̂|X) includes the space of all conditional distributions, we have
X̂ = X and X̂ = X, yielding (8).

4. Cost of Decentralization Under Privacy Constraints

In this section, we use the benchmark predictive loss (7) observed under the ideal
CL/CI setting to evaluate the cost of decentralization in the learning and/or inference
phases under privacy constraints.

Lemma 2. The ε-private predictive losses of decentralized learning and/or inference are given as

RCL/DI(ε) = min
PX̂|X∈F (X̂|X)

max
k=1,...,K

H(Y|Xk,Xk, X̂ ,Y) (9)

RDL/CI(ε) = min
PX̂|X∈F (X̂|X)

max
k=1,...,K

H(Y|Xk, X̂,Xk,Y) (10)

RDL/DI(ε) = max
k=1,...,K

H(Y|Xk,Xk,Y), (11)

where set F (X̂|X) is as defined in (6).

Proof. The result is a direct extension of Lemma 1 to CL/DI, DL/CI, and DL/DI.

Note that the predictive loss (11) of the fully decentralized DL/DI setting does not
depend on the privacy parameter ε, since decentralization does not entail any privacy loss.
Therefore, in the absence of privacy constraints, we haveRDL/DI(∞) = RDL/DI(ε), while
the predictive losses in (9)–(10) evaluate as

RCL/DI(∞) = max
k=1,...,K

H(Y|Xk,X ,Y), (12)

RDL/CI(∞) = max
k=1,...,K

H(Y|X,Xk,Y), (13)

under the assumption of sufficiently large P(X̂|X). Furthermore, using the property that
conditioning does not increase entropy [8] results in the following relation between the
predictive losses of the four schemes—CL/CI, CL/DI, DL/CI and DL/DI—in the absence
of privacy constraints:

RCL/CI(∞) ≤ min{RCL/DI(∞),RDL/CI(∞)}
≤ max{RCL/DI(∞),RDL/CI(∞)}
≤ RDL/DI(∞). (14)

The difference between the ε-private predictive risks of the decentralized and col-
laborative schemes captures the cost of decentralization. Specifically, given two schemes
a, b ∈ {CL/CI, CL/DI, DL/CI, DL/DI} such thatRa(ε) ≥ Rb(ε), we define the cost of a
with respect to b as

Ca−b(ε) = Ra(ε)−Rb(ε). (15)

In the absence of privacy constraints (ε = ∞) and assuming symmetric agents so that the
maximum in (4) is attained for any k = 1, . . . , K, the cost of decentralization can be exactly
characterized as in the following result.
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Proposition 1. The cost of decentralization (15) for ε = ∞ and symmetric agents can be character-
ized for the kth learning agent as detailed in Table 1, where X(−k) = (X1, . . . , Xk−1, Xk+1, . . . , XK)
and X (−k) = (X1, . . . ,Xk−1,Xk+1, . . . ,XK).

Proof. We illustrate the derivation of the cost of decentralization between CL/DI and
CL/CI, as the proof can be similarly completed. In the absence of privacy constraints and as-
suming symmetric agents, we have from (8) and (12), CCL/DI−CL/CI(∞) = H(Y|Xk,X ,Y)−
H(Y|X,X ,Y) = I(Y; X(−k)|Xk,X ,Y).

The results in Table 1 have intuitive interpretations. For instance, the cost CCL/DI−CL/CI(∞)
= I(Y; X(−k)|Xk,X ,Y) corresponds to the additional information about label Y that can be
obtained from observing the features X(−k) of other agents, given X ,Y , and Xk. Examples will
be provided in the next section in which the cost of decentralization is evaluated also in the
presence of privacy constraints based on (7), (9)–(11).

Table 1. Cost of decentralization Ca−b(∞) (a defines the column and b the row).

CL/CI CL/DI DL/CI DL/DI

CL/CI – I(Y; X(−k)|Xk,X ,Y) I(Y;X (−k)|X,Xk,Y) I(Y; X(−k),X (−k)|Xk,Xk,Y)

CL/DI – – I(Y;X (−k)|Xk, Xk,Y)

DL/CI – – I(Y; X(−k)|Xk,Xk,Y)

DL/DI – – – –

5. Examples and Remarks

In this section, we consider two simple numerical examples to illustrate the cost of
decentralization for learning and/or inference with and without the privacy constraints
that were quantified in Section 4 for general models. We note that evaluating the derived
metrics for real-world examples would generally require the implementation of mutual
information estimators, and is left for future work.

5.1. Two-Agent Non-Private Collaborative Learning (CL) and/or Inference (CI)

Consider two agents (K = 2) observing binary joint features X1, X2 ∈ {0, 1}, which
have the joint distribution defined by the probability r of the two features X1 and X2
being equal, that is, Pr[X1 = X2|X2 = x2] = r/2, with Pr[X1 = 1] = Pr[X2 = 1] = 0.5.
Parameter r quantifies the statistical dependencies between features X1 and X2 through
the MI I(X1; X2) = log 2− Hb(r), where Hb(r) = −r log(r)− (1− r) log(1− r) denotes
the binary entropy with parameter r. Note that the MI takes the maximum value of
I(X1; X2) = 1 when r = 0 or 1, and the minimum value of I(X1; X2) = 0 when r = 0.5.
The output binary label Y ∈ {0, 1} depends on the feature vector X through the model

PY=1|X1,X2,W =

{
W1 if X1 ⊕ X2 = 0
W2 if X1 ⊕ X2 = 1

, (16)

with model parameters W = (W1, W2), where {W1, W2} ∈ [0, 1]. Accordingly, W1 and W2
are the probabilities of the event Y = 1 when X1 and X2 are equal or different, respectively.
We assume that the model parameters are a priori independent and distributed according
to beta distributions ([8], Section 2.4.2) as PW1,W2 = Beta(W1|α1, β1)Beta(W2|α2, β2), where
α1, β1, α2, β2 > 0 are fixed hyperparameters.

Figure 2 compares the predictive loss derived in Lemma 2 with no privacy constraints
(ε = ∞) under the four schemes—CL/CI, CL/DI, DL/CI and DL/DI—as a function of
the mutual information I(X1; X2) between the components of the bivariate feature vector.
The number of data samples is N = 3, and other hyperparameters are set to α1 = 2,
β1 = 1.5, α2 = 1.5, and β2 = 2. When the MI I(X1; X2) is large, the predictive risks under
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collaborative and decentralized schemes are similar, and the cost of decentralization is
negligible. This is because a larger MI I(X1; X2) implies that each local agent’s feature
Xk, for k = 1, 2, is highly informative about the local feature X(−k) of the other agent,
and no significant additional information can be obtained via collaboration. This applies
to both learning and inference phases. Conversely, when the MI is small, decentralization
entails a significant cost. In this example, centralized inference is more effective than
centralized learning due to the importance of having access to both X1 and X2 in order to
infer Y by (16).

Figure 2. Predictive losses (7), (9)–(11) for the four schemes under no privacy constraints (ε = ∞) as
a function of the mutual information I(X1; X2). (α1 = 2, β1 = 1.5, α2 = 1.5, β2 = 2, and N = 3).

5.2. Three-Agent Private CL and/or CI

We now extend the example in Section 5.1 by considering three agents (K = 3)
and by imposing privacy constraints during collaboration in the learning and inference
phases. The feature vector X = (X1, X2, X3) consists of three binary features Xk ∈ {0, 1}
for k = 1, 2, 3, where X1 and X2 are distributed as in Section 5.1, and we have Pr[X3|X1 =
x1, X2 = x2] = Pr[X3|X2 = x2] with Pr[X3 6= X2|X2 = x2] = 1− r. Generalizing the
previous example, the output binary label Y ∈ {0, 1} depends on the feature vector X
through the model

PY=1|X,W =

{
W1 if X1 ⊕ X2 ⊕ X3 = 0
W2 if X1 ⊕ X2 ⊕ X3 = 1

, (17)

where model parameters have the same prior distribution. The aggregation mapping PX̂|X
produces a binary random variable X̂ ∈ {0, 1} as X̂ = X1 ⊕ X2 ⊕ X3 ⊕ ξ, with ξ ∼ Bern(s),
where the noise variable ξ ∼ Bern(s) is chosen independently of the feature vector X,
and the parameter s ∈ [0, 1] is selected so as to guarantee the privacy constraints in (2),
which can be written as

ε ≥max
{
−Hb(s) + Hb(s(1− r) + r(1− s)),−Hb(s)+

Hb(sr + (1− r)(1− s)),−Hb(s) + 2r(1− r) log(2)

+ ((1− r)2 + r2)Hb

(
(1− r)2s + r2(1− s)

(1− r)2 + r2

)}
.

Figure 3 compares the predictive lossR(ε) derived in Lemma 2 of the four schemes—
CL/CI, CL/DI, DL/CI and DL/DI—as a function of the privacy parameter ε for fixed
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r = 0.5. In the high-privacy regime, where ε is small, the shared feature X̂ is not informative
about the local observed features, and collaborative learning/inference brings little benefit
over the decentralized schemes. However, as ε increases, thereby weakening privacy
requirements, the shared feature X̂ becomes more informative about the observed feature
vector X, and the cost of decentralization becomes increasingly significant, reaching its
maximum value under no privacy (i.e., when ε = 1).

Figure 3. Predictive losses (7), (9)–(11) for the four schemes as a function of privacy measure ε.
(α1 = 2, β1 = 1.5, α2 = 1.5, β2 = 2 and N = 3).

The examples studied in this section are simple enough to exactly evaluate the MI
terms, but sufficiently rich to clearly demonstrate the cost of decentralization arising in the
four collaboration settings of CL/CI, CL/DI, DL/CI, and DL/DI. They elucidate a simple
vertical FL setting with features partitioned across agents and a discriminative model as
given in (16).

6. Conclusions

This paper presents a novel information-theoretic characterization of the cost of de-
centralization during learning and/or inference in a vertical FL setting. Under privacy
constraints on the aggregation mechanism that enables inter-agent communications, we
show, by adopting a Bayesian framework, that the average predictive performance of the
four schemes can be quantified in terms of conditional entropy terms. Furthermore, when
no privacy constraints are imposed, the cost of decentralization for symmetric agents is
shown to be exactly characterized by conditional mutual information terms.

The proposed information-theoretic framework is relevant for real-world vertical FL
settings, such as credit scoring in banking [13], healthcare [14], and smart retailing. We
leave the investigation of practical implications of the analysis via efficient MI estimators,
such as the mutual information neural estimators (MINE) [15], to future research.

Author Contributions: Formal analysis, S.T.J. Supervision, O.S.; Writing—original draft, S.T.J.
Writing—review & editing, S.T.J. and O.S. All authors have read and agreed to the published version
of the manuscript.

Funding: The authors have received funding from the European Research Council (ERC) under the
European Union’s Horizon 2020 Research and Innovation Programme (Grant Agreement No. 725731).

Conflicts of Interest: The authors declare no conflict of interest.



Entropy 2022, 24, 485 10 of 10

References
1. Luo, X.; Wu, Y.; Xiao, X.; Ooi, B.C. Feature inference attack on model predictions in vertical federated learning. In Proceedings of

the 2021 IEEE 37th International Conference on Data Engineering (ICDE), Chania, Greece, 19–22 April 2021; pp. 181–192.
2. Verma, D.; Calo, S.; Witherspoon, S.; Bertino, E.; Jabal, A.A.; Swami, A.; Cirincione, G.; Julier, S.; White, G.; de Mel, G.; et al.

Federated Learning for Coalition Operations. In Proceedings of the AAAI FSS-19: Artificial Intelligence in Government and
Public Sector, Arlington, VA, USA, 7–8 November 2019.

3. Chen, Y.Z.J.; Towsley, D.; Verma, D. On Collaboration in Machine Learning. Available online: https://www.comsoc.org/
publications/journals/ieee-tnse/cfp/collaborative-machine-learning-next-generation-intelligent (accessed on 27 March 2022 ).

4. Romanini, D.; Hall, A.J.; Papadopoulos, P.; Titcombe, T.; Ismail, A.; Cebere, T.; Sandmann, R.; Roehm, R.; Hoeh, M.A. Pyvertical:
A vertical federated learning framework for multi-headed splitnn. arXiv 2021, arXiv:2104.00489.

5. Xu, A.; Raginsky, M. Minimum Excess Risk in Bayesian Learning. arXiv 2020, arXiv:2012.14868.
6. Hafez-Kolahi, H.; Moniri, B.; Kasaei, S.; Baghshah, M.S. Rate-Distortion Analysis of Minimum Excess Risk in Bayesian Learning.

In Proceedings of the 38th International Conference on Machine Learning, Long Beach, CA, USA, 18–24 July 2021; Meila, M.,
Zhang, T., Eds.; PMLR: New York, NY, USA, 2021; Volume 139, pp. 3998–4007.

7. Cheng, K.; Fan, T.; Jin, Y.; Liu, Y.; Chen, T.; Papadopoulos, D.; Yang, Q. Secureboost: A lossless federated learning framework.
IEEE Intell. Syst. 2021, 36, 87–98. [CrossRef]

8. Bishop, C.M. Pattern Recognition and Machine Learning; Springer: New York, NY, USA, 2006.
9. Cuff, P.; Yu, L. Differential privacy as a mutual information constraint. In Proceedings of the ACM SIGSAC Conference on

Computer and Communications Security, Vienna, Austria, 24–28 October 2016; pp. 43–54.
10. Yagli, S.; Dytso, A.; Poor, H.V. Information-theoretic bounds on the generalization error and privacy leakage in federated learning.

In Proceedings of the Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Atlanta, GA, USA, 26–29
May 2020; pp. 1–5.

11. Asoodeh, S.; Chen, W.N.; Calmon, F.P.; Özgür, A. Differentially private federated learning: An information-theoretic perspective.
In Proceedings of the 2021 IEEE International Symposium on Information Theory (ISIT), Melbourne, Australia, 12–20 July 2021;
pp. 344–349.

12. Cover, T.M.; Thomas, J.A. Elements of Information Theory, 2nd ed.; Wiley-Interscience: Hoboken, NJ, USA, 2006.
13. Zheng, F.; Li, K.; Tian, J.; Xiang, X. A vertical federated learning method for interpretable scorecard and its application in credit

scoring. arXiv 2020, arXiv:2009.06218.
14. Vepakomma, P.; Gupta, O.; Swedish, T.; Raskar, R. Split learning for health: Distributed deep learning without sharing raw

patient data. arXiv 2018, arXiv:1812.00564.
15. Belghazi, M.I.; Baratin, A.; Rajeshwar, S.; Ozair, S.; Bengio, Y.; Courville, A.; Hjelm, D. Mutual information neural estimation. In

Proceedings of the International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018; pp. 531–540.

https://www.comsoc.org/publications/ journals/ieee-tnse/cfp/collaborative-machine-learning-next-generation-intelligent
https://www.comsoc.org/publications/ journals/ieee-tnse/cfp/collaborative-machine-learning-next-generation-intelligent
http://doi.org/10.1109/MIS.2021.3082561

	Introduction
	Problem Formulation
	 Preliminaries and Fully Collaborative Benchmark
	 Cost of Decentralization Under Privacy Constraints
	Examples and Remarks
	Two-Agent Non-Private Collaborative Learning (CL) and/or Inference (CI)
	Three-Agent Private CL and/or CI

	Conclusions
	References

