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Abstract: The age of information (AoI) is now well established as a metric that measures the freshness
of information delivered to a receiver from a source that generates status updates. This paper is
motivated by the inherent value of packets arising in many cyber-physical applications (e.g., due to
precision of the information content or an alarm message). In contrast to AoI, which considers all
packets are of equal importance or value, we consider status update systems with update packets
carrying values as well as their generated time stamps. A status update packet has a random initial
value at the source and a deterministic deadline after which its value vanishes (called ultimate
staleness). In our model, the value of a packet either remains constant until the deadline or decreases
in time (even after reception) starting from its generation to the deadline when it vanishes. We
consider two metrics for the value of information (VoI) at the receiver: sum VoI is the sum of the
current values of all packets held by the receiver, whereas packet VoI is the value of a packet at the
instant it is delivered to the receiver. We investigate various queuing disciplines under potential
dependence between value and service time and provide closed form expressions for both average
sum VoI and packet VoI at the receiver. Numerical results illustrate the average VoI for different
scenarios and relations between average sum VoI and average packet VoI.

Keywords: age of information; status update system; value of information

1. Introduction

In many cyber-physical applications, the need for real-time communication of informa-
tion packets involves not only maintaining information freshness but is also accompanied
by the need to preserve the importance or value of those packets. Examples of such cases
include autonomous cars and general vehicular networks [1–3], sensor networks [4–6],
tactical networks [7] and other systems making decisions in real-time [8,9]. In this context,
the value of information is another crucial dimension in addition to the notion of timeliness
associated with information. In this paper, we address this issue in a queuing system
carrying status update packets.

Status update systems with the age of information (AoI) metric measuring end-to-end
freshness of packets have received extensive interest recently. Pioneered by the analysis
in [10,11] motivated from vehicular status update systems, the AoI metric has been found
to be useful in various scenarios such as single server queuing systems [12–14], energy
harvesting systems [15–20], single and multi-hop networks [21–25], cognitive radio [26,27]
and vehicular communication networks [28]. The AoI metric provides exclusive meaning
to the timing of packets and connects a packet’s usefulness at the receiver with how long
the packet spends before its reception. As such, each packet is assumed to be created
with the same value starting at generation. The current literature on status update system
abstractions is focused mostly on information freshness and does not consider real-time
communication of information packets involving a (time-varying) value associated with its
content as well as timing, with some attempts in [29–33] being exceptions. In particular,
different packets may have different values with respect to the application at the receiver
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using it. In such scenarios, the AoI metric falls short of capturing all the dimensions of the
problem, and a separate value of information (VoI) metric has to be introduced.

In this paper, we abstract out the VoI of a status update packet as a time-varying
quantity with a random initial value which becomes zero after a deterministic deadline
(identical over all packets) inspired by the AoI metric. Packets are assumed to be useless
after the deadline, which we term as ultimate staleness. We also assume a functional
dependence between the initial value of an information packet and its service time to
capture the relation between value and data size (e.g., packets carrying higher resolution
information are more valuable but larger in size), the growth rate of processes to be
monitored (e.g., state estimation in cyber-physical systems) and the content of packets
regarding an alarming event. We propose two definitions for VoI. The sum VoI is the sum of
the current values of all packets held by the receiver, which is reminiscent of throughput.
Note that the value of a packet continues to decay after it is received until ultimate staleness.
On the other hand, the packet VoI is simply the instantaneous value of a packet at the
moment it is delivered to the receiver. By comparing the initial value and the packet value,
we aim to understand the effect of communication on the lost value.

We note that the use of deadlines has been a topic of research in earlier works in the
literature on AoI, motivating us to further explore it in the context of value of information
updates. Reference [34] shows how packet deadlines, buffer sizes and packet replacement
influence average AoI. Closed-form expressions for average AoI with deadline are derived
in [35,36]. Reference [37] studies AoI in a status update system with random packet
deadlines and infinite buffer capacity.

Previous works in [29–33] have components related to our view on value of infor-
mation. For example, references [29,32] consider the quality of information associated
with the distortion observed at the receiving end and [38] considers partial updates. Simi-
larly, [31,39] relate the timeliness of observations with the correctness of information. The
author of [30] considers age and the value of information with a notion of value taking into
account the non-linear costs regarding information updates in various queuing disciplines.
The work in [33] evaluates the value of information in addition to age of information in
uplink/downlink transmissions in network control systems. The authors of [40] study
the performance of VoI and AoI in a first responders’ health monitoring system; their VoI
metric is very closely related to our VoI metric originally presented in [41]. In the current
paper, we propose a new notion of VoI where a packet’s inherent properties at the time
of generation determine its value, in contrast to a value evaluated after processing at the
receiver as in previous work. We investigate VoI in M/GI/1/1, M/GI/1/2, M/GI/1/2*
and M/GI/1/1* queuing disciplines and provide closed-form expressions for average sum
VoI and packet VoI.

The work in this paper is a significantly extended version of our conference paper [41].
In particular, we include the following:

1. We propose and analyze a second VoI metric (average packet VoI) in addition to the
average sum VoI analyzed in [41].

2. We add the case of constant value over time until deadline to our analysis on top of
the previous work on linear value descent over time until deadline.

3. We analyze the performance of a new queuing scheme, which is M/GI/1/1* in the
server. This extended analysis enables us to study the possible use for the value of
status update packets in different kinds of systems.

4. We present more numerical results on the two VoI metrics and the four queuing
schemes that enable the reader to obtain a clear picture of the various trade-offs
involved.

2. System Model

We consider a point-to-point communication system with a single transmitter sending
status updates from a source to a receiver, as shown in Figure 1. The update packets arrive
at the transmitter as a Poisson process with arrival rate λ at instants ti. A packet may be
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discarded in the queuing phase; those that are not discarded enter the server. A packet
may also be preempted and discareded while undergoing service; otherwise, it is received
by the receiver after system time Ti at t′i = ti + Ti. In this paper, we cover M/GI/1/1,
M/GI/1/2, M/GI/1/2* and M/GI/1/1* queuing schemes. In M/GI/1/1, there are no
buffer and packets arriving in the server-busy state that are discarded. In M/GI/1/2, there
is a single data buffer with a first come first serve discipline so that an arriving packet
that finds the buffer occupied will be discarded. In M/GI/1/2*, there is a single data
buffer but, in this case, an arriving packet will preempt the packet stored in the buffer.
In M/GI/1/1*, there are no buffer and packets arriving in the server-busy state that will
preempt the current packet in service. For the two no-buffer schemes M/GI/1/1 and
M/GI/1/1*, Ti = Si where Si is the service time for the ith packet, which is independent
and identically distributed with fS(s). For the two schemes with buffer M/GI/1/2 and
M/GI/1/2*, Ti = Si + Wi where Wi is the waiting time for the ith packet. We derive Ti for
different schemes in Section 3. We focus on these four queuing systems because previous
research has shown that excessive queuing in large buffer systems can adversely impact
AoI, and limited-buffer systems with packet management can improve AoI [12,34]. Since
the value also potentially becomes worse with time, a similar behavior is expected for VoI.

Tx Rx

Status Update 

Packet Arrivals

Data Queue

Transmission

Figure 1. System model with status update packets arriving at a single server transmission queue.

2.1. Value of a Packet

The ith update packet has initial value V0,i at the generation instant. This is a random
sequence independent over different i. V0,i has the identical general distribution fV(v)
with mean value E[V]. This initial value represents the importance of a packet for an
application. It could be related to the precision of a measurement, proximity of the sensor
to the measured object or it could indicate an alarm event. Each packet has a deterministic
lifetime D after which it reaches ultimate staleness. Hence, after a fixed time period D
from packet generation, the packet has no value for the receiver. We use Vr,i to denote
the instantaneous value of the ith update packet when it is delivered to the receiver and
ρi =

Vr,i
V0,i

to denote the fraction of the initial value of the ith update packet that is delivered
to the receiver.

Motivated by various applications of sensor networking and the value of information
in them [1–6], in our model, we assume that packet i’s value can decrease from its time
of generation at ti until it hits the deadline at ti + D. The value Vi(τ) = hi(V0,i, τ) for
the ith packet decreases with τ = t− ti, representing the time passed after generation at
the transmitter. This value keeps on decreasing (even after a packet is received) until it
becomes zero. We have hi(V0,i, 0) = V0,i and hi(V0,i, D) = 0. In this paper, we consider two
different descend functions h(.) for the value: (i) constant value and (ii) linear descend. The
former models the case where the packet’s value does not change with time as long as it is
delivered by the deadline, while the latter models the case where a packet that is delivered
earlier has a higher value. In the constant value case, we have the following.

Vi(τ) = hi(V0,i, τ) =

{
V0,i (τ < D)
0 (τ > D).

(1)

In the linear case, since hi(V0,i, 0) = V0,i and hi(V0,i, D) = 0, we have a linear descend
function.

Vi(τ) = hi(V0,i, τ) =

{
−V0,i

D τ + V0,i (τ < D)
0 (τ > D).

(2)
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Then we have the following:

Vr,i = hi(V0,i, Ti), (3)

ρi =
hi(V0,i, Ti)

V0,i
, (4)

for packets that are deliverd to the receiver. We set Vr,i = 0, ρi = 0, for packets that are not
delivered to the receiver.

2.2. Value-Dependent Service Times

We consider two possibilities for a packet’s service time. In one model, the service
times are independent of the initial value of a packet. In another model, the service time of
a packet depends on the initial value of the packet through a non-decreasing function g.

Si = g(V0,i). (5)

In this case, the distribution function of Si is fS(s) = fV(g−1(s)) dg−1(s)
ds where g−1(.)

is the inverse function of g(.), and the mean service time is E[S] = E[g(V)]. Corresponding
to the general distribution, we have the moment generating function (MGF) evaluated at
−γ for γ ≥ 0:

MS(γ) , E[e−γS].

This monotonic relation reflects the fact that a larger packet takes longer time to transmit
and its reception yields more value. This relation causes an interesting tradeoff between
value and age as a larger value is obtained at the receiver by paying a longer service time.

In this paper, we consider two definitions for VoI. The first one is Υsum, which denotes
the sum VoI, i.e., the sum of the current values of all packets received by the receiver
(cf. [4–6] where the additive nature of VoI is discussed in various wireless sensor networks).
Hence, Υsum(t) is as follows:

Υsum(t) =
it

∑
j=1

Vj(t) (6)

where it = max{i : t′i ≤ t}. The time average of Υsum(t) is the following.

E[Υsum] = lim
T→∞

1
T

∫ T

t=0
Υsum(t). (7)

Another definition is Υpacket, which measures the instantaneous value of a packet at
the moment it is delivered to the receiver (if it is delivered). Packets that are dropped are
assumed to have zero value. The average packet VoI is then defined as follows.

E[Υpacket] = E[Vr,i]. (8)

E[ρi] is the expected fraction of the initial value that is delivered to the receiver, which
illustrates the amount of value received by the receiver compared to the generated initial
value at the source. We reiterate that E[Vr,i] and E[ρi] are expectations over all packets;
dropped packets contribute zero received value.

We illustrate the evolution of value with an example. In Figures 2 and 3, the evolution
of value for specific packets generated over time is shown in an M/GI/1/1 system with
constant value and linearly descending values, respectively. We use Xi to denote the inter-
arrival period between two packets i− 1 and i. Therefore, Xi is an exponentially distributed
random variable with rate parameter λ. Packet 1 finds the server idle and begins service at
t1; service ends at t′1. Packet 2 arrives between t1 and t′1, and it is discarded. The service of
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packet 1 finishes at t′1 before the deadline of packet 1, D1 = t1 + D. The value of packet 1 at
t′1, when received by the receiver, is non-zero, and it becomes zero at D1. Packets 3, 4 and
5 arrive to the system during the idle period, and they are received at t′3, t′4 and t′5. Note
that when packet 4 is received, packet 3 has a non-zero value; thus, the sum VoI, which is
shown with a solid red line, is the sum of the values of these packets.

Vi

timet1 t2 t3 t4 t5t'1 t'5

X2

Q1

t'3 t'4

S1

D1 D3 D4 D5t6

S3 S4 S5

Q3

Q4

Vr,1

Vr,3

Vr,4

Figure 2. Evolution of value in M/GI/1/1 system when the value remains constant until deadline.

Vi

timet1 t2 t3 t4 t5t'1 t'5

X2

Q1

t'3 t'4

S1

D1 D3 D4 D5t6

S3 S4 S5

Q3
Q4

Vr,1 Vr,3
Vr,4

Figure 3. Evolution of thevalue in the M/GI/1/1 system with linearly descending values.

We define areas Qi under the rectangular regions of the curve shown in Figure 2 or the
triangular regions of the curve shown in Figure 3, and we set Qi = 0 for packets discarded
in the queuing phase. Then, the expected sum VoI at the receiver is as follows:

E[Υsum] = λE[Qi], (9)

where λ is the arrival rate of packets at the transmitter.

3. Evaluating Value of Information

In this section, we derive closed-form expressions for E[Vr,i], E[Qi] and E[ρ] for the var-
ious queuing systems. E[Υpacket] and E[Υsum] can then be obtained by using Equations (8)
and (9).

3.1. Average VoI for M/GI/1/1

In the M/GI/1/1 queueing system, there is a single server and no buffer. Packets
that arrive in the idle period are taken to service immediately and those arriving in busy
period are dropped. In view of the renewal structure, we have the following stationary
probabilities for each state:
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pI =
1

λTcycle
, pB =

E[S]
Tcycle

, (10)

where Tcycle = 1
λ +E[S] is the expected length of one renewal cycle; and I and B indicate

the idle and busy states. In the M/GI/1/1 system, packets are delivered to the receiver if
they arrive when the server is idle. Recall that if the total time spent by the packet before
reaching the receiver is larger than D, its value vanishes. Since a packet that is taken to
service spends service time Si in the queue before reaching the receiver, the packet’s value
vanishes if Si is larger than D. Hence, we just need to consider condition Si < D and i
arriving in idle states. Based on the two time-dependent functions for the value shown in
(1) and (2) and the relationship shown in (3)–(5), we have the following:

E[Vr,i] = pI

∫ Ṽ

0
hi(v, g(v)) fV(v)dv, (11)

E[ρi] = pI

∫ Ṽ

0

hi(v, g(v))
v

fV(v)dv, (12)

E[Qi] = pI

∫ Ṽ

0

∫ D

g(v)
hi(v, τ) fV(v)dτdv, (13)

where Ṽ = g−1(D) denotes the corresponding initial value when the related service time is
equal to the deadline.

3.2. Average VoI for M/GI/1/2

In the M/GI/1/2 queueing system, there is a single buffer. The server is in either idle
or busy states. Packets that arrive in the idle period are served immediately; those that
arrive in the busy period are stored in the buffer if there is no other packet in it and they
are discarded otherwise. In view of the renewal structure, we have the following stationary
probabilities for each state of the server:

pI =
1

λTcycle
, pB =

E[S]
TcycleMS(λ)

, (14)

where we use MS(λ) to denote the moment generating function of the service distribution
evaluated at −λ:

MS(λ) = E[e−λS], (15)

where Tcycle = 1
λ + E[S]

MS(λ)
is the expected length of one renewal cycle. Next, we evaluate

E[Vr,i] and E[Qi|(s)] for s ∈ SM/GI/1/2 = {I, B} and conditioning is on the server state
observed by packet i. Due to the PASTA property, Pr[Pi = (s)] = ps, where ps, s ∈
SM/GI/1/2 are as in (14).

3.2.1. Idle State Analysis

As a packet arriving in the idle state is served immediately, we have the following.

E[Vr,i|I] =
∫ Ṽ

0
hi(v, g(v)) fV(v)dv, (16)

E[ρi|I] =
∫ Ṽ

0

hi(v, g(v))
v

fV(v)dv, (17)
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E[Qi|I] =
∫ Ṽ

0

∫ D

g(v)
hi(v, τ) fV(v)dτdv. (18)

3.2.2. Busy State Analysis

Since only the first packet that arrives during the busy period is served and the others
are discarded, we introduce a lemma for the probability that an arriving packet is the first
one that arrives in the busy state. To do so, we first define states B1 and B2 as the busy states
of the server with zero and one packet waiting in the queue, respectively. The renewal
cycle is as follows. After the idle period, an arrival happens and the system turns to B1
state. Now, a time duration of service S starts and if during the service period another
arrival occurs, the system turns to B2 state. This back-and-forth between B1 and B2 states
continues until no packet arrives in one service time. We provide an example in Figure 4
for the three states in the M/GI/1/2 scheme. At time t0, packet 1 arrives and finds the
system idle. Packet 2 finds the system in B1 state at t1 and is stored in the buffer. Packet 3
finds the system in B2 state at t2 and is dropped.

WB1 WB2

S

t0 t1 t2 t3
time

Figure 4. Three states that can be observed by packets in M/GI/1/2 scheme.

This renewal structure yields the following result.

Lemma 1. In the M/GI/1/2 scheme, the waiting time of a packet in the buffer conditioned on its
arrival in B1 state is as follows

E[WB2 ] = E[S− X|X < S]Pr[X < S]

= E[S] + 1
λ

MS(λ)−
1
λ

.

The stationary probability of B2 state is as follows:

pB2 = pB
E[WB2 ]

E[S] = pB

(
1 +

MS(λ)− 1
λE[S]

)
,

and the probability of B1 state is pB1 = pB − pB2 .

Then, we have E[Qi|B] = E[Qi|B1] and we provide the probability distribution func-
tion for the conditional residual service time W

′
under the condition that the packet arrives

in the B1 state:

P[W ′
> w] = P[S− X > w|X < S]

=

∫ ∞
w

∫ s−w
0 fS(s) fX(x)dxds

P[X < S]

=

∫ ∞
w fS(s)(1− e−λ(s−w))ds

1−MS(λ)
,

and we have the following.
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fW ′ (w) =
d(1− P[W ′

> w])

dw
. (19)

Then, we have the following.

E[Vr,i|B1] =
∫ Ṽ

0

∫ D−g(v)

0
hi(v, g(v) + w) fW ′ (w) fV(v)dwdv, (20)

E[ρi|B1] =
∫ Ṽ

0

∫ D−g(v)

0

hi(v, g(v) + w)

v
fW ′ (w) fV(v)dwdv, (21)

E[Qi|B1] =
∫ Ṽ

0

∫ D−g(v)

0

∫ D

g(v)+w
hi(v, τ) fW ′ (w) fV(v)dτdwdv. (22)

Therefore, we haveE[Vr,i] = E[Vr,i|I]pI +E[Vr,i|B1]pB1 , E[ρi] = E[ρi|I]pI +E[ρi|B1]pB1

and E[Qi] = E[Qi|I]pI +E[Qi|B1]pB1 .

3.3. Average VoI for M/GI/1/2*

The M/GI/1/2* queueing system is the same as M/GI/1/2 except that we use a
last-come first-serve order with packet discarding in the buffer. The latest packet arriving
in a busy period takes the place of the old packet in the buffer. Therefore, we have the same
stationary probabilities for each state as the M/GI/1/2 system in (14). Additionally, the
expressions for E[Vr,i|I], E[ρi|I] and E[Qi|I] are the same as in (16)–(18) separately. We now
derive expressions for E[Qi|B] and E[Vr,i|B].

Busy State Analysis

If the ith packet arrives to the server during the busy period, it will be transmitted to
the receiver conditioned on event {Xi > Wi−1}, which means the next packet arrives for
the server after the current service finishes. W is the general residual service time for all
packets arriving in the busy state, and we have the following: fW(w) = P[S>w]

E[S] . Then, the
following is the case.

E[Vr,i|B] =
∫ Ṽ

0

∫ D−g(v)

0

∫ ∞

w
hi(v, g(v) + w) fX(x)

fW(w) fV(v)dxdwdv, (23)

E[ρi|B] =
∫ Ṽ

0

∫ D−g(v)

0

∫ ∞

w

hi(v, g(v) + w)

v
fX(x)

fW(w) fV(v)dxdwdv, (24)

E[Qi|B] =
∫ Ṽ

0

∫ D−g(v)

0

∫ ∞

w

∫ D

g(v)+w
hi(v, τ) fX(x)

fW(w) fV(v)dτdxdwdv. (25)

Therefore, we haveE[Vr,i] = E[Vr,i|I]pI +E[Vr,i|B1]pB1 , E[ρi] = E[ρi|I]pI +E[ρi|B1]pB1

and E[Qi] = E[Qi|I]pI +E[Qi|B1]pB1 .

3.4. Average VoI for M/GI/1/1*

In the M/GI/1/1* queueing system, there is no buffer and a new packet that arrives
during busy state will preempt the current packet in service. Since the arrival process is a
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Poisson with rate λ, pe, the probability that a packet is delivered to the receiver is given by
the following:

pe = P[Si < Xi+1] = MS(λ), (26)

which means, in preemption scheme, only the packet that has a service time less than the
upcoming inter-arrival period is delivered to the receiver. We use relation fG|G<F(t) =

fG(t)
P(F>t)
P(G<F) from [13] where G and F are arbitrary random variables. Since P(G < F) =

MG(λ) and P(F > t) = e−tλ, we have the probability density function for conditional
service time.

fS|S<X(s) = fS(s)
e−sλ

MS(λ)
. (27)

We use S′ to denote the conditional service time S; therefore, we have fS′(s) =
fS|S<X(s). In this case, we rewrite Equation (1) as follows:

hi(g−1(s), τ) =

{
g−1(S′i) (τ < D)

0 (τ > D)
(28)

and Equation (2) as the following.

hi(g−1(s), τ) =

{
− g−1(S′i)

D τ + g−1(S′i) (τ < D)
0 (τ > D)

(29)

Then, we have the following.

E[Vr,i] = pe

∫ D

0
hi(g−1(s), s) fS′(s)ds, (30)

E[ρi] = pe

∫ D

0

hi(g−1(s), s)
g−1(s)

fS′(s)ds, (31)

E[Qi] = pe

∫ D

0

∫ D

s
hi(g−1(s), τ) fS′(s)dτds, (32)

4. Numerical Results

In this section, we provide numerical results for average VoI for various cases. We
also perform packet-based queue simulations offline for 106 packets as verification of the
analytical results. An example of our simulation results is shown in Figure 5. We use
g(V) = V as the relation between service time and value to model the case where the
value is directly proportional to the packet size. Results are presented for three different
distributions for the initial value of packets.

4.1. Uniformly Distributed Initial Value

First, we assume that the initial value of each packet is uniformly distributed between
Vmin and Vmax and the value follows the linear descend function. In Appendix A, we
provide closed-form expressions for E[Υsum] and E[Υpacket] in various systems with linearly
descending value.

We show a comparison of average Υsum and average Υpacket in Figure 5. In Figure 5a,
we show average Υsum versus arrival rate λ for the four queuing schemes. We observe that
M/GI/1/1 and M/GI/1/2* perform better than M/GI/1/1* as λ increases. In particular,
due to the linear relation between time and value, keeping a packet in the buffer to keep
the server busy turns out to yield smaller value at the receiver with respect to keeping none
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and serving only the freshest packets. For M/GI/1/1* and M/GI/1/2, on the other hand,
there is an optimal value of λ after which average Υsum drops. For M/GI/1/2, it is due to
undesired increases in waiting times in the data buffer while for M/GI/1/1*, it is due to
undesired decrease in the number of delivered packets.
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Figure 5. (a) Average Υsum and (b) average Υpacket for uniformly distributed initial value with linear
descend function versus λ; Vmin = 0, Vmax = 10, D = 8. Circles are simulation results.

In Figure 5b, we show Υpacket versus arrival rate λ for the four queuing schemes.
Again, we observe that M/GI/1/1 performs better than the other three.We observe that as
λ increases, E[Υpacket] decreases in all four queuing schemes due to the fact that most of the
generated packets are discarded in the queuing phase and have zero value for the receiver.

In Figure 6, we show E[ρ], which denotes the average ratio of the received value
compared to the generated values over all the generated packets. We observe that as λ in-
creases, E[ρ] decreases in all four queuing schemes, which matches the result for E[Υpacket].
However, interestingly, M/GI/1/1* scheme performs best for E[ρ]. This is because as λ
increases, even though there will be more packets dropped, the packets delivered to the
receiver have smaller service times, which increases the ratio of the delivered value to the
initial value.
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Figure 6. E[ρ] for uniformly distributed initial value with linear descend function versus λ; Vmin = 0,
Vmax = 10, D = 8.
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Next, we consder the case when the service times are independent of the initial values
and are exponentially distributed with service rate µ. In Figure 7, we show the average
Υsum versus arrival rate λ for the four queuing schemes. We observe that M/GI/1/1*
performs better than the other three.This is because the service time is independent of the
initial value, and large-valued packets may have small service times. In particular, due
to the linear relation between time and value, keeping a packet in the buffer to keep the
server busy turns out to yield smaller values at the receiver compared to keeping none and
serving only the freshest packets.
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Figure 7. Average Υsum for uniformly distributed initial value with linear descend function and
exponential independent service time versus λ; Vmin = 0, Vmax = 10, D = 8, µ = 0.2.

Finally, in Figure 8, we show the average Υsum versus service rate µ for the four
queuing schemes when the service times are independent of the initial values and are
exponentially distributed. We observe that M/GI/1/2 and M/G/1/2* perform better than
M/GI/1/1* as µ increases. This is because, as the average service time deceases, fewer
packets will expire, i.e., reach ultimate staleness, during the waiting period in the buffer,
and in this case, having a buffer to store the packets turns out to yield larger value at the
receiver with respect to dropping the packets in the server.
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Figure 8. Average Υsum for uniformly distributed initial value with linear descend function and
exponential independent service time versus µ; Vmin = 0, Vmax = 10, D = 8, λ = 1.

4.2. Exponentially Distributed Initial Value

Next, we consider fV(v) = µve−µvv with constant value. In this case, we have service
rate µ = µv due to g(V) = V. We compare average AoI with average sum VoI for the same
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schemes as both of them are time-average metrics over all the packets. In Appendix B,
we provide closed-form expressions for E[Υsum] and E[Υpacket] in various systems for
constant values.

In Figure 9a, we plot the average Υsum with respect to λ for various schemes. We
observe that M/M/1/2* always performs better than the others. This is connected to the
fact that when the value of packet is constant over time, all packets received within the
deadline contribute their full initial value. Since Υsum is the accumulated value of received
packet values, the total value is higher if a packet is stored in the buffer instead of dropping
it. At the same time, we observe that M/M/1/1* performs the worst in terms of value
since the dependence between service time and value causes higher value packets to be
preempted in this system, resulting in no contribution to VoI at the receiver.
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Figure 9. Average Υsum for exponentially distributed service time with constant value versus λ for
M/M/1/1, M/M/1/2, M/M/1/2* and M/M/1/1* schemes with µv = 1.5 and D = 3. (a) Dependent
Value. (b) Independent Value.

Next in Figure 9b, we show average Υsum for independent initial value and service
time under the same marginal distributions. We observe that, with independent service
time, the M/M/1/1* scheme becomes the best case while it is the worst case with dependent
service time. The other three schemes yield higher values as the adverse relation between
initial value and service rate is removed.

Finally, in Figure 10, we show E[ρ] versus deadline D for the four queuing schemes.
We observe that, as D increases, E[ρ] for all queuing schemes increases, but never reaches
threshold 1 due to the fact that some packets are discarded in the queuing phase.
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Figure 10. E[ρ] for exponentially distributed service time with constant value versus D for λ = 1.
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4.3. Binary Distributed Initial Value

We finally consider binary distributed initial value for two classes of update packets.
Class 1 and class 2 packets have V0,i = V1 and V0,i = V2. Each packet is independently
chosen to be in class 1 or 2 with probability p and (1− p), respectively. This situation
models the case when a packet of one class contains a message about an alarming event
yielding high value once received, whereas the other class of packets are assumed to be
regular status updates.

In Figure 11, we set V1 = 1.33, V2 = 0.4 and p = 0.2. We compare plots showing
average Υsum versus λ for three different service policies in an M/M/1/1 system. The first
policy serves all packets without regard to the value, the second policy involves serving
only class 1 packets, and the third policy serves only class 2 packets. Note that if the
service time is dependent on the value, class 1 packets will have exponentially distributed
service time with mean E[S] = E[V1], and similarly, class 2 packets will have exponentially
distributed service time with mean E[S] = E[V1]. If the service time is independent of the
value, both class packets will have exponentially distributed service time with µ = 1.5. Our
numerical results show that when service time is independent of value, always serving the
high-value packet will yield the highest average value. On the other hand, in the dependent
case when arrival rate becomes large, serving the packet with low value but smaller service
time and high probability will benefit the average Υsum compared to serving all the packets
or serving the high-value packets with larger service time and low probability.
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Figure 11. Exponentially distributed service time dependent on or independent of the binary value
in M/M/1/1 scheme.

5. Conclusions

Age of information (AoI) is a well-known metric that quantifies the freshness of
information at a receiver in status update systems. This metric ignores the potential dif-
ferences in the importance of various update packets. In this paper, we consider the
value of information in status update systems wherein packets have various initial values
upon generation. We investigate various queuing disciplines with initial-value-dependent
packet service times and obtain closed-form expressions for two different VoI metrics.
Our numerical results illustrate the trade-off between the two VoI metrics and the con-
trast between these two metrics. We show average sum VoI and average packet VoI for
different scenarios and the fraction of received value comparing to the inital value for
different systems.
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Appendix A. E[Υsum] and E[Υpacket] for Uniformly Distributed Initial Value with
Linear Descend Function

In uniform case, we have fV(v) = 1
u , where u = Vmax − Vmin, and we assume

g(V) = V. Thus, we have the mean service time.

E[S] = E[V] =
Vmax + Vmin

2
.

Appendix A.1. M/GI/1/1

From (10), we have the following.

pI =
1

1 + λE[S] .

We calculate E[Vr,i] from (2) and (11) and we have the following.

E[Vr,i] = pI

∫ Ṽ

0
(v− v

D
g(v)) fV(v)dv.

Here, Ṽ = D. Define Vup = Ṽ if Ṽ < Vmax and Vup = Vmax otherwise. Then, we have
the following.

E[Vr,i] =pI

∫ Vup

Vmin

(v− v
D

g(v)) fV(v)dv

=
pI
u

∫ Vup

Vmin

(v− v2

D
)dv

=
pI
u

(
1
2
(V2

up −V2
min)−

1
3D

(V3
up −V3

min)

)
.

Then, we calculate E[Qi] from (2) and (13) and we have the following.

E[Qi] =pI

∫ Ṽ

0

∫ D

g(v)
(v− v

D
τ) fV(v)dτdv

=
pI
2

∫ Vup

Vmin

v
D
(D− v)2 fV(v)dv

=
pI

2Du

∫ Vup

Vmin

(D2v− 2Dv2 + v3)dv

=
pI

2Du

(
D2

2
(V2

up −V2
min)−

2D
3

(V3
up −V3

min)

+
1
4
(V4

up −V4
min)

)
.

Finally, we have E[Υpacket] =
1
pI
E[Vr,i] and E[Υsum] = λE[Qi].
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Appendix A.2. M/GI/1/2

From (15), we have the following.

MS(λ) =
1

uλ
(e−λVmin − e−λVmax).

Then, from (14), we have the following.

pI =
MS(λ)

MS(λ) + λE[S] ,

pB =
λE[S]

MS(λ) + λE[S] .

From Lemma 1, we have the following.

pB1 =
1−MS(λ)

λE[S] pB,

P[W ′ > w] =
λ(Vmax − w) + eλ(w−Vmax) − 1

uλ(1−MS(λ))
.

Then, from (19), we have the following.

fW ′(w) =
−1 + λeλ(w−Vmax)

uλ(MS(λ)− 1)
.

For the idle case, from (2), (16) and (18), we have the following.

E[Vr,i|I] =
1
u

(
1
2
(V2

up −V2
min)−

1
3D

(V3
up −V3

min)

)
,

E[Qi|I] =
1

2Du

(
D2

2
(V2

up −V2
min)−

2D
3

(V3
up −V3

min)

+
1
4
(V4

up −V4
min)

)
.

For the busy case, since waiting time W ′ has the same domain of definition as initial
value V0,i, there are three conditions: D < Vmax, Vmax < D < 2Vmax and D < 2Vmax. We
show the expression for the condition D < Vmax, which corresponds to our parameter
setting in numerical results. Then, from (2), (20) and (22), we have the following.

E[Vr,i|B1] =
1
u

∫ D

Vmin

∫ D−v

Vmin

(v− v
D
(v + w)) fW ′(w)dwdv

=
1

u2λ(MS(λ)− 1)

(
D2Vmin

6
− D3

24
−

5V3
min
6

+
17V4

min
24D

+ (−D2

6
+

V2
min
2
−

5V3
min

6D
+

DVmin

2

− D
2λ

+
V2

min
2Dλ

)eλ(Vmin−Vmax)

− e−Dλ(Dλ + 1)− e−λVmin(λVmin + 1)
Dλ3 eDλe−λVmax

)
,



Entropy 2022, 24, 449 16 of 22

E[Qi|B1] =
1
u

∫ D

Vmin

∫ D−v

Vmin

v
D
(D− (v + w))2 fW ′(w)dwdv

=
1

u2λ(MS(λ)− 1)

(
D3Vmin

12
−

2DV3
min

3
− D4

60

− 2e−λVmax

λ3 +
17V4

min
12

−
49V5

min
60D

− 2e−λVmax

Dλ4

+ (−D3

12
−

5V3
min
3
− D2

3λ
+

17V4
min

12D
+

V2
min
λ
− D

λ2

+
D2Vmin

3
+

DVmin

λ
−

5V3
min

3Dλ
+

V2
min

Dλ2 )e
λ(Vmin−Vmax)

+ (
2

Dλ4 +
2Vmin

Dλ3 )eλ(D−Vmin−Vmax)

)
.

Finally, we have the following: E[Vr,i] = E[Vr,i|I]pI + E[Vr,i|B1]pB1 and E[Qi] =
E[Qi|I]pI +E[Qi|B1]pB1 .
Then, E[Υpacket] =

1
pI+pB1

E[Vr,i] and E[Υsum] = λE[Qi].

Appendix A.3. M/GI/1/2*

For M/GI/1/2* system, we have the same pI , pB, E[Vr,i|I] and E[Qi|I] as in the
M/GI/1/2 system. Next, we calculate the E[Vr,i|B] and E[Qi|B]. We have the following.

fW(w) =
P[S > w]

E[S] =
Vmax − w

uE[S] .

Then, we consider the condition D < Vmax and from (2), (23) and (25); we have
the following.

E[Vr,i|B] =
1
u

∫ D

Vmin

∫ D−v

Vmin

(v− v
D
(v + w))e−λw fW(w)dwdv

=
1

u2E[S]

(
Vmax

λ3 −
3

λ4 +
4

Dλ5 −
Vmax

Dλ4 + (
D
λ3

− D2

6λ2 +
V3

min
2λ

+
V2

min
2λ2 −

V2
minVmax

2λ
−

5V4
min

6Dλ

−
4V3

min
3Dλ2 −

V2
min

Dλ3 +
D(2Vmin −Vmax)

2λ2 +
DV2

min
2λ

+
D2(Vmax −Vmin)

6λ
+

5V3
minVmax

6Dλ
+

V2
minVmax

2Dλ2

− DVminVmax

2λ
)e−λVmin + (

4Vmin

Dλ4 +
Vmax

Dλ4 −
V2

min
Dλ3

− VminVmax

Dλ3 −
λ4 +

Vmin

λ3 −
4

Dλ5 )e
λ(Vmin−D)

)
,
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E[Qi|B] =
1
u

∫ D

Vmin

∫ D−v

Vmin

v
D
(D− (v + w))2e−λw fW(w)dwdv

=
1

u2E[S]

(
8

λ5 −
2Vmax

λ4 − 10
Dλ6 +

2Vmax

Dλ5

(−3D
λ4 +

2D2

3λ3 −
D3

12λ2 −
5V4

min
3λ

−
8V3

min
3λ2 −

2V2
min

λ3

+
5V3

minVmax

3λ
+

V2
minVmax

λ2 +
D2V2

min
3λ

+
17V5

min
12Dλ

+
37V4

min
12Dλ2 +

13V3
min

3Dλ3 +
3V2

min
Dλ4 −

3DVmin

λ3 +
DVmax

λ3

−
DV2

min
λ2 +

2D2Vmin

3λ2 − D3Vmin

12λ
− D2Vmax

3λ2 +
D3Vmax

12λ

+
DVminVmax

λ2 − D2VminVmax

3λ
−

17V4
minVmax

12Dλ

−
5V3

minVmax

3Dλ2 −
V2

minVmax

Dλ3 )e−λVmin + (−10Vmin

Dλ5

− 2Vmax

Dλ5 +
2V2

min
Dλ4 +

2VminVmax

Dλ4 +
2

λ5 −
2Vmin

λ4

+
10

Dλ6 )e
λ(Vmin−D)

)
.

Finally, we have the following: E[Vr,i] = E[Vr,i|I]pI + E[Vr,i|B]pB and E[Qi] =
E[Qi|I]pI +E[Qi|B]pB.

Then, E[Υpacket] =
1

pI+pB1
E[Vr,i] and E[Υsum] = λE[Qi].

Appendix A.4. M/GI/1/1*

Since we have MS(λ) =
1

uλ (e
−λVmin − e−λVmax), from (26) we have pe = MS(λ), and

from (27), we have the following.

fS′(s) =
e−λs

uMS(λ)
.

Note that due to g(V) = V, conditional service time S′ has the same domain of
definition as the initial value V0,i. Then, we calculate E[Vr,i] from (29) and (30), and we
have the following.

E[Vr,i] = pe

∫ Vup

Vmin

(s− s
D

s) fS′(s)ds

=
pI

uMS(λ)

(
e−λVmin(λVmin + 1)

λ2 −
e−λVup(λVup + 1)

λ2

−
e−λVmin(λ2V2

min + 2λVmin + 2)
Dλ3

−
e−λVup(λ2V2

up + 2λVup + 2)

Dλ3

)
.

From (29) and (32), we have the following.
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E[Qi] =
pe

2

∫ Vup

Vmin

s
D
(D− s)2 fS′(s)ds

=
pI

2uMS(λ)Dλ4

(
e−λVmin(D2λ3Vmin + D2λ2 − 2Dλ3Vmin

2

− 4Dλ2Vmin − 4Dλ + λ3Vmin
3 + 3λ2Vmin

2 + 6λVmin + 6)

− e−λVup(D2λ3Vup + D2λ2 − 2Dλ3Vup
2

− 4Dλ2Vup − 4Dλ + λ3Vup
3 + 3λ2Vup

2 + 6λVup + 6)
)

.

Finally, we have E[Υpacket] =
1
pe
E[Vr,i] and E[Υsum] = λE[Qi].

Appendix B. E[Υsum] and E[Υpacket] for Constant Value with Exponentially
Distributed Initial Value

For an exponentially distributed initial value, we have fV(v) = µe−µv, E[S] = E[V] =
1
µ and Ṽ = D.

Appendix B.1. M/M/1/1

From (10), we have the following.

pI =
µ

λ + µ
.

Next, we calculate E[Vr,i] from (1) and (11) and we have the following.

E[Vr,i] =pI

∫ D

0
v fV(v)dv

=pI

∫ D

0
v fV(v)dv

=pI

(
− De−µD − 1

µ
(e−µD − 1)

)
.

Then, we calculate E[Qi] from (1) and (13) and we have the following.

E[Qi] =pI

∫ D

0

∫ D

g(v)
v fV(v)dτdv

=pI

∫ D

0
v(D− v) fV(v)dv

=pI

∫ D

0
(Dv− v2) fV(v)dv

=pI

(
− D2e−µD − D

µ
(e−µD − 1) + D2e−µD

+
2
µ

De−µD +
2

µ2 (e
−µD − 1)

)
.

Finally we have E[Υpacket] =
1
pI
E[Vr,i] and E[Υsum] = λE[Qi].

Appendix B.2. M/M/1/2

From (15), we have the following.

MS(λ) =
µ

λ + µ
.
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Then, from (14), we have the following.

pI =
µ2

µ2 + µλ + λ2 ,

pB =
µλ + λ2

µ2 + µλ + λ2 .

From Lemma 1, we have the following.

pB1 =
µλ

µ2 + µλ + λ2 ,

P[W ′ > w] = e−µw.

Then, from (19), we have the following.

fW ′(w) = µe−µw.

For the idle case, from (1), (16) and (18), we have the following.

E[Vr,i|I] = −De−µD − 1
µ
(e−µD − 1),

E[Qi|I] =− D2e−µD − D
µ
(e−µD − 1) + D2e−µD

+
2
µ

De−µD +
2

µ2 (e
−µD − 1).

For the busy case, from (1), (20) and (22), we have the following.

E[Vr,i|B1] =
∫ D

0

∫ D−v

0
v fV(v) fW ′(w)dwdv

=
1
µ
− e−Dµ(Dµ + 1)

µ
− D2µe−Dµ

2
.

E[Qi|B1] =
∫ D

0

∫ D−v

0
v(D− (v + w)) fV(v) fW ′(w)dwdv

=
e−Dµ

2µ2

(
4Dµ− 6eDµ + D2µ2 + 2DµeDµ + 6

)
.

Finally, we have the following: E[Vr,i] = E[Vr,i|I]pI +E[Vr,i|B1]pB1 and E[Qi] = E[Qi|I]pI +
E[Qi|B1]pB1 .
Then, E[Υpacket] =

1
pI+pB1

E[Vr,i] and E[Υsum] = λE[Qi].

Appendix B.3. M/GI/1/2*

For M/GI/1/2* system, we have the same pI , pB, E[Vr,i|I] and E[Qi|I] as in the
M/GI/1/2 system. Next, we calculate E[Vr,i|B] and E[Qi|B]. We have the following.

fW(w) =
P[S > w]

E[S] = µe−µw.

Then, from (1), (23) and (25), we have the following.
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E[Vr,i|B] =
∫ D

0

∫ D−v

0
ve−λw fV(v) fW(w)dwdv

=
1− e−Dµ(Dµ + 1)

λ + µ
−

µ2e−Dµ
(
e−Dλ + Dλ− 1

)
λ2(λ + µ)

,

E[Qi|B] =
∫ D

0

∫ D−v

0
v(D− (v + w))e−λw fV(v) fW(w)dwdv

=
e−D(λ+µ)

λ2µ(λ + µ)2 (2λ3eDλ − µ3eDλ + µ3 + 3λ2µeDλ

− 2λ3eD(λ+µ) + Dλµ3eDλ + Dλ3µeDλ

− 3λ2µeD(λ+µ) + 2Dλ2µ2eDλ + Dλ2µ2eD(λ+µ)

+ Dλ3µeD(λ+µ)).

Finally, we have the following: E[Vr,i] = E[Vr,i|I]pI +E[Vr,i|B]pB and E[Qi] = E[Qi|I]pI +
E[Qi|B]pB.
Then, E[Υpacket] =

1
pI+pB1

E[Vr,i] and E[Υsum] = λE[Qi].

Appendix B.4. M/GI/1/1*

Since we have MS(λ) =
µ

λ+µ , from (26) we have pe = µ
λ+µ and from (27), we have

the following.

fS′(s) = (λ + µ)e−(λ+µ)s.

Note that since g(V) = V, we calculate E[Vr,i] from (29) and (30), and we have
the following.

E[Vr,i] = pe

∫ D

0
s fS′(s)ds

= pe(
1

λ + µ
− De−D(λ+µ) − e−D(λ+µ)

λ + µ
).

From (29) and (32), we have the following.

E[Qi] = pe

∫ D

0
s(D− s) fS′(s)ds

=
pe

(λ + µ)2 (e
−D(λ+µ)(Dλ + Dµ + 2) + Dλ + Dµ− 2).

Finally, we have E[Υpacket] =
1
pe
E[Vr,i] and E[Υsum] = λE[Qi].
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