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Abstract: The quasi-consensus of a class of nonlinear time-varying multi-agent systems suffering
from both external inputs and deception attacks is studied in this paper. This is different from a
time-varying matrix, which is assumed to be bounded; further reasonable assumptions are supposed.
In addition, impulsive deception attacks modeled with Bernoulli variables are considered. Sufficient
conditions to achieve quasi-consensus are given, and the upper bounds of the error state related to
the deception attacks is derived. Finally, a numerical simulation example is provided to show the
validity of the obtained results.
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1. Introduction

Systems with time-varying dynamics are more suitable to model objects in the real
world compared with time-invariant systems. Owing to the time-varying parameters,
the stability and stabilization of time-varying systems are more difficult to study even for
linear systems. In recent years, results on the stability analysis of time-varying systems
have been found in [1–6] and the references therein.

For example, a uniformly asymptotically stable function was proposed to study the
asymptotic stability of linear time-varying systems in [5] and a nonlinear one in [6]. This
approach was then extended to time-delayed systems [7], impulsive systems [8] and
sampled-data systems [9]. Different from the method used in [5–7], the authors in [4]
developed a novel lemma based on more general time-varying delayed systems.

Nevertheless, the consensus of time-varying multi-agent systems (MASs) has not been
fully studied, as the analysis of time-varying systems is laborious. Moreover, time-varying
dynamics in MASs mainly focus on the time delay and the communication topology [10–12].

For example, the uncertainty caused by unknown time-varying communication delays
was considered in [10]; formation control with time-varying communication networks was
studied in [12]. When studying systems with uncertain parameters, such as randomly
occurring uncertainties and randomly occurring nonlinearities in [13–15], the norm of the
time-varying term in the system matrix is always assumed to be less than one. Conserva-
tively, this assumption is restrictive to adopt in practical works.

On the other hand, the consensus problems of MASs have been crucial issues over
the past two decades [16]. The consensus of MASs means that all agents will reach the
identical goal through exchanging information with neighbors [17],. It has been widely
studied in practical applications, such as UAV irrigation and formation [18,19] and power
grid energy distribution [20,21]. In practice, unexpected interferences, such as external
inputs or cyber-attacks, may occur due to the complicated workspace. These unexpected
interferences may lead to poor performance and even destroy the stability of systems.
It is known that environment disturbances are inevitable and usually described by the
Brownian motion.
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Stochastic MASs modeled by Itô differential equations have been widely investigated
in recent years [22]. However, the definition of consensus is not applicable if systems are
disturbed by external inputs, and to describe the consensus in this case, the concept of
quasi-consensus is proposed. Particularly, an error bound as controllable error for bounded
external inputs is introduced in the quasi-consensus [23,24].

Significantly, working in an open environment typically brings about security prob-
lems [25]. Cyber-attacks are common, and they can destroy the stability of systems and
seriously affect the equipment [26]. Hence, cyber-attacks are important factors when
studying the stability of MASs. Generally, cyber-attacks are divided into two categories:
denial-of-service (DoS) attacks [27,28] and deception attacks [29–33].

DoS attacks block communication networks, which leads to packet drops or packet
time delays. For instance, the problem of communication topologies interrupted by DoS
attacks with a definite probability was considered in [28].

Deception attacks relate to the situation that malicious adversaries can find and
manipulate the transmitting information and control signal. False data injection attacks
mean that false information can be injected to the controller or the feedback channel of the
controller [29]. Furthermore, deception attacks can be divided into different categories: data
replacement attacks, false data injection attacks and so on [30]. In [32], the quasi-consensus
of a class of discrete-time multi-agent systems was studied using recursive linear matrix
inequality and the stochastic analysis method.

In [33], in order to avoid certain adverse effects caused by system instability, load
shedding and false data injection attacks, the authors designed a load frequency controller
to provide a constant and uniform frequency in different operation cases of microgrids.
The consensus of MASs in a given finite horizon were studied when the systems suffered
from false data injection attacks [34].

To describe the randomness of deception attacks, Bernoulli variables were introduced
in an attack scenario in [35]. Nevertheless, most of the existing results are on time-invariant
MASs subjected to continuous-time deception attacks [29,31–33], while it is more practical
and challenging for time-varying multi-agent systems under impulsive deception attacks.

With the above analysis, a consensus of time-varying MASs subject to both external
inputs and deception attacks is missing in the literature, and how to release the restrictive
assumption on the time-varying system matrix is meaningful and challenging. This pa-
per aims to deal with the above problems, and the main contributions of this paper are
summarized as follows:

(1) Compared with the traditional assumption on the time-varying system matrix of
MASs, more general and practical conditions are considered in this paper versus the
analysis approaches used in [5].

(2) Both false data injection attacks modeled with Bernoulli variables and external inputs
are considered in this paper. Moreover, sufficient conditions for achieving the quasi-
consensus are derived, and the error upper bounds related to the external inputs and
deception attacks are also obtained.

The rest of this article is organized as follows. Some preliminaries are given in Section 2.
Sufficient conditions for the quasi-consensus are provided in Section 3. In Section 4, an
illustrative example is provided to verify the effectiveness of the proposed results. Finally,
our conclusions are drawn in Section 5.

Notation 1. Throughout this article, the following notations are adopted. λmax(·) and λmin(·)
are the maximum and minimum eigenvalues of any real and symmetrical matrix, respectively. In
and 1N denote the n-dimensional identity matrix and an N-dimensional column vector with all
ones, respectively. N = {1, 2, . . .}, N[1, N] = {1, 2, . . . , N}, where N ∈ N. R = (−∞,+∞),
R+ = [0,+∞) , Rn denotes an n-dimensional Euclidean space, and Rn×m is the set of n × m
real matrix. diag{· · · } denotes a block-diagonal matrix. E[·] is the operator of expectation, and

‖x‖ =
√

∑ n
i=1x2

i denotes the Euclidean norm of vector x ∈ Rn. C(X; Y) indicates the continuous
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mapping from X to Y. D+g(t) denotes the Dini derivative of the function g : R → R, and it is
defined as:

D+g(t) = lim
∆→0+

g(t + ∆)− g(t)
∆

.

2. Preliminaries
2.1. Graph Theory

In general, a weighted undirected graph can be represented by G = (V , E ,A), where
V = {v1, v2, . . . , vN} , E ⊆ V × V and A = [aij]N×N ∈ RN×N , vi, vj ∈ V mean the set
of vertexes, the set of edges and the adjacency matrix, respectively. When data can be
transferred between agent i and j, i 6= j, i, j ∈ N[1, N], there exists an edge between vi
and vj, that is (vi, vj) ∈ E , then aij = 1 and aii = 0, otherwise aij = 0. L is Laplacian
matrix of graph G, which can be denoted L = [lij]N×N ∈ RN×N , and lij = −aij, i 6= j,
lii = ∑ N

j=1,j 6=iaij.

2.2. The Model of MASs

Consider a class of nonlinear time-varying MASs composed of N agents with external
disturbances. The dynamics of agent i, i ∈ N[1, N] can be described by{

ẋi = A(t)xi(t) + β(t) f (t, xi(t)), ωi(t)) + ui(t), t ≥ t0,

xi(t0) = ζi.
(1)

where xi(t) ∈ Rn, ui(t) ∈ Rn and ωi(t) ∈ Rn represent the state, the control input and
external disturbances of agent i, respectively. A(t) = A + α(t)TB(t)Q is a time-varying
matrix, where A, T, and Q are constant matrices with suitable dimensions, and B(t) is
a time-varying matrix. f (·) ∈ C(R+ ×Rn ×Rn;Rn) is a nonlinear function, represents
intrinsic dynamics of the agent. Assume that the initial time t0 ≥ 0, the initial state of agent
i is ζi and ζ̂ = (ζT

1 , ζT
2 , . . . , ζT

N)
T .

The system considered in this article may be linear or non-linear, which mainly
depends on the value of β(t). Clearly, while β(t) ≡ 0, (1) is a linear system.

Assumption 1. Assume that the random variables α(t) and β(t) in system (1) both obey the
Bernoulli distribution with the value 0 or 1. Their probabilities are set as follows:{

Pr(α(t) = 1) = α, Pr(α(t) = 0) = 1− α,

Pr(β(t) = 1) = β, Pr(β(t) = 0) = 1− β.
(2)

where α, β∈ [0, 1] are known constants. In addition, α(t) and β(t) are independent of each other.

Based on the above conditions, the following equations are established:

E
[
α(t)− α

]
= 0, E

[
β(t)− β

]
= 0. (3)

In this article, a controller that suffers from false data injection attacks is considered,
and it is designed as follows:

ui(t) =
∞

∑
k=1

[
Uk

N

∑
j=1

aij
(

xi(t)− xj(t)
)
+ψi(t)dkξi(t)

]
δ(t− tk), ∀i ∈ N[1, N], (4)

where δ(·) is the Dirac function, ξi(t) denotes the attack signal of the agent i, and dk means
the strength of attack signal at the kth impulsive moment. Uk ∈ R is the impulsive control
gain. {tk}+∞

k=1 is the impulsive time sequence and satisfies 0 ≤ t0 < t1 < · · · < tk < · · · ,
limk→+∞tk = +∞. Let τsup = supk∈N{tk+1 − tk} and τinf = infk∈N{tk+1 − tk} > 0. ψi(t) is
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a Bernoulli variable related to agent i, which is introduced to denote the occurrence of an
achievable attack. Hence, one finds:

Pr
(
ψi(t) = 1

)
= ψ̄i, Pr

(
ψi(t) = 0

)
= 1− ψ̄i.

where ψ̄i ∈ [0, 1] are known constants.

Assumption 2. The stochastic variables ψi(tk), i ∈ N[1, N] are mutually independent.

Remark 1. The configuration of MAS with external inputs under deception attacks in this paper
is shown in Figure 1. Deception attacks occur on the channel from sensor to controller, and the
attackers inject false data to control signal at discrete-time instants, thus, reducing the accuracy of
the system data.

Attack 
signal

Communication 
network

External inputs

Sensor

Controller

Actuator MASs

Agent 1

Agent 2
……

Agent N

Figure 1. Configuration of time-varying MASs with external inputs under deception attacks.

According to the controller (4), MASs (1) suffering from false data injection attacks can
be described as:

ẋi = A(t)xi(t) + β(t) f
(
t, xi(t), ωi(t)

)
, t ≥ t0, t 6= tk,

∆xi(tk) = Uk

N

∑
j=1

aij
(
xi(tk)− xj(tk)

)
+ ψi(tk)dkξi(tk), t = tk.

(5)

where ∆xi(tk) = xi(t+k )− xi(t−k ). Throughout the article, assume that xi(t) is right-hand
continuous at t = tk, xi(tk) = xi(t+k ) = limc→0+xi(tk + c) and xi(t−k ) = limc→0−xi(tk + c).

Notice that the stabilization problem of an error system is equal to the consensus

of MASs. Therefore, define the error state ei(t) := xi(t) − x̄(t) = xi(t) − 1
N

N
∑

i=1
xi(t) and

ω̄i(t) := ωi(t) − 1
N

N
∑

i=1
ωi(t). With the help of a Kronecker product, one yields e(t) =

(E⊗ In)x(t) =
(
(IN − 1

N 1N1T
N)⊗ In

)
x(t) and ω̄(t) = (E⊗ In)ω(t) =

(
(IN − 1

N 1N1T
N)⊗

In
)
ω(t), where x(t) = [xT

1 (t), xT
2 (t), . . . , xT

N(t)]
T , e(t) = [eT

1 (t), eT
2 (t), . . . , eT

N(t)]
T , ω(t) =

[ωT
1 (t), ωT

2 (t), . . . , ωT
N(t)]

T and ω̄(t) = [ω̄T
1 (t), ω̄T

2 (t), . . . , ω̄T
N(t)]

T .
Then, the compact form error system under the false data injection attacks can be

described as:{
ė(t) =

(
IN ⊗ A(t)

)
e(t) + β(t)F(t, e(t), ω̄(t)), t ≥ t0, t 6= tk,

∆e(tk) = e(t+k )− e(t−k ) = (UkL⊗ In)e(t−k ) + dk
(
EΨ(tk)⊗ In

)
ξ(tk), t = tk.

(6)
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where Ψ(tk) = diag
{

ψ1(tk), ψ2(tk), . . . , ψN(tk)
}

is a diagonal matrix, ξ(tk) =
[
ξT

1 (tk), ξT
2 (tk),

. . . , ξT
N(tk)

]T as well as F(t, e(t), ω̄(t)) = (E⊗ In) f (t, x(t), ω(t)), where f (t, x(t), ω(t)) =
[ f T(t, x1(t), ω1(t)), . . . , f T(t, xN(t), ωN(t))]T .

Assumption 3. The attack signal ξ(tk), k ∈ N, is bound: ‖ξ(tk)‖2 < ξ̄, and ξ̄ is a known
positive constant.

Assumption 4. For the nonlinear function f in system (1), there exist constants κ1, κ2 ≥ 0
that satisfy∣∣ f T(t, x1(t), y1(t))− f T(t, x2(t), y2(t))

∣∣ × ∣∣ f (t, x1(t), y1(t))− f (t, x2(t), y2(t))
∣∣

≤ κ1|x1(t)− x2(t)|2 + κ2|y1(t)− y2(t)|2.

Assumption 5. Assume that the external disturbance ω̄(t) is bounded and there exists a positive
constant ω̂ that satisfies

sup
t≥t0

‖ω̄(t)‖ ≤ ω̂,

Lemma 1. Ref. [36] Assume that ι ∈ R, Γ, Υ, ZandΛ are matrices with proper dimensions.
Therefore, the Kronecker product has the properties

(1) (Γ⊗ Υ)T = ΓT ⊗ ΥT ;

(2) (ιΓ)⊗ Υ = Γ⊗ (ιΥ);

(3) (Γ + Z)⊗ Υ = Γ⊗ Υ + Z⊗ Υ;

(4) (Γ⊗ Z)(Υ⊗Λ) = (ΓΥ)⊗ ZΛ.

Definition 1. Ref. [37] For any given initial value of the system ζ̂, if there exists a compact set ∂̂
and a constant ϑ such that as t→ +∞, the error state e(t) converges to

∂̂ =
{

e ∈ RnN
∣∣∣E[‖e‖] ≤ ϑ

}
, (7)

and then the MASs (1) is said to achieve quasi-consensus; ϑ is the upper bound of error; and if
ϑ = 0, MASs (1) is said to achieve consensus.

Definition 2. Ref. [8] Given an impulsive sequence τ′ = {tk}+∞
k=1, k ∈ N, let Nτ′(t, s) denotes the

number of impulsive times in the interval (s, t], exists two constants N0 ∈ N and τave > 0, such
that

Nτ′(t, s) ≤ t− s
τave

+ N0. (8)

τave and N0 are called the average impulsive interval and the elasticity number, respectively.

3. Main Results

Theorem 1. Suppose that Assumptions 1–5 hold, if there exists a positive definite matrix P and
positive scalars ε1, ε2, ε3, γ, κ1, κ2 and γ0 ≥ 0, such that∫ t

s
H(v)dv ≤ γ(t− s) + γ0, 0 ≤ s < t, (9)

θ =
ln(Zsupσ)

τsup
+ γ < 0, (10)

0 < σ < 1, (11)
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where Λ̄(t) = P(IN⊗A)+ (IN ⊗ A)T P+ α[P(IN⊗TB(t)Q)+ (IN ⊗ TB(t)Q)T P]+ βε1PP+
βκ2ε−1

1 (ε2 + 1)InN , b = λmin(P), q = λmax(P), H(t) = b−1λmax(Λ̄(t)), η = d̂2ξ̄ψ̄q(ε−1
3 + 1),

σ = d2(ε3qb−1 + 1), ρ = βκ2ε−1
1 (ε−1

2 + 1), ψ̄ = maxi∈N[1,N]ψ̄i, d̂ = maxk∈Ndk, G =

(IN + UkL)⊗ In, d = λmax(G), Zsup = eγτsup+γ0 and κ = max{κ1, κ2}.
Then, the time-varying multi-agent system (1) with external inputs and deception attacks

can achieve quasi-consensus under the control protocol (4), and the upper bound of error can be
estimated as

ϑ =
ρσN0 eγ0 ω̂2

b|θ| +
ηZsup

b(1− σZsup)
+ b−1ρZsupω̂2τsup,

where Zsup = eγτsup+γ0 .

Proof. Consider the following Lyapunov function:

V(t, e(t)) = eT(t)Pe(t). (12)

For t ∈ [tk, tk+1), k ∈ N, taking the Dini derivative of (12) gives:

D+V(t, e(t)) = 2eT(t)P[(IN ⊗ A(t))e(t) + β(t)F(t, e(t), ω̄(t))]. (13)

According to Assumption 1, one has:

2eT(t)P(IN ⊗ A(t))e(t) = eT(t)(P(IN ⊗ A) + (IN ⊗ A)T P)e(t) + αeT(t)(P(IN ⊗ TB(t)Q)

+ (IN ⊗ TB(t)Q)T P)e(t) + (α(t)− α)eT(t)(P(IN ⊗ TB(t)Q)

+ (IN ⊗ TB(t)Q)T P)e(t). (14)

2eT(t)Pβ(t)F(t, e(t), ω̄(t)) = β[eT(t)PF(t, e(t), ω̄(t)) + FT(t, e(t), ω̄(t))Pe(t)]

+ 2(β(t)− β)eT(t)PF(t, e(t), ω̄(t)). (15)

Based on Assumption 4, it can be found that:

FT(t, e(t), ω̄(t))F(t, e(t), ω̄(t)) = f T(t, x(t), ω(t))(E⊗ In)
T(E⊗ In) f (t, x(t), ω(t))

≤ [κ1xT(t) + κ2ωT(t)](E⊗ In)(E⊗ In)[κ1x(t) + κ2ω(t)]

= κ2
1eT(t)e(t) + κ1κ2[ω̄

T(t)e(t) + eT(t)ω̄(t)] + κ2
2ω̄T(t)ω̄(t)

≤ (κ2
1 + κ1κ2ε2)eT(t)e(t) + (κ2

2 + κ1κ2ε−1
2 )ω̄T(t)ω̄(t), (16)

β[eT(t)PF(t, e(t), ω̄(t)) + FT(t, e(t), ω̄(t))Pe(t)].

≤ β[ε1eT(t)PPe(t) + ε−1
1 FT(t, e(t), ω̄(t))F(t, e(t), ω̄(t))]

≤ β[ε1eT(t)PPe(t) + (κ2
1ε−1

1 + κ1κ2ε2ε−1
1 )eT(t)e(t)

+ (κ2
2ε−1

1 + κ1κ2ε−1
2 ε−1

1 )ω̄T(t)ω̄(t)]. (17)

Substituting (14)–(17) into (13) and taking the mathematical expectation operation gives:

E[D+V(t, e(t))] ≤ E
{

eT(t)(P(IN ⊗ A) + (IN ⊗ A)T P)e(t) + αeT(t)[P(IN ⊗ TB(t)Q)

+ (IN ⊗ TB(t)Q)T P]e(t) + βε1eT(t)PPe(t) + (βκ2
1ε−1

1 + βκ1κ2ε2ε−1
1 )eT(t)e(t)

+ (βκ2
2ε−1

1 + βκ1κ2ε−1
2 ε−1

1 )ω̄T(t)ω̄(t)
}

. (18)

Therefore, combining the above conditions with (18), we have:

E[D+V(t, e(t))] ≤ H(t)E[V(t, e(t))] + ρω̄T(t)ω̄(t), (19)
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where Λ̄(t) = P(IN ⊗ A)+ (IN ⊗ A)T P+ α[P(IN ⊗ TB(t)Q)+ (IN ⊗ TB(t)Q)T P] + βε1PP
+ βκ2ε−1

1 (ε2 + 1)InN , b = λmin(P), H(t) = b−1λmax(Λ̄(t)), ρ = βκ2ε−1
1 (ε−1

2 + 1) and
κ = max{κ1, κ2}.

For t ∈ [tk, tk+1), k ∈ N and any positive number S, we establish a comparative
differential equation as follows:{

ẏ(t) = H(t)y(t) + ρω̄T(t)ω̄(t) + S,

y(tk) = Φk
(20)

where Φk = E[V(tk, e(tk))] + S By solving and comparing the solutions of the differential
equations, the following result is obtained:

E[VS(t, e(t))] ≤ Φke
∫ t

tk
H(v)dv

+ ρ
∫ t

tk

(ω̄T(u)ω̄(u) + S)e
∫ t

u H(v)dvdu.

For t ∈ [tk, tk+1), k ∈ N, setting S→ 0, one has:

E[V(t, e(t))] ≤ E[V(tk, e(tk))]e
∫ t

tk
H(v)dv

+ ρ
∫ t

tk

ω̄T(u)ω̄(u)e
∫ t

u H(v)dvdu. (21)

For t = tk, k ∈ N, according to (6), we obtain:

E[V(t+k , e(t+k ))] = E[eT(t+k )Pe(t+k )] = E[(eT(t−k )G
T + WT(tk))× P(Ge(t−k ) + W(tk))]

= E[eT(t−k )G
T PGe(t−k ) + eT(t−k )G

T PW(tk) + WT(tk)PGe(t−k )

+ WT(tk)PW(tk)], (22)

where W(tk) = dk(EΨ(tk)⊗ In)ξ(tk). As for the first term in (22), has:

E[eT(t−k )G
T PGe(t−k )] = E

{
eT(t−k )[(IN + UkLT)⊗ In]P[(IN + UkL)⊗ In]e(t−k )

}
≤ d2E[V(t−k , e(t−k ))]. (23)

Then, we have:

E[eT(t−k )G
T PW(tk)+ WT(tk)PGe(t−k )] ≤ qE[eT(t−k )G

TW(tk) + WT(tk)Ge(t−k )]

≤ qE[ε3eT(t−k )G
TGe(t−k ) + ε−1

3 WT(tk)W(tk)]

≤ε3d2qb−1E[V(t−k , e(t−k ))] + ε−1
3 d̂2ξ̄ψ̄q. (24)

For the fourth term, we obtain:

E[WT(tk)PW(tk)] = E[d2
kξT(tk)(EΨ(tk)⊗ In)

T P(EΨ(tk)⊗ In)ξ(tk)] ≤ d̂2ξ̄ψ̄q. (25)

In summary, through (23)–(25), we reach the following conclusion:

E[V(t+k , e(t+k ))] ≤ d2(ε3qb−1 + 1)E[V(t−k , e(t−k )) + d̂2ξ̄ψ̄q(ε−1
3 + 1)

≤ σE[V(t−k , e(t−k ))] + η, (26)

where σ = d2(ε3qb−1 + 1) and η = d̂2ξ̄ψ̄q(ε−1
3 + 1).

In this part, the mathematical induction method will be used to obtain the overall
evolution process of the system, based on (21), which is proven as follows:

For t ∈ [t0, t1), we have

E[V(t, e(t))] ≤ E[V(t0, e(t0))]e
∫ t

t0
H(v)dv

+ ρ
∫ t

t0

ω̄T(u)ω̄(u)e
∫ t

u H(v)dvdu. (27)
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According to (21) and (26), for any t ∈ [tm−1, tm), m ∈ N, suppose that the following
inequality holds:

E[V(t, e(t))] ≤ σm−1E[V(t0, e(t0))]e
∫ t

t0
H(v)dv

+
m−2

∑
i=0

(
σm−i−1ρ

∫ ti+1

ti

ω̄T(u)ω̄(u)

× e
∫ t

u H(v)dvdu + σiηe
∫ t

tm−i−1
H(v)dv)

+ ρ
∫ t

tm−1

ω̄T(u)ω̄(u)e
∫ t

u H(v)dvdu. (28)

For t ∈ [tm, tm+1), m ∈ N, a comparative differential equation similar to (20) is
established as follows: {

ẏ(t) = H(t)y(t) + ρω̄T(t)ω̄(t) + S,

y(tm) = Φm.
(29)

where Φm = σE[V(tm, e(tm))] + S. By solving and comparing the solutions of the differen-
tial equations and S→ 0, the following result is obtained:

E[V(t, e(t))] ≤ σE[V(tm, e(tm))]e
∫ t

tm H(v)dv + ρ
∫ t

tm
ω̄T(u)ω̄(u)e

∫ t
u H(v)dvdu

≤ σmE[V(t0, e(t0))]e
∫ t

t0
H(v)dv

+
m−1

∑
i=0

(
σm−iρ

∫ ti+1

ti

ω̄T(u)ω̄(u)

× e
∫ t

u H(v)dvdu + σiηe
∫ t

tm−i
H(v)dv)

+ ρ
∫ t

tm
ω̄T(u)ω̄(u)e

∫ t
u H(v)dvdu. (30)

Based on the definition of Nτ′(t, s) in Definition 2, Assumption 5 and (30), for any
t ≥ t0, one finds:

E[V(t, e(t))] ≤ σNτ′ (t,t0)E[V(t0, e(t0))]e
∫ t

t0
H(v)dv

+ ρ
∫ t

t0

σNτ′ (t,u)ω̄T(u)ω̄(u)e
∫ t

u H(v)dvdu

+ ηZsup
1− (σZinf)

Nτ′ (t,t0)

1− σZsup
+ ρZsupω̂2τsup, (31)

where Zsup = eγτsup+γ0 and Zinf = eγτinf+γ0 . Then, set θ =
ln(Zsupσ)

τave
+ γ < 0, and one has:

E[V(t, e(t))] ≤σ
t−t0
τave +N0 eγ(t−t0)+γ0E[V(t0, e(t0))] + ρ

∫ t

t0

σ
t−u
τave +N0 eγ(t−u)+γ0 ω̄T(u)ω̄(u)du

+ ηZsup
1− (σZinf)

t−t0
τave +N0

1− σZsup
+ ρZsupω̂2τsup

≤ σN0 eγ0 eθ(t−t0)E[V(t0, e(t0))] + ρσN0 eγ0

∫ t

t0

eθ(t−u)ω̄T(u)ω̄(u)du

+ ηZsup
1− (σZinf)

t−t0
τave +N0

1− σZsup
+ ρZsupω̂2τsup.

(32)

It follows from (32) that:

lim
t→+∞

E[V(t, e(t))] ≤ ρσN0 eγ0 ω̂2

|θ| +
ηZsup

1− σZsup
+ ρZsupω̂2τsup. (33)

As

E[‖e(t)‖2] 6
1
b
E[V(t, e(t))].
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In conclusion, the nonlinear time-varying multi-agent systems with external inputs
under deception attacks can achieve quasi-consensus under impulsive protocol (4), and
they have the upper bound of error:

ϑ =
ρσN0 eγ0 ω̂2

b|θ| +
ηZsup

b(1− σZsup)
+ b−1ρZsupω̂2τsup.

Remark 2. Different from the works [31,32,35], the deception attacks in this paper mainly focus
on the false data injection attacks in impulsive form. Note that the time-varying matrix in [37]
assumes that BT(t)B(t) ≤ KIn with 0 < K < +∞, and this bounded condition is removed here.
In [35], the quasi-consensus problem of time-invariant systems under deception attacks is considered.
Compare with [35], this paper takes into account external inputs, deception attacks and time-varying
dynamics, which have greater significance in practice.

Remark 3. Based on the continuous time evolution characteristics of the system, a reasonable
assumption is constructed as (9). In addition, it can be seen from (21) that the system is always
unstable without a control protocol. If the system is stable, then (9) can be changed to:∫ t

s
H(v)dv ≤ −γ(t− s)− γ0, 0 ≤ s < t. (34)

Corollary 1. Under Assumptions 1–5, if there exists a positive definite matrix P and positive
scalars ε1, ε2, ε3, γ, κ1, κ2 and γ0 ≥ 0, the condition (34), and the following condition is satisfied:

θ̃ =
ln(Zndσ)

τave
− γ < 0, (35)

where Znd = e−γτinf−γ0 . Then, the nonlinear time-varying multi-agent system (1) with external
inputs and deception attacks can achieve quasi-consensus under the control protocol (4), and the
upper bound of error can be estimated as:

ϑ
′
=

ρσN0 e−γ0 ω̂2

b
∣∣θ̃∣∣ +

ηZnd
b(1− σZnd)

+ b−1ρZndω̂2τsup. (36)

Proof. As this inference only involves the assumption of continuous time evolution charac-
teristics of the system, it only needs to prove the first part and the third part according to
Theorem 1. According to the solution of (19) and comparison function (20), for t ∈ [tk, tk+1),
k ∈ N, setting S→ 0, one can find:

E[V(t, e(t))] ≤ E[V(tk, e(tk))]e
∫ t

tk
H(v)dv

+ ρ
∫ t

tk

ω̄T(u)ω̄(u)e
∫ t

u H(v)dvdu. (37)

Similarly, we find that, as S→ 0

E[V(t, e(t))] ≤ σN0 e−γ0 eθ̃(t−t0)E[V(t0, e(t0))] + ρσN0 e−γ0

∫ t

t0

eθ̃(t−u)ω̄T(u)ω̄(u)du

+ ηZnd
1− (σZ

′
inf)

t−t0
τave +N0

1− σZnd
+ ρZndω̂2τsup, (38)

where Z
′
inf = e−γτsup−γ0 . When t→ +∞, we have:

lim
t→+∞

E[V(t, e(t))] ≤ ρσN0 e−γ0 ω̂2∣∣θ̃∣∣ +
ηZnd

1− σZnd
+ ρZndω̂2τsup. (39)
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Hence, the nonlinear time-varying multi-agent system with external inputs and de-
ception attacks can achieve quasi-consensus under control protocol (4), and

ϑ
′
=

ρσN0 e−γ0 ω̂2

b
∣∣θ̃∣∣ +

ηZnd
b(1− σZnd)

+ b−1ρZndω̂2τsup.

4. Numerical Examples

In this section, a numerical example is provided to verify the applicability of theoretical
results. The undirected communication graph of time-varying MASs (1) is shown as
Figure 2. From this, we know that

L =


2 −1 −1 0
−1 3 −1 −1
−1 −1 2 0
0 −1 0 1

.

43

1 2

 

Figure 2. Undirected communication graph of time-varying MASs (1).

We consider 3-dimensional time-varying MASs with four agents, i.e., xi(t) = [xi1(t),
xi2(t), xi3(t)]T and i ∈ N[1, 4]. Setting ωi(t) = [0.15 cos(t),−0.2 sin(t), 0.3 cos(t)]T , t0 = 0
and

ζ̂ = (ζT
1 , ζT

2 , . . . , ζT
4 )

T =

 0.7 −0.2 1.3 −0.3
0.2 −2.4 2.5 0.7
1.6 0.4 −0.4 1.4

T

.

In addition, let f (t, xi(t), ωi(t)) = [sat(xi1(t)) + sat(ωi1(t)), 0, 0]T , where sat(y(t)) =
0.5(|y(t) + 1| − |y(t)− 1|). According to the control protocol designed in (4), Figure 3 de-
scribes an impulsive sequence with attack strength d̂ = 0.34 and impulsive control gain
Uk = −0.35. On the one hand, we assume that ω̂ = 1.2, P = I12, ξi(t) = [ξi1(t), ξi2(t), ξi3(t)]T

and ξi(t) = [0.15 cos(t),−0.2 sin(t), 0.3 cos(t)]T , then ξ̄ = 0.53.
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Figure 3. Impulsive sequence for d̂ = 0.34 and Uk = −0.35.

Considering the influence of an impulsive attack sequence, we adopt a distinctive
impulsive signal {tk}+∞

k=1, which satisfies (8) and is described as follows:

tk − tk−1 =

{
χ̃, if mod(k, N0) 6= 0,

N0(τave − χ̃) + χ̃, if mod(k, N0) = 0.
(40)

where χ̃ and τave are positive numbers that satisfy χ̃ ≤ τave, N0 ∈ N. Hence, we find
τinf = infk∈N{tk+1− tk} = χ̃ and τsup = supk∈N{tk+1− tk} = N0(τave − χ̃) + χ̃. We choose
χ̃ = 0.2, N0 = 3, τave = 0.4, according to (40), and we find that τinf = 0.2, τsup = 0.8.
Choose that κ1 = κ2 = 0.5, ε1 = ε2 = ε3 = 1, then κ = 0.5. The parameters of system are
set as follows:

A =

 −1.55 1.74 0
1 −1 1

0.1 −1.8 0.1

,

with parameters T = diag{0.4, 0.3, 0.3}, Q = diag{0.6, 0.2, 0.5} and B(t) = diag{0.2cos(t),
− 1.5cos(t), 0.4cos(t)}. In addition, let E[α(t)] = α = 0.5, E[β(t)] = β = 0.3 and ψ̄ = 0.5.

Based on the designed parameters and in consideration of
∫ t

s H(v)dv ≤ 0.1(t− s) +

0.65, then γ = 0.1, γ0 = 0.65. σ = d2(ε3qb−1 + 1) = 0.2, θ =
ln(Zsupσ)

τsup
+ γ = −1.037 < 0.

As shown in Figure 4, the green curve represents the modulus of the average states
of the agents of the time-varying MASs. According to the parameters selected above,
the upper bound of error can be calculated ϑ = 0.5, which is shown as Figure 5. When
t→ +∞, the trajectories of states coincide and the MASs achieves consensus. It can be seen
from Figure 5 that, when system (1) disturbed by both external disturbances and impulse
deception attacks, the quasi-consensus can be achieved under the control protocol (4), and
the error is kept within the error bound. If there is no external disturbances or impulse
deception attacks, the consensus of the system can be obtained as shown in Figure 6.
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Figure 5. Trajectories of system errors under external inputs and impulse deception attacks.

0 5 10 15 20 25 30

System running time:  t

0

0.5

1

1.5

2

2.5

3

3.5

  |
e

i(t
)|

, i
=

1,
2,

3,
4

|e
1
(t)|

|e
2
(t)|

|e
3
(t)|

|e
4
(t)|

Figure 6. Trajectories of system errors without external inputs or impulse deception attacks.
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5. Conclusions

In this paper, we studied the quasi-consensus of a class of time-varying MASs suffering
from both external inputs and deception attacks. By utilizing the analysis method from [5],
we relaxed the restrictive assumption on time-varying matrices. To describe the success of
deception attacks, a stochastic variable that obeys a Bernoulli distribution was adopted. By
employing the comparison principle, sufficient conditions to ensure quasi-consensus were
derived. Finally, a simulation example was given to verify the theoretical results.
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