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Abstract: In this paper, we propose a broad learning system based on the sparrow search algorithm.
Firstly, in order to avoid the complicated manual parameter tuning process and obtain the best
combination of hyperparameters, the sparrow search algorithm is used to optimize the shrinkage
coefficient (r) and regularization coefficient (λ) in the broad learning system to improve the prediction
accuracy of the model. Second, using the broad learning system to build a network interface flow
forecasting model. The flow values in the time period [T − 11, T] are used as the characteristic values
of the traffic at the moment T + 1. The hyperparameters outputted in the previous step are fed into
the network to train the broad learning system network traffic prediction model. Finally, to verify the
model performance, this paper trains the prediction model on two public network flow datasets and
real traffic data of an enterprise cloud platform switch interface and compares the proposed model
with the broad learning system, long short-term memory, and other methods. The experiments show
that the prediction accuracy of this method is higher than other methods, and the moving average
reaches 97%, 98%, and 99% on each dataset, respectively.

Keywords: hyperparameter optimization; network traffic; prediction

1. Introduction

The number of cloud platform users has increased in tandem with the development
of internet technologies. In the context of high concurrency and limited cloud platform
resources, how to reasonably allocate resources is one of the problems studied by cloud
platform managers [1]. Forecasting the traffic of the cloud platform network interfaces is
an effective way to achieve reasonable resource allocation: by predicting the traffic of each
interface in the future, judging its resource demand, and accordingly allocating resources
and planning the network to achieve a dynamic allocation of resources with the number
of requests and achieve load balancing [2]. However, with the rapid increase of cloud
platform access, scholars extracting internet traffic features for network traffic modeling
and prediction not only have to consider its complex characteristics such as nonlinearity
and multi-scale but also face the problems of decreasing prediction accuracy and increasing
resource consumption caused by the increasing data scale. Therefore, the research of
high-speed, high-efficiency, and high-precision network traffic prediction methods can not
only further optimize and improve network resource provisioning, planning, and network
security but also be extremely significant for the development of the internet and its good
integration with other industries.

Network traffic forecasting belongs to the field of time series forecasting. The types of
flow prediction methods include traditional statistical analysis [3,4] and machine learning.
Traditional statistical analysis uses statistical and mathematical methods to make specula-
tions and estimates on the development trend of internet traffic in the future period, and
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common models include the autoregressive integrated moving average (ARIMA) model [5]
and the generalized autoregressive conditional heteroskedasticity (GARCH) model [6,7].
The method of machine learning can be divided into deep learning and classical machine
learning methods such as support vector machines (SVM) [8,9]. In recent years, deep neural
networks have been widely used in several fields due to their good feature extraction
ability [10–12]. Meanwhile, it has also become a common method in network traffic predic-
tion. Miguel [13] used artificial neural network swarms to predict long-term internet flow.
They presented four network flow prediction models that are based on the ensemble of
time-lagged feedforward networks (TLFNS), demonstrating the superiority of the proposed
models by comparing them to the classical Holt–Winters approach. Nie [14] fused deep
belief networks and Gaussian models, extracted the low-pass components of network
traffic that can describe its own long-distance dependence using discrete wavelet transform
and then learned deep belief networks from the low-pass components to build prediction
models. Fang [15] used graph convolutional neural networks and long short-term memory
(LSTM) to capture the temporal and spatial aspects of the cellular network of a single
cell and build a prediction model, respectively. Zhang [16] proposed a spatio-temporal
graph convolutional gated recurrent unit (GC-GRU) model to capture the spatial features
of network traffic using graph convolutional neural network (GCN) and further process the
spatio-temporal characteristics features using gated units (GRU) to improve the prediction
performance of network traffic.

Deep models usually have complex structures and large parameters, so these models
require repeated iterations to train the network, spending long training time and compu-
tational resources. Chen [17] proposed a new shallow neural network based on random
vector function-link neural networks (RVFLNN) [18–20], named as broad learning sys-
tem (BLS). It contains only one hidden layer, consisting of feature mapping nodes and
enhancement nodes, which reduces the complexity of the neural network and has some
feature capturing ability. Meanwhile, Chen proposed an incremental learning algorithm
to calculate the output weights of the newly added hidden layer nodes in the BLS, so
it can complete the training of the model in a shorter time while obtaining better accu-
racy [17,21,22]. Since its proposal, BLS has received a lot of attention and gained rapid
development [23,24]. The experiment of Chen using BLS to predict short-term wind power
has demonstrated it has good performance in time-series prediction [25]. However, as
a kind of neural network, the hyperparameters of the BLS have a large impact on the
network accuracy, and researchers usually need to train the model repeatedly to adjust the
network hyperparameters to improve the model precision. This manual tuning method
not only consumes a lot of time and energy but also wastes resources such as electricity for
repeated training. Therefore, automatic hyperparameter optimization methods represented
by population intelligence optimization algorithms such as ant colony algorithms [26] and
particle swarm algorithms [27] have been developed as a result. In recent years, there
have been numerous studies on the optimization of hyperparameters using population
intelligence optimization algorithms. Zhou [28] improved the gray wolf algorithm and
used this optimization algorithm to optimize hyperparameters such as kernel parameters
in support vector machines. Xu [29] used the whale optimization algorithm to optimize
the learning rate, training time, and the number of nodes in two hidden layers of the
BiLSTM_Attention model to maximize the performance of the model. The ant colony
algorithm and particle swarm algorithm have problems such as being easy to fall into local
optimum and unsuitable for convergence. Sparrow search algorithm (SSA) [30] is a new
type of swarm intelligence optimization algorithm with the advantages of good stability,
strong global search ability, and fast convergence, so it has attracted extensive attention
and research from scholars at home and abroad [31,32]. Tian [33] used SSA to optimize the
hyperparameters of LSTM networks. Gai [34] used SSA to compute the best learning rate
and batch size of deep confidence networks. Song [35] used SSA to optimize the penalty
parameters and kernel function parameters of least squares support vector machines to
improve the prediction accuracy and generalization ability of LSSVM.
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In order to establish a fast and accurate network traffic prediction model, BLS is
applied to network traffic prediction in this paper. At the same time, in order to quickly
select the optimal hyperparameters to reduce their influence on the accuracy of the BLS,
this paper combines the SSA with BLS, uses SSA to filter out the optimal combination of
hyperparameters, and then uses the optimal hyperparameters to train BLS to build the
network traffic prediction model.

The remaining part of this paper is organized as follows. Section 2 introduces the
relevant methods used, including the BLS and the SSA. Section 3 introduces the proposed
broad learning system based on sparrow search algorithm (SSA-BLS). Section 4 presents
our experiments: SSA-BLS model is trained using two public datasets and real traffic data
collected from the switch interface of an enterprise cloud platform, and its performance
is compared with other models to verify the performance of the model. Section 5 sum-
marizes our work, presents the limitations of the current approach, and briefly describes
future work.

2. Related Work
2.1. Broad Learning System (BLS)

Broad learning system (BLS) is a new kind of shallow neural network based on the
random vector functional-link neural network that is primarily used to tackle the problems
of large computation and long training time for deep learning [17]. As shown in Figure 1,
the hidden layer of the BLS is a single-layer structure, consisting of a feature mapping layer
and an enhancement node layer.
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The input training data X ∈ RM×N of BLS contains M samples, each with N dimen-
sions, and the corresponding label is Y ∈ RM×C. The feature mapping layer maps the
input data into n sets of feature mappings with Ki nodes by the feature mapping functions
ϕi (i = 1, . . . , n):

Zi = ϕi(XWei + βei), i = 1, 2, . . . , n (1)

where Zi means i-th group feature mapping; Wei and βei is the randomly generated optimal
feature mapping weight matrix and bias matrix, determined by the sparse self-encoder. In
practical applications, ϕi is often a nonlinear mapping function, such as Relu, Tanh. The
groups of feature nodes are spliced to obtain the feature node matrix Zin = [Z1Z2 . . . Zn].
After that, the enhancement nodes are generated by the following equations:

Ej = ZinWhj + βhj (2)

Hj = ζ j
(
s·Ej/maxEj

)
, j = 1, 2, . . . , m (3)
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The enhancement layer contains m groups and each consists of q nodes; Hj denotes
the j-th group of enhancement nodes; Whj and βhj are random weights and biases. ζ j is a
nonlinear activation function. Each group in the enhancement layer can choose a different
ζ j to fully extract the feature. In addition, s is the hyperparameter shrinkage coefficient.

Similarly, the m-group Hj in the enhancement node layer is denoted as
Hjm = [H1H2 . . . Hm]. Combine Zin and Hj to obtain the hidden layer A:

A = (Zin
∣∣Hjm) (4)

Then, the label of training data can be represented as:

Y =
(
Zin
∣∣Hjm

)
W = AW (5)

where W is the weight of the output layer connected to the hidden layer, that is the network
parameters to be learned, which can be calculated by the matrix pseudo-inverse:

W = A†Y (6)

A† = lim
λ→0

(
λI + AT A

)−1
AT (7)

where A† is the pseudo-inverse matrix of matrix A; I is a unit matrix, and λ > 0 is a
hyperparameter, regularization coefficient.

BLS has two key characteristics compared with the deep neural networks. First, to
better represent the input data and enhance computing efficiency, it employs sparse self-
encoders to filter the random features of the input data into sparse and compact feature sets,
then mines the key features using sparse feature learning models. Secondly, it addresses
the problem that if the network model cannot reach the required accuracy in the deep
learning system, it needs to add network layers or retrain the network after changing the
structure. BLS employs the incremental learning algorithm to dynamically adjust the model
by adding hidden layer nodes, which can obtain great accuracy in a short time. Figure 2
shows the algorithm flow chart of BLS.
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2.2. Sparrow Search Algorithm (SSA)

Sparrow search algorithm is a new method of swarm intelligence optimization that
is relied on sparrows’ predatory and anti-predatory behavior [30]. It divides sparrows
into explorers and followers and designs the following rules according to the sparrow’s
movement patterns.

(1) Similar to the slap swarm algorithm [36], sparrows in the population are divided into
explorers and followers according to their fitness. The fitness is the objective function
of optimization, which reflects the quality of the sparrow’s position.

(2) Sparrows with good fitness are explorers, and others act as followers. The explorer is
responsible for investigating food-rich locations and guiding the followers to foraging
locations and directions. The followers were able to search for the explorer with the
best feeding position and then foraged around it.

(3) The fitness of a sparrow is dynamic, so the identity of explorers and followers can
change with each other, but the proportion of explorers remains the same.

(4) The bad fitness of the followers, the worse their foraging position is indicated. These
followers may randomly fly to other places to forage.

(5) A certain percentage of individuals in the sparrow population was selected as scouter,
responsible for monitoring the safety of their surroundings. When a predator is
detected, the scouter will sound an alarm, and when the alarm value is bigger than
the safety value, the explorer will lead the followers to a safer area to forage.

(6) When danger is recognized, sparrows located at the edge of the group will quickly
move to a safe area to get a better position, while sparrows located in the center will
move randomly.

The steps of SSA are as follows, and its algorithm flow chart is shown in Figure 3.
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Step 1: Parameter initialization, which mainly includes setting the number of sparrow
population, the proportion of explorers, the location of sparrows, and the number of
iterations. The population containing n sparrows can be expressed as:

X =


x1

1 x2
1 . . . xd

1
x1

2 x2
2 . . . xd

2
...

x1
n

...
x2

n

...
. . .

...
xd

n

 (8)

where xd
n denotes the position of the n-th sparrow in dimension d; n is the population size,

and d is the dimension of the variable to be optimized.
Step 2: Calculate the objective function and sort the sparrow positions. The objective

function of the i-th sparrow can be indicated as:

Fi = f
([

x1
i x2

i . . . xd
i
])

(9)

where f denotes the objective function.
Step 3: Determine whether the current position of the population is safe and update

the explorers’ position:

Xt+1
ij =

{
Xt

ij· exp
(
−i
α·b

)
, R2 < ST

Xt
ij + QL , R2 ≥ ST

(10)

where Xt
ij denotes the value of the i-th sparrow in the t-th iteration in the j-th dimension;

b is a constant whose value is the maximum number of iterations; R2 denotes the warning
value in the range of [0, 1], which is a uniformly distributed random number; ST denotes
the safety threshold and takes the value range of [0.5, 1.0]; L is a 1× d dimensional matrix;
Q is a random number subjecting to normal distribution. When R2 < ST means that the
current location is safe and the sparrow flock goes to look for food. Conversely, the current
location is threatened and the explorer needs to guide the sparrow flock to look for a new
place to find food.

Step 4: Determine the state of the follower and update its position. The location is
updated as follows:

Xt+1
ij =

 Q· exp
(

Xt
w−Xt

ij
i2

)
, i > n/2

Xt+1
p +

∣∣∣Xt
ij − Xt+1

p

∣∣∣·A+·L , i ≤ n/2
(11)

A+ = AT
(

AAT
)−1

(12)

where Xw denotes the worst position in the sparrow population; Xp is the position of the
optimal explorer; A is a 1× d dimensional matrix with each dimensional value randomly
generated from [−1, 1]. When i > n/2, it means that the follower is poorly positioned and
does not get food, it needs to go to other places where it can get more food. Conversely, it
continues to search for food near the explorer.

Step 5: Some sparrows find the danger and become scouters, updating the location of
the scouters as follows:

Xt+1
ij =


Xt

b + β·
∣∣∣Xt

ij − Xt
b

∣∣∣ , fi > fg

Xt
ij + K·

( ∣∣∣Xt
ij−Xt

w

∣∣∣
( fi− fw)+ε

)
, fi = fg

(13)

where Xb denotes the best position in the population; fi is the objective function of i-th
sparrow, fg is the best value of the objective function, and fw is the worst value of the
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objective function; β is a standard normally distributed random number; K is a uniform
random number with values in the range of [−1, 1]; ε is a smaller value to prevent the
denominator from being zero.

Step 6: Update the objective function.
Step 7: Determine whether it satisfies the iteration stop condition and, if not, repeat

steps 3 to 6.

3. Broad Learning System Based on the Sparrow Search Algorithm (SSA-BLS)

To minimize the impact of network hyperparameters and improve the accuracy of
network flow forecasting, this paper employs the sparrow search algorithm to optimize
hyperparameters of the broad learning system, shrinkage coefficient (r), and regularization
coefficient (λ), to obtain the optimal hyperparameters and use them to build the train-
ing model. We named this method Sparrow Search Algorithm-Broad Learning System
(SSA-BLS), and the algorithm is broken down into five steps.

Step 1: Parameter initialization. Determine the parameters of SSA, for example,
explorer proportion and population size. Determine the range of shrinkage coefficient
(r) and regularization coefficient (λ), respectively, and generate p (p is the population
size) groups of initial hyperparameters as the initial position of the sparrow. The sparrow
population is expressed as:

X =


r1 λ1
r2 λ2
...

rp

...
λp

 (14)

where r and λ are randomly generated. They are the hyperparameters to be optimized.
Step 2: Choosing the root mean square error (RMSE) of the BLS’s prediction as to the

objective function. Using the p sets of initial hyperparameters generated in the first step
trains BLS to obtain the initial objective function. The objective function of the i-th sparrow
is calculated as follows:

fi =

√√√√∑n
j=1

(
ŷi

j − yj

)2

n
, i = 1, 2, . . . , p (15)

where ŷi
j is the predicted value of the j-th sample of the BLS trained with the i-th set of

hyperparameters; yj is the true value of the j-th sample; n is the number of training samples.
The smaller the fi, the better.

Step 3: The objective function is input into SSA, and execute the algorithm. According
to the algorithm to update the sparrow population and objective function to achieve
optimization of the hyperparameters of BLS.

Step 4: If the predefined number of iterations is reached, the optimization is completed
and output the minimum value of the objective function:

fm = min
([

f1, f2, . . . , fp
])

(16)

where m is the subscript of the minimum objective function. Then the hyperparameters
obtained by SSA are:

r, λ = xm =
[

rm λm
]

(17)

Step 5: Put the hyperparameters r and λ obtained in the previous step into the BLS,
train and build the network flow prediction model.

The SSA-BLS flow chart is given in Figure 4.
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4. Experimentation

All the experimental programs are developed based on python 3.8, the main packages
used include numpy1.21 and pandas1.3, and the deep learning related models are imple-
mented using pytorch3.8. The experimental environment is Windows 10OS, Intel (R) Core
(TM) i5-1135G7 2.40GHz CPU, and 16.0GB RAM.

4.1. Datasets

The experimental dataset uses the core network traffic dataset of European cities and
the academic backbone network traffic dataset of the UK.

The core network traffic dataset of European cities: the traffic of 11 European cities
in the private ISPs. The traffic in bits on a transatlantic link from 7 June 2005, at 06:57 to
31 July 2005, at 11:17 are collected with a sampling interval of five minutes.

UK academic backbone traffic dataset: the dataset collects gathering flow from UK
academic network backbone from 09:30 on 19 November 2004, to 11:11 on 27 January 2005,
with a sampling interval of five minutes.

We use the data from 1 July to 25 July 2005, in the core network traffic dataset of
European cities as the training set and from 26 July to 28 July as the test set; the data from
1 January to 24 January 2005, in the UK academic network backbone traffic dataset as the
training set and the test set is from 25 January to 27 January.

4.2. Parameters and Evaluation Indicators

The SSA-BLS parameters are chosen as follows. Setting population size as 50, the
explorer proportion is 20%, and the maximum number of iterations is 5; the number of
windows in the mapping layer is 10, the number of nodes within each window in the feature
mapping layer is 10, the enhancement nodes’ number is 50, and the values of shrinkage
coefficient (r) and regularization coefficient (λ) are taken in the ranges of [0.09, 0.999999]
and [2−30, 2−35], respectively.
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Mean squared error (MSE), root mean square error (RMSE), mean absolute error
(MAE), mean absolute percentage error (MAPE), and moving average (MA) are used as
evaluation indicators. These indicators are calculated as follows:

MSE =
1
n

n

∑
i=1

(ŷi − yi)
2 (18)

RMSE =

√
1
n

n

∑
i=1

(ŷi − yi)
2 (19)

MAE =
1
n

n

∑
i=1
|ŷi − yi| (20)

MAPE =
1
n

n

∑
i=1

∣∣∣∣ ŷi − yi
yi

∣∣∣∣ (21)

MA = 1−MAPE =

(
1− 1

n

n

∑
i=1

∣∣∣∣ ŷi − yi
yi

∣∣∣∣
)
∗ 100% (22)

where samples number is n, yi is the true value and ŷi is the output. The smaller the MSE,
RMSE, MAE, and MAPE, the better, while MA is closer to 100% indicating better model
prediction performance.

4.3. Results and Discussion

The flow values of [T − 11, T] were input into the SSA-BLS to predict the flow at
the moment of T + 1 in the experiment. We compare SSA-BLS with the similarly struc-
tured BLS, Extreme Learning Machine (ELM) [37], Stochastic Configuration Networks
(SCN) [38], RVFLNN, dRVFL (deep RVFL) (the variant of RVFL) [39], and the LSTM [40]
that is commonly used in network traffic prediction and used to evaluate the quality of
the SSA-BLS. Each model is run 100 times independently, and the prediction metrics of
different models are evaluated individually each time, taking the average metrics as the
final result of each model. The following are the parameters of each model: the values of
r and λ for BLS are automatically obtained from {0.1, 0.5, 0.9, 0.99, 0.9999, 0.99999} and
{2−30, 2−20, 2−10, 0.5, 1, 5, 10}, respectively, and the remaining parameters are the same as
those of the SSA-BLS; the SCN can have a maximum of 250 hidden layer nodes, the training
tolerance is 0.001, and candidate nodes maximum allowed 100; the regularization factor
of RVFL is 1× 10−3, and hidden layer has 100 nodes; dRVFL parameters are the same as
RVFL; the hidden layer of ELM contains 200 nodes, and the maxing coefficient for distance
and dot product input activations is 1.0; the LSTM contains 3 hidden layers, each with
12 blocks, and is trained with a learning rate of 1× 10−2, batch size of 64 and epoch is 15.
Tables 1 and 2 show the prediction performance of two datasets on the different models.

Table 1. Experimental results of a core network traffic dataset in European cities.

MSE RMSE MAE MAPE MA

SSA-BLS 0.0159047 0.1261069 0.0937315 0.0294284 97.057155%
BLS 0.0781227 0.2551322 0.1878021 0.0571019 94.289801%
SCN 0.0154907 0.1244372 0.0934485 0.0295662 97.043378%
RVFL 0.0254023 0.1593589 0.1208186 0.0388347 96.116525%

dRVFL 0.0227553 0.1507691 0.1135728 0.0367191 96.328085%
ELM 0.1394488 0.3686439 0.2710739 0.0780252 92.197470%

LSTM 0.0781441 0.2502372 0.1884968 0.0517535 94.824642%
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Table 2. Experimental results of UK academic backbone network traffic dataset.

MSE RMSE MAE MAPE MA

SSA-BLS 0.0071345 0.0844570 0.0618339 0.0136258 98.637411%
BLS 0.0913392 0.2639297 0.1873060 0.0440354 95.596458%
SCN 0.0097822 0.0982373 0.0668127 0.0143890 98.561099%
RVFL 0.0289572 0.1701013 0.1179645 0.0264767 97.352324%

dRVFL 0.0234114 0.1527494 0.1058797 0.0232484 97.675151%
ELM 0.1051171 0.3157292 0.2166875 0.0426738 95.732612%

LSTM 0.3192739 0.3290859 0.2518907 0.0595686 94.043138%

On the test set of the public dataset, Figure 5 shows the predicted versus true values
of the SSA-BLS model versus the other models. Moreover, to better validate the prediction
accuracy of the SSA-BLS model, the model is applied to a private traffic dataset. The
private traffic dataset is derived from the real incoming traffic data of switch interfaces of
an enterprise from 5 October to 18 October 2021. We employ the data from 5 October to
16 October 2021, in the private dataset as training data, using the data from 17 October to
18 October as test data.
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Figure 5. (a) Prediction results for a core network traffic dataset in European cities; (b) UK academic
backbone network traffic dataset forecast results.

Since the sampling interval of the enterprise switch interface traffic data is unequal,
the resampling is first performed: the average value of the interface traffic within 5 min is
calculated, and if there is no traffic data within 5 min, the previous value is used to fill in.
Meanwhile, there are great abnormal traffic values in the original data, and to lessen the
influence of abnormal values, the data are smoothed using spectral smoothing (spectral
smoother). Table 3 shows the experimental results.

Table 3. Enterprise cloud platform switch interface traffic data set experimental results.

MSE RMSE MAE MAPE MA

SSA-BLS 0.0000734 0.0082991 0.0063628 0.0021407 99.785924%
BLS 0.0103714 0.0811761 0.0563080 0.0176119 98.238804%
SCN 0.0001742 0.0130396 0.0067544 0.0021857 99.781427%
RVFL 0.0361230 0.1899801 0.1288009 0.0400804 95.991952%

dRVFL 0.0327578 0.1807739 0.1277397 0.0403579 95.964208%
ELM 0.0579519 0.2382928 0.1327614 0.0400340 95.996599%

LSTM 0.0283041 0.1057008 0.0759722 0.0238097 97.619024%
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Figure 6 shows the predicted versus true values of the SSA-BLS compared to others
on the test data in the private dataset. It is clear from Tables 1–3 that the hyperparameters
have a strong influence on BLS. If the hyperparameters are bad, the prediction performance
of BLS will be degraded. The results show that the SSA-BLS model has better prediction
accuracy than the other models on both the UK academic backbone network traffic dataset
and the enterprise cloud platform switch interface traffic dataset, and its prediction perfor-
mance on the European urban core network traffic dataset is only slightly below SCN. It
can be seen that the SSA-BLS model, which is obtained after optimizing BLS using SSA,
provides optimal hyperparameters for BLS through SSA, so that the SSA-BLS model can
choose to capture the time characteristics of traffic better, and its network traffic prediction
capability gains a large improvement compared with the original BLS model.
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Meanwhile, this paper uses BLS for network traffic prediction based on the advantage
of less training time due to its “expanding landscape” network structure. The running
time of BLS in SSA-BLS is the main factor affecting the time of SSA-BLS. In order to
verify the advantage of SSA-BLS model in time consumption, we compare the running
time of BLS and the running time of LSTM for one epoch on three datasets, and the
experimental results are shown in Figure 7. In Figure 7, dataset 1, dataset 2, and dataset
3 are the UK academic backbone network traffic dataset, European urban core network
traffic dataset, and enterprise cloud platform switch interface traffic dataset, respectively.
The experimental results show that BLS can complete the training in a shorter time, and the
larger the data volume, the greater the advantage of BLS.
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5. Conclusions, Limitations, and Future Research

Predicting future traffic on the cloud platform interface can be used to assist the
cloud platform in provisioning resources and planning the network, and it is an effective
way to help achieve dynamic resource allocation and load balancing with the volume
of requests. In this paper, we propose a model named SSA-BLS to predict the network
interface traffic. The model uses SSA to optimize two hyperparameters in BLS to obtain
the optimal combination of hyperparameters quickly and enhance the performance of BLS.
At the same time, the model uses BLS to capture the traffic timing features and reduce the
training time of the prediction model. Finally, we apply SSA-BLS to the short-term network
traffic prediction, selecting two public datasets of network traffic and a real dataset of
network switch interface traffic of an enterprise cloud platform for experiments. Finally, we
compare the SSA-BLS with other models, and the experiments show that the SSA-BLS can
select better hyperparameters to make the network traffic prediction accuracy above 97%.

Currently, most network traffic prediction models have a strict sampling interval for
training data, requiring the data to be equally spaced. Sometimes, frequent sampling is
required to obtain more fine-grained data. However, frequent sampling for a long time will
increase resource consumption, and it is difficult to present the data with equal spacing due
to the inevitable packet loss during the network transmission. Therefore, future research
will be conducted for the prediction modeling of non-equally spaced sampled data to
reduce the requirement of data spacing and improve the generalizability of the model.
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