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Abstract: With the development and appliance of multi-agent systems, multi-agent cooperation
is becoming an important problem in artificial intelligence. Multi-agent reinforcement learning
(MARL) is one of the most effective methods for solving multi-agent cooperative tasks. However,
the huge sample complexity of traditional reinforcement learning methods results in two kinds of
training waste in MARL for cooperative tasks: all homogeneous agents are trained independently and
repetitively, and multi-agent systems need training from scratch when adding a new teammate. To
tackle these two problems, we propose the knowledge reuse methods of MARL. On the one hand, this
paper proposes sharing experience and policy within agents to mitigate training waste. On the other
hand, this paper proposes reusing the policies learned by original teams to avoid knowledge waste
when adding a new agent. Experimentally, the Pursuit task demonstrates how sharing experience and
policy can accelerate the training speed and enhance the performance simultaneously. Additionally,
transferring the learned policies from the N-agent enables the (N+1)–agent team to immediately
perform cooperative tasks successfully, and only a minor training resource can allow the multi-agents
to reach optimal performance identical to that from scratch.

Keywords: multi-agent; reinforcement learning; cooperative task; adding teammate; knowledge
sharing; knowledge transferring

1. Introduction

The multi-agent system (MAS) is defined as a group of autonomous agents with the
capability of perception and interaction. The multi-agent system has provided a novel mod-
eling method for robot control [1], manufacturing [2], logistics [3] and transportation [4].
Due to the dynamics and complexity of multi-agent systems, many machine learning
algorithms have been adopted to modify the performance of multi-agent systems, which is
becoming an important factor of machine learning [5].

Multi-agent reinforcement learning (MARL) is a technique introducing reinforcement
learning (RL) into the multi-agent system, which gives agents intelligent performance [6].
MARL achieves the cooperation (sometimes competition) of agents by modeling each agent
as an RL agent and setting their reward. Multi-agent intelligence evolves relying on the
exploration and exploitation of RL agents. However, it is the randomness of multi-agent
exploration that makes it difficult for agents to finish cooperation tasks.

Current MARL algorithms keep multi-agents trained independently and repetitively,
for the distributed intelligence of agents. However, the huge sample complexity of tra-
ditional RL methods is a well-known hindrance to applying both single and multi-agent
RL in complex problems. The exponential growth of the state space with the number
of agents usually requires prohibitive training resources. Especially in most cooperative
tasks, homogeneous agents are all trained from scratch and might obtain different policies
due to insufficient learning. Moreover, the MARL system is not robust to the dynamic
variation in the number of agents, which results in the MARL system learning from scratch
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again. However, it is a common and necessary scenario to add a teammate for cooperative
teamwork. Therefore, there are two problems of current MARL in cooperative tasks: (1) in
most cooperative scenarios, many homogeneous agents are trained independently and (2)
MARL requires learning from scratch when the system adds new agents, shown as Figure 1.

Figure 1. (1) Homogeneous agents are trained repetitively. Sharing knowledge among them is
efficient and economical to train MARL. (2) MARL system is not robust to the dynamic variation
in the number of agents. When adding a new agent, MARL system has to train all RL agents
from scratch.

To cope with the above-mentioned problems, this paper proposes knowledge reuse
methods for MARL in cooperative tasks of homogeneous agents. In the training procedure,
the inter-agent knowledge-sharing algorithm is proposed by sharing experience and policy.
The experiments demonstrate that sharing experience and policy can enhance the speed
of training convergence and performance of cooperation. When the system adds a new
agent, the inter-task knowledge reuse algorithm is proposed by reloading models from the
original task. With the reuse of existing knowledge, the new multi-agent team could finish
cooperative tasks immediately. Additionally, only a minor training resource could lead the
new team with the added agent to reach comparable performance to learning from scratch.

This paper is organized as follows. Section 2 clarifies the related work of knowledge
reuse in MARL. Section 3 proposes an inter-agent knowledge-sharing algorithm and an
inter-task knowledge-transferring algorithm in cooperative tasks. Section 4 illustrates the
experiments of our methods in the Pursuit domain. Finally, conclusions and future work
are given in Section 5.

2. Related Work

Many researchers have shared experience and policy between agents to accelerate
the training procedure of MARL. Tan proposed that sharing instantaneous information,
episodic experience, and learned knowledge can speed up the training of agents [7]. White-
head utilized External Critic and Learning By Watching to decrease the dimension of
learning space [8]. L. Torrey and M.E. Taylor proposed a teacher–student algorithm to
accelerate RL by consulting the teacher [9], and F. L. da Silva then proposed that students
could only consult when they had uncertainty regarding the constraint bandwidth [10].
Souza L.O. proposed that experience of an unexplored region and experience of a high
temporal-difference error should come prior to sharing [11]. These methods of sharing
knowledge assume agents as having distinct identities and focus on how the experience
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and knowledge of predecessors accelerate the learning of successors. However, in this
paper, we assume that the agents are all homogeneous and equivalent in all procedures
of cooperative tasks. Therefore, agents should share their experience to explore more
state–action space or share their policy to avoid obtaining different optimized policies in all
procedures simultaneously.

Knowledge reuse within multi-tasking in the RL domain has also been extensively
researched. Taylor researched the knowledge reuse of multi-tasking in a single agent with
a full observation [12]. Glatt R. highlighted that transfer learning between similar tasks
could accelerate RL training, while negative transfer should be avoided [13]. Omidshafiei
researched the transfer learning of multi-tasking with a partial observation [14]. This
research demonstrates how the similarity of tasks could accelerate the training procedure of
new tasks. In this paper, the cooperation of the original multi-agent team and of a new team
via the addition of agents constitutes two related tasks, whose similarity is the invariant
cooperative target.

Recent researches utilize the ideology of sharing information or knowledge between
multi-agents to promote cooperation. [15] proposes a sharing neural policy architecture
for multi-agent on an autonomous vehicle coordination problem. Ref. [16] combines
the cooperative sensing and multi-agent reinforcement learning to improve the sensing
accuracy, by sharing spectrum detection. Ref. [17] implements a local wealth redistribution
to promote cooperation of multi-agents. Ref. [18] researches multi-agents cooperating,
where agents must learn to coordinate and share relevant information to solve the tasks.
Ref. [19] proposes a partaker–sharer advising framework for cooperative MARL agents
learning with budget constraints. Ref. [20] proposes that agents exchange information
with their neighbors through a communication network to optimize the global cooperative
return. Ref. [21] presents a cloud-native multi-agent platform allowing the transfer of
the experience to the Internet of Things. Ref. [22] proposes a dual-arm to share their
observations and actions to prevent the collision based on MARL. Ref. [23] enables satellites
to share their decision policy to infer the decisions of others based on MARL. Ref. [24]
develops a computationally efficient knowledge fusing mechanism to fuse the experience
acquired by agents themselves and received from others. [25] proposes several methods for
selecting experiences to accelerate the learning process.

It is a consensus that MARL lacks expansibility of the number of agents. There are
two essential reasons for this, as follows: First, when the number of agents is altered,
the dimension of the agents’ observation might be changed. This is infeasible for neural
networks of deep RL or value tables of traditional RL. Second, the dynamic variant in the
number of agents might lead to different optimal policies. Therefore, when the number
of agents alters, it should be considered as a new task, given the same cooperative target.
Currently, the Dynamic Agent-number Network (DyAN) designed by Wang W. enables the
network to input data with different dimensions and tackle the problem of the changing
number of agents [26]. In this paper, we fix the dimension of observation in cooperative
tasks and research the reuse of the original policy and the learning of the current optimal
policy, before and after adding new agents.

3. Methods

In this section, knowledge reuse methods of MARL in cooperative tasks are clarified.
In this paper, we assume teammates can observe the position of others, but cannot commu-
nicate their actions. This assumption suits common scenarios, where the team observes
the existence of all teammates while there is not a high demand for a communication
bandwidth. Section 3.1 illustrates how multi-agents of MARL learn independently, share
experience and share policies under the fixed number of agents. Additionally, Section 3.2
illustrates the knowledge transfer of new teammates and task transfer of new teams when
a new agent is added.
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3.1. Inter-Agent Knowledge Sharing in Cooperative Tasks

Section 3.1 clarifies the inter-agent knowledge-sharing algorithm by sharing experience
and policies under a fixed number of agents. In this section, knowledge sharing occurs
among agents in the same task.

3.1.1. Independent Learning

Independent learning is the fundamental scenario in MARL, such as Team Q-learning [27]
and Distributed Q-learning [28]. There are n agents in the environment. At any time, k,
the agent, i, observes the state of the environment, si,k ∈ S, and chooses its action, ai,k ∈ A.
Additionally, agents will then receive a reward from environment, ri,k ∈ R = S× A. Here,
i = 1, 2, 3 . . . n. Since we assume each agent can observe the position of others in cooperative
tasks, we have si,k = sk, i.e., every agent has full observation capacity. In full cooperative
tasks of MARL, agents are usually given identical rewards at all times, ri,k = rk. However,
the scarcity of such a setting will result in difficulty in convergence. In practice, part of
the temporal reward is to help an agent learn. Additionally, the independent learning
algorithm is shown in Algorithm 1.

Algorithm 1: Independent Learning

1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:
13:
14:
15:
16:
17:

initialize n RL agents with own replay buffer RBi
for episode ← 1 to EPISODE

for step ← 1 to STEP
for i← 1 to n

Agent i chooses action ai = πi(s)
end for
update state of environment s′= state(s, a1, a2...an)
environment judges whether task is done d
for i ← 1 to n

Agent i gains reward ri = reward(s, ai, s′)
Agent i perceives experience (s, ai, s′, ri, d) into RBi

end for
if the task is done:

break this episode
end if

end for
end for

In independent learning algorithms of MARL in cooperative tasks, each agent observes
the state of the environment (including the positions of others) and decides based on its
own policy. Additionally, the environment will transit to the new state, s’, according to the
actions of all agents (a1, a2, . . . , an). Then, each RL agent accumulates the experience of
this episode e = (s, ai, s′, ri, d), which is deposited into their own replay buffer RBi and
sampled randomly for the training and optimization of policy. This procedure is shown in
Figure 2a. Here, the replay buffer of MARL enables the RL procedure to be offline learning
rather than online learning [29].

3.1.2. Experience Sharing

Reasonably, the agents of MARL in cooperative tasks are usually homogeneous. Their
structure and properties are identical: the state set, S, of input and the action set, A, of
output are identical, and their policies are based on the observation of the environment
and other n− 1 agents. Therefore, the experience of these homogeneous agents is also
isomorphic and can be shared amongst one another. The concept of sharing experience
has already been mentioned in [7–9], and we introduce this methodology into MARL in
cooperative tasks, as shown in Algorithm 2.



Entropy 2022, 24, 470 5 of 15

Figure 2. The framework of (a) experience sharing and (b) policy sharing of MARL. Agents share a
common replay buffer of experience in (a) and share only one entity of policy network in (b). When a
new agent is added into the system, the new agent reloads the model of the best (or shared) policy
as initialization.

Algorithm 2: Experience Sharing

1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:
13:
14:
15:
16:
17:
18:

initialize n RL agents with own replay buffer RBi
Initialize a common replay buffer RB
for episode ← 1 to EPISODE

for step ← 1 to STEP
for i← 1 to n

Agent i chooses action ai = πi(s)
end for
update state of environment s′= state(s, a1, a2...an)
environment judges whether task is done d
for i ← 1 to n

Agent i gains reward ri = reward(s, ai, s′)
Agent i perceives experience (s, ai, s′, ri, d) into replay buffer RB

end for
if the task is done:

break this episode
end if

end for
end for

In the experience sharing algorithm, although the experience, e = (s, ai, s′, ri, d), is
definitely generated and observed by the agent, i, this experience is also universal for other
agents, as shown in Figure 2a. Therefore, all the agents contribute to the experience set and
optimize their policies based on the common replay buffer. Experience sharing benefits the
exploration of the state–action space and accelerates the convergence of policies.
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3.1.3. Policy Sharing

Although experience sharing speeds up experience accumulation and makes the
exploration more intensive, the system is still optimizing n policies of agents, which
confirms the MARL in the Curse of Dimension. To tackle such a problem, this section
proposes the policy sharing of MARL in cooperative tasks. In the policy sharing of MARL,
all agents share a common policy model in training and decision-making procedures, as
shown in Algorithm 3.

Algorithm 3: Policy Sharing

1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:
13:
14:
15:
16:
17:
18:

initialize a common agent agentshare for n agents
Initialize a common replay buffer RB
for episode ← 1 to EPISODE

for step ← 1 to STEP
for i← 1 to n

Agent i chooses action ai = πshare(s)
end for
update state of environment s′= state(s, a1, a2...an)
environment judges whether task is done d
for i ← 1 to n

Agent i gains reward ri = reward(s, ai, s′)
Agentshare perceives experience (s, ai, s′, ri, d) into RB

end for
if the task is done:

break this episode
end if

end for
end for

In the policy sharing of MARL, the algorithm only maintains one reinforcement
learning agent, agentshare. Due to the homogeneity of n agents, n agents training and
optimizing their policies is equivalent to one common agent accumulating the experience
of all agents and training its policy. Based on such policy sharing, one RL agent can
make the decisions of all agents, as shown in Figure 2b. Apparently, policy sharing will
dramatically decrease the time and space complexity and rid the multi-agent system of the
Curse of Dimension.

3.2. Inter-Agent Knowledge Sharing in Cooperative Tasks

Section 3.1 illustrated inter-agent knowledge sharing (experience and policy sharing),
with a fixed number of agents. In this section, we will propose how the system transfers
knowledge when a new agent is added into the team: inter-task knowledge-transferring
algorithm. In such a scenario, the original task is that n homogeneous agents perform a
cooperative task. Additionally, the new task is that n + 1 homogeneous agents perform
such cooperative tasks.

3.2.1. Policy Transferring of New Agent

The first problem to be tackled is where the policy or knowledge of the n + 1 agent
comes from when the system transfers from n to n + 1 agents. If we assume that the policies
of former n agents remain unchanged, then the former n agents are already able to perform
a given task. Then, if the n + 1 RL agent learns from scratch, the random exploration will
disturb or interrupt the cooperation of former n agents. Therefore, the policy transferring
of the n + 1 agent is crucial for the new team.

In this paper, based on the greedy policy, we propose a system to explicitly achieve
the most optimal policy of the former n agents. The realistic significance of this transferring
is that the freshers are prone to replacing policies from sophisticated members (or the most
optimal one). Therefore, in the three mentioned scenarios, the added agent will replace
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the policy model of the agent with the best performance in independent learning and
experience sharing and replace the common policy model in policy sharing, as shown in
the lower part of Figure 2.

3.2.2. Task Transferring of New Team

When the former n agents hold original policies and the n + 1 agent replaces one
learned policy, the task of this new team has already been transferred, relative to these
policies. In the original task, each agent will observe the state of the environment, n− 1; its
teammates; and itself, while in the new task, the observation includes the environment, n;
its teammates; and itself, which transfers the input set of agents from S to S′. Moreover,
the value functions of each agent, Q(s, a), transfer to Q′(s′, a) and the optimum of policy
changes. Therefore, the optimal polices are not when the former n agents and the n + 1
agent replace the original polices. Then, the multi-agent system requires an adaptation of
the gap between original and new tasks, based on learned policies, as shown in Algorithm 4.

Algorithm 4: Inter-Task Knowledge Reuse

1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:
13:
14:
15:
16:
17:
18

n RL agents succeed the policies of original task
the n +1 RL agent succeeds the best policy of original task
for episode ← 1 to TRANSFER EPISODE

for step ← 1 to STEP
for i← 1 to n+1

Agent i chooses action ai = πi(s)
end for
update state of environment s′= state(s, a1, a2...an+1)
environment judges whether task is done d
for i ← 1 to n+1

Agent i gains reward ri = reward(s, ai, s′)
Agent i perceives experience (s, ai, s′, ri, d)

end for
if the task is done:

break this episode
end if

end for
end for

In the inter-task knowledge reuse algorithm, the original and new tasks are related but
different. First, if each agent of n + 1 agents ignore one of their teammates, they can still
choose an optimal decision. This proves the original knowledge is beneficial to new tasks.
Second, to gain the optimal policy of the new task, the transferring procedure is necessary,
which takes up certain training resources.

Additionally, although the policies of original tasks are reused by the knowledge reuse
algorithm, the experience set of the original task is deemed to be ignored. This is because
the experience of the original task is the sampling of the original value function, where the
state s ∈ S contains n agents and the environment. However, to optimize the new task,
the sampling of the new value function is required, where the state of experience should
be s′ ∈ S′. Hence, the experience cannot be reused in the knowledge reuse of MARL in
different tasks.

4. Results

In this section, we take the Pursuit task as an example to test the knowledge reuse
algorithms of MARL. The Pursuit task was first introduced by Benda et al. [30], and the
performances of different polices are clarified in detail. The Pursuit task is a classic example
of cooperative tasks in the multi-agent domain and is widely employed by multi-agent
researchers [31]. This section illustrates the scope of Pursuit and the performances of
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independent learning and experience sharing, and three policy-sharing scenarios, in both
the basic Pursuit task and the agent addition task, are demonstrated, respectively.

The traditional Pursuit task lives in a torus grid world, where moving off one side of
the world brings the agent back onto the opposite side. There are four or five predators and
one prey in the environment, and their actions consists of up, down, left, right and no-op
movements. The predators win by capturing the prey, i.e., at least four predators block
the prey at its four directions. The details of the Pursuit task are presented differently in
the literature, and we simplify the task as follows: (1) Since the predators work near to the
prey and the torus world extends infinitely, we assume the grid world has a 5 × 5 space,
as shown in Figure 3. (2) The Markov decision process (MDP) is based on the grid world
game, in which the prey moving in one direction is equivalent to all predators moving in
the opposite direction. Moreover, if the prey is not in the centroid of the grid world, we can
always translate all agents (prey and predators) to place the prey in the centroid explicitly,
as shown in Figure 3. Hence, we can fix the prey in the centroid of the grid world without
movements. While the predators initially show up randomly in the grid world to pursue
the prey.

Figure 3. The Pursuit task: the star stands for the prey and the robots stand for predators. Subgraph
(a) shows four predators block a prey successfully. Additionally, the state of subgraph (b) is equivalent
to the left, since the grid world is torus. The star stands for the prey.

The hardware of the experiments is (Linux version 5.4.0-58-generic) Ubuntu 18.04,
with CPU: Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10 GHz and GPU: NVIDIA GeForce
RTX 2080. The reinforcement learning agents take deep Q-learning (DQN), one of the
most classical deep RL algorithms [13]. The RL parameters include the training episode
EPISODE = 20,000 and most experiment steps of each episode STEP = 50. The input of the
RL agent is the 5 × 5 grid world, which keeps the input dimension constant when adding a
new agent. Based on the above hardware and setting, we tested the independent learning,
experience and policy sharing of MARL in both the basic Pursuit task and the agent addition
task of Pursuit. The source codes of the following experiments can be downloaded on
https://github.com/Daming-Shi/MARL_Pursuit (accessed on 7 March 2022).

4.1. Independent Learning
4.1.1. Basic Task

In this subsection, we demonstrate the independent learning of MARL. First, four
agents learn from scratch for Pursuit. The learning curve of the reward sum is drawn in
Figure 4a. The learning curve of Pursuit step is drawn in Figure 4b. Additionally, the test

https://github.com/Daming-Shi/MARL_Pursuit
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curve of a fixed 1000-round Pursuit is drawn in Figure 4c, without exploration (i.e., no
random actions). The learning curves demonstrate that four agents fail to capture the prey
in the early procedure (0–5000 episodes). They quickly manage to capture it successfully
and optimize the policy to reduce the step number rapidly in the medium procedure
(5000–12,000 episodes). Finally, policies of Pursuit stabilize.
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4.1.2. Adding a New Agent

As discussed above, learning from scratch when increasing the number of agents will
waste the gained knowledge and training resources, and this paper proposes knowledge
reuse to avoid learning from scratch. According to the algorithm in Section 3.2, the former
four agents maintain their policies, and the added agent reloads the best policy of all of
them. The experimental results show that five agents can capture the prey at the very
beginning, with 18 steps. After the adaptation of 2500 episodes, the new team converges
to a relatively good policy, effectively avoiding waste learning from scratch, as shown
in Figure 6.
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4.2. Experience Sharing
4.2.1. Basic Task

In this subsection, we demonstrate the experience sharing of MARL. The learning
curves of four and five agents learning from scratch are drawn in Figures 7 and 8. It
is demonstrated that experience sharing can speed up the training procedure of MARL
in cooperative tasks and decrease the rise time. Additionally, the curves obtain stable
cooperative policies during 10,000–12,000 episodes. Additionally, the dip and vibrations at
15,000 episodes are caused by the overfitting of every random map. To suit for certain tasks
or states, policy networks begin to overfit the training experience, which leads to declines
in universality and scalability.
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4.2.2. Adding New Agent

In the experience sharing scenario, we tested whether transferring gained policies can
avoid waste learning from scratch. Nevertheless, the added new agent reloads the best
policy of teammates, and the learning curves are shown in Figure 9. Policy transferring
enables the five agents to initially succeed in capturing the prey and to quickly reach
relatively good policies.
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4.3. Policy Sharing
4.3.1. Basic Task

In this subsection, we test the policy sharing of MARL. The learning curves of four
and five agents learning from scratch are drawn in Figures 10 and 11. Furthermore, policy
sharing accelerates the training speed more than experience sharing and independent
learning. Above all, the policy sharing scenario only maintains one policy network in all
cooperative tasks, so policy sharing could effectively decrease the training time and storage
space with a comparable performance to independent learning. Meanwhile, the network
optimization is more likely to vibrate, as shown in Figures 10c and 11c.
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4.3.2. Adding a New Agent

Since all agents share a common policy network to make decisions in the policy sharing
scenario, the newly added agent could explicitly share this policy. The learning curves are
drawn in Figure 12. Again, policy transferring initially enables five agents to work and to
quickly converge into a relatively good policy.
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5. Discussion

This section analyzes the acceleration of experience and policy sharing in the train-
ing procedure of MARL. We drew the average number of pursuit steps of independent
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learning, experience and policy sharing, both in four agents and five agents, from scratch.
It is demonstrated that knowledge sharing can increase the learning speed of MARL, in
Figure 13.

Figure 13. The average number of pursuit steps of independent learning, experience sharing and
policy sharing: (a) 4 agents from scratch, (b) 5 agents from scratch.

On the other hand, we compared the optimal performances in different scenarios.
Since the initial state of each episode in Pursuit is randomly generated, we calculated the
optimal average and standard variance of pursuit steps in a fixed 1000 round pursuits, as
shown in Table 1. In addition, we implemented a rule-based performance as a baseline,
where each agent is assigned a target position initially and routes at the nearest direction.

In contrast, experience and policy sharing, proposed in this paper, could increase the
performances and properties of multi-agent cooperation. The average and standard vari-
ance of pursuit steps of experience and policy sharing are smaller than that of independent
learning. In particular, policy sharing could also decrease training and storage resources
with a comparable performance.

Table 1. The optimal average and stand variance of pursuit steps in a fixed 1000 round pursuits.

Scenario

Rule-Based Independent Learning Shared Experience Shared Policy

4 Agent 5 Agent 4 from
Scratch

5 from
Scratch

5 with
Knowledge

4 from
Scratch

5 from
Scratch

5 with
Knowledge

4 from
Scratch

5 from
Scratch

5 with
Knowledge

Avr 11.02 12.37 7.122 8.979 8.986 6.645 6.273 6.078 3.817 3.394 4.314
Std 17.392 18.678 10.649 13.851 9.273 10.933 9.931 11.251 3.624 6.426 5.429

In the scenario of adding a new agent, the knowledge reuse algorithm initially enables
the multi-agent to reach a capable performance, and a minor training time could lead the
policies to convergence. This strikes the balance of decreasing training costs and reaching
acceptable performances. A minor training cost could allow the knowledge reuse algorithm
to reuse the original policies, and therefore, avoid waste learning from scratch.

6. Conclusions

First, the inter-agent knowledge-sharing algorithm of MARL is proposed by sharing
experience and policy in cooperative tasks. The inter-agent knowledge-sharing algorithm
avoids the waste of homogeneous agents being trained independently and repetitively.
Moreover, the training procedures of homogeneous RL agents are accelerated by sharing
experience and policies. In particular, the policy sharing only maintains one policy network
and decreases training and storage resources efficiently, which rids the multi-agent system
of the Curse of Dimension. The Pursuit experiments demonstrate that experience and
policy sharing could speed up the policy training and improve performance.
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On the other hand, the inter-task knowledge-transferring algorithm of MARL is
proposed to meet the demand for adding a new agent into the cooperative team. The
newly added agent could replace the policy of an experienced teammate in the original
task. Such policy transferring avoids the waste of the new team learning from scratch or
disturbance from the added agent exploring randomly when adding a new agent. The
Pursuit experiments demonstrate that the inter-task knowledge reuse algorithm could
enable the multi-agents to cooperate effectively, and only a minor training resource could
lead the new team with the added agent to reach comparable performance to learning
from scratch. This provides a kind of method to reuse knowledge between the transition of
adding a new agent in cooperative tasks.

With the development of autonomous robots in manufacturing, logistics and un-
manned driving, the cooperation of the multi-agent is a crucial problem to raise productiv-
ity. According to the bandwidth of a realistic scenario, the MARL of cooperative tasks can
choose to share experience and policy during the training procedure. Meanwhile, adding a
new agent is also a possible scenario in a cooperative team. The inter-agent and inter-task
knowledge reuse algorithms in this paper reuse the knowledge effectively and improve the
performances and stability of cooperation. However, the knowledge reuse algorithms of
MARL in this paper still assume the homogeneity of multi-agents and global observations.
Additionally, how the heterogeneous multi-agents reuse experience and policies and how
to overcome the challenges from partial-observations still require further study, which is
also the future work of this paper.
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